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1 INFORMATION CHARACTERISTICS OF MESSAGE SOURCES  

1.1 Quantitative measure of the information 

Transmission systems are created for transfer of the information. It is necessary 
to be able to calculate the quantity of the information, which is given out by a source 
and transferred by a channel. Also it is necessary to estimate limiting possibility of 
transmission channel for transfer of the information. 

Therefore it is necessary to use some quantitative measure, which would en-
able to estimate objectively quantity of the information which message contains in. 
Such measure has been entered by K. Shannon in 1948.  

The quantity of the information in the message a (a sign, a word, a phrase) is 
defined as: 

 ( ) ( ) ( ),log
1

log 22 aP
aP

aI −==  (1.1) 

where P(a) – probability of the message a. The relation (1) is an axiom.  
The probability of the message there is less, the more information contains in 

it.  
The logarithmic function uses for realization of two obvious properties.  
1. The message is beforehand known (Р (a) = 1 – uncertainty is absent). Then 

the quantity of the information in the message a is equal to zero: I(a) = log2 1 = 0.  
2. The source consistently chooses two independent messages аj and аk. The 

probability of such choice Р(аj, аk) is joint probability of events аj and аk 

 
( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )kjkj

kjkjkj
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+=−−=

=−=−=

22

22

loglog

log,log,
 (1.2) 

Quantity of the information in two messages is equal to the sum of information 
quantities in each message (the measure is additive). 

Unit of measure of information quantity is binary unit or bit.  
Example 1. The probability of message a is equal to 1/16. Define the informa-

tion quantity in this message. 
Solution. I(a) = – log2 (1/16) = 4 bit.  

1.2 Models of discrete message sources  

Let's consider a source of messages A (figure 1). The 
source gives out sequence of signs. The source chooses 
signs from the alphabet randomly {ak} = а1, а2, ... 

АМ
а , 

where МА – size of the source alphabet. For the source de-
scription it is necessary to specify probabilities of signs. 
There can be such cases. 

1. Source without memory: the probability of given sign does not depend on 
signs what were before it and will be after it. In this case the source is given by prob-

Message 
source А 

….ak… 

Figure 1 – Message 
source А 
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abilities of signs Р(а1), Р(а2), ... Р(
АМ

а ). Special case – signs is equiprobable 

Р(а1) = Р(а2) = ... Р(
АМ

а ) = 1/МА.  

2. Source with memory: the probability of given sign depends on signs what 
were before it and will be after it. In this case a source is given by joint probabilities 
of signs.  

For example, dependence only between two signs: Р(аj, аk) = Р(аj)⋅Р(аk/аj); 
dependence between three signs Р(аj, аk, аl) = Р(аj)⋅Р(аk/аj)⋅Р(аl/аj, аk), etc. 

1.3 Entropy of an independent message source  

Source is characterized by average quantity of the information, fall on one 
sign. The average quantity is called source entropy. 

1. We shall consider a source without memory. It is described by probabilities 
of separate signs. If probabilities of signs are different, then signs contain different 
quantity of the information according to the formula (1.1)  

 ( ) ( )kk aPaI 2log−= . 

Let's find source entropy  

 ( ) )(log)()( 2
1

k

M

k
kk aPaPaIAH

A

⋅−== ∑
=

. (1.3) 

Entropy properties: 
1. Entropy is a real, limited and non-negative value. Property follows from a 

structure of expression for Н(А), and consequently that 0 ≤ P(аk) ≤ 1.  
2. Entropy of determined messages source is equal to zero, Н (А) = 0 because 

the probability of one of messages is equal to one and others are equal to zero. 
3. Entropy is maximal, if all source messages are equiprobable. We shall prove 

it.  
Let's consider a difference 
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Let's take advantage of a known relation 

 ln x ≤ x – 1, (1.5) 

which is correct for any positive х. Then 
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equality takes place only at МАP(аk) = 1, so: 

 P(а1) = P(а2) = ...= P(аK) = 1/МА 

and then 

 А

М

k АА

М
ММ

АH
А

2
1

2max log
1

log
1

)( =







−= ∑

=
. (1.7) 

Apparently from last expression, in case of equiprobable messages entropy in-
creases with increasing of source alphabet size (growth of signs number). At not 
equiprobable signs entropy, accordingly, decreases. 

For example, the source A of discrete independent messages uses 4 signs with 
probabilities Р(а1) = 0,7; Р(а2) = Р(а3) = Р(а4) = 0,1. Let's define source entropy.  

 ( ) ( ) ( )∑
=

−=
K

k
kk aPaPAH

1
2log = – 0,7⋅log20,7 – 3⋅0,1⋅log20,1 = 1,36 bit. 

The maximal value of source entropy for alphabet size МА is  

 Hmax(A) = log2МА = log24 = 2 bit. 

Properties of source entropy can be easy calculated in case of a binary source 
(МА = 2). Let probabilities of signs P(а1) = р, and P(а2) = 1 – р. Then binary source 
entropy will be written down 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ppppaPaPaPaPAH −−−−=−−= 1log1logloglog 22222121 . (1.8) 

On figure 2 dependence (1.8) is 
plotted. From figure it is visible, that en-
tropy is equal to zero at P(а1) = 0; P(а2) = 
1 or P(а1) = 1; P(а2) = 0; the maximum of 
entropy takes place, when 
P(а1) = P(а2) = 0.5, and the maximal 
value is equal 1 bit, as well as calculated 
under the formula (1.7). If probabilities of 
signs different and final then entropy ac-
cepts values between zero and one.  

 

1.4 Entropy of a dependent message source  

Strong statistical connection between signs appears on the source output in ac-
tual practice. 

So, in texts, probabilities of separate letters depend on what letters preceded 
them. For example, let's consider the English sensible text. The letter "P" has ap-
peared. The probability of that following will be "А", much more, than probability of 
the letter "H". At transfer of images observes the similar situation – the adjacent ele-
ments of the image have usually almost identical brightness and color. 

For definition of source entropy when signs are statistically connected, it is 
necessary to take into account conditional probabilities of separate signs. Let two 

1 

0,5 

0 

1 

0,5 
0 

Н(А), bit 

р 

Figure 2 – Binary source entropy  
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signs of the message following one after another are statistically connected. Using 
formula (1.1), we shall define quantity of the information in sign ak what appeared 
after (already known) sign received earlier aj  

 i(ak/aj) = – log2P(ak/aj). (1.9) 

In this case entropy of dependent messages source is calculated by averaging 
on indexes k and j: 
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Calculation becomes complicated. Important that, a source entropy decreases if 
connection between signs present 

 Н0(А) ≥ Н1(А) ≥ Н2(А) ≥ … Нn(А), (1.11) 

The expression specifies how many signs have statistical dependence. 
So, for the Russian text Н0(А) = 5 bit, Н8(А) = 2 bit. 

1.5 Redundancy of a message source  

Redundancy of a messages source is a property of a source to give out infor-
mation by greater number of symbols, than it could be possible. Quantitatively re-
dundancy is defined by coefficient of redundancy on the formula 

 
( ) ( )

( )AH

AHAH

max

max
r

−
=χ .  (1.12) 

The formula (1.12) can be treated so: redundancy shows relative underloading 
of signs by information on the average. Properties of redundancy:  

1. Positive property is the opportunity to correct the mistakes arising at mes-
sage transfer.  

2. Negative property is loading of a communication channel or the storage de-
vice superfluous symbol.  

Example. Find the coefficient of redundancy of the source:  
H(A) = 1,36 bit, Hmax(A) = 2 bit. 
Decision.  χr = (2 – 1,36)/2 = 0,32. 

1.6 Source rate  

Source rate is quantity of the information which are given out by a source on 
the average per 1 second  

 
symb

s

)(

T

AH
R = ,  (1.13) 

where Тsign – average time, spent by a source on delivery with one symbol. 
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1.7 Joint entropy and mutual information  

Let’s consider two message sources A and B (fig-
ure 3). Joint entropy is average quantity of information 
which contains in common appearing signs ak and bj  

 ( ) ( ) ( )jk

M

k

M

j
jk baPbaPBAH

A B

,log,,
1 1

2∑∑
= =

−= . (1.14) 

It is is possible to calculate joint entropy: 

 ( ) ( ) ( ) ( ) ( )BAHBHABHAHBAH +=+=, , (1.15) 

where ( )ABH  – conditional entropy of source В, the average quantity of informa-
tion in one sign of source B provided that the message of source A is known. The 
similar definition of conditional entropy ( )BAH . If signs of sources A and B are in-
dependent, then ( ) )(ВНABH = , ( ) )(АНВАH = . 

For sources of messages A and B the mutual information is entered. It is aver-
age quantity of the same information, which contains in signs of sources messages A 
and B  

 ( ) ( ) ( ) ( ) ( ) ( )ABHBHBAHAHABIBAI −=−== ,, . (1.16) 

If signs of sources A and B are independent, then ( ) ( ) 0,, == ABIBAI . Mutual 
information ( )BAI ,  also called as the information from A to B.  

1.8 Models of continuous message sources  

Let's consider a continuous messages source A (fig-
ure 4). The source gives out the continuous message a(t). 
The message will be transformed by different transducers 
to a baseband telecommunication (analogue) signal b(t): 
b(t) = k⋅a(t), where k is a factor of proportionality. We shall 
consider further, that the source gives out a signal b(t).  

For the decision of information tasks it is necessary to set probabilistic charac-
teristics. It is enough to know a probability density p(b).  

1.9 Differential entropy of a continuous signal 

There is a signal on the source output (figure 5). 
We shall find quantity of information in one sample 
b(t1)  

( )( ) ( )( )1
21

1
log

tbP
tbI = . 

As ( )( ) 01 →tbP , then ( )( ) ∞→1tbI . 
Let's execute quantization of sample (digitization 

on a level). Then sample will accept values b1, b2, …bL, 
where L – number of quantization levels. 

Probabilities of these values are finite  

Figure 3 – Two 
message sources 

Message  
source А 

….ak… 

Message  
source В 

….bj… 

Message 
source А 

..а(t).. 

Figure 4 – Message 
source А 

Figure 5 – Continuous  
signal  

t1 t 

b(t) 

b(t1) 
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( ) ( ) bbpbP kk ∆= . 

Entropy of samples  

( ) ( ) ( )( ) ( ) ( ) bbpbpbbpbbpBH
b

L

k
kk

b
∆−−==∆∆−=

→∆

∞

∞−=→∆ ∫∑ 2
0

2
1

2
0

loglimlog...loglim . (1.17) 

The first component names as differential entropy 

 ( ) ( ) ( )∫
∞

∞−
−= bpbpBh 2log .  (1.18) 

The second component  ∞→∆−
→∆

b
b

2
0
loglim  (tends to infinity). 

Thus, the quantity of the information in one sample tends to infinity. 
For comparison of different messages differential entropy is used. The second 

component for all signals is the same. 
Differential entropy is maximal, if the signal has normal probability distribu-

tion  

( ) 2

2

2

2

1 σ
−

σπ
=

b

ebp , 

where σ2 – dispersion of signal b(t). 
After substitution we receive  

 ( ) 2
2 2log σπ= eBh , bit/sample. (1.19) 

1.10 Epsilon-entropy of a continuous signal 

Any continuous signals suppose the approximate representation ( )tb̂ . 

There is an error of approximate representation ( ) ( ) ( )tbtbt −=ε ˆ . Quantitatively 

the size of error is described by its average square ( )t2ε . 
Epsilon-entropy Hε(В) is minimum average quantity of mutual information be-

tween b(t) and ( )tb̂  in one sample at the given allowable error of its approximate rep-

resentation ( ) 2
0

2 ε≤ε t : 

 ( ) ( ) ( ){ } ( ) ( )ε−=−=ε hBhBBhBhBH maxˆmin . (1.20) 

where h(ε) – differential entropy of error ε(t).  
The maximal value h(ε) takes place at the normal distribution ε(t), and formula 

for calculating of epsilon entropy looks like 

 ( ) ( ) 2
2 2log σπ−=ε eBhBH , (1.21) 

where σ2 – dispersion of error ε(t).  
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1.11 Redundancy of a continuous message source  

The redundancy factor of continuous message source can be calculated accord-
ing to the formula (1.12) at substitution of corresponding values of differential en-
tropy h(В) and hmax(В). 

 
( ) ( )

( )Bh

BhBh

max

max
r

−=χ . (1.22) 

If the signal has normal distribution, then χr = 0.  

1.12 Continuous message source rate 

Epsilon rate Rs of a continuous message source can be calculated according to 
the formula (1.13) in which it is necessary to substitute values of epsilon entropy 
Hε(В), and sampling interval Тs = 1/(2Fmax)  

 ( )max2sR F h B= . (1.23) 
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2 EFFECTIVE CODING OF MESSAGES 

2.1 Problem of message coding  

The problem of message coding consists in representation of messages by a 
digital signal (binary symbols). Binary symbols are convenient for transmitting and 
storing. 

At first we shall consider coding of discrete messages. Message coding is car-
ried out on the basis of the certain code. The code is a rule or the table, according to 
which each sign in the message put in conformity the code word (a set of binary 
symbols). As a result of coding we receive a baseband digital signal. Inverse trans-
formation of baseband digital signals to messages called decoding, which is carried 
out by the decoder on the basis of the same code. 

Inclusion of the source coder is shown on figure 6: МА – size of message 
source alphabet; m – the code base, as a rule, equal 2. 

Coding performs without information losses. Therefore source rate is same, on 
the source output, and on the coder output. On figure 6 inclusion of the source coder 
is shown. The basic characteristic of a digital signal is its rate R. 
 
 
 
 
 
 
 
 

If lengths of code words are identical and equal n the code is called uniform 
(fixed length) or primitive. The length of a binary code depends on size of the source 
alphabet and is defined as: 

 n ≥ log2МА, (2.1) 

Length of code words can differ at non-uniform (variable-length) codes. At 
construction of a non-uniform code it is necessary take into account probabilities of 
coded signs: to those signs which meet more often, give shorter code words and vice 
versa. Therefore non-uniform codes name statistical. Example of such code is the 
code (alphabet) Morse (code Morse was created near 170 years ago). Morse has made 
his code intuitively. Below we shall formulate rigorous methods of non-uniform 
codes construction. 

2.2 Primitive codes for discrete messages 

Examples of a primitive code are the following basic codes: IТA-2, ASCII, 
EBCDIC. Feature of primitive coding is that if the source message has redundancy 
then redundancy does not reduce by the coder, redundancy can even increase. 

Code IТA-2 (International Telegraph Alphabet № 2) has length n = 5, that is 
М ≤ 32. How it is possible to code Latin and Russian letters, Arabian digits and 
moreover some signs? Practically, we have three code tables, and before the begin-

Message 
source А 

Source  
coder 

МА > 2 m = 2 

s

bin.unit
,sR  

……ak….. …1001011
.. 

s

bin.symb.
,R  

Figure 6 – Inclusion of the source coder  
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ning of coding the register, what determines what table the coder and, accordingly, 
the decoder should use, is underlined. Before transition to another table it is necessary 
to replace the register. 

Codes ASCII (American Standard Code Information Interchange) and 
EBCDIC (Extended Binary-Coded-Decimal Interchange Code) has length n = 8, 
there is each sign is coded with byte. 

From the point of view of the information theory the use of primitive codes 
does not demand the decision of any problems. 

2.3 Shannon theorem for the channel without noise 

The Shannon theorem of coding for the channel without noise (for a source) 
approves, that the average length n  of code words (binary sequences) can be arbi-
trary closely to the source entropy: 

 ε+≥ )(AHn , (2.2) 

where Н(А) is message source entropy;  
ε – arbitrary small value.  
From entropy properties for a binary source (on the coder output) follow, that 

entropy cannot exceed 1 binary unit. Hence, the average length of a code word n  
cannot be less then entropy.  

Let's analyse, can an equalityn  = Н(А) be there?  
Let's define a source rate on coder output, considering, that coded signs inde-

pendent 

 
( ) ( ) ( )
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∑
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1
b

1
2

bsign
s

log
)(

. (2.3) 

We admit, that at coding of sign ak length of code word is: 

 nk = –log2P(ak)  for all  k.  (2.4) 

Then the sums in numerator and denominator will be equal and the formula 
(2.3) pass to next: 

 R
T

R ==
b

s
1

. (2.5) 

That is, each binary symbol transfers one binary unit of the information and 
equality is carried out n  = Н(А). Really equality (2.4) cannot be executed exactly for 
all k and then n  come close to Н(А). For reduction ε in the ratio (2.2) it is necessary 
to code the big blocks of signs. It means to pass to the integrated alphabet.  

2.4 Principles of discrete messages effective coding  

Coding at which the average length of code word is minimized is called effec-
tive (economical) coding. The same that at the fixed source rate Rs the rate of a digital 
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signal on the coder output is minimized. Effective coding called also compression of 
the information. 

For realization of effective coding it is necessary to take off redundancy at cod-
ing. The reasons of redundancy are: dependence between signs of source and not 
equiprobable signs. 

Accordingly, at coding 2 stages are carried out. 
− Dependence between signs of a source is eliminated at coding by transition 

to the integrated signs, which will be independent. For example, to pass from coding 
letters to coding words or phrases. 

− The integrated independent signs are coded by one of the developed effec-
tive codes: Shannon-Fano or Huffman. 

For estimation of compression methods efficiency the parameter a degree of 
compression is used: 

 nn=µ , (2.6) 

where n – length of code word at uniform coding. 

2.5 Shannon-Fano code  

Optimum algorithms of compression of discrete messages with independent 
signs are Shannon-Fano and Huffman algorithms. These algorithms have much 
common and provide practically identical degree of compression. Necessary operat-
ing condition of these algorithms is that signs probabilities should be known Р(а0), 
Р(а1), … The principle of coding consists that to more probable signs shorter words 
are appropriated, and to less probable signs longer words are appropriated. Besides 
probabilities of symbols 1 and 0 on coder output any way should be equal or almost 
equal. 

The Shannon-Fano algorithm consists in following. Signs write down in de-
creasing order their probabilities. Then signs share on two groups so that the sums of 
signs probabilities of each group were approximately identical. To signs from first 
group, as the first symbol of a non-uniform code, the zero is assigned, and to symbols 
of the second group the unit is assigned. Each of the received groups, if it contains 
more than one sign, shares for two equiprobable groups and a rule of coding repeats. 
This process proceeds until in each group one coding sign will stay. 

Let the source, which is giving out the messages with the help of eight signs, is 
given. Probabilities of these signs: Р(а0) = 0,05; Р(а1) = 0,3; Р(а2) = 0,2; Р(а3) = 0,1; 
Р(а4) = 0,06; Р(а5) = 0,15; Р(а6) = 0,11; Р(а7) = 0,03.  

Source entropy equal to: 

)(log)()( 2
1

k

M

k
k aPaPAH ⋅−= ∑

=
=2,524 binary units. 

In tab. 1 the non-uniform code made on Shannon-Fano algorithm is shown. 
Let's calculate average length of a code word  

k

M

k
k naPn ⋅−= ∑

=
)(

1

 = 2,72. 
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Though for separate symbols length of a code word is equals 5, the average 
length of a code word n= 2,72. In case of uniform coding n = 3. Degree of compres-
sion in this case µ = 1,103. Comparison source entropy and average length of a code 
word shows, that in this case the maximal degree of compression is not achieved. 

Table 1 – Coding on the Shannon-Fano algorithm  

Sign аk 
Probability 

P(ak) 
Appropriated binary symbols 

а1 0,3 0 0 
а2 0,2 0 1 
а5 0,15 1 0 0 
а6 0,11 1 0 1 
а3 0,1 1 1 0 
а4 0,06 1 1 1 0 
а0 0,05 1 1 1 1 0 
а7 0,03 1 1 1 1 1 

2.6 Huffman code  

In case of the Huffman coding algorithm the coding signs write down in de-
creasing order their probabilities. If some signs have identical probabilities, they are 
placed in any order. Then it is necessary to construct the probability tree: choose two 
signs with the least probabilities and form the first branch of the tree. The chosen 
signs unite into "intermediate" sign with probability, equal to the sum of probabilities 
of the chosen signs. Then among the staying signs (together with intermediate sign) 
again find two signs with the least probabilities and do the same as on the first step. 
This procedure carries out until all signs from source alphabet and intermediate signs 
will be used and the root of tree with probability equal 1 will be received.  

“Movement” on a tree from root to corresponding symbol carries out getting of 
code words. Passage through a branch means addition of a binary symbol to code 
word: if "movement" through upper branch then unit is added and if down branch 
then zero is added. 

Let's consider an example of signs coding, the alphabet consist of 7 signs. In 
table 2 signs are resulted and their probabilities are point. On figure 7 construction of 
probability tree is shown. For this purpose signs are located from top to down in de-
creasing order their probabilities. Procedure of probability tree construction described 
above. The received code words are shown in table 2. 

Entropy is calculated : H(A) = 2,524 binary unit. 
Let's calculate average length of a code word 
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k
k naPn ⋅−= ∑

=
)(

1

 = 2,72. 

Average length of the received code the same as 
for Shannon-Fano code. 

According to Shannon theorem of source coding 
the average length of code word cannot be less source 
entropy. For our example 

n  = 2,72 > H(A) = 2,524 bit. 
These values differ only on 7%.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.7 Application of discrete messages effective coding  

It is necessary to note, that Huffman and Shannon-Fano codes are prefix  
codes. The codes are called prefix codes when there are no demanding separating 
symbols between code words. From tables of Huffman and Shannon-Fano codes it is 
visible, that any of short code words is not the beginning of longer word. 

Let's code sequence of signs… а1 а6 а3 а1 а2 а0 … with Huffman code  
… 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 … 

We use the same table for decoding and we shall receive 
… а1 а6 а3 а1 а2 а0 … 

If a code uniform (primitive) separating symbols between code words are re-
quired.  For example, М = 4 

ai a0 a1 a2 a3 
Code word 00 01 10 11 
Let's code sequence of signs… а1 а3 а2 а1 а2 а0 … with the mentioned code  
… 0 1 1 1 1 0 0 1 1 0 0 0 … It is necessary to know boundaries of code words 

for correct decoding. For this purpose enter a separating symbols. 
… 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 1 … 

Table 2 – Huffman code  
Sign 
аk 

Р(аk) 
Code  
word 

а0 0,05 10001 
а1 0,3 11 
а2 0,2 01 
а3 0,1 000 
а4 0,06 1001 
а5 0,15 101 
а6 0,11 001 
а7 0,03 10000 

1 

1 

0 

0 0.2 

0.3 1.0 0.59 

0.03 

0.05 

0.06 

0.1 

0.11 

0.15 

0.21 

0.41 

0.29 

0.14 
0.08 

а1

а7

а0 
а4 
а3 

а6 

а5

а2 

1 

0 

1 

1 

0 

0 

1 

0 

1 

0 

Figure 7 – Coding on Huffman algorithm  

Signs and their 
probabilities 
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Separating symbols are redundant, additional resource of a communication 
channel is spent for their transmission. 

Huffman codes are used in some telecommunication technologies, for exam-
ple, data compression in Rec. V.42, coding of images by method MPEG (Motion Pic-
ture Expert Group).  

The universal algorithm of compression Ziv-Lempel-Whelch is used in modern 
computer archivers. This algorithm is updated Huffman algorithm. For some types of 
files the factor of compression can achieve 5–10.  

2.8 Digital methods of analog signals transmission  

Methods of digital transmission of analog signals are widely used in modern 
telecommunications: 

− the analog signal will be transformed in digital, to the sequence of binary 
symbols; 

− the digital signal is transmitted by a digital communication channel; 
− from digital signal the analog signal is recovered. 
Any method of digital transmission is characterized by rate of digital signal R 

(bit per second) and accuracy of transmission – the signal/quantization noise ratio ρq.  
The problem is to satisfy the requirement to the ratio ρq at minimal value R. There 
were developed a lot of digital methods of transmission. The elementary methods 
among them are pulse code modulation (PCM)1.  

2.9 Discretization of analog signals on time 

At any method of digital transmission the analog signal b(t), first of all, will be 
transformed to a discrete signal which represents itself sequence of samples b(kTs), 
taken through an sampling interval Ts ≤ 1/(2Fmax), where Fmax is the maximal fre-
quency of a signal spectrum b(t).  This transformation names sampling of a signal on 
time, and the device for its realization names sampler.  Sampling frequency should be 
not less the double frequency Fmax:  

 fs = 1/Тs ≥ 2Fmax.  

According to Kotelnikov theorem, performance of this ratio guarantees an op-
portunity of exact recovery of an analog signal on samples. Such recovery is carried 
out by LPF with a cut frequency Fmax (figure 8).  
 
 
 
 
 

All methods of digital transmission of analog signals differ in the ways of rep-
resentation of discrete signals by digital signals.  The converter of samples in a digital 

                                           
1 Despite of presence of a word "modulation", these methods of transmission have relation neither to analog, 
nor to digital modulation. 

 

( )s
ˆ kTb  ( )tb̂  b(kTs) b(t) Sampler Transmission  

channel of samples LPF 

Figure 8 – Transmission of an analog signal by samples  
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signal is called as the coder of digital transmission system (DTS), and the converter 
of a digital signal in samples is called as decoder DTS. 

2.10 Methods of pulse code modulation 

Feature of these methods is that each sample is represented by a digital signal 
independently of other samples. Methods differ between themselves a used code. The 
diagram that describes transmission of samples at PCM is represented on figure 9. 
 
 
 
 
 
 
 

Basic parameter of quantizer is number of quantization levels L. At uniform 
quantization a range of values b from –bmax to bmax is broken on L – 1 intervals in size  

 ∆b = 2bmax /(L – 1),  

which is called as step of quantization. On figure 10 shown breakdown at L = 8. Dis-
crete values bi correspond to the middle of intervals.  The in-
dex i accepts values 0, ±1, ±2, …, ±0,5L – 1. Discrete values 
are determined bi = i⋅∆b.  At quantization each sample b(kTs) is 
approximated to the nearest discrete value bi, and on an quan-
tizer output the integer i(kTs) acts.  Representation of sample 
b(kTs) by discrete value bi brings an error 

εq(kTs) = i(kTs)⋅∆b – b(kTs), 
which is called as quantization noise. 

In the coder included in PCM coder (figure 9), numbers 
i(kTs) are represented by the given binary code. Length of a 
code 

 n = log2L.  

The digital signal on an coder output bd(t) has rate  
 R = n⋅fs.  

The decoder from a digital signal bd(t) forms numbers 
i(kTд) on which are recovered quantizing samples: 

( ) ( ) bkTikTb ∆= ssq . They are recovered samples of a transmit-

ted analog signal ( ) ( )sqs
ˆ kTbkTb = . From formula follows, that 

samples are recovered with errors εq(kTs).  
The average square of an quantization error (average power of quantization 

noise) is determined by a quantization step  
 

( )
12

2
2
q

b∆=ε  

Figure 9 – PCM coder and decoder  

P C M  c o d e r  

i(kTs) ( )s
ˆ kTb  b(kTs) Quantizer bd(t) Coder 

Binary commu-
nication channel Decoder 

bd(t) 

∆b 

3 

2 

1 

0 

–1 

–2 

–3 

bmax 
b3 

b2 

b1 

b0 

b-1 

b-2 

 b-3 

-bmax 

b     i 

Figure 10 – To the ex-
planation of quantization 
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and the ratio signal/quantization noise  

 
( )

2

2

2
q

q
13

А

b

K

LP −=
ε

=ρ  

where KА is an amplitude factor of an analog signal. 
The considered transformation of an analog signal to a digital signal with uni-

form quantization step called as analog-digital conversion (ADC); return transforma-
tion is called as digit-analog conversion (DAC).  ADC and DAC diagrams are shown 
on figure 11. 
 
 
 
 
 
 
 

Method PCM with non-uniform quantization are widely used: in the domain of 
great values b steps of quantization big and on the contrary.  It is equivalent to 
nonlinear transformation of samples with the subsequent uniform quantization (figure 
12). Characteristics of nonlinearity are described by the А-law or µ-law. Due to such 
transformation decreases KА and grows ρq at constant number L, or, keeping value ρq, 
it is possible to reduce number L, length of a code n and a digital signal rate R.  Such 
method of PCM is standardized the Rec. G.711. The sampling frequency fs = 8 kHz, 
the signal rate R = 64 kbit/s. 
 
 
 
 
 
 
 

2.11 Coding of analog signals with prediction 

Samples of real analog signal are correlated. This fact allows to predict with 
any accuracy value of the next sample of a signal on values of the previous samples. 
In the coder of transmission system with a prediction (figure 8) the error of a predic-
tion is calculated 

 d(kTs) = b(kTs) – ( )s
~

kTb ,  

where b(kTs) – the sample of an analog signal acting from sampler;  
( )s

~
kTb  – the predicted sample generated by the predictor on basis N of the pre-

vious samples ( )( ) ( )( ) ( )( )sss ,2,1 TNkbTkbTkb −−− L .  
The error of a prediction is transferred on a communication channel by a digital 

signal.  Therefore in the circuit of the coder of system (figure 13) quantizer and the 

Compressor Expander 
PCM transmission 

with uniform  
quantization 

Figure 12 – PCM transmission with companding 

( )tb̂  b(t) 

Figure 11 – ADC and DAC  

ADC 
b(t) 

Sampler i(kTs) b(kTs) 
Quantizer bd(t) Coder 

( )tb̂  
LPF 

( )s
ˆ kTb

Decoder 
bd(t) 

DAC 
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coder of the prediction error samples are available.  The decoder of samples recovers 
samples of a prediction error; in the system decoder there is precisely same predictor, 
as in system coder; the predicted samples develops with the transferred sample of a 
prediction error and, thus, sample of a transmitted analog signal are recovered.  
 
 
 
 
 
 
 
 
 

Peak-to-peak of a discrete signal d(kTs) smaller, than peak-to-peak of a signal 
b(kTs), therefore number of quantization levels L at a constant quantization step ∆d 
will be smaller, than transmission of samples b(kTs) by method PCM.  Reduction of a 
quantization levels number reduces length of a code n and a digital signal rate 
R = n⋅fs. Or, at constant number of quantization levels L the step of quantization de-

creases ∆d = (dmax – dmin) / L, the power of quantization noise decreases 2
qε  = ∆d2/12, 

the ratio signal/quantization noise grows ρq. 

2.12 Methods of differential PCM 

In different variants of DPCM method the number of samples N on the basis of 
which predict sample are defined, is in limits from 1 up to 6.  Predictor at N ≥ 2 is 
carried out under the circuit of not recursive filter. At case N = 1 predicting sample 

( )s
~

kTb  is the previous sample ( )( )s1Tkb − .  
Circuits of the DPCM coder and decoder, used in the real equipment, are re-

sulted on figure 14. In the coder prediction error acts on quantizer, similar quantizer 
systems with PCM, then the quantized error dq(kTs) is transferred by a digital signal 
on a communication channel.  Predictors in the coder and the decoder are completely 
identical.  

As opposed to circuit resulted on figure 13, the predictor in the coder is in-
cluded in a loop of a feedback.  Therefore predicting samples ( )s

~
kTb  in the circuit of 

the coder and in the circuit of the decoder are developed from the same samples 
( )s
ˆ kTb  (if in a channel there were no errors by transfer).  

In the decoder the predictor is included in circuits of a feedback and conse-
quently at decoding quantization noise can collect. Let's define a quantization error at 
DPCM under the circuit figure 14 

εq(kTs) = ( )s
ˆ kTb  – b(kTs) = [ ( )s

~
kTb  + dq(kTs)] – [ ( )s

~
kTb  + d(kTs)] = dq(kTs) – d(kTs). 

From last ratio it is visible, that, due to inclusion of the predictor in the coder in 
a circuit of a feedback, the quantization error is defined only by quantizer parameters, 
and there is no effect of accumulation of quantization noise in the decoder. 

Figure 13 – Coder and decoder of system with prediction  

Decoder of system with prediction Coder of system with prediction 

Quanti-
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Binary  
channel 

– 

+ b(kTs) 
Coder Decoder 

Predictor 

+ 
( )s

~
kTb

d(kTs) + 
Predictor 

( )sb kT
∧  
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2.13 Adaptive DPCM 

Methods of adaptive DPCM (ADPCM) are widely applied. Adaptive parts of 
ADPCM coder are: 

– predictor with N = 4…6 – its coefficients are automatically adjusted so that 
the dispersion of a signal d(kTs) was minimized, coefficients of the predictor are 
transferred on a communication channel, that in the predictor in decoder the same 
coefficients, as well as in the predictor of the coder were used; 

– quantizer – peak-to-peak of its characteristic (dmax, dmin) and accordingly a 
quantization step changes in conformity to peak-to-peak of a current signal d(kTs), 
data on a quantization step are transferred by a channel, that in the decoder the quan-
tization step same, as well as in quantizer was set. 
 
 
 
 
 
 
 
 
 
 
 

2.14 Methods of delta modulation (DM)  

Methods of DM concern to methods of transfer with a prediction.  Methods of 
DM differ from PCM and DPCM that two-level quantizer (L = 2) are used. It be-
comes possible if the sampling frequency greater, than 2Fmax.  Then adjacent samples 
from the sampler differ a little. On figure 15 circuits of coder and decoder, explaining 
one of DM methods, are resulted. 
 
 
 
 
 
 
 
 
 
 
 

The error of a prediction is calculated the same as at DPCM,  

 d(kTs) = b(kTs) – ( )s
~

kTb ,  

The error of a prediction is calculated the same as at DPCM,  

Figure 15 – DM encoder and decoder 
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Figure 14 – Coder and decoder of system with DPCM 
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 d(kTs) = b(kTs) – ( )s
~

kTb ,  

and the predicted sample grows out works of the accumulator 

 ( ) ( ) bkTdkTb
k

i

∆⋅= ∑
−

=
s

1

0
qs

~
,  

where ∆b is coefficient; 

 




<−
≥+

=
0)( if ,1

,0)(  if ,1
)(

s

s
sq kТd

kТd
kТd  –  

Error of a prediction is quantized on two levels which are transferred by a bi-
nary communication channel. 

The described method of coding is illustrated by time diagrams on figure 11.  
Here the predicted signal and a quantized prediction error signal are submitted by 
signals of continuous time.  It is visible, that the predicted signal ( )tb

~
 "traces" 

changes of an input signal.  The essence of factor ∆b follows from figure – it is a step 
of quantization, as with this step a signal ( )tb

~
 quantizes. In figure it is visible two 

domains: 
1) domain where are observed distortion of an overload on an inclination – the 

predicted signal ( )tb
~

 has not trace changes of an input signal; 
2) domain where subdivision noise is observed – at a constant input signal the 

predicted signal changes in peak-to-peak amplitude ∆b.  
Clearly, that for reduction of the first effect it is necessary to increase a step of 

quantization, and for reduction of the second effect – to reduce a step of quantization.  
It is obvious, that there is an optimum step of quantization at which the total effect 
from an overload on an inclination and noise of subdivision on realizations of a signal 
b(t) is minimized. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Work of the decoder of DM (figure 16) is contained to calculation of predicted 

samples of the signal under the formula for ( )s
~

kTb . 

Figure 16 – Illustration of work of the DM coder  
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It is possible to formulate features of DM methods: 
− the sampling frequency fs (figure 10) in some times is more, than 2Fmax;  
− as quantizer is two-level so the code has length n = 1, and R = fs;  
− as n = 1, so necessity of the decoder synchronization disappears.  

2.15 Adaptive DM (АDМ) 

At adaptive delta - modulation (АDМ) the quantization step can change. It is 
carried out as follows.  On a coder output the analyzer of sequence of binary symbols 
is connected.  If there was a sequence 111 or 000, the step of quantization increases 
to reduce distortions of an overload on an inclination.  If there was a sequence 101 or 
010, the step of quantization decreases to reduce distortions from noise of subdivi-
sion. 

The similar analyzer is connected on a decoder input and in the same way the 
step of quantization in the decoder changes. 

2.16 Conclusion 

The effective encoding of continuous signals is removed redundancy which is 
conditioned by statistical connection between samples (by correlation of samples). 
The effective encoding of continuous signals is based on the followings methods:  

- static images compression (photo, fax) is subsampling (diminishing of fre-
quency of sampling of color components), discrete Fourier cosine-transform, JPEG, 
GIF algorithms and other, vectorial compression (all curves on image are described 
by mathematical expressions); 

- movable images compression (video) is methods of prediction (in the first ap-
proaching - not samples, but difference between them is transferred), subsampling, 
discrete Fourier cosine-transform, methods of motion compensation (information 
about direction of object element moves is formed), MPEG-1(2, 4) algorithms. By 
these methods of encoding it was succeeded to reduce television signal digital stream 
rate from 200 Mbit/s to 1,5 - 25 Mbit/s;  

- voice message compression (telephony) is methods of prediction - CELP al-
gorithm, vocoders (design of human vocal organs). If at telephony signals transmis-
sion by a standard PCM method in the digital channel R = 64 kbit/s, then the effective 
voice encoding methods allow to form the digital streams of 9,6 kbit/s (and even 
4,8 kbit/s);  

-  musical message compression (sound broadcasting and television) is a 
method of the subband encoding (the signal spectrum is divided on bands, and the 
values of spectral density of different bands are quantized with the different quantiza-
tion step) - MUSICAM algorithm. Higher class sound broadcasting signals and digi-
tized records on disks by a PCM method require R = 700 kbit/s on one monophonic 
channel; the sound broadcasting signals effective encoding reduce rate to 100 kbit/s.  

Last ten years there is rapid adoption of digital methods of television and sound 
broadcasting signals transmission. Main advantage is a high carrying capacity of the 
transmission systems, if to express it by the number of the programs. 

At the compression of converted in digital signals continuous messages, it is 
possible to use the methods of discrete messages compression. However, at the con-
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tinuous messages compression (video, photo, voice and music) the loss of informa-
tion it admits or, more exactly, the exception of unimportant information it admits. It 
is possible because of man feature sensing of these messages types, nonidealness of 
his sense-organs. In this case the degree of compression is limited to the required 
quality of messages transmission only. 
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3 INFORMATION CHARACTERISTICS OF COMMUNICATION CHAN NELS 

3.1 Models of communication channels 

Two models of communication channels are most distributed: a digital com-
munication channel and a continuous communication channel. 

The communication channel is called digital  if it is intended for transmission 
of a digital signal.  Such channel is characterized:  

− by the rate of digital signal R (bit per second) which can be transmitted by a 
communication channel; 

− by the number of signal levels in a communication channel M; 
− by the symbol rate, symbol/s, which shows quantity of channel symbols, 

transmitted on a communication channel per 1 second, В = R/log2M;  
− by probabilities of symbol transitions ( )kj bbP ˆ  for k = 0, 1, 2, … M – 1,  

j = 0, 1, 2, … M - 1, where kb  – symbol on an input of the channel, jb̂  – symbol on 

an output of the channel.  
The majority of digital communication channels are binary (М = 2), and for 

them it is carried out ( )10
ˆ bbP  = ( )01̂ bbP  = р, where р – probability of a bit error in a 

communication channel.  Such communication channel is called as a binary sym-
metric communication channel (BSC).  It represent as the graph (figure 17). BSC is 
characterized by two parameters: В and р.  

The digital communication channel always is under construction on the basis 
of the continuous channel.  The communication channel is called continuous if it is 
intended for transmission of a continuous signal. The most widespread model of the 
continuous channel is a Gaussian communication channel.  Consider, that in such 
communication channel acts additive white Gaussian noise (AWGN), i.e. the noise 
has Gaussian distribution of probabilities of instant values with zero average and a 
uniform spectrum in a passband of a communication channel. The model of a com-
munication channel is shown on figure 18. – relationship between an output and an 
input is described by a ratio z(t) = s(t) + n(t).  
 
 
 
 
 
 
 
 
 

The Gaussian communication channel is described by the following parame-
ters:  

Fch – passband of the channel; 
Ps – average power of a signal on channel output; 
N0 – power noise density on channel output. 

1 – р 

1 – р 

р 

р 

b1 

b0 0b̂

1̂b

Figure 17 – Model of BSC 
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Figure 18 – Communication 
channel with AWGN 



 

 

26 

Consider, that noise takes place in a passband of a communication channel, and 
its average power on a channel output is defined  

 Pn = N0 Fch.  

3.2 Transmission rate of the information on a communication channel  

Transmission rate of the information on a communication channel Rch is de-
fined as average quantity of the mutual information between input and output of the 
channel per 1 second.  Unit of measure is bit/s.  In the information theory consider, 
that errors or noise acting in a communication channel result in destruction of a part 
of the information. 

Let's define transmission rate of the information in a digital communication 
channel.  For this purpose we will take the concept of the mutual information of two 
sources of messages entered earlier. Let's consider here, that the output of one source 
is an input of a communication channel where the signal b(t) operates, and the output 
of other source is an output of a communication channel where the signal ( )tb̂  oper-
ates.  It is possible to write down 

 
( ) ( ) ( ) ( ) ( )

avavav
ch

ˆˆˆˆ,

Ò

ÂBHBH

Ò

BÂHÂH

Ò

BÂI
R

−=−== , 

where H(B) – entropy of a signal b(t), describing average quantity of the information 
in one symbol on an input of a communication channel;  

( )BBH ˆ  – conditional entropy of a signal b(t) provided that the signal ( )tb̂  is 
known, characterizes losses of the information in a communication channel (unreli-
ability of the channel); 

( )BH ˆ  – entropy of a signal ( )tb̂ , describing average quantity of the information 
in one symbol on an output of a communication channel;  

( )BBH ˆ  – conditional entropy of a signal ( )tb̂  provided that the signal b(t) is 
known, describing quantity of the extraneous information (generated by errors) on an 
output a communication channel; 

Тav – average duration of one symbol.  
The similar approach is used for definition of transmission rate of the informa-

tion in a continuous communication channel.  On the input of a communication chan-
nel the signal s(t) operates, and on the output of a communication channel the signal 
z(t) operates. It is possible to write down 

 
( ) ( ) ( ) ( )

ss T

SZhZh

T

ZShSh
R

−=−=ch , 

где h(S) – differential entropy of a signal s(t), describing average quantity of the in-
formation in one sample on an input of a communication channel;  

h(S/Z) – conditional differential entropy of a signal s(t) provided that the signal 
z(t) is known, characterizes losses of the information in a communication 
channel (unreliability of the channel);  
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h(Z) – differential entropy of a signal z(t), describing average quantity of the in-
formation in one sample on an output of a communication channel;  

h(Z/S) – conditional differential entropy of a signal z(t) provided that the signal 
s(t) is known, describing quantity of the extraneous information (generated 
by noise) on an output a communication channel;  

Ts – sampling interval. 

3.3 Capacity of binary symmetric communication channel  

Communication channel capacity С is the greatest possible transmission rate 
of the information in communication channel at the set characteristics of a channel. 

 С = maxRch. 

For calculation of capacity of BSC use next formula 

 
( )

av

max .
H В H В B

С
Т

∧ −  
 =  

Symbols have duration Тav = 1/В (since a communication channel is binary 
than symbol rate coincides with a digital signal rate).  

Further it is necessary to search for a maximum of values:  
( ) ( )[ ].ˆmax BÂHÂH −   The maximum of the first term takes place, when symbols on 

an input of a liaison channel independent and equiprobable: ( )[ ]ВHmax = 1 binary 
unit.  

Let's calculate the second term  

 ( ) ( ) ( )∑∑
= =

−=
M

k

M

j
jkjk bbPbbPBBH

1 1
2

ˆlogˆ,ˆ . 

After substitution of M = 2 and values of probabilities from figure 17 we shall 
receive 

 ( ) ( ) ( )ppppBBH −−−−= 1log1log 22 . 

Let's remind, that this conditional entropy reflects losses of the information in a 
communication channel. 

Final expression looks like 

( ) ( )[ ].1log1log1 22 ppppВС −−++=  

Special cases: 
р = 0 – losses of the information 

are equal to zero and С = R; 
p = 1 – all symbols in a communi-

cation channel are inverted, there is no 
losses of the information and С = R; 

р = 0,5 – losses of the information 
are equal to unit and С = 0; 

1 

0,5B 

0 

B 

0,5 
0 

C, bits/s 

р 

Figure 19 – Capacity of BSC 
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3.4 Capacity of communication channel with AWGN  

For calculation of a communication channel capacity with AWGN next for-
mula is used 

 
( ) ( )

sT

SZhZh
С

−= max . 

Let's search for a maximum of values: ( ) ( )[ ].max SZhZh −  The maximum of 
the first term takes place, when the signal z(t) has Gaussian probability distribution.  
As z(t) = s(t) + n(t), and noise n(t) has Gaussian probability distribution, than z(t) will 
have Gaussian distribution, if a signal s(t) has Gaussian distribution. If it is correct, 
than  

 ( ) ( )ns PPeZh +π= 2log2 . 

Conditional differential entropy of a signal z(t) (provided that the signal s(t) is 
known) is equal differential entropy of a Gaussian noise n(t)  

 ( ) ( ) nePNhSZh π== 2log2 . 

Sampling interval Ts = 1/(2Fch), thus samples of signals are independent.  
Let's substitute the received values: 

 ( )[ ]nns ePPPeFC π−+π= 2log2log2 22сh . 

After simple transformations we shall receive 

 







+=








+=

ch0
2ch2ch 1log1log
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n

s . 

The ratio determining capacity of a communication channel with AWGN, is 
called as Shannon formula.  From Shannon formula it is visible, that the basic re-
sources of a communication channel are the passband of channel Fch and power of a 
signal Ps. If Fch → 0 or Ps → 0, than С → 0.  

If a passband of a communication channel tends to infinity, capacity of a Gaus-
sian communication channel tends to final size 
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3.5 Efficiency coefficients of transmission system  

For the estimation of as far as the basic resources of transmission system are 
effectively used, are used coefficient of frequency efficiency γ and coefficient of 
power efficiency β, determined by ratios: 

 γ = Rch/Fch;              β = Rch/(Ps/N0).  
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Coefficient γ has dimension ((bit per second)/Hz) and shows, how many bits in 
a second are possible to transmit in a band of frequencies of 1 Hz with a considered 
method of transmission. 

In transmission system at the fixed reliability of transmission the exchange of 
frequency efficiency for power efficiency and on the contrary is possible. Such ex-
change for ideal transmission system is expressed by a ratio 

 ( )12 −
γ=β γ . 

This ratio allows to fined limit value of one efficiency coefficient at fixed other 
and is called as Shannon limit. If as a measure of "perfection" of transmission sys-
tem to accept a degree of approach of parameters γ and β to limiting on Shannon it is 
possible to fined, that the methods of coding of the channel developed for today (in-
cluding modulation) are highly effective, and are not present significant reserves for 
increase of efficiency. 

Except for the considered coefficients of efficiency β and γ the operating ratio 
of capacity of a communication channel is used also 

 η = Rch/С.  

3.6 Shannon theorem for a communication channel with noise  

Importance of Shannon formula is connected with to well-known Shannon 
theorem for a communication channel with noise: If a message source rate is less than 
capacity of a communication channel (Rs < C) there is a way of the transmission, al-
lowing to transfer all source messages as much as precisely. 

Hence, noise in a communication channel doesn’t limit accuracy of message 
transfer, and rate of the information transfer on a channel. 
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THE LABORATORY WORK 2.1 
INFORMATION CHARACTERISTICS OF MESSAGE SOURCES  

1 Objectives  

1.1 The studying the message sources information characteristics.  
1.2 The acquiring the experience to perform the calculations of information 

characteristics of various sources. 

2 Main positions 

2.1 The information characteristics of discrete sources  
The source of discrete messages produces the messages that consist of the 

separate signs and the quantity of this signs is finite. The signs may be symbols, let-
ters, words, single phrases and so on.  

Information quantity, )( kaI , binary unit (or bit), in the sign (message) ka , that 
has the probability of its appearance equals )( kaP , is calculated on a formula 

 ( ) ( )kk aPaI 2log−= . (1) 

The source entropy, )(AH , is the average quantity information, that one sign 
keeps. If signs are independent, the source entropy can be calculated as the average 
value: 

 ∑
=

−=
M

k
kk aPaPAH

1
2 )(log)()( , (2) 

where M – a size of source alphabet.  
The entropy, as well as the information, is always nonnegative, and it achieves 

a maximal value, equals 

 MAH 2max log)( = , (3) 

if the signs are independent and equiprobable. 
The message source redundancy is the source property to get out the informa-

tion, using the greater quantity of signs, that it would be necessary. The availability of 
message source redundancy decreases the source entropy. 

The redundancy coefficient of message source characterizes the relative de-
creasing of source entropy in compare with its maximal value:  

 
( ) ( )

( )AH

AHAH

max

max
r

−=χ . (4) 

The message source rate, sR , bit/s, is the average quantity of information, that 
the source gives out during 1 second. It is equals 

 
sign

s
)(

T

AH
R = ,  (5) 

where Тsign – average time spent by a source on delivery with one sign. 
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2.2 The information characteristics of continuous message sources  
Differential entropy, h(B), of continuous source B is calculated on a formula: 

 ( ) ( ) ( )∫
∞

∞−
−= bpbpBh 2log , (6)  

p(b) is a probability density of the signal b(t). 
Differential entropy achieves its maximal value, if the probability density p(b) 

is Gaussian, and it is equal  

 ( ) 2
2 2log σπ= eBh , (7) 

σ2 is the variance of signal b(t). 
Epsilon entropy, Hε(B), bit/sample, is minimum average quantity of the mutual 

information between and ( )b t
∧

 in one sample at the given allowable error of approxi-

mate representation of a signal b(t) by ( )b t
∧

: ( ) 2
0

2 ε≤ε t  

The epsilon entropy is calculated on a formula:  

 ( ) ( ) ( ) ( )min maxH B h B h B B h B h E
∧

ε
  = − = −  

  
 (8) 

h(E) is the differential entropy of error ε(t). 
The h(E) will get the maximum value, if ε(t) would have the Gaussian prob-

ability distribution, and the calculated formula for the epsilon entropy will be the 
same: 

 ( ) ( ) 2
2 2log σπ−=ε eBhBH ,  (9) 

where σ2 – variance of error ε(t).  
The redundancy coefficient of continuous message source is calculated  

 
( ) ( )

( )Bh

BhBh

max

max
r

−=χ . (10) 

The epsilon source rate, Rs, of continuous message source is calculated on 
formula (5), and is necessary to put in it the value of epsilon entropy Hε(B), and Тsign 
would be equal to the sampling interval according the Kotelnikov theorem.  

 ( )max2sR F h B= . (11) 

3 Questions 

3.1 Give the determination of the information 
3.2 How it is possible to calculate the information quantity that message con-

tains? 
3.3 Give the determinations of the source message information characteristics: 

the entropy, the differential entropy, the epsilon entropy, the source rate, and the 
source redundancy. 
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3.4 What parameters of discrete message source would be necessary known so 
as to calculate the entropy, the redundancy, and the rate? 

3.5 What parameters of continuous message source would necessary is known 
so as to calculate the differential entropy, the epsilon entropy, the rate, and the redun-
dancy? 

4 Home task  

4.1 Repeat the basic concepts of section “The source message information 
characteristics” using the summary and the textbooks [1, p. 101 – 106, 112 – 114, 124 
– 129, 276 – 280]; [2, p. 276 - 280]. 

4.2 Calculate the information quantityI , that Your initials contain (three con-
crete letters), and compare it with the information quantity, that 15 bits contain (the 
information quantity in three source signs, when the signs are independent and 
equiprobable, and the volume of alphabet equals M = 32). Probabilities of letters are 
given in the appendix of À. If I  will differ from 15 bits, explain this difference. 

4.3 Prepare for discussing the key questions. 

5 The order of study conduction  

It is the calculating laboratory work, and is conducted in such order.  
5.1 The discussion the key positions and calculation technique of source mes-

sage information characteristics. The solution the typical examples, that are recom-
mended to the study (point 6) or examples, that are prepared by the teacher (about 50 
minutes). 

5.2 The individual work with using individual cards (about 30 minutes).  
Instruction: So far as the binary logarithm tables are absent, it is possible to use 

for the calculating the binary logarithms the mathematical rule of passing to the sec-
ond basis of logarithm:  

zzz ln443,12ln/lnlog2 ≈= ; zzz lg32,32lg/lglog2 ≈= . 

6 The typical examples that are considered on the study  

Example 1 Calculate the information quantity in the Ukrainian word of N = 8 
letters. For calculations should be counted, that all the letters are of equal probability 
and independent, the number of letters M  = 32. 

The answer: І(word) = 40 bits. 
Example 2 Calculate the binary message source redundancy, if the probability 

of one message )( 1aP = 0,1. 
The answer: rχ = 0,53. 
Example 3 Calculate the rate of message source; this source uses 3 independ-

ent signs, that have the probabilities: )( 1aP = 0,1; )( 2aP = 0,25; )( 3aP = ? The dura-
tion of the 1-st message is equal 0,5 ms, of the 2-nd and 3-rd are equal 0,1 ms. 

The answer: )(AH = 1300 bit/s. 
Example 4 Calculate the information characteristics of continuous message 

source: the epsilon entropy )(BHε ; the redundancy coefficientrχ ; the epsilon source 
rate Rs. 
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Basic data: the continuous signal )(tb has the Gaussian probability density and 
the maximum spectrum frequency maxF = 500 Hz; the ratio of the average signal 

power to the average error power ρ = 40 dB. 
The answer: the epsilon entropy )(BH ε = 6,64 bit/sample; the redundancy coef-

ficient rχ = 0; the epsilon source rate Rs = 6640 bits/s.  

Literature 

1 Теория электрической связи: Учебник для вузов / А.Г. Зюко, 
Д.Д. Кловский, В.И. Коржик, М.В. Назаров; Под ред. Д.Д. Кловского. – М.: Ра-
дио и связь, 1998. 

2 Панфілов І.П., Дирда В.Ю., Капацін А.В. Теорія електричного зв’язку: 
Підручник для студентів вищих навчальних закладів І та ІІ рівнів акредитації. – 
К.: Техніка,1998.  
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Appendix A 

Reference tables for the calculations of information characteristics 

Table A.1 – The letter probabilities distribution in the English texts 

Letter 
Probabil-
ity 

Letter 
Probabil-
ity 

Letter 
Probabil-
ity 

Letter 
Probabil-
ity 

Blank 0.198 R 0.054 U 0.022 V 0.008 
E 0.105 S 0.052 M 0.021 K 0.003 
T 0.072 H 0.047 P 0.017 X 0.002 
O 0.065 D 0.035 Y 0.012 J 0.001 
A 0.063 L 0.029 W 0.012 Q 0.001 
N 0.059 C 0.023 G 0.011 Z 0.001 
I 0.055 F 0.022 B 0.010   

 

Table A.2 – The differential entropy calculating formulas 

Probability distribution  
Differential entropy h(B), 

bit/sample  
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THE LABORATORY WORK 2.2 
BASEBAND TELECOMMUNICATION SIGNALS SAMPLING 

1. Objectives  

1.1 Studying sampling of continuous signals and recovery of continuous signal from 
samples. 
1.2 Analysing characteristics of discrete signals.  

2 Main positions 

2.1 Sampling of continuous signals. 
The sampling of continuous signal s(t) is representation it by its instant values 

(samples) s(kTs), where k = …, –1, 0, 1, 2, …; Ts – sampling interval. The sequence 
of samples represents with vertical lines in height s(kTd) (figure 1). Such sequence is 
named discrete signal sd(t). 

In real devices signal sample s(kTs) is an pulse with amplitude s(kTs) and dura-
tion τ ≤ Ts, beginning at the time moment kTs. Usually τ << Ts (figure 2). The device 
that forms samples is called sampler. In a case τ < Ts sampler is the key closing a 
chain from a source to loading for time τ (figure 3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Analytical expression of a discrete signal sd(t): 

sd(t) 

ψ(t) 

s(t) 

t 

Тs 

kТs 
t 

s(kТs) 
t 

Figure 1 – Getting of discrete signal 

sd(t) 

ψ(t) 

s(t) 

t 

t 

Тs t 

τ 

Figure 2 – Sampling process in real 
devices 

ψ(t) 

sd(t) s(t) 

Oscillograph 
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 sd(t) = s(t)⋅ψ(t) = s(t) ∑
∞

∞−=
−

k
skTth )( ,  (1) 

where ψ(t) – sequence sampling pulses that defines the time moments of sampling 
and their duration; 

h(t) – sampling pulse: 

 h(t) = 




τ≥<
τ<≤

.,0,0

,0,1

tt

t
 (2) 

2.2 Spectrum of a discrete signal. 

The Fourier transform of right part expression (1) defines spectral density 
Sd(j2πf) of discrete signal (corresponding mathematical calculations can be found in 
[1, p. 64–66]) 

 Sd(j2πf) = ∑
∞

∞−=
−π

n
sn nffjSa ))(2(  – ∞< f <∞, (3) 

where fs = 1/Ts – sampling frequency; 
S(j2πf) – spectral density of a continuous signal s(t);  

 an =  
sT

τ ⋅
τπ

τπ

s

s

fn

fn )(sin
– (4) 

decomposition factors h(t) in Fourier series; as τ << Ts for small values n factors prac-
tically do not depend from n, that is an = τ / Ts.  

It is follows from (3), that the spectrum of a discrete signal is the sum of con-
tinuous signal spectrum S(j2πf), repeating per fs and decreasing with increase n ac-
cording to expression (4). 

For baseband telecommunication signals it is characteristic, that their spectrum 
adjoin zero frequency. On figure 4, a the amplitude spectrum of arbitrary form S(f) 
with maximum frequency Fmax is plotted. Further on figure 4 amplitude spectrum, 
which can take place at signal sampling, are represented: 

Figure 4, b – sequence sampling pulses spectrum Sψ(f) ψ(t), constructed on the 
basis of representation ψ(t) in Fourier series:  

 ψ(t) = ∑
∞

=0n
na ⋅cos (2πnfst); 

Figure 4, c – discrete signal spectrum Sd(f), if fs > 2Fmax; 
Figure 4, d – spectrum Sd(f), if fs = 2Fmax; 
Figure 4, e – spectrum Sd(f), if fs < 2Fmax. 

2.3 Signals recovering on their samples. 

According to Kotelnikov theorem (the sampling theorem) arbitrary signal 
with the band-limited spectrum can be recovered precisely to (interpolate) from its 
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samples which are taken through interval Ts ≤ 1/(2Fmax), where Fmax – the maximum 
frequency of signal spectrum. 

It is easy to be convinced of Kotelnikov theorem justice, having considered 
figure 4, c, d and e. If fs ≥ 2Fmax (figure 4, c, d) after giving of a discrete signal to an 
input ideal low pass filter (LPF) with cut frequency Fmax ≤ Fcut ≤ fs – Fmax on an out-
put we will receive a signal with spectrum S(f) (figure 4, c, d) that is the recovered 
continuous signal. On figures by dotted lines are shown the amplitude-frequency re-
sponse (AFR) of ideal LPF with cut frequency Fcut = Fmax. If fs < 2Fmax, that, appar-
ently from figure 4, e, it is not impossible to recover spectrum S(f) as spectrum alias-
ing takes place. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Continuous signal recovering process on its samples can be also treated in time 

domain. If as signal recovering it is used ideal LPF with cut frequency Fcut, its im-
pulse response (without a delay in the filter): 

S(f) 

0 f Fmax a 
Sψ(f) 

f 0 
b 

fs 2fs 

f 

Sd(f) 

0 
c 

AFR of ideal LPF 

fs fд 2fs 

Sd(f) 

f 0 
d 

fs 2fs 

Sd(f) 

f 0 
e 

fs 2fs 

Figure 4 – The spectral diagrams sampling and  
continuous signals recovering processes illustration 
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g(t) =
tF

tF

cut

cut

2

)2(sin

π
π

. 

As sample pulses short (τ << Ts) (tend to δ-function) it is possible to consider, that 
response LPF to an pulse with amplitude s(kTs), supplied at the moment t = kTs, looks 
like 

 s(kTs) =
)(2

))(2(sin

cut

cut

s

s

kTtF

kTtF

−π
−π

. 

If you give to LPF input a signal ss(t), on its output we will receive the sum of 
responses 

( )s t
∧

 = ∑
∞

∞−= −π
−π⋅

k skTtF

kTtF
kTs

)(2

))(2sin(
)(

cut

scut
д . 

Let's compare this expression with Kotelnikov series that is mathematical ex-
pression of Kotelnikov theorem, 

 s(t) = ∑
∞

∞−= −π
−π⋅

k kTtF

kTtF
kTs

)(2

))(2sin(
)(

smax

smax
d . 

If Fcut = Fmax, s(t) = ( )s t
∧

, i.e. the continuous signal exact recovering takes 
place. 

2.4 Errors at signals recovering on their sample 

2.4.1 Real signals spectrum limitlessness. Real signals with strictly limited 
spectrum does not exist, as signals of finite duration have unlimited spectrum – at      
f →∞ spectrum decrease with limited speed. For real signals the spectrum maximum 
frequency Fmax is defined from a condition, that components with frequencies f > Fmax 
are small (in a sense). In spectrum of real discrete signals there is an aliasing of spec-
trum, at least, the making sums (3) with indexes n = 0 and n = 1 (figure 5). We will 
assume, that for continuous signal’s recovering the ideal LPF is used with cut fre-
quency Fcut = Fmax, its AFR is shown by a dotted line on figure 5. 

 
 
 
 
 
 
 
 
 
 
 
The recovered signal will have two making errors of recovering: 

n = 0 n = 1 Sd(f) 

f fs = 2Fmax Fmax 

Figure 5 – Illustration of recovering errors  
because of continuous signal spectrum limitlessness  
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− linear distortions because of signal components s(t) with frequencies 
f > Fmax are cutting off; 

− spectrum components S(f – fs) with frequencies f < Fmax alias on a signal 
spectrum s(t) (an aliasing error). 

Taking this into account, value Fmax and fs define from a condition that the re-
covering error was enough small. 

2.4.2 Difference real LPF characteristics from the ideal ones. Ideal LPF has 
the rectangular form AFR, and linear PFR. I.e., ideal LFF without distortions passes 
all signal spectrum components in band f <Fcut, and completely weakens components 
with frequencies f > Fcut. Real LPF are described by pass-band with boundary fre-
quency Fpb and attenuation band with boundary frequency Fab (figure 6).  

If LFF is intended for recovery continuous signal with maximum frequency 
Fmax from a discrete signal with frequency sampling fs, it is necessary that Fpb  ≥ Fmax 
and Fab ≤ f s – Fmax. In case of real LPF there can be two making errors of recovering: 

− because of inconstancy AFR and nonlinearity PFR in a pass-band the filter 
brings linear distortions in the recovering signal; 

− because of insufficient easing in attenuation band LPF passes signal com-
ponents sd(t) with frequencies f  > f d – Fmax which form an spectrum aliasing error. 

Real LPF for recovering of continuous signals can be projected that the recov-
ering error was enough small. 

 
 
 
 
 
 
 
 

 

3 Questions 

3.1 Explain physical essence of a continuous signals sampling. 
3.2 What purpose is continuous signals sampling carried out for? 
3.3 Explain dependence of continuous and discrete signals spectrum. 
3.4 Explain physical essence a signal on sample recovery process. 
3.5 Formulate Kotelnikov theorem. 
3.6 Write down Kotelnikov series for a signal with the band-limited spectrum. 
3.7 In what basic differences AFR and PFR ideal and real LFF consist? 
3.8 What are errors reasons which arise at signal restoration on samples? 

4 Home task 

4.1 Study section “Continuous signals sampling” under the lectures abstract 
and the literature [1, p. 59–67; 2, p. 64–69].  

4.2 Signal s(t) = A1sin (2πf1t) + A2sin (2πf2t) + A3sin (2πf3t) have sampling with 
frequency fs. For the data specified in table 1 (according to number of your laboratory 

Figure 6 – AFR: a – ideal LPF; b– real LPF 

H(f) 

0 Fсut f 
a 

H(f) 

0 Fpb f Fab 

b 
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stand), represent a spectrum of signal S(f) and a discrete signal spectrum Sd(f), con-
structed in a range of frequencies 0 ≤ f ≤ 2fs. 

Table 1 – Initial data to homework  
Stand num-

ber 
А1, V f1, kHz А2, V f2, kHz А3, V f3, kHz fs, kHz 

1 0 1 1 2 3 1,5 5 
2 1 1 5 2,5 4 1,5 5,5 
3 2 0,5 4 1,5 3,5 2,5 6 
4 3 1 3 1,5 2,5 2,5 6,5 
5 2,5 0,5 2 2,5 1 3 7 
6 1,5 1 5 2,5 4 3 7,5 
7 3,5 0,5 4 2 3 3 8 
8 1 0,5 3 1 3,5 2 7 
4.3 Calculate and draw impulse response ideal LPF with cut frequency 

Fcut = fs/2 for values t, belonging to an interval (–4Ts, 4Ts) (value fs it is necessary to 
take from table 1). 

4.4 Be prepared for discussion concerning section 3. 
4.5 Study the laboratory model description (section 6). 

5 Laboratory task 

5.1 Familiarize with a virtual breadboard model. For this purpose start the pro-
gram 1.0, using an icon TT(English) on a desktop. Study the laboratory model 
scheme on the computer display, using section 6. Specify with the teacher the labora-
tory task-fulfilling plan. 

5.2 Investigate sampling process in time and frequency domain. For this pur-
pose set values A1, f1, A2, f2, A3, f3 and frequency fs, given in a home task, to appoint 
input LPF from sampler and run the program. Sketch signals on source and sampler 
outputs oscillograms and the spectrograms in the report. Compare the spectrograms 
calculated and received on a laboratory model. Enter in the report comparison results. 
Increase sampling frequency on 1 kHz. Sketch in the report the signal spectrogram on 
an output sampler, make conclusions. 

5.3 Investigate characteristics recovering LPF. Appoint influence on LPF δ-
pulse and set LPF cut frequency value, which is given, in a home task for this pur-
pose. Enter in the report the impulse response and AFR LPF. Compare impulse re-
sponse LPF with calculated. Set sampling frequency twice smaller, enter in the report 
the impulse response and AFR LPF, make conclusions.  

5.4 Investigate continuous signal recovery process a in time and frequency 
domain. Set parameters A1, f1, A2, f2, A3, f3, fs and Fcut, given in a home task, give on 
LPF input a signal from sampler for this purpose. Compare oscillograms and spec-
trum on LPF output and on a source output, make conclusions. 

Set LPF cut frequency smaller then frequency fmax, and then bigger then fs – 
fmax. In both cases sketch oscillograms and spectrograms on output LPF, describe re-
covery errors character, explain the errors reasons. 
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6 Laboratory model description  

Laboratory work is carried out on the computer in the HP VEE environment 
with virtual model use. The virtual model block diagram resulted on figure 7. 

The laboratory model consists of: a continuous signal source  
s(t) = A1sin (2πf1t) + A2sin (2πf2t) + A3sin (2πf3t), sampler, recovery LPF, the genera-
tor sampling pulses and the δ-pulses generator. It is possible to set the frequencies 
and amplitudes of harmonic waveform  A1, f1, A2, f2, A3, f3, sampling frequency fs and 
cut frequency LPF Fcut values. 

The switch gives the chance to submit on an input recovering LPF a discrete 
signal sd(t) or δ-pulse. Time and spectral diagrams can be observed in three points of 
laboratory model: on a source output, on a LPF input and on a LPF. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7 Requirements to the report 

6.1 Work purpose. 
6.2 Homework performance results. 
6.3 Laboratory task execution results. 
6.4 Conclusions on each item of the laboratory task. 

The literature 

1. Гоноровский И.С. Радиотехнические цепи и сигналы. Учебник для 
Вузов. – М.: Радио и связь, 1986. 

2. Теория передачи сигналов: Учебник для вузов / А.Г. Зюко и др. – М.: 
Радио и связь, 1986. 
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Figure 7 – Virtual model block diagram 
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THE LABORATORY WORK 2.3 
RESEARCH OF ANALOGUE SIGNALS CODING BY PCM 

1. Objectives  

1.1 Studying the digital transmission of analog signals with PCM method. 
1.2 Research the basic characteristics of the transmission system using the 

PCM method. 

2 Main positions 

2.1 The digital transmission methods  
The digital transmission methods of analog signals are widely used in modern 

telecommunications: an analog signal is transformed in digital one, that is in the se-
quence of binary symbols; a digital signal is transmitted by the digital communication 
channel; after that an analog signal is recovered. Any digital transmission method is 
characterized by the rate of digital signal,R  (bits/s), and by the transmission accu-
racy, that is by the signal/quantization noise ratio ρq. The problem is usually set – to 
satisfy the requirement to the ρq when R has a minimum value. It was resulted in de-
velopment of plenty digital transmission methods. The simplest method among them 
is pulse code modulation (PCM)2.  

2.2 The sampling of analog signals 

At any digital transmission method the analog signal )(tb , first of all, is trans-
formed in a digital signal, that is a sequence of samples )( skTb , taken with the sam-
pling interval )2/1( maxFTs ≤ , and maxF is the maximum frequency in the signal )(tb  
spectrum. This transformation is called the signal sampling in the time, and device for 
its realization is called sampler. The sampling frequency must be not the less of dou-
bled frequency maxF :  

 max2/1 FTf ss ≥= . (1) 

In accordance with the Kotelnikov theorem, the execution of this relation guar-
antees the possibility of exact analog signal recovery from the samples. Such recov-
ery is carried out in low-pass filter (LPF) cutoff frequency maxF  (figure1).  
 
 
 
 
 
 

All digital transmission methods of analog signals differ in the ways of presen-
tation the discrete signals in digital form. The transformer the samples in the digital 
signal is called encoder of the digital transmission system (DTS), and transformer the 
digital signal in the samples is called the decoder of DTS. 
                                           
2 In spite of the presence the term “modulation”, these transmission methods are a relation neither to analog 
nor digital modulations 

( )sb kT
∧

 ( )b t
∧

 b(kTs ) b(t) 
Sampler  

Sample trans-
mission channel LPF 

Figure 1 – The analogue signal transmission by the samples  
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2.3 The PCM methods  

The peculiarity of these methods is that every sample is represented by the 
digital signal apart from other samples. These methods differ between itself by the 
used code. A scheme, that represents the sample transmission with PCM, is shown on 
a figure 2.  
 
 
 
 
 

 
The basic quantizer parameter is a number of quantization levels L. If the num-

ber of quantization is even, the values range of b );( maxmax bb−  is broken up on L–1 
intervals with the size equal  

 ∆b = )1/(2 max −Lb , (2) 

that is called the quantization step. The breakdown with L = 8 is shown on the figure 
3. The discrete values ib correspond to the interval middles. 

The index i  takes the values equal 0, ±1, ±2,…, ±0,5L – 1. 
Discrete values are determined as ib = bi ∆⋅ . During the quan-
tization every sample )( skTb  is round off to the nearest dis-
crete value ib , and the integer number acts on the quantizer 
output. But the presentation the sample )( skTb as a discrete 
value perform the error 

 )( sq kTε = )()( ss kTbbkTi −∆⋅ , (3) 

and it is called as the quantization noise. 
In the encoder, that is the part of PCM encoder (fig-

ure 2), the numbers )( skTi are represented by the binary code, 
which is set. Code word length is equal 

 n = log2L. (4) 

A digital signal rate at the encoder output is equal to  

 R = sfn ⋅   (5) 

The decoder forms the numbers )( skTi  from the digital signal )(tbd . This 
numbers are used for the recovery the quantized sampling: 

( ) ( ) bkTikTb ∆= ssq . 

These are the recovered samples of analog signal: 

( ) ( )q ssb kT b kT
∧

= . 

P C M  e n c o d e r  

i(kTs) ( )sb kT
∧

 

Figure 2 – Encoder and decoder PCM  

b(kTs) Quantizer  bd(t) Encoder  Binary telecom. 
channel Decoder 

d( )b t
∧
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It is follows from the formula (3), that the samples are recovered with the er-
rors )( sq kTε . The average square error of quantization (the average power of quanti-

zation noise) is determined by the step of quantization: 

( )
12

2
2
q

b∆=ε , 

and signal/(quantization noise) ratio is equal: 

 
( )

2

2

2
q

q
13

А

b

K

LP −=
ε

=ρ , (6) 

AK  is the amplitude coefficient of analog signal. 
There are widely used PCM methods with the ununiform quantization: in area 

of large values of b  the quantization steps are large and vice versa. It is equivalent 

nonlinear transformation the samples with the following uniform quantization. Due to 
such transformation AK  decreases, and qρ  increases, and L is constant, according to 

the formula (6). It is possible, if the value qρ  wouldn’t change, to decrease L, the 

code word length n and rate of digital signal R according to the formulas (4) and (5). 

3 Questions 

3.1 Explain the digital signal forming principle in the PCM method transmis-
sion system. 

3.2 How is the sampling interval or the sampling frequency determined? 
3.3 What is the quantization step and how it can be defined? 
3.4 What code word length depends of in PCM systems? 
3.5 Explain, what’s noise of quantization? What is the reason of its origin?  
3.6 How it is possible to increase the signal/(quantization noise) ratio in the 

transmission systems using the PCM methods? 

4 Home task 

4.1 Study the section “Digital methods of transfer of continuous messages”, us-
ing the summary and literature [1, p. 242...252], [2, p. 262...270]. 

4.2 Represent the structure schemes of PCM encoder and decoder.  
4.3 Calculate the characteristics of analog signal transmission system by the 

PCM method with uniform quantization.  It is set: the sample frequency is equal to 8 
kHz; the quantization level quantity 2

1 2 += NL ( N is the brigade number); 12 2LL = ; 

23 2LL = . Calculate for three values of L : the quantization step b∆ ( 1)(
max

=tb  V 2 ); 

the code length n ; the average quantization noise power 2
qε  (the analog signal ampli-

tude coefficient AK = 2,85); the signal/(quantization noise) ratio qρ , dB; the digital 

signal rate R. Present the results of calculations like table 1. Analyze, how qρ  and R 

will change if the code length would changes on unit.  
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Table 1 – The characteristics of the transmission system by the PCM method  

sf , kHz L  n  ,R kbits/s bP , V 2  b∆ , V 2
qε , V 2  qρ , dB 

1L       

2L       

 

3L    

 

   

 
4.4 Be prepared for discussion concerning section 3. 

5. Laboratory task 

5.1 Familiarize with a virtual breadboard model. For this purpose start the pro-
gram 2.10a, using an icon TT(English) on a desktop. Study the laboratory model 
scheme on the computer display, using section 6. Specify with the teacher the labora-
tory task-fulfilling plan. 

5.2 Research the origin of quantization noise 
Set the number 1L  (from a home task) of quantization levels. Present the re-

sults of fulfilling the program like table 2: write down the ∆ b and )( skTb , )( skTi , 
b )( sq kT  for k = 1, 2, 3 and 4. Calculate the values of )( sq kTε , compare them with 

∆ b, 2
qε  and explain a result. Repeat the task for2L . 

Table 2 – Analysis of quantization error  
L ∆b k  )( skTb ,V )( skTi  b )( sq kT , V )( sq kTε , V 

1     
M 

  

4     
1     

M 
  

4     

5.3 Research the signal/(quantization noise) ratio 
Set the quantization levels number 1L  (from a home task). Write down the re-

sults of the program fulfilling to the table like table.1: the values of ∆ b, 2
qε  and bP . 

Calculate the experimental value of qρ . Compare the got values ∆ b, 2
qε  and qρ  with 

the results of their calculations in a home task. Repeat the task for 2L and 3L . On the 
fulfilling results build the graphs of signal/(quantization noise) and of digital signal 
rate as the functions of quantization levels number. Carry out the conclusions.  

6 Laboratory model description  

Laboratory work is fulfilled on a computer in the HP VEE environment with 
using the virtual model. Its structure scheme is shown on a figure 4. The virtual 
model is based on the schemes, which are shown on the figure1 and 2.  

The analog signal generator forms the signal as a sum of a few harmonic 
waves. The signal duration is equal 2 ms, and maximal frequency of its spectrum 

4,3max =F  kHz. An analog signal is normalized so, that 
max

)(tb  = 1 V.  
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7 Requirements to the report 

7.1 The name of laboratory work. 
7.2 The purpose of laboratory work. 
7.3 The results of the home task. 
7.4 The results of fulfilling the items 5.2 and 5.3 of laboratory task (tables, 

graphs). 
7.5 The conclusions on every item of laboratory task, in which it necessary to 

give the analysis of the got results, such as the coincidence of theoretical and experi-
mental data, etc.  

7.6 The date, the signature of student, the visa of teacher with an estimation on 
a 100-mark scale. 
 

Literature 

1 Теория электрической связи: Учебник для вузов / А.Г. Зюко, 
Д.Д. Кловский, В.И. Коржик, М.В. Назаров; Под ред. Д.Д. Кловского. – М.: Ра-
дио и связь, 1998. 

2 Панфілов І.П., Дирда В.Ю. Капацін А.В. Теорія електричного зв’язку: 
Підручник для студентів вузів 1-го та 2-го рівнів акредитації. – К.: Техніка, 
1998.  
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THE LABORATORY WORK 2.4 
COMMUNICATION CHANNELS INFORMATION CHARACTERISTICS  

1 Objectives  

1.1 The studying  the communication channels information characteristics.  
1.2 The acquiring the experience to perform the calculations of information 

characteristics of various channels.  

2 Main positions 

The transmission rate of the information on a communication channel is the 
mutual information between an input and an output of the channel per 1 s: 

 
( )

av
ch

ˆ,

T

ÂÂI
R = , (1) 

,І В B
∧ 

 
 

 is the mutual information between an input and an output of the chan-

nel per one symbol;  

B and B
∧

 are the channel input and output messages; 

avT   is the average time of one transmission symbol.  

The message ( )b t
∧

 is distorted attitude to message )(tb because of noise in an 
analog channel and errors in a digital communication channel, so the part of informa-

tion is lost in a communication channel, and the mutual information ,І В B
∧ 

 
 

 is less 

than source entropy )(BH ( the source is connected to the channel input), and infor-
mation rate is less than source productivity.  

The basic information characteristic of any communication channel is channel 
capacity, that determines the maximal possible transmission rate of information 
through this channel. 

The capacity of the discrete symmetric communication channel C, bits/s, that 
assume the transmission passing the M symbols of identical duration, is calculated on 
a formula  

 C = B[log 2 M + p log 2 (p/(M –1)) + (1– p) log 2 (1– p)], (2) 

B – is the symbol rate, Bods or syms/s;  
p – is the symbol error probability in the communication channel. 
The Gaussian channel capacity, bits/s, is calculated on a formula  

 C = ),/1(log2 nsch PPF +  (3) 

chF   is the communication channel passband;  

ns PP /   is the average powers of signal and noise ratio. 
The Shannon theorem, that was formulated for the communication channel 

with noise is present, characterizes the potential possibilities of message transmis-
sion. The theorem asserts: if the source message rate sR  is less than the channel ca-
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pacity C, that is sR < cC , there are a encoding method (the method of transformation 
the messages into the signal at the channel input) and a decoding method (the method 
of transformation the signal into the messages at the channel output), when the preci-
sion  of message renewal would be high as someone want. 

3 Questions 

3.1 Give the determination of:  the information rate; the channel capacity.  
3.2 Explain the reasons of information losses in a discrete (continuous) com-

munication channel. 
3.3 What parameters of discrete symmetric communication channel and Gaus-

sian communication channel would be known, so as to calculate their capacities? 
3.4 What communication channel (or source) information characteristics are 

measured in bits/s or binary digits/s? 
3.5 What are the conditions for the capacity became maximum (for the discrete 

symmetric channel and Gaussian channel)? 

4 Home task  

4.1 Repeat the basic concepts of section “Information characteristics of com-
munication channels” using the summary and literature [1, p. 106-109; 114-122], [2, 
p. 281-284].  

4.2 Prepare to the discussing the key questions. 

5 The order of study conduction  

It is the calculating laboratory work, and is conducted in such order.  
5.1 The discussion the key positions and calculation technique of channel mes-

sage information characteristics. The solution the typical examples, that are recom-
mended to the study (point 6) or examples, that are prepared by the teacher (about 50 
minutes). 

5.2 The independent student work (ISW) with using individual cards (about 30 
minutes).  

6 The typical examples that are considered on the study 

Example 1 Define the capacity of binary symmetric communication channel, 
if the symbol rate is equal B  = 1000 symbs/s and probability of symbol errors 
p = 310− . How does symbol rate differ from the capacity of ideal channel (without er-
rors)? 

Answer: the capacity of this communication channel with errors is equal to 
988,6  bits/s; the capacity of ideal communication channel is equal 1000 bits/s; the 
channel errors are resulted in the capacity decreasing of 11,4  bits/s (or 1,14 %). 

Example 2 Calculate the channel capacity of a quaternary symmetric commu-
nication channel without errors, if the symbol rate is equal to 50 symbs/s. 

Answer: C = 100 bits/s. 
Example 3 Calculate the voice-frequency channel capacity (the cut-off fre-

quencies are 0,3 kHz and 3,4 kHz), if at the channel output the average power of sig-
nal sP  = 5102,3 −⋅ B 2 , and the average power of noise 8107,8 −⋅=nP B 2 . 
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Answer: C = 2,64 bits/s. 
Example 4 Is it possible to transmit, with a high quality, the 1-st class voice 

broadcast signal (the source epsilon-rate is equal to 240 kbits/s) through the baseband 
channel, that has the capacity equals 320 kbits/s,  (see the table 18.1 [2])? 

Answer: It is possible, because the source epsilon-rate (279 bits/s) is less than 
the channel capacity (320 bits/s). 

 

Literature 

1 Теория электрической связи: Учебник для вузов / А.Г. Зюко, 
Д.Д. Кловский, В.И. Коржик, М.В. Назаров; Под ред. Д.Д. Кловского. – М.: Ра-
дио и связь, 1998. 

2 Панфілов І.П., Дирда В.Ю., Капацін А.В. Теорія електричного зв’язку: 
Підручник для студентів вищих навчальних закладів І та ІІ рівнів акредитації. – 
К.: Техніка,1998.  
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INDIVIDUAL TASK № 2.1  
CODING OF DISCRETE MESSAGE 

Input data:  

– the message made of a surname and a name of the student, carrying out the 
task; 

– values of probabilities of letters in substantial English texts.  

It is necessary:  
1. Write out values of probabilities of letters and a blank, meeting in the given 

message from [5, LW 2.1а]. Execute normalization of these probabilities that their 
sum was equaled to unit. For this purpose it is necessary for probability of letters and 
a blank divide into the sum of probabilities. 

2. Calculate entropy of the given message, considering, that the alphabet of a 
source is formed only from letters and a blank, meeting in a surname and a name, 
signs on the message are independent. 

3. Carry out coding the given message by Shannon-Fano code or Huffman 
code (the variant of a code gets out on last digit of number of the student's record-
book: odd – the Shannon-Fano code, even – the Huffman code).  

4. Calculate average length of a code word of the letter and compare it to 
length of a code word of the letter at uniform coding. 

5. Compare numerical values entropy and average duration of a code word of 
the letters. Explain in what ratio they can to be. Explain difference of these numerical 
values. 

6. Calculate compression factor of the given message with the received code. 

Methodical instructions to performance IT № 2.1 

1. Information characteristics of message sources are in details described in [1, 
part 8], [2, part 18], [5, LW 2.1]. 

2. Effective coding by Shannon-Fano code is described in [1, р. 307–310], [4, 
р. 143], and effective coding by Huffman code is described in [4, р. 192]. 

3. Probabilities of letters in substantial English texts are resulted in “Help ma-
terial to IT №2.1”.  

4. Average length of code words is calculated as an average quantity of binary 
symbols in code words after coding by a nonuniform Shannon-Fano code or Huffman 
code.  

5. Result the list of the literature in the executed task, and in the text to specify, 
from what reference (with the indication of number of subitem or numbers of pages) 
specific data for execute of the individual task are taken. 



 

 

51 

INDIVIDUAL TASK № 2.2  
CODING OF CONTINUOUS MESSAGE 

 
The continuous message of a source will be transformed to a baseband signal 

and then transferred by a communication channel method PCM with utilization of 
uniform quantization. 

Input data:  
– the maximal frequency in a spectrum of a baseband signal Fmax; 
– average power of a baseband signal Pb; 
– amplitude factor of a baseband signal КА; 
– the allowable ratio signal / quantization noise on output DAC allqρ . 

The concrete numerical data get out on two last digits of number of the stu-
dent's record-book from Table 3 – The initial data for IT №2.2 (p. 57).  

It is necessary:  
1. Make up and describe block diagram of ADC and DAC.  
2. Define: the sampling frequency fs; the sampling interval Тs; a number of 

quantization levels L; a length of a binary code n; a duration of a binary symbol Тb; a 
digital signal rate R.  

3. Calculate the ratio signal / quantization noise ρq at chosen parameters of 
ADC. 

Methodical instructions to performance IT № 2.2 

1. The principle of construction ADC and DAC is described in the literature on 
telecommunication theory, for example, [2, part 17].  

2. The technique of calculations ADC and DAC is resulted in [3, part 4] and in 
an electronic database of the chair.  

3. Result the list of the literature in the executed task, and in the text to specify, 
from what reference (with the indication of number of subitem or numbers of pages) 
specific data for execute of the individual task are taken. 

Literature 

1. Стеклов В.К., Беркман Л.Н. Теорія електричного зв’язку: Підручник 
для студентів ВУЗів. За ред. В.К. Стеклова – К.: Техніка, 2006. 

2. Панфілов І.П., Дирда В.Ю., Капацін А.В. Теорія електричного зв’язку: 
Підручник для студентів ВУЗів 1-го та 2-го рівнів акредитації. – К.: Техніка, 
1998. 

3. Розрахунки й оптимізація характеристик систем електрозв’язку. За-
вдання на курсову роботу з дисципліни “Теорія електричного зв'язку” та мето-
дичні вказівки до їх виконання / Укл. Іващенко П.В. Одеса: ОНАЗ, 1999.  

4. Кловский Д.Д., Шилкин В.А. Теория электрической связи: Сб. задач и 
упражнений.– М.: Связь, 1990. 
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5. Методичні вказівки до виконання лабораторних робіт з дисципліни 
“Теорія електричного зв’язку”. Частина 2 / Іващенко П.В. та ін. – Одеса: ОНАЗ 
ім. О.С. Попова, 2004.  

 

Help material 
to individual tasks № 2.1 and № 2.2  

Table A.1 – The letter probabilities distribution in the English texts 
Letter Probability Letter Probability Letter Probability Letter Probability 
Blank 0.198 R 0.054 U 0.022 V 0.008 

E 0.105 S 0.052 M 0.021 K 0.003 
T 0.072 H 0.047 P 0.017 X 0.002 
O 0.065 D 0.035 Y 0.012 J 0.001 
A 0.063 L 0.029 W 0.012 Q 0.001 
N 0.059 C 0.023 G 0.011 Z 0.001 
I 0.055 F 0.022 B 0.010   

 
Huffman code [4, р. 192] 

In case of Huffman coding algorithm signs of the source alphabet sign up in 
decreasing order their probabilities. If some signs have identical probabilities, they 
are placed in the any order. Then the probability tree as follows is under construction: 
choose two signs with the least probabilities and form the first branching of a tree. 
The chosen signs unite in the "intermediate" sign having probability, equal to the sum 
of probabilities of the chosen signs. Then among the staying signs (together with in-
termediate sign) again find two signs with the least probabilities and act the same as 
on a first step. This procedure carries out until will all signs on the source alphabet 
and intermediate signs will use up and the root of a tree which probability is equal 1 
will be received.  

«Movement» on a tree from a root to corresponding symbol carries out recep-
tion of code words. Passage through a branching means addition of a binary symbol 
in a code word: if through a branching "movement" upwards then unit is added and if 
downwards then zero is added. 

Let's consider an example of coding of signs on the alphabet consisting of 7 
signs. In tab. 2 signs are resulted and their probabilities are specified. On figure 1 
construction of a probability tree is shown.  For this purpose signs are located from 
top to down in decreasing order their probabilities. Procedure of construction of a 
probability tree, described is carried out above.  The received code words are brought 
in tab. 2. 

Calculation entropy of a considered source gives value  

)(log)()( 2
1

k

M

k
k aPaPAH ⋅−= ∑

=
= 2,524 bit. 

Let's calculate average length of a code word 
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k

M

k
k naPn ⋅−= ∑

=
)(

1

 = 2,72. 

According to Shannon theorem of source cod-
ing the average length of a code word cannot be less 
source entropy. In our example 

n  = 2,72 > H(A) = 2,524 bit. 
These values differ only on 7%.  
If lengths of code words are identical and 

equal n the code is called uniform or primitive. The 
length of such code depends on size of the source 
alphabet: 

n = log2М = log28 = 3. 

For an estimation of compression efficiency the parameter factor of compression 
is entered: 

nn=µ  = 3/2,72 = 1,103. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Calculation of ADC and DAC parameters  
(it is carried out under the manual [3]) 

Input data (write out from table 3): 
– the maximal frequency in a spectrum of a baseband signal Fmax; 
– average power of a baseband signal Pb; 
– amplitude factor of a baseband signal КА; 
– the allowable ratio signal / quantization noise on output DAC allqρ . 

It is necessary to: 
– make up and describe block diagram of ADC and DAC; 
– define the sampling frequency fs and the sampling interval Тs;  

1 
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Figure 1 – Coding on Huffman algorithm  

Signs and their 
probabilities 

Root of a 
tree 

T r e e  o f  p r o b a b i l i t i e s  

Table 3 – Huffman code 
Sign 
аk 

Р(аk) 
Code 
word 

а0 0,05 10001 
а1 0,3 11 
а2 0,2 01 
а3 0,1 000 
а4 0,06 1001 
а5 0,15 101 
а6 0,11 011 
а7 0,03 10000 
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– define a number of quantization levels L, a length of a binary code n and a 
duration of a binary symbol Тb;  

– calculate the ratio signal / quantization noise ρq at chosen parameters of 
ADC; 

– calculate allowable probability of a symbol error of a рall in a communication 
channel between ADC and DAC (on DAC output). 

Calculating formulas 

According to the Kotelnikov theorem [1, part 2.7; 2, part 2.4] the sampling fre-
quency fs = 1/Тs should satisfy to a condition 

 fs ≥ 2Fmax. (1) 

The sampling interval is value return sampling frequency  

 Тs = 1/fs. (2) 

The noise immunity of transmission system of continuous messages is defined 
by the ratio signal / noise on an input recipient (in our case on output DAC) 

 ρout =Pb/
2
εσ , (3) 

where 2
εσ  – average power of noise on an input recipient. 

In digital transmission system by method PCM power of a noise on output 
DAC is defined 

 222
erq ε+ε=σε , (4) 

where 2
qε  – average power of a quantization noise; 

2
erε – average power of the noise caused by errors in a digital communication 

channel. 
It is defined also the ratio signal / quantization noise in transmission system by 
method PCM  

 ρq = Pb/
2
qε . (5) 

Value ρкв is defined at uniform quantization 

 ρq = 3(L – 1)2/ 2
AK . (6) 

Power of the noise, causing by errors in a digital communication channel, on 
output DAC is defined by a proportion [1, formula (8.14)] 

 ∑
=

− −∆=∆=ε
n

i

n
i bpbp

1

2)1(222
er 3

14
)(2)( , (7) 

where р – probability of a bit error on input DAC; 
∆b – step of quantization; 
n – the length of binary code ADC connected to number of quantization levels  
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 n = log2L. (8) 

This ratio takes into account, that number of quantization levels L is the whole degree 
of number 2. 
The baseband signal b (t) accepts values from bmin up to bmax. The interval (bmin, bmax) 
is subject to quantization. The quantization step is defined 

 ∆b = (bmax – bmin)/L. (9) 

If average value of a signal equal to zero, then bmin = –bmax. If value bmax is not given, 
it is defined from a proportion  

 bmax = КA Pb , (10) 

Duration of a binary symbol on output of ADC is defined  

 Тb = Тs / n. (11) 

Procedure of calculation 

Block diagrams of ADC and DAC are in detail described in [1, part 8; 2, part 
16]. It is necessary to add ADC circuits with LPF. LPF in real telecommunication 
systems is used for limitation of a baseband signal spectrum. It explains that at spec-
trum of baseband signals are slowly decreasing function. Value Fmax is limiting fre-
quency of a band, which is necessary for transmitting from a condition of achieve-
ment of the given quality of a baseband signal reproduction. Value Fmax is defined by 
necessary legibility of speech, image sharpness, etc.  

The increase in sampling frequency allows simplifying the input LPF of ADC 
and the output (interpolating) LPF of DAC. The LPF output of DAC recoveries a 
continuous signal on samples. The increase in sampling frequency results in reduc-
tion of binary symbol duration on output ADC. It causes undesirable spread of a fre-
quency band of a continuous communication channel for transmitting of binary sym-
bols. Usually parameters of the input LPF of ADC and the output LPF of DAC 
choose identical. 

On figure 2 are given: S(f) is a spectrum of the samples submitted by narrow 
pulses, Sb(f) is a spectrum of a continuous signal b(t), A(f) is a performance attenua-
tion of LPF. That LPF did not bring linear distortions in a continuous signal; limiting 
frequency of LPF pass band should satisfy to a condition 

 f1 ≥ Fmax. (12) 

Limiting frequency of LPF stop band should satisfy to a condition 

 f2 ≤ (fs – Fmax). (13) 

It excludes aliasing Sb(f) and Sb(f – fs) and provides attenuation components 
Sb(f – fs) with a recovering LPF. 

That LPF were not too complex, the relation of limiting frequencies choose 
from a condition 

 f2/f1 = 1,3...1,4. (14) 
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After substitution of proportions (12) and (13) in (14) it is possible to choose 
frequency of digitization. Then it is necessary to calculate a sampling interval.  

Under the given allowable ratio signal / quantization noise allqρ  it is necessary 

to calculate allowable number of quantization levels Lall with the help of a proportion 
(6). Then choose L ≥ Lall and calculate n under the formula (8). 

The ratio signal/noise given in decibels is necessary for presenting in times at 
carrying out of calculations 

 ρ =100,1ρ [dB]. (15) 

Under the formula (6) it is necessary to calculate value ρq at chosen parameters 
ADC. Translate the designed value into decibels and compare with given allqρ .  

Define allowable value of noise power caused by errors in a digital communica-
tion channel on the basis of proportions (3), (4) and (5), having accepted outρ = alloutρ . 

The allowable error probability of a binary symbol on input DAC pall is defined from a 
proportion (7). The size of a quantization step is defined by the formula (9). 
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Table 3 – The input data for performance IT № 2.2  
Parameters of a message source  Number  

of a variant Pb, V
2 КА Fmax, kHz 

alloutρ , dB allqρ , dB 

00 3,0 5 6,5 36 39 
01 1,2 8 12 31 34 
02 2,5 √3 2,4 38 41 
03 0,1 5 6,5 42 45 
04 0,3 5,5 8,0 42 45 
05 0,5 √3 2,4 44 47 
06 0,7 3 2,7 40 43 
07 0,9 4 3,5 37 40 
08 1,2 √3 5000 50 53 
09 1,5 3,5 2,5 39 42 
10 1,8 4,5 12 36 39 
11 2,0 √3 3500 38 41 
12 2,5 4,5 14 42 45 
13 2,8 6,5 18 33 36 
14 3,0 √3 800 44 47 
15 0,2 7 12,5 39 42 
16 0,4 8 15 37 40 
17 0,6 √3 1,6 50 53 
18 0,8 3,5 4,5 45 48 
19 1,0 4,5 7,0 36 39 
20 1,1 √3 0,8 38 41 
21 1,3 5,5 7,5 42 45 
22 1,4 6,5 9,5 37 40 
23 1,6 √3 100 44 47 
24 2,2 4,5 11 42 45 
25 2,4 6,5 8,5 33 36 
26 2,6 √3 0,1 50 53 
27 1,9 3,5 2,5 45 48 
28 0,1 3 2,7 46 49 
29 0,3 √3 22 38 41 
30 0,5 3,5 2,5 39 42 
31 0,7 4,5 12 42 45 
32 0,9 √3 110 44 47 
33 1,1 4,5 14 36 39 
34 1,3 7 12,5 39 42 
35 1,5 √3 0,1 50 53 
36 1,7 8 15 37 40 
37 1,9 3,5 4,5 45 48 
38 2,1 √3 180 38 41 
39 2,3 4,5 7,0 36 39 
40 2,5 5,5 7,5 42 45 
41 2,7 √3 56 44 47 
42 2,9 6,5 9,5 39 42 
43 0,2 4,5 11 36 39 
44 0,4 √3 44 50 53 
45 0,6 6,5 8,5 33 36 
46 3,5 0,8 2,5 45 48 
47 1,0 √3 95 44 47 
48 1,2 3 2,7 40 43 
49 1,4 3,5 2,5 45 48 
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The ending of the table 3 
Parameters of a message source Number  

of a variant Pb, V
2 КА Fmax, kHz 

alloutρ , dB allqρ , dB 

50 1,6 √3 120 50 53 
51 1,8 4,5 12 36 39 
52 2,0 4,5 14 42 45 
53 2,2 √3 144 38 41 
54 2,4 3,5 22 39 42 
55 2,6 3,5 1,5 45 48 
56 2,8 √3 380 44 47 
57 3,0 4,5 2,7 36 39 
58 0,01 4,5 7,4 42 45 
59 0,1 √3 500 50 53 
60 0,02 5,5 16 35 38 
61 0,2 5,5 12,5 41 44 
62 0,03 √3 0,24 38 41 
63 0,3 6,5 15 39 42 
64 0,04 7,0 2,8 39 42 
65 0,4 √3 12 44 47 
66 0,05 7,5 3,3 32 35 
67 0,5 8,0 4,4 31 34 
68 0,06 √3 300 50 53 
69 0,6 5 5,5 42 45 
70 0,07 9,0 6,5 30 33 
71 0,7 √3 9,6 38 41 
72 0,08 3,5 4,3 45 48 
73 0,8 4,5 7,5 42 45 
74 0,09 √3 10,2 44 47 
75 0,9 5,5 4,8 42 45 
76 0,1 6,5 5,2 39 42 
77 1,0 √3 1,5 50 53 
78 0,12 7,5 3,6 38 41 
79 1,2 8,0 10,0 37 40 
80 0,15 √3 240 38 41 
81 1,5 8,5 4,5 36 39 
82 0,2 3 5,6 46 49 
83 2,0 √3 480 44 47 
84 0,25 4,5 11 36 39 
85 2,5 5,5 14 35 38 
86 0,3 √3 75 50 53 
87 3,0 6,5 2,6 33 36 
88 0,35 7,5 6,5 38 41 
89 0,65 √3 68 38 41 
90 0,4 6,5 16 39 42 
91 0,7 5,5 6,3 42 45 
92 0,45 √3 18 44 47 
93 0,75 4 8,2 37 40 
94 0,5 8 18 31 34 
95 0,8 √3 72 50 53 
96 0,55 4,5 6,4 42 45 
97 0,85 6,0 12 40 43 
98 0,6 √3 0,6 38 41 
99 0,9 7,0 2,75 39 42 
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6 ENGLISH-RUSSIAN DICTIONARY 

accumulator накопитель 

ADC (analog-to-digital convertor ) АЦП (аналого-цифровой преобразова-
тель) 

ADPCM (adaptive differential PCM) AДИКМ (адаптивная дифференциаль-
ная ИКМ) 

aliasing  наложение спектров 

amplitude factor коэффициент амплитуды 

amplitude response (AR) АЧХ (амплитудно-частотная характе-
ристика) 

AWGN (additive white Gaussian noise) АБГШ (аддитивный белый гауссовский 
шум) 

binary channel  двоичный канал 

channel capacity пропускная способность 

code length  длина кода 

communication channel канал связи 

compression of information сжатие информации 

conditional entropy условная энтропия 

continuous source источник непрерывных сообщений 

cut-off frequency частота среза 

DAC (digital-to-analog converter) ЦАП (цифро-аналоговый преобразова-
тель) 

decoding method метод декодирования 

degree of compression  степень сжатия 

differential entropy дифференциальная энтропия 

digital transmission  цифровая передача 

discrete source источник дискретных сообщений 

DM (delta modulation) ДМ (дельта модуляция) 

effective coding эффективное кодирование 

encoding method метод кодирования 

epsilon entropy эпсилон-энтропия 

epsilon rate эпсилон-производительность  

equal-length code равномерный код 

frequency efficiency частотная эффективность 

Huffman code код Хаффмана 

information characteristics информационные характеристики 

information efficiency информационная эффективность 
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information quantity количество информации 

instantaneous values  мгновенные значения 

joint entropy совместная энтропия 

linear distortions линейные искажения 

low-pass filter (LPF) фильтр нижних частот (ФНЧ) 

message source источник сообщений 

mutual information взаимная информация 

non-uniform code неравномерный код 

power efficiency энергетическая эффективность 

predictor предсказатель 

primitive code  примитивный код 

pulse code modulation (PCM) импульсно-кодовая модуляция (ИКМ) 

quantization noise шум квантования  

quantization step  шаг квантования 

redundancy   избыточность 

redundancy coefficient  коэффициент избыточности 

sampling дискретизация 

Shannon theorem теорема Шеннона 

Shannon-Fano code код Шеннона-Фано 

signal/(quantization noise) ratio отношение сигнал/шум квантования 

slope overload перегрузка по наклону 

source entropy энтропия источника 

source rate производительность источника 

statistical code статистический код 

subdivision noise шум дробления 

symbol rate скорость модуляции 

time domain временная область 

transmission accuracy точность передачи 

uncorrelated messages независимые сообщения 

uniform quantization равномерное квантование 

variable-length code неравномерный код 
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7 RUSSIAN-ENGLISH DICTIONARY 

АБГШ (аддитивный белый гауссовский 
шум) 

AWGN (additive white Gaussian noise) 

АЦП (аналого-цифровой преобразова-
тель) 

ADC (analog-to-digital convertor) 

АЧХ (амплитудно-частотная характе-
ристика) 

amplitude response (AR) 

взаимная информация mutual information 

временная область time domain 

двоичный канал binary channel  

АДИКМ (адаптивная дифференциаль-
ная ИКМ) 

ADPCM (adaptive differential PCM) 

дискретизация sampling 

дифференциальная энтропия differential entropy 

длина кода code length  

ДМ (дельта модуляция) DM (delta modulation) 

избыточность redundancy  

импульсно-кодовая модуляция (ИКМ) pulse code modulation (PCM) 

информационная эффективность information efficiency 

информационные характеристики information characteristics 

источник дискретных сообщений discrete source 

источник непрерывных сообщений continuous source 

источник сообщений message source 

канал связи communication channel 

код Хаффмана Huffman code 

код Шеннона-Фано Shannon-Fano code 

количество информации information quantity 

коэффициент амплитуды amplitude factor 

коэффициент избыточности redundancy coefficient  

линейные искажения linear distortions 

мгновенные значения instantaneous values  

метод декодирования decoding method 

метод кодирования encoding method 

накопитель accumulator 

наложение спектров aliasing  

независимые сообщения uncorrelated messages 
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неравномерный код non-uniform, variable-length code 

отношение сигнал/шум квантования signal/(quantization noise) ratio 

перегрузка по наклону slope overload 

предсказатель predictor 

примитивный код primitive code  

производительность источника source rate 

пропускная способность channel capacity 

равномерное квантование uniform quantization 

равномерный код equal-length, fixed length code 

сжатие информации compression of information 

скорость модуляции symbol rate 

совместная энтропия joint entropy 

статистический код statistical code 

степень сжатия degree of compression  

теорема Шеннона Shannon theorem 

точность передачи transmission accuracy 

условная энтропия conditional entropy 

фильтр нижних частот (ФНЧ) low-pass filter (LPF) 

ЦАП (цифро-аналоговый преобразова-
тель) 

DAC (digital-to-analog convertor ) 

цифровая передача digital transmission  

частота среза cut-off frequency 

частотная эффективность frequency efficiency 

шаг квантования quantization step  

шум дробления subdivision noise 

шум квантования  quantization noise 

энергетическая эффективность power efficiency 

энтропия источника source entropy 

эпсилон-производительность  epsilon rate 

эпсилон-энтропия epsilon entropy 

эффективное кодирование effective coding 
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