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СHAPTER 1   

FUNDAMENTAL DEFINITIONS AND THEOREMS OF      

PROBABILITY 

 

 § 1.1. Combinatorial Analysis. Arrangements. Permutations. 

Combinations 

 

 Definition. A set consisting of  m elements chosen from n giving 

elements and put in the definite order is called an arrangement of n 

elements taken m and denoted by m
nA . 

 Arrangements can differ one from another either by elements or by their order. 

 Arrangements are calculated by the formula 

 

  ( ) ( )
( )! m-n

! 
1...1

n
mnnnA

m
n =+−−=     (1.1.1) 

where  

n! = 1 ( ) nn ⋅−⋅⋅⋅ 1...2 . 

 

  

Example 1.1.1. In how many ways it is possible to choose the trade-union 

group organizer and his deputy from the group of seven students? 

 

 Solution. .42672
7 =⋅== AN  

 

 Definition. Any ordered set which consists of m elements is called a 

permutation and denoted by .mP  

It is read: permutation of m digits at a time. 

 

 Permutations are calculated by the formula 

 

  ! mPm =         (1.1.2) 

 

 Example 1.1.2. In how many ways  six different textbooks can be planted on 

one book shelf?  

 

  Solution.  .7201234566 =⋅⋅⋅⋅⋅== PN  

 

 Definition. An arrangement of objects in which the order of the selection in not 

important is a combination and denoted by m
nC . 

It is read: combination of n digits taken m at a time. 
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 Combinations are calculated by the formula 

m
nC

( )
.

! m-n! 

! 

m

n

P

A

m

m
n ==       (1.1.3) 

 

Note. In practice it is better to use the next formula: 

  m
nC = 

( ) ( )
!

1...1

n

mnnn +−−
   . 

  

Example1.1.3. A standard deck of playing cards consists of 52 cards. How 

many five-card hands can be chosen from this deck? 

 

Solution. We have 
( )! 5-525!

! 525
55 == CN =

54321

5152535455

⋅⋅⋅⋅

⋅⋅⋅⋅
960 598 2= . 

There are 960 598 2  five- cards hands. 

 

The following formulas are valid 

1. 0
nC + 1

nC +…+ nn
nC 2=  (consequence of the Newton binomial formula). 

2. m
nC

mn
nC

−= (symmetry property). 

3. ,1=n
nC  .1

nCn =  

4. m
nC =+ +1m

nC
1

1
+

+
m
nC , where nm ≤≤0  ( a recurrent formula). 

 

§ 1.2. Events. Classification of events  

 

 Definition. Realization of some definite complex of conditions is called a trial 

(or test). A possible result of trial is called an event. 

 

 Definition. An event that can occur or can not occur in a given trial is termed a 

random event. 

 

 Definition. An event which can not come in a given trial is called an 

impossible event. 

 

Definition. An event which necessarily comes in a given trial is termed a 

certain event.  

 

Definition. Events 1A , 2A ,…, nA  that can not occur at the same time are 

mutually exclusive or incompatible. Otherwise events are named joint. 

 

Definition. Events 1A , 2A ,…, nA  are said to be uniquely possible if one of them 

necessarily occurs in a given trial. 
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Definition. Events 1A , 2A ,…, nA  form a total group  if they are unique and 

incompatible. 

 

Definition. Two events AA  and  which form a total group are called mutually 

opposite. 

 

Definition. We will say that an event B implies an event A if in the given trial 

the occurrence of the event B implies that of the event A. 

 

 § 1.3. Algebra of Events 

 

Union of two events. A complex event which consists of the occurrence of at 

least one of the events A and B is called the union or the sum of two events A and B. 

The union of the events A and B is denoted .BA ∪  For exclusive events A and B we 

also use the notation .BA +  

The union of several event 1A , 2A ,…, nA  is defined in the same way, and is 

denoted by ...., ,2 ,1  , nkAk
k

=∪  

Intersection of two events. The joint appearance of two events A and B is 

called the intersection or the product of these two events and is denoted .or  ABBA ∩  

By the intersection of several events 1A , 2A ,…, nA  denoted by 

( )nkAk
k

..., ,2 ,1  =∪  we mean the event consisting of the occurrence of all events. 

Given two events A and B, by the difference BA −  we mean the event in 

which A occurs but not B. 

 

Properties of unions and intersections. The operations of unions and 

intersections of events  posses some  properties which are similar to those of addition 

and multiplication of numbers. 

 

1. The union and intersection of events are commutative: 
=∪ BA . , BAABAB =∪  

 

2. The union and intersection of events are associative: 

( ) =∪∪ CBA ( ) ( ) CBABCACBA ∪∪=∪∪=∪∪ , 

( ) ( ) ( ) .ABCBACBCACAB ===  

 

3. The union and intersection of events are distributive: 
( ) .BCACCBA ∪=∪  

 

All these properties follow directly from the definition of union and 

intersection. Thus, ( )CBA ∪  means the joint occurrence of the event C with the 

event A, or with the event B, or with A and B together. The event BCAC ∪ also 
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means the occurrence of either C together with A, or C together with B, or C 

together with AB. 

But not all laws of addition and multiplication of numbers are valid 

for union and intersection of events. Thus, for instance, the events AA ∪  

and AA evidently coincide with A. Therefore AA ∪ = AA = A. 

Complementary events. Non-occurrence of A, which is denoted by A , 

is the event complementary to the event A. 

It is easy to see that the event A is complementary to the event A : 

.AA =   
Gain and loss in a game, failure of a device in a given time interval 

and its faultless functioning in the same time interval, are examples of 

complementary events. 

It is evident that complementary events are exclusive, and their union 

is a certain event: 

 

 =AA Ǿ, ,Ω=∪ AA  

 

where Ω  is the certain event and Ǿ is the impossible event. 

It is also clear that 

 

  ∪A Ǿ ,A=   AǾ = Ǿ,    AAA =ΩΩ=Ω∪     , . 

 

 

  § 1.4. Classical Definition of Probability 

   

 Definition. The probability of an event A is defined by the formula 

   ( )
n

m
AP = ,       (1.4.1) 

where n is the total number of outcomes uniquely possible, equiprobable and 

incompatible, m is the number of outcomes leading to the occurrence of the event A. 

 

 Example 1.4.1. In throwing a single unbiased die, there n = 6 mutually 

exclusive, equiprobable  and unique outcomes, namely getting a number of spots 

equal to each of the numbers 1 through 6.  

 

Solution. Let A be the event consisting of getting an even number of spots. 

Then there are m = 3 outcomes leading to the occurrence of  A, and hence  

( ) .
2

1

6

3
==AP  
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Example 1.4.2. From a lot of n items, k are defective. Find the probability that l 

items out of a random sample of size m selected for inspection are defective. 

Solution. The number of possible ways to choose m items out of n is .m
nC  The 

favorable cases are those in which l defective items among the k defective items are 

selected (this can be done in 
l
kC  ways) and the remaining m – l are nondefective, i.e., 

they are chosen from the total number n – k (in  
lm

knC −
−  ways). Thus number of  

favorable cases is  
lm

kn
l
k CC −

−⋅ . The required probability will be 

 

 ( ) =AP
m
n

lm
kn

l
k

C

CC −
−⋅

. 

 

Properties of Probabilities. 
 

1. ( ) 10 ≤≤ AP  for any event;  

 

2. ( ) 1=ΩP  for a certain event; 

 

4. P(Ǿ) = 0 for an impossible event.  

 

 

 

§ 1.5. Statistical Definition of Probability 

 

Let n be the total number of experiments in the whole series of trials and m be 

a number of experiments in which A occurs. Then the ratio ( )
n

m
AW =  is called the 

relative frequency of the event (in the given series of trials). 

It turns out that the relative frequencies 
n

m
 observed in different series of trials 

are virtually the same for large n, clustering about some constant 

( )AP  ~ ,
n

m
        (1.5.1) 

called the probability of the event A. 

 More exactly, (1.5.1) means that 

  ( ) .lim
n

m
AP

n ∞→
=  

Roughly speaking, the probability ( )AP  of the event A equals the fraction of 

experiments leading to the occurrence of A in a large series of trials. 
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 Example (De Mere’s paradox). 

 As a result of extensive observation of dice games, the French gambler de 

Mere noticed that the total number of spots showing on three dice thrown 

simultaneously turns out to be 11 (the event A) more often than it turns out to be 12 

(the event B), although from his point of view both events should occur equally often. 

De Mere reasoned as follows: A occurs in just six ways (6:4:1,  6:3:2, 5:5:1, 5:4:2, 

5:3:3, 4:4:3), and B also occurs in just six ways (6:5:1,  6:4:2, 6:3:3, 5:5:2, 5:4:3, 

4:4:4). Therefore A and B have the same probability ( )AP ( )BP= . 

 The fallacy in this argument was found by Pascal, who showed that the 

outcomes listed by de Mere are not actually equiprobable. In fact, one must take 

account not only of the number of spots showing on the dice, but also of the 

particular dice on which the spots appear. For example, numbering  the dice and 

writing the number of spots in the corresponding order, we find that there are six 

distinct outcomes leading to the combination 6:4:1, namely (6,4,1), (6,1,4), (4,1,6), 

(1,6,4) and (1,4,6), whereas there is only one outcome leading to the combination 

4:4:4, namely (4,4,4). The appropriate equiprobable  outcomes are those described by 

triples of numbers (a,b,c), where a is the number of spots on the first die, b the 

number of spots one second die, and c the number of spots on the third die. It is easy 

to see that there are then precisely 21663 ==n  equiprobable outcomes. Of these, 

( ) 27=Am  are favorable to the event A (in which the sum of all the spots equals 11), 

but only ( ) 25=Bm  are favorable to the event B (in which the sum of all the spots 

equals 12). To see this, note that a combination a:b:c occurs in 6 distinct ways if a, b 

and c are distinct, in 3 distinct ways if two (and only two) of the numbers a, b and c 

are distinct, and if only 1 way if a = b = c. Hence A occurs in 6+6+3+6+3+3=27 

ways, while B occurs in 6+6+3+3+6+1=25 ways. This fact explains the tendency 

observed by de Mere for 11 spots to appear more often than 12. 

 

§ 1.6. Dependent Events. Conditional Probability. Multiplication Theorem of 

Probabilities 

 

 Definition. Two events A and B are said to be independent if occurrence of 

one is in no way affected by the occurrence or nonoccurrence of the other. Otherwise 

event  are called dependent.  

 

 Example 1.5.1. An urn contains 5 white and 3 black balls. At random from an 

urn a person draws a ball without returning it to the urn.  The second ball is taken out 

of the urn. What is the probability that this ball is black (event B).  

 Solution. The occurrence of the event B depends on of what color was the first 

ball. If the first ball is white (event A), then the probability of the event B provided 

that the event A has come is  

  ( ) ( ) .
7

3
/ == ABPBPA  

If the first ball is black then the probability of the event B provided that the event A 

has not come (event A  has come) is    



 10

  ( ) ( ) .
7

2
/ == ABPBP

A
 

 

( )BPA  is called the conditional probability of the event B relative to the event A. In 

this case  the events A and B are dependent events. 

 

 Theorem. The probability of the product of two dependent events is equal to 

the probability of one of them multiplied by the conditional probability of the other 

 

  ( ) ( ) ( ) ( ) ( )APBPBPAPABP BA ==     (1.6.1) 

 

 Proof. Let n be the total number of uniquely possible, equiprabable  and 

incompatible  outcomes; m a number of outcomes leading to the occurrence of the 

event A; l the number of outcomes leading to the occurrence of the event B and k the 

number of outcomes leading to the occurrence of both A and B. Then  

 

  ( ) =ABP
n

k

nm

km
= ⋅=

n

m

m

k
, 

 

but ( ),AP
n

m
=  ( )BP

m

k
A=  and hence  

   

 ( ) =ABP ( ) ( ).BPAP A⋅  

 

It follows from (1.6.1) that the probability of joint appearance of any number of 

events is equal to the probability of one of them multiplied by: 

the conditional probability of another relative to the first event, 

the conditional probability of the third event relative to the intersection of two first 

events, etc. by the conditional probability of the last event relative to the intersection 

of all preceding ones: 

 

( ) ( )121 ... APAAAP n = ( )12 / AAP ( )213 / AAAP … ( )121 .../ −nn AAAAP   (1.6.2) 

 

 It is easy to see that conditional probabilities have properties analogous to 

those of ordinary probabilities. For example, 

 

1. ( ) 10 ≤≤ BPA   

 

2. If A and B are incompatible, so that AB = Ǿ, then ( ) 0=BPA  

 

 

3. If A implies, so that BA ⊂  then ( ) 1=BPA . 
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If the events A and B are independent then the probability for their product is defined 

by the formula 

   

( ) ( ) ( )BPAPABP =       (1.6.3) 

 

 Example1.6.2. The break in an electric circuit occurs when at least one out of 

three elements connected in series is out of order. Compute the probability that the 

break in the circuit will not occur if the elements may be out of order with the 

respective probabilities 0.3, 0.4 and 0.6. How does the probability change if the first 

element in never out of order? 

 Solution. The required probability equals the probability that all three elements 

are working. Let ( )3,2,1  =kAk  denote the event that the  kth  element functions. 

Then ( ) ( ).321 AAAPAPp ==  Since the events may be assumed independent, 

( )1APp = ( )2AP= ( ) .168.04.06.07.03 =⋅⋅== AP  

If the first element is not out of order, then ( ) .24.032 == AAPp  

 

 Example1.6.3. A lot of 100 items undergoes a selective inspection. The entire 

lot us rejected if  there is at least one defective item if five items checked. What is the 

probability that the given lot will be rejected if it contains 5 % defective items? 

  Solution. Find the probability q of  the complementary event A consisting of 

the situation in which the lot will be accepted. The given event is an intersection of 

five events 54321 AAAAAA =  , where ( )5,4,3,2,1 =kAk  means that the kth item 

checked  is good. 

 The probability of the event 1A  is ( )
100

95
1 =AP  since there are only 100 items, 

of which 95 are good. After the occurrence of the event 1A , there remain 99 items, of 

which 94 are good and, therefore, ( ) .
99

94
/ 12 =AAP  Analogously, ( )

98

93
/ 213 =AAAP , 

( )
97

92
/ 3214 =AAAAP , ( ) .

96

91
/ 43215 =AAAAAP  According to the formula (1.6.2), we 

find that =q ⋅
100

95
⋅

99

94
⋅

98

93
⋅

97

92
.77.0

96

91
=  

The required probability .23.01 =−= qp  

 

  § 1.7. The Addition Theorem 
 

 Theorem. The probability of the sum of two events is equal to the sum of their 

probabilities minus the probability of their intersection, that is 

 

  ( ) =+ BAP ( )AP ( )BP+ ( )ABP−     (1.7.1) 

 Proof. Let n be the total number of uniquely possible, equiprobable and 

incompatible outcomes; m the number of outcomes leading to the occurrence of the 
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event A; l the number of outcomes leading to the occurrence of the event B and k the 

number of outcomes leading to the occurrence of both A and B. Then  

 

( ) =+ BAP =
−+

n

klm

n

m

n

l
+

n

k
− , but ( ),AP

n

m
=  ( ),BP

n

l
=  ( ),ABP

n

k
=  and hence 

 

  ( ) =+ BAP ( )AP ( )BP+ ( )ABP− . 

 

 Observe, that 0=k  if the events A and B are incompatible. 

 

 Consequence 1. If the events A and B are incompatible then  

 

  ( ) =+ BAP ( )AP ( )BP+       (1.7.2) 

since ( ) 0=ABP  for incompatible events. 

 

 Consequence 2. The sum of probabilities of events ,1A ,2A …, ,nA  which form 

a total set is equal to 1, that is  

 

  ( )1AP ( )2AP+  + …+ ( ) 1=nAP      (1.7.3) 

Since the events ,1A ,2A …, nA  form a total set, their sum is a certain event 

.
1

Ω=∑
=

n

k

kA  On using the formula (1.7.2) we can show that 

  ( ) =+++ nAAAP ...21 ( )1AP ( )2AP+  + …+ ( )nAP  

and ( )Ω=









∑

=

PAP
n

k

k

1

 that is  

  ( )1AP ( )2AP+  + …+ ( ) 1=nAP  , since ( )ΩP  = 1. 

 

 Complementary events are incompatible and form a total set. There it follows 

from (1.7.3) that the sum of the probabilities of complementary events is unity: 

 

  ( )AP  + ( )AP  = 1       (1.7.4) 

 

 This formula is very important for practice. In many problems it is difficult to 

calculate the probability of an event while the probability of the complementary event 

may be easily calculated. In such cases formula (1.7.4) is useful. 

  

 Example. The scheme of the electric circuit between two points M and N is 

given in Figure 1. Malfunctions during an interval of time  T of different elements of 

the circuit represent independent events with the following probabilities (Table 1) 
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Element 

 

1K  

 

2K  

 

1L  

 

2L  

 

3L                                 

 

Probability 

 

0.6 

 

0.5 

 

0.4 

 

0.7 

 

0.9                  

 

             Table 1.7.1 

 

Find the probability of a break in the circuit during the indicated interval of time. 

 

  

 

 

 

 

     

     

     Fig.1.7.1 

 

Solution. Denote by ( )2,1 =jA j  the event meaning that an element jK  is out 

of order, by A that at least one element jK  is out of order and by B that all three 

elements ( )3,2,1 =iLi  are out of order. Then, the required probability is  

 ( ) =+= BAPp ( )AP ( )BP+ ( ) ( ).BPAP− . 

Since 

 ( )AP ( )1AP=  + ( )2AP ( )1AP− ( )2AP = 0.8, 

 ( ) =BP ( )1LP ( )2LP ( )3LP  =  0.252, 

we get .85.0≈p  

 

  § 1.8. The Total Probability Formula 
 

 Suppose that an event A can occurs only together with one of events 

,1H ,...,2H ,nH  which form a total group. 

 Events ,1H ,...,2H nH  are called hypotheses. 

Probabilities ( ),1HP ( ),...,2HP ( )nHP  are known and conditional probabilities 

( ) ( )niAP
iH ,...,2,1 , =  also are known. Find the probability ( )AP . 

 Since the events ,1H ,...,2H nH  form a total group their union (sum) is a 

certain event. 

 The event A may appear only together with some event  .iH  Thus the event A 

is the union of the events  A ,1H A ,...,2H A nH . As by condition the events 

,1H ,...,2H nH  are exclusive (incompatible) the events  A ,1H  A ,...,2H  A nH  are 

also exclusive and we can use the addition theorem 

M

K

L

L

L
N

K1 2

1

2

3
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 ( )AP  = ( )1AHP  + ( ) ++ ...2AHP ( )nAHP = ( )k

n

k

AHP∑
=1

. 

On using the product theorem we obtain 

 

 ( ) =kAHP ( ) ( )APHP
kHk  

and therefore 

  ( )AP = ( ) ( )∑
=

n

k

Hk APHP
k

1

     (1.8.1) 

 Example. Electric bulbs are produced at two plants. Products of the first plant 

contains 70% standard bulbs, the second – 80%. The bulbs were sent for sale to 

shops. To the first shop were sent 60% of the general amount of bulbs, to the second 

– 40%. 

 What is the probability, that at random purchased bulb at the shop is a standard 

bulb? 

 

 Solution. Denote by A the event meaning that a standard bulb was bought, 

by 1H  – a bulb was produced at the first plant, by 2H  – a bulb was produced at the 

second plant.  

 We have ( ) 6.01 =HP , ( ) 4.02 =HP , ( ) 7.0
1

=APH , ( ) 8.0
2

=APH . 

By the total probability formula we have  

 ( ) =AP ( ) ⋅1HP ( ) +APH1
( ) ⋅2HP ( ) .74.08.04.0076.0

2
=⋅+⋅=APH  

  

  § 1.9. Bayes Formula 

 

 In practice we are often interested in a total group of incompatible events 

,1H ,...,2H nH  whose probabilities ( )( )niHP i ,...2,1 =  are known. These events are 

not observable but one may observe some event A whose conditional probabilities 

( )( )niAP
iH ,...2,1 =  are known. Assume that a trial was performed resulting in the 

appearance of the event A. Using this result of the trial it is required to make some 

inferences about the events ,1H ,...,2H nH , namely to determine their probabilities 

after the trial. In other words, it is necessary to find the conditional probabilities of 

the events ,1H ,...,2H nH  with respect to the event A. 

 From the probability multiplication theorem (1.6.1) follows 

 

 ( ) ( ) ( ) ( ) ( )APHPHPAPAHP
kHkkAk ==  

whence 

( )
( ) ( )

( )AP

APHP
HP kHk

kA = . 
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Substituting the expression of the probability of the event A from the formula of total 

probability (1.8.1) we obtain 

 

 ( )
( ) ( )

( ) ( )
( )nk

APHP

APHP
HP

n

i

Hi

Hk

kA

i

k ,...,2,1 

1

==

∑
=

    (1.9.1) 

 

 This formula which solves the problem is called Bayes formula. 

The probabilities ( )( )nkHP k ,...2,1 =  of the events ,1H ,...,2H nH  before the trial are 

usually called prior probabilities, from the Latin a priori, which means “primary” 

i.e. in our case before the trial was performed. The probabilities  ( ) ( )nkAP
kH ,...,2,1 =  

of the same events after the trial are called posterior probabilities, from the Latin a 

posteriori, which means “after”, i.e. after the trial was performed. 

 

 Example.A telegraphic communications system transmits the signals dot and 

dash. Assume that the statistical properties of obstacles are such that an average of 
5

2
  

of the dots and 
3

1
 of the dashes are changed. Suppose that the ratio between the 

transmitted dots and the transmitted dashes is 5:3. What is the probability that a 

received signal will be the same as the transmitted signal if  

a) the received signal is dot, 

b) the received signal is a dash. 

 

Solution. Let A be the event that a dot is received, and B that a dash is received. 

One can make two hypotheses: 1H  that the transmitted signal was a dot; and 2H  that 

the transmitted signal was a dash. By assumption, 
( )
( )

.
3

5

2

1 =
HP

HP
 

Moreover, ( )1HP ( ) 12 =+ HP . Therefore  ( ) ,
8

5
1 =HP  ( ) .

8

3
2 =HP  

 

One knows that  

( ) ,
5

3
1

=APH  ( ) ,
3

1
2

=APH  ( ) ,
5

2
1

=BPH  ( ) .
3

2
2

=BPH  

The probabilities of A and B are determined from the total probability formula: 

 ( ) =AP
5

3

8

5
⋅

2

1

3

1

8

3
=⋅+ , ( ) =BP

5

2

8

5
⋅

2

1

3

2

8

3
=⋅+ . 

 The required probabilities are: 
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 ( )
( ) ( )

( ) 4

3

2

1

5

3

8

5

11

1 =

⋅

==
AP

APHP
HP

H

A ; 

 ( )
( ) ( )

( ) 2

1

2

1

3

2

8

3

22

2 =

⋅

==
BP

BPHP
HP

H

A .           
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CHAPTER II 

RANDOM VARIABLES 

 

  § 2.1. General Definitions. Discrete Random Variables 

 

 Definition. A random variable is a variable, which assumes as a result of a 

trial depending on casual circumstances. 

 

 Definition. A random variable is said to be discrete if it takes only a finite or 

countable infinite number of values. 

  

 Definition. A random variable is said to be continuous if it takes all values 

in some finite or infinite interval, that is values completely fill some interval (finite or 

infinite).  

 

 A set of possible values of a discrete random variable X  and the probabilities 

of these values refers to as the law of the distribution of a discrete random variable. 

DRV is set by the table 

   

 

X 

 

 

1x  

 

2x  

 

… 

 

nx  

 

P 

 

 

1p  

 

2p  

 

… 

 

np  

 

Where ( )nixi ,...,2,1 =  a values of DRV X  and ( )ii xXPp ==  – corresponding 

probabilities. 

1p 2p+ +… 1=+ np , since the events ixX =  form a total group. 

 

 Example2.1.1. A total number of lottery tickets is 100. This lottery distributes 1 

prize worth 50 dollars, 10 prizes worth 1 dollar each. Find the law of the distribution 

of the RV X as a volume of a winning for one lottery ticket.  

 Solution.RV X can takes the following values: 501 =x , ,12 =x  .03 =x  

Then ( ) 01.0
100

1
11 ==== xXPp ,  

( ) ,1.0
100

10
22 ==== xXPp    

( ) ( ) .89.011.011 2133 =−=+−=== ppxXPp  

 So, the law of the distribution of this DRV is 
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 X 

 

 

50 

 

1 

 

 0 

 

 P 

 

 

0.01 

 

0.1 

 

0.89 

     Table 2.1.1. 

 

 § 2.2. Arithmetical Operations with DRV 

 

 Definition. Two DRV are called independent if the law of distribution of one 

of them does not depend on what possible values were accepted by other DRV. 

 Let independent DRV X and Y  be denoted by the distribution tables 

 

 

X 

 

 

1x  

 

2x  

 

… 

 

mx  

 

P 

 

 

1p  

 

2p  

 

… 

 

mp  

 

 

Y 

 

 

1y  

 

2y  

 

… 

 

ny  

 

P 

 

 

1q  

 

2q  

 

… 

 

nq  

 

 Definition. By the sum of two independent DRV X and Y  we mean  a DRV  

which accepts all possible values ix jy+  which probabilities ijp  defined by the 

product theorem. 

 In the case of independent variables we have 

 

  ijp  = ip jq         (2.2.1) 

 

 Definition. By the product of two independent DRV  X and Y we mean a 

DRV  which accepts all possible values ix jy  with probabilities ijp  defined by the 

product theorem. 

 

 Definition. By the k-th degree of a DRV  X  we mean a DRV  which takes 

values 
k

ix  with the same probabilities ip . 
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 Definition. By a product of a DRV  X and a constant A we mean a DRV  which 

accepts values iAx  with the same probabilities. 
 

 Remark. For DRV  ,2XXX ≠⋅  XXX 2≠+  
 

 § 2.3. Numerical Characteristics of DRV 
 

 In what follows we consider such numerical characteristics:  

 

• A. Mathematical expectation or mean value. 

 

• B. Dispersion or variance. 

 

• C. Mean square deviation. 
 

A. Mathematical Expectation and its Properties 
 

Definition. By the mathematical expectation of a DRV X we mean the sum of 

products of all its values and corresponding probabilities, that is  

( )XM ∑
=

=
n

i

ii px
1

       (2.3.1) 

Let us calculate a mathematical expectation of the DRV  and the average win 

for one ticket in the example of § 2.1 (Table 2.1.1.) 

( )XM .6.0
100

89
0

100

1
50

100

10
1 =⋅+⋅+⋅=  

 

Average win is .6.0
100

5010
=

+
 

 

So we can see that the probability meaning of a mathematical expectation is 

the mean value of a random variable. 

 

Using the formula (2.3.1) it is possible to prove the following properties of 

mathematical expectation (ME). 

 

1. ( ) CCM = , 

 

2. ( ) CCXM = ( )XM  for an arbitrary constant C; 

 

3. ( )YXM ± ( )XM= ( )YM±  for arbitrary random variables X and Y; 

 

4. ( )XYM ( )XM= ( )YM⋅  for independent random variables X and Y, 

 

5. ( )( ) .0=− XMXM  
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B. Dispersion and its Properties 

 

Definition. By the dispersion of a random variable X denoted by ( )XD  we 

mean the mean square value ( )( )2
XMXM − of the difference ( )XMX − .  

So 

 ( )XD = ( )( )2
XMXM −       (2.3.2) 

 

Theorem.The dispersion also can be found by the formula 

 

 ( )XD ( )2XM= ( )XM 2−  

  

Proof. ( )XD = ( )( )2
XMXM − = ( ) ( )( )=+⋅− XMXXMXM 22 2  

  ( )2XM= ( ) ( ) +⋅− XMXM2 ( )( )2XMM ( )2XM= ( )XM 2− . 

 

The  following properties of a dispersion are valid. 

 

1. A dispersion of a constant is equal to zero: ( ) .0=CD  

 

2. ( ) ( )XDCCXD 2=  for an arbitrary constant C. 

 

3. ( ) ( ) ( )YDXDYXD +=±  for independent random variables X and Y. 

 

4. ( ) =XYD ( )2XM ( )2YM ( )XM 2− ( )YM 2  for independent random 

variables X and Y. 

 

C. Definition. By mean square deviation we mean  

 

  ( ) ( ).XDX =σσσσ       (2.3.3) 

 

 

 

 

Example. Find the mean square deviation of the data in the following table  

 

 

X 

 

 

-2 

 

-1 

 

0 

 

1 

 

2 

 

P 

 

 

0.1 

 

0.1 

 

0.5 

 

0.1 

 

0.2 
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For DRV 2X we get 

 

 
2X  

 

 

4 

 

1 

 

0 

 

1 

 

4 

 

P 

 

 

0.1 

 

0.1 

 

0.5 

 

0.1 

 

0.2 

 

Hence ( ) 2.0=XM , ( ) 4.12 =XM  and  

 

( )XD ( )−= 2XM ( ) ,36.104.04.12 =−=XM  so 

 

( ) ( ) .36.1== XDXσσσσ  

 

  § 2.4. Bernoulli Trials. The Binomial and Poisson Distribution 

 

 By Bernoulli trials we mean identical independent experiments in each of 

which an event A, say, may occur with probability  

 

   ( ) )0(  ≠= pAPp  

 

or fail to occur with probability  

 
   .1 pq −=  

 

 Occurrence of the event A is called a “success” and nonoccurrence of A ( i.e., 

occurrence of the complementary event A ) is called “failure”. 

 Suppose that n independent trials are performed in every one of which the 

probability of the event A is equal to p. It is required to find the probability ( )mPn  

that the event A will appear m times. 

 

 Example 2.4.1. A marksman fires 5 shots at a target. The probability of hitting 

the target is one and the same 8.0=p  for all shots. Find the probability that the target 

is hit one time, two times, …, five times. 

 Solution. ( ) ( ) ( ) ,2.0 0
5

5 =⋅⋅⋅⋅= AAAAAPP  

 

  
( ) ( )

( ) ,2.08.05        

 ... 1

4

5

⋅⋅=

=⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅⋅⋅= AAAAAAAAAAAAAAAPP
 

 

  ( ) ( ) ( ) ( ) .2.08.010...2
32

5 ⋅⋅=⋅⋅⋅⋅++⋅⋅⋅⋅= AAAAAAAAAAPP  
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Hence we can write  

 

( ) ,0 50
55 qCP =  ( ) ,1 41

55 pqCP =  ( ) ,2 322
55 qpCP = …, ( ) .5 55

55 pCP =  

 

Generalize these formulas we get 

 

   ( ) mnmm
nn qpCmP −= ,     (2.4.1) 

 

where   

 

   .
)!(!

!

mnm

n
C m

n
−

=  

 

 The formula (2.4.1) is called Bernoulli formula and corresponding probability 

distribution of the random variable m given by the formula (2.4.1) is known as the 

binomial distribution. The binomial distribution is specified by two parameters, the 

probability p of a single success and the number of trials n. Suppose the number of 

trials is large while the probability of success p is relatively small, so that each 

success is a rather rare event while the average number of successes np is 

appreciable. Then it is a good approximation to write 

  ( ) npa
m

ea
mP

am

n =≈
−

   where,
!

     (2.4.2) 

 A random variable m taking only the integral values 0, 1, 2,… is said to be a 

Poisson distribution if  ( )
!m

ea
mP

am

n

−

= . 

 

 Example 2.4.2. How many lottery tickets must be bought to make the 

probability of winning at least P ? 

 Solution. Let N be the total number of lottery tickets and M the total number of 

winning tickets. Then 
N

M
 is the probability that a bought ticket is one of the winning 

tickets. The purchase of each ticket can be regarded as a separate trial with 

probability of “success” 
N

M
p =  in a series of n independent trials, where n is the 

number of tickets bought. If p is relatively small, as is usually the case, and the given 

probability P is relatively large, then it is clear that a rather large number of tickets 

must be bought to make the probability of buying at least one winning ticket no 

smaller than P. Hence the number of winning tickets among those purchased  is a 

random variable with an approximately Poisson distribution, i.e. the probability that 

there are precisely m winning tickets among n purchased tickets is  
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 ( ) .   where,
! N

M
na

m

ea
mP

am

n =≈
−

 

The probability that at least one of the tickets is a winning ticket is just   

  ( ) .101 a
n eP −−=−  

Hence n must be at least as large as the smallest positive integer satisfying  the 

inequality 

  ae− N

nM

e
−

= .1 P−≤  
 

 § 2.5. The Local Laplace Theorem 
 

 Suppose the number of trials n is large and m is also large and determining the 

binomial distribution become very cumbersome. In this case we make use of Laplace 

formula     

 ( ) ( )      where,
1

x
npq

mPn ϕ≈  

 ( )
π

=ϕ

−

2

2

2
x

e
x  – Gauss function and  .

npq

npm
x

−
=  

 Gauss function ( )xϕ  satisfies the following conditions: 

1. ( )xϕ >0 for all x; 

 

2. function ( )xϕ  is even function, that is ( )x−ϕ  = ( )xϕ ; 

 

 

3. ( ) .0lim =
∞→

x
x

ϕ  Practically for ( ) .0  4  ≈> xx ϕ  

 

Example 2.5.1. Given ( ).7 Find  .15 ,6.0 15Pnp ==  

Solution. ,05.1  ,96.015  ,4.01 −=
−

==⋅==−=
nmp

npm
xnppq  

( ) ⋅≈
8970.1

1
715P

( )

.1207.0
8970.1

2290.0

28.6

1
4

05.1
2

≈=⋅

−

e  

 

By Bernoulli formula we get 

( ) ( ) ( ) .1183.04.06.0
!8!7

!15
7

87
15 =⋅

⋅
=P  
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 § 2.6. Integral Function of Distribution 

 

Definition.The probability of the inequality xX <  considered as a function of 

the variable x is called the distribution integral function of the random variable X 

that is  

  ( ) ( )xXPxF <=        (2.6.1) 

 

 Example 2.6.1. Find the integral function of the following distribution of a 

random variable and form a graph of this function. 

   

 

 X 

 

 

0 

 

1 

 

 3 

 

 P 

 

 

0.2 

 

0.3 

 

0.5 

 

 Solution. Using the formula (2.6.1) we obtain 

 

  ( )













>

≤<

≤<

≤

=

3  if    ,1

31  if ,5.0

10  if ,2.0

 0  if    ,0

x

x

x

x

xF  

 

 

 

 

  

 

 

                                   0 

 

     Fig. 2.6.1 

 

Conclusion.In the case of DRV a graph of integral function of distribution is 

represented in a staircase form. 

 

 Definition. A random variable is called continuous if its integral function of 

distribution is continuous for all x.  

 

 Now we consider the properties of an integral function of distribution. 

 

1. ( ) ;10 ≤≤ xF   

1 3 

1 
0.5 
0.2 

F x ) ( 

x 
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2. ( ) ( )xFF
x −∞→

=∞− lim ( ) ,0lim =<=
−∞→

xXP
x

 

 

( ) ( )xFF
x −∞→

=∞− lim ( ) ,0lim =<=
−∞→

xXP
x

 

 

3. An integral distribution function is a non-decreasing function of x. 

 

Proof. Let 21 xx < then  

( )2xXP < ( ) +<= 1xXP ( ),21 xXxP <≤  

but  

( )2xF ( ),2xXP <=  ( )1xF ( ),1xXP <=  

hence 

  ( )2xF ( )1xF− = ( ).21 xXxP <≤      (2.6.2) 

A probability of any event is non-negative, so  

   

( )1xF ( )2xF≤ . 

 

Rewrite the equality (2.6.2) in such a form to have 

 

  ( ) =<≤ 21 xXxP ( )2xF ( )1xF−     (2.6.3) 

 

Thus, the probability of the occurrence of a random variable in a given interval is 

equal to the increment of its distribution function on this interval. 

 

4. The probability of occurrence of a continuous random variable in a specific point 

is equal to zero. 

 

Proof. On setting in the formula (2.6.3)  xxx ∆+= 12  we get  

 

 ( ) =<≤ 21 xXxP ( ) −∆+ xxF 1 ( ).1xF  

 

Let 0→∆x  then  

 

( ) =<≤
→∆

21
0

lim xXxP
x

( ) −∆+
→∆

xxF
x

1
0
(lim ( ) ( ) 0lim) 1

0
1 =∆=

→∆
xFxF

x
 since a 

function ( )xF  is continuous. 

 

Corollary.The following equalities are valid for a continuous random variable 

 

( ) =<≤ 21 xXxP ( ) =<< 21 xXxP ( ) =≤< 21 xXxP ( )21 xXxP ≤≤ . 

  § 2.7. Differential Distribution Function 
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Definition. By differential distribution function (density) we mean a 

derivative of an integral distribution function, that is  

 

( ) ( )xFx ′=ϕ        (2.7.1) 

 

   A density ( )xϕ  satisfies the following conditions: 

1. ( ) 0≥xϕ  since  ( ) ( )xFx ′=ϕ  and ( )xF  is a non-decreasing function. 

2. ( ) ( )∫=<<
b

a

dxxbXaP .ϕ            (2.7.2) 

Since  ( ) ( )xxF ϕ=′  then ( )xF  is an antiderivative of a function ( )xϕ . Using the 

Newton-Leibnitz formula we have 

 ( ) ( ) ( ) ( )∫=−=<<
b

a

dxxaFbFbXaP .ϕ  

 Corollary 1. ( )∫
+∞

∞−

= .1dxxϕ  

 Really 

  ( ) ( )∫
+∞

∞−

=+∞<<∞−= .1XPdxxϕ  

 Corollary 2. ( ) ( ) ( ),abcbXaP −⋅=<< ϕ  where  [ ]., bac ∈  

3. Let a density ( )xϕ  be given. Find ( ).xF  

( ) ( ) ( ) ( ).xFFxFxXP =∞−−=<<∞−  

( ) =<<∞− xXP ( )∫
∞−

x

dxx .ϕ  

From this it follows 

  ( ) ( )∫
∞−

=
x

dxxxF .ϕ       (2.7.3) 

 

 

 § 2.8. Numerical Characteristics of Continuous Random Variables 

 

  Let a continuous random variable X be given by distribution density ( ).xϕ  

Take its possible values in a closed interval [ ].,ba  

 Divide the interval [ ]ba,  into n subintervals 1x∆ , ,...,2x∆ nx∆  and choose points 

( )nixi ,1  =  between a and b. 

 Define ME by analogy with that of the  case of DRV in such a way 

( ) ≈∆+<< iii xxXxP ( ) :ii xx ∆ϕ  

( )∑
=

∆
n

i
iii xxx

1

ϕ .       (2.8.1) 
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Passing to the limit, when 0max →∆ i
i

x  we get 

 ( ) ( )∫∑ =∆
=→∆

b

a

n

i
iii

x
dxxxxxx

i

ϕϕ
10max

lim      (2.8.2) 

 Definition. By the mathematical expectation of a continuous random variable 

we mean the definite integral 

  ( ) ( )∫=
b

a

dxxxXM ϕ       (2.8.3) 

 If values of a continuous random variable belong to infinite interval ( )+∞∞− ,  

then a mathematical expectation is defined by the improper integral 

  ( ) ( )∫
+∞

∞−

= dxxxXM ϕ      (2.8.4) 

 Since by the dispersion of a random variable we mean the mean square value  

( )( )2
XMXM −  of the difference  ( )XMX −  then 

 ( ) ( )( )2
XMXMXD −= = ( )( ) ( )∫

+∞

∞−

− dxxXMx ϕ2
  (2.8.5) 

 If values of a continuous random variable belong to the close interval [ ]ba,  

then 

  ( ) ( )( ) ( )∫ −=

b

a

dxxXMxXD ϕϕϕϕ2
     (2.8.6) 

 Example 2.8.1. Given integral distribution function ( ):xF  

 

  ( ) ,

.2  if    1

20  if  
2

,0  if   0










>

≤<

≤

=

x

x
x

x

xF  

Find ( )XM , ( )XD  and ( ).Xσ  

 Solution. First of all we find the density distribution function ( ) ( ).xFx ′=ϕ  

  ( ) ,

.2  if    0

20  if  
2

1

,0  if   0










>

≤<

≤

=

x

x

x

xϕ  

( ) ( )∫
+∞

∞−

= dxxxXM ϕ  = ∫
∞−

⋅

0

0dxx  + ∫ ⋅

2

0
2

1
dxx  + =⋅∫

+∞

2

0dxx  

  = ∫
2

0
2

1
xdx = .1

4 0

2
2

=
x
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 ( ) ( ) ( )∫
+∞

∞−

−= dxxxXD ϕ2
1  = ( )∫ ⋅−

2

0

2

2

1
1 dxx  = 

( )
.

3

1

6

1

0

2
3

=
−x

 

 ( ) ( ) .
3

1
== XDXσ  

 

  § 2.9. A Uniform Distribution 
  

 The distribution of a continuous random variable whose density is constant in 

some closed interval [ ]ba,  and is equal to zero outside this interval is called a 

uniform distribution: 

  ( )
[ ]

[ ]






∉

∈
−=

bax

bax
abx

,  if         ,0

,,  if   ,
1

ϕ  

that is ( ) cx =ϕ for [ ]bax ,∈  but   

   ( ) 1== ∫
+∞

∞−

cdxXM , 

and hence 
a

b
cx = 1, 

ab
c

−
=

1
. Instead of  a closed interval [ ]ba,  it is possible to 

take ( )ba, , or [ ) ( ]baba , ,,  since a random variable is continuous. 

 The graph of the density ( )xϕ  has the form 

 

 

 

 

 

 

 

 

 

    Fig.2.9.1 

 

 A uniform distribution is characteristic for the phase of random oscillations. In 

practice we have to consider harmonic oscillations with random amplitude and 

phase. In such cases the phase is often a random variable uniformly distributed 

over the period of oscillations. 

 Let us find the integral distribution function ( )xF . 

 Since ( ) ( ) ,∫
∞−

=
x

dttxF ϕ  then 

1. if x < a  we have 

a b

-

0

ab
1

y

x
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( )∫
∞−

x

dttϕ  = ,00 =∫
∞−

x

dt  

2. if bxa ≤≤  we obtain 

( )∫
∞−

x

dttϕ = ( )∫
∞−

a

dttϕ  + ( )∫
x

a

dttϕ  = ∫
∞−

⋅

a

dt0  + ∫ −

−
=

−

x

a
ab

ax

ab

dt
,   

3. if x >b  we get 

 ( )∫
∞−

x

dttϕϕϕϕ  = ( )∫
∞−

a

dttϕϕϕϕ  + ( )∫
b

a

dttϕϕϕϕ  + ( )∫
x

b

dttϕϕϕϕ = 

∫
∞−

=

a

dt0  + ∫ −

b

a
ab

dt
+ .10 =

−

−
=∫ ab

ab
dt

x

b

 

Therefore 

 

 ( ) ,

.  if         1

  if  

,  if        0










<

≤≤
−

−

<

=

xb

bxa
ab

ax

ax

xF  

The graph of this function is of the form: 

 

 

 

 

 

   

 

 

 

 

Fig.2.9.2 

 

Let us define ( )XM  and ( )XD . 

( ) ( )∫
+∞

∞−

= dxxxXM ϕ  = ∫ −

⋅
b

a
ab

dxx
 = .

22

1 2 bax

ab a

b +
=

−
 

( ) ( )( ) ( )∫
+∞

∞−

−= dxxXMxXD ϕ2
= =

−







 +
−∫

b

a
ab

dxba
x

2

2
 

( )
( )

.
1223

1
23

abbba
x

ab a

−
=







 +
−

−
=  

 

y

0 a b x

1
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Example 2.9.1. Find the probability that a random variable X assumes values  

on the closed interval [ ] [ ].,, ba⊂βα  

Solution. ( ) ( ) ( ) ( )∫ =−==≤≤
β

α

αβϕβα FFdxxxP
ab

a

−

−β

ab

a

−

−
−

α
 = .

ab −

− αβ
 

 

  

 § 2.10. An Exponential Distribution  
 

An exponential distribution is determined by the density: 

 

   ( )




≥

<
=

− ,0  if    ,

,0  if          ,0

xke

x
x

kx
ϕ  where k>0   (2.10.1) 

 

The graph of this function is shown in Fig.2.10.1.  

 

 

 

 

 

 

 

 

 

 

 

    

Fig.2.10.1 

 

The integral distribution function ( )xF  is of the form  

 

( )




≥−

<
=

−
0for    ,1

,0for            ,0

xe

x
xF

kx
  

 

and is shown in Fig.2.10.2. 

  

 

 

 

k

y

0 x
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    Fig.2.10.2. 

 

Now we find the mathematical expectation and the dispersion 

 ( ) ∫
+∞

−=

0

dxxkeXM kx = =







=∫

−

+∞→ partsby 

 gintegratin
lim

0

b
kx

b
dxxke  

  =
0

1
lim

bkxkx

b
e

k
xe 








−− −−

+∞→
= ( ) .

1
10

1
0

kk
=−−  

 

 ( ) ( )XMdxexXD kx 22 −= ∫
+∞

∞−

− = =−∫
+∞

−

2
0

2 1

k
dxexk kx










 twiceparts 

by gintegratin
= 

= =−















−−+− −−−

+∞→ 202

2
112

lim
k

e
k

e
k

x

k
e

k

x
k

bkxkxkx

b
 

= ( ) =−















−−+−

22

1
10

1
00

2
0

kkk
k

2

2

k
 – 

2

1

k
 = 

2

1

k
. 

 

 Thus  

  ( ) ,
1

k
XM =  ( ) ,

1
2k

XD = ( ) .
1

k
X =σ    (2.10.2) 

 Example 2.10.1. Let T be a time period of operating a radio bulb, which has an 

exponential distribution. Find the probability of operating a radio bulb not less than 

800 hours if an average time period is 400 hours. 

 

   Solution.  

( ) ,400=TM  ,
400

1
=k  ( ) ( )8001800 <−=≥ TPTP  = ( )8001 F− = 

= .135.011 2400

800

≈=













−− −

−

ee  

 

 

 

1

y

0 x
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   § 2.11. A Normal Distribution 

 

 A normal distribution is determined by the density: 

  ( )
( )

, ,
2

1 2

2

2 Rxex

ax

∈=

−
−

σ

πσ
ϕ      (2.11.1) 

in which a is the mathematical expectation and σ  is the mean square deviation. 

 Consider some properties of the function ( )xϕ  given by the formula (2.11.1) 

1. ( ) . allfor  0 Rxx ∈>ϕ  

2. The function ( )xϕ  has the maximum at ,ax =  equals .
2

1

πσ
 Really 

( )
( )

.
2

2

2

2
3

σ

πσ
ϕ

ax

e
ax

x

−
−−

−=′  Therefore ( ) 0=′ xϕ  if ,ax =  hence ( ) 0>′ xϕ for ,ax <  

and ( ) 0<′ xϕ  for ,ax > . This means that ax =  is the point of maximum and 

( ) .
2

1
max

πσ
ϕϕ == a  

 

3. Calculating the second derivative of ( )xϕ  we can verify that the points σ±= ax  

are points of inflexion. 

 

 

4. The graph of the function ( )xϕ  is symmetric with respect to the vertical  straight 

line ax = . 

 

5. ( ) ,0lim =
∞→

x
x

ϕ that is OX axes is a horizontal asymptote of the function ( )xϕ . 

Using these properties we can sketch graph of the function ( )xϕ . 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

Fig.2.11.1 

 

( )

x0 a a a

ϕ x

σσ

π

1

2σ
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 The graph of the density ( )xϕ  is the “bell-shaped” curve. 

 The integral distribution function ( )xF  we find by the formula: 

  ( ) ( )
( )

∫∫
∞−

−
−

∞−

==
x axx

dxedxxxF
2

2

2

2

1 σ

πσ
ϕ  

Setting t
ax

=
−

σ
; tax  σ+= ,  dtdx σ=  we obtain  

 ( ) ∫

−

∞−

−

==
σ

πσ

ax
t

dtexF 2

2

2

1
+







∫
∞−

−0

2

2

2

1
dte

t

π

( )

.
/

0

2

2







∫

− −σax t

dte  

But  

  ∫
∞−

−0

2

2

dte

t

 = 
2

2

2

1
2

2

π
=∫

∞+

∞−

−

dte

t

   (Poisson integral) 

and using Laplace function 

  ( ) ∫
−

=Φ
x t

dtex
0

2

2

2

2

π
      (2.11.2) 

we finally have 

  ( ) .1
2

1















 −
Φ+=

σ

ax
xF      (2.11.3) 

 Now let us derive a formula for the probability of the occurrence of a normally 

distributed random variable X in a given closed interval [ ]., 21 xx   

 We get 

 ( )21 xXxP ≤≤  = ( )2xF ( ) =− 1xF 














 −
Φ+

σ

ax21
2

1
 –  
















 −
Φ+−

σ

ax11
2

1















 −
Φ−







 −
Φ=

σσ

axax 12

2

1
.  (2.11.4) 

In the special case when the interval [ ]21 , xx  is symmetrical with respect to the 

expectation a, ,1 ε−= ax  ,2 ε+= ax  the formula (2.11.4) gives 

 ( )εε +≤≤− aXaP  = ( )ε≤− aXP  .
2

1
















−Φ−








Φ=

σ

ε

σ

ε
 

 Hence taking into account the oddness of the function ( )xΦ  we obtain 

  ( )ε≤− aXP .







Φ=

σ

ε
      (2.11.5) 

 Example 2.11.1. The measurement of the distance to a certain object is 

accompanied by systematic and random errors. The systematic error equals 50 m. 

in the direction of decreasing distance. The random errors obey the normal 

distribution law with the mean square deviation . 100 m=σσσσ  Find  

(1) the probability of measuring the distance with an error not exceeding 150 m. in 

absolute value, 
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(2) the probability that the measured distance does not exceed the actual one. 

 

Solution. Let X denote the total error made in measuring the distance. Its 

systematic component is a = - 50 m. Consequently, the probability density of the 

total errors has the form 

 ( )
( )

.
000.20

50
exp

2100

1
2










 +
−=

x
x

π
ϕ  

 

(1) According to the formula (2.11.4), we have 

( ) =< 150XP ( ) =<<− 150150 XP =














 +−
Φ−







 +
Φ

100

50150

100

50150

2

1
 

  ( ) ( )( ).12
2

1
−Φ−Φ=  

The probability integral ( )xΦ  is an odd function and hence, ( ) ( ).11 Φ−=−Φ From this 

we get 

  ( ) =< 150XP ( ) ( )( ).12
2

1
Φ+Φ  

From the table list, we find ( ) ,9545.02 =Φ  ( ) ;6827.01 =Φ  and finally, 

( ) .8186.0150 =<XP  

 

(2) The probability that the measured distance will not exceed the actual one is  

( )0<<∞− XP ( ) ( )( ).5.0
2

1
∞Φ+Φ=  

Since ( ) =∞Φ ( ) 1lim =Φ
∞→

x
x

and from the table list we find ( ) ,3829.05.0 =Φ it follows 

that ( )0<<∞− XP  = 0.6914. 
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CHAPTER III 

The Law of Large Numbers and Limit Theorem 

of the Theory of Probability 

 

§ 3.1. The Law of Large Numbers 
 

Markov’s inequality. If a random variable X accepts only non-negative values 

and has a finite mathematical expectation, then for any positive number α the 

following inequality holds  

( )
( )
α

α
XM

XP ≤≥        (3.1.1) 

Proof. Since X accepts only non-negative values, then ( ) α≥XM  and 

 ( )XM ( )∫
+∞

=
0

dxxxϕ ( )∫
+∞

≥
α

ϕ dxxx ( ) =≥ ∫
+∞

α

ϕα dxx ( ).αα ≥XP  

  

Therefore  ( )
( )
α

α
XM

XP ≤≥ . 

Corollary3.1.1. ( )
( )

.1
α

α
XM

XP −><  

Really, since the events α≥X  and α<X are complementary, then 

( )α≥XP ( ) ,1=<+ αXP  

hence  

( ) −=< 1αXP ( )α≥XP
( )

.1
α

XM
−>  

Chebyshev’s  inequality. If a random variable X has a finite dispersion, then for 

any 0>εεεε the following inequality holds: 

( )( ) ( )
2ε

ε
XD

XMXP ≤≥−      (3.1.2) 

Proof. On applying Markov’s inequality to the random variable ( )( )2
XMX −  

and taking 2εα =   we get  

( )( )( )22 εεεε≥− XMXP ≤
( )( ) ( )

,
22

2

εε

XDXMXM
=

−
 

since the inequality ( )( ) 22 ε≥− XMX  is equivalent  to the inequality 

( ) .ε≥− XMX  

 

 Corollary3.1.2. P( ( )
( )

.1)
2ε

ε
XD

XMX −><−  

 

Since the events ( ) ε≥− XMX  and ( ) ε<− XMX  are complementary we have  
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P ( )( )εεεε≥− XMX +P ( )( ) .1=<− εXMX Whence 

P( ( ) ( )( ) ( )
.11)

2α
εε

XD
XMXPXMX −=≥−−=<−  

 Now we consider some special cases of Chebyshev’s inequality. 

Let p be a probability of some event A in n repeated independent trials, m is a 

frequency of the event A; 
n

m
 is relative frequency. 

1). For a random variable X = m having a binomial law of distribution we have  

 ( )XM  = ( ) npmM = , ( )XD  = ( ) :npqmD =  

  ( ) .1
2ε

ε
npq

npmP −><−     (3.1.3) 

2). For a random variable X = 
n

m
 having a binomial law of distribution we get 

 ( )XM  = p
n

m
M =








, ( )XD  = :

n

pq

n

m
D =








 

  .1
2ε

ε
n

pq
p

n

m
P −>








<−       (3.1.4) 

  

 Chebyshev’s theorem. If 1X , 2X , …, nX ,… is a sequence of random 

variables, pairwise independent with mathematical expectations 1a , 2a ,…, na ,…  

whose dispersions are bounded by the  constant ( ) ,...,2,1 , =≤ kCXD k  then for any 

constant ,0>ε  

 1
......

lim 2121 =







≤

+++
−

+++

∞→
ε

n

aaa

n

XXX
P nn

n
  (3.1.5) 

 Proof. Consider the random variable  .
...21

n

XXX
X n

n

+++
=  

Since ( )nkX k ,...2,1 =  are independent random variables then by the corresponding 

properties of mathematical expectation and dispersion we have  

 ( ) =






 +++
=

n

XXX
MXM n

n

...21 ;
...21

n

aaa n+++
 

( ) ( ) ( ) ( )( )....
1

212 nn XDXDXD
n

XD +++=  

Apply Chebyshev’s inequality to the random variable nX  to obtain   

≥







≤

+++
−

+++
ε

n

aaa

n

XXX
P nn ...... 2121   

( ) ( ) ( )
.

...
1

22

21

εn

XDXDXD n+++
−≥  
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Since ( ) ( ),,...,2,1 nkCXD k =≤  then 

 

≥







≤

+++
−

+++
ε

n

aaa

n

XXX
P nn ...... 2121 ,1

22εn

C
−  

 

.11lim
22

=







−

∞→ εεεεn

C

n
 

 

The theorem has been proved. 

 

 Bernoulli’s theorem. Let p be a probability of some event A in n repeated 

independent trials, m is a frequency of the event A, then for any constant 0>ε , 

  1lim =







<−

∞→
εp

n

m
P

n
       (3.1.6) 

 Proof. Passing in the inequality (3.1.4) to a limit as ∞→n  we arrive at the 

formula (3.1.6). 

 

Lyapunov’s central limit theorem. If 1X , 2X , …, nX  are independent random 

variables with mathematical expectation ( )nkak ,...,2,1 =  and dispersion 

( )( ),,...,2,1 nkXD k =  and also ( ),,...,2,1 nkaX kk =≤− δ  and dispersions are 

bounded by one and the same number, that is ( ) ( ).,...,2,1 , nkCXD k =≤  Then for 

∞→n  the sum ∑
=

n

k

kX

1

infinitely approaches the normal distribution with 

mathematical expectation ∑
=

n

k

ka

1

 and dispersion ∑
=

n

k
k

1

2
.σ  

This theorem we accept without proof. 

 

 Corollary 3.1.1. If random variables ( )nkX k ,...,2,1 =  are equally distributed 

then the law of distribution of their sum as ∞→n  approaches the normal law of 

distribution. 

 

 Corollary 3.1.2. If  1X , 2X , …, nX  satisfy conditions of central limit 

theorem, then applying the formula (2.11.4) to their  sum  ∑
=

n

k

kX

1

we obtain the 

approximate formula 

 














 −
Φ−







 −
Φ≈








≤≤ ∑

= σ

α

σ

β
βα

aa
XP

n

k
k

2

1

1

.   (3.1.7) 
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Moivre-Laplace theorem. Let p be a probability of some event A in n repeated 

independent trials, m is a frequency of the event A, then the following approximate 

formula is valid    

  ( )























 −
Φ−









 −
Φ≈≤≤

npq

npm

npq

npm
mmmP 12

21
2

1
   (3.1.8) 

 Proof. A random variable m can be represented in the form ∑
=

=
n

k

kXm

1

, where 

1=kX  if the event A occurs in the kth trial, and 0=kX  if it does not occur.  

 Since ( ) ,pXM k =  ( ) ,pqXD k =  then 

( ) npXMmM
n

k =









= ∑

1

, ( ) .
1

npqXDmD
n

k =









= ∑  

On substituting these values in the formula (3.1.7) we obtain 

 ( ) .
2

1 12
21 


























 −
Φ−












 −
Φ≈≤≤

npq

npm

npq

npm
mmmP  

 

 This theorem can be used for the determination of a probability of a deviation 

of the frequency m from the mathematical expectation np and also for the probability 

of the deviation of the relative frequency 
n

m
 from the probability p. 

 In the first case we have  

( ) =≤− εnpmP ( ) ≈+≤≤− εε npmnpP       

       .
2

1














Φ=




























−Φ−













Φ≈

npqnpqnpq

εεεεεεεεεεεε
 

Thus 

( )εεεε≤− npmP .












Φ≈

npq

εεεε
     (3.1.9) 

In the second case we get  

 







≤− εεεεp

n

m
P  = ( )εεεεnnpmP ≤− .








Φ≈

pq

n
εεεε    (3.1.10) 

 

 Example 3.1.1. The probability that an item will fail during reliability tests is 

.05,0=p  What is the probability that during tests with 100 items, the number failing  

will be 

a) at least five; 

b) less than five; 

c) between five and ten. 

Solution.By the de Moivre-Laplace theorem,  
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( ) ,
2

1 12
21 


























 −
Φ−












 −
Φ≈≤≤

npq

npm

npq

npm
mmmP  

if n is sufficiently large. By assumption, n = 100, p = 0.05, q = 1 – p = 0.95. 

a) The probability that at least five items fails is 

 

( ) =≥ 5mP ( )1005 <≤ mP 














 −
Φ−







 −
Φ≈

75.4

55

75.4

5100

2

1
=  

( ) ( )( ) .5.006.43
2

1
=Φ−Φ=  

 

b) The probability that less than five items fail is  

( ) =< 5mP ( )50 <≤ mP 














 −
Φ−







 −
Φ≈

75.4

50

75.4

55

2

1
=  

( ) ( )( ) .489.029.20
2

1
=Φ−Φ=  

 

c) The probability that five to ten items fail is 

( ) =














 −
Φ−







 −
Φ≈≤≤

75.4

55

75.4

510

2

1
105 mP  

( ) ( )( ) .489.0029.2
2

1
=Φ−Φ=  

 

 Example 3.1.2. How many independent trials should be performed so that at 

least five occurrences of an event A will be observed with probability 0.8, if the 

probability of A in one trial is ( ) .05.0=AP  

 

 Solution. From the Moivre-Laplace theorem, we  see that 

 ( ) =














 −
Φ−







 −
Φ≈≥

n

n

n

n
mP

0475.0

05.05

0475.0

05.0

2

1
5  

       ( ) .
0475.0

05.05
36.4

2

1















 −
Φ−Φ=

n

n
n  

For n = 1, we have ( ) ;136.4 ≈Φ n  therefore, substituting ( ) 8.05 =≥mP  we obtain 

 ,8.0
0475.0

05.05
1

2

1
≈















 −
Φ−

n

n
 

or 

 .6.0
0475.0

05.05
−=







 −
Φ

n

n
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From the table we find the argument x = – 0.8416 corresponding to the value of the 

function ( ) .6.0−=Φ x  

 Solving the equation 

 ,8416.0
0475.0

05.05
−=

−

n

n
 

we find the unique root .144=n  Thus, in order that A occur at least five times with  

probability 0.8, 144 trials are necessary. 


