Modern C++ Programming
with Test-Driven Development

Code Better,
Sleep Better

Jeff Langr

Edited by Michael Swaine

Early Praise for Modern C++ Programming with Test-Driven Development

Jeff Langr has written another excellent book. This time he brings Test-Driven
Development to the world of C++. Jeff’s starting example brings us face to face
with the stark simplicity of good TDD. He explains why we work that way and
then provides key practical details, all the way through test doubles, working with
legacy code, threading, and more. This one is a keeper for anyone working with
C++!
» Ron Jeffries

Co-creator of the Extreme Programming methodology

Jeff Langr has written the best C++ book in years. Modern C++ Programming with
Test-Driven Development is the perfect mixture of theory and practice. The abstrac-
tions are explained with clarity and gusto, but the details are right there when
you need them. It’s sure to be an instant classic, in C++ and in TDD both.
» Michael D. Hill

XP coach and writer

Jeff is an expert software craftsman, and in this book he shares his considerable
wisdom about crafting great software. This book is not about testing, though you
will learn valuable testing techniques. It is about improving your skills, code,
products, and life through test-driving. Whether you're a novice, expert, or in be-
tween, Jeff will show you the how and the why of an expert who test-drives better
products with C++.

» James W. Grenning
Author of Test-Driven Development for Embedded C

Modern C++ Programming with
Test-Driven Development
Code Better, Sleep Better

Jeff Langr

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-48-2

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2013

http://pragprog.com

Foreword .
Introduction

Global Setup

1.1 Setup

1.2 The Examples
1.3 C++ Compiler
1.4 CMake

1.5 Google Mock
1.6 CppUTest

1.7 libcurl

1.8 JsonCpp

1.9 rlog

1.10 Boost

1.11 Building Examples and Running Tests
1.12 Teardown

Test-Driven Development: A First Example
2.1 Setup

2.2 The Soundex Class

2.3 Getting Started

2.4 Fixing Unclean Code
2.5 Incrementalism

2.6 Fixtures and Setup

2.7 Thinking and TDD

2.8 Test-Driving vs. Testing
2.9 What If?

2.10 One Thing at a Time
2.11 Limiting Length

2.12 Dropping Vowels

Contents

Xi

xiii

© 00 O O W =

[l e
w NN OO

W W W WNNNE = =
QO NOWO WU wOo ua o ua

Contents ® vi

2.13 Doing What It Takes to Clarify Tests 41
2.14 Testing Outside the Box 43
2.15 Back on Track 45
2.16 Refactoring to Single-Responsibility Functions 46
2.17 Finishing Up 48
2.18 What Tests Are We Missing? 48
2.19 Our Solution 49
2.20 The Soundex Class 50
2.21 Teardown 54
Test-Driven Development Foundations 55
3.1 Setup 55
3.2 Unit Test and TDD Fundamentals 55
3.3 The TDD Cycle: Red-Green-Refactor 57
3.4 The Three Rules of TDD 59
3.5 Getting Green on Red 60
3.6 Mind-Sets for Successful Adoption of TDD 69
3.7 Mechanics for Success 73
3.8 Teardown 77
Test Construction 79
4.1 Setup 79
4.2 Organization 79
4.3 Fast Tests, Slow Tests, Filters, and Suites 86
4.4 Assertions 89
4.5 Inspecting Privates 96
4.6 Testing vs. Test-Driving: Parameterized Tests and Other

Toys 100
4.7 Teardown 103
Test Doubles 105
5.1 Setup 105
5.2 Dependency Challenges 105
5.3 Test Doubles 106
5.4 A Hand-Crafted Test Double 107
5.5 Improving Test Abstraction When Using Test Doubles 112
5.6 Using Mock Tools 114
5.7 Getting Test Doubles in Place 123
5.8 Design Will Change 130
5.9 Strategies for Using Test Doubles 132

Contents ® vii

5.10 Miscellaneous Test Double Topics 136
5.11 Teardown 138
Incremental Design. 141
6.1 Setup 141
6.2 Simple Design 141
6.3 Where Is the Up-Front Design? 166
6.4 Refactoring Inhibitors 169
6.5 Teardown 171
Quality Tests 173
7.1 Setup 173
7.2 Tests Come FIRST 173
7.3 One Assert per Test 178
7.4 Test Abstraction 181
7.5 Teardown 194
Legacy Challenges 19
8.1 Setup 195
8.2 Legacy Code 195
8.3 Themes 196
8.4 The Legacy Application 198
8.5 A Test-Driven Mentality 201
8.6 Safe Refactoring to Support Testing 202
8.7 Adding Tests to Characterize Existing Behavior 205
8.8 Sidetracked by the Reality of Legacy Code 206
8.9 Creating a Test Double for rlog 207
8.10 Test-Driving Changes 211
8.11 A New Story 213
8.12 A Brief Exploration in Seeking Faster Tests 214
8.13 Mondo Extracto 215
8.14 Spying to Sense Using a Member Variable 218
8.15 Spying to Sense Using a Mock 219
8.16 Alternate Injection Techniques 224
8.17 Large-Scale Change with the Mikado Method 224
8.18 An Overview of the Mikado Method 225
8.19 Moving a Method via Mikado 226
8.20 More Thoughts on the Mikado Method 236
8.21 Is It Worth It? 237

8.22 Teardown 238

10.

11.

Al.

TDD and Threading .

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12

Setup

Core Concepts for Test-Driving Threads
The GeoServer

Performance Requirements

Designing an Asynchronous Solution
Still Simply Test-Driving

Ready for a Thready!

Exposing Concurrency Issues

Creating Client Threads in the Test
Creating Multiple Threads in the ThreadPool
Back to the GeoServer

Teardown

Additional TDD Concepts and Discussions .

10.1
10.2
10.3
10.4
10.5
10.6

Setup

TDD and Performance

Unit Tests, Integration Tests, and Acceptance Tests
The Transformation Priority Premise

Writing Assertions First

Teardown

Growing and Sustaining TDD

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

Setup

Explaining TDD to Nontechies

The Bad Test Death Spiral, aka the SCUMmy Cycle
Pair Programming

Katas and Dojos

Using the Code Coverage Metric Effectively
Continuous Integration

Deriving Team Standards for TDD

Keeping Up with the Community

11.10 Teardown

Comparing Unit Testing Tools

Al.l

Setup

Al.2 TDD Unit Testing Tool Features
A1.3 Notes on Google Mock

Al.4 Notes on CppUTest

A1l.5 Other Unit Testing Frameworks
Al1.6 Teardown

Contents ® viii

239
239
239
240
246
249
252
254
256
259
261
263
267

269
269
269
278
281
294
298

299
299
300
304
306
310
313
314
315
316
317

319
319
319
321
321
321
322

Contents *® ix

A2. Code Kata: Roman Numeral Converter 323
A2.1 Setup 323
A2.2 Let’s Go! 323
A2.3 Practice Makes Perfect 331
A2.4 Teardown 331

A3. Bibliography 333

Index 335

Foreword

Don't let the title mislead you.

I mean, here is a really, really good book about design principles, coding
practices, Test-Driven Development, and craftsmanship, and they go and give
it a title like Modern C++ Programming with Test-Driven Development. Sigh.

Oh, don’t get me wrong. This is a book about modern C++ programming. I
mean, if you are a C++ programmer, you're going to love all the code in this
book. It’s just filled to the brim with really interesting and well-written C++
code. In fact, I think there may be more code than words. Go ahead, thumb
through the book. Do you see a page without code on it? Not many I bet! So
if you're looking for a good book to teach you modern practices of C++, by
example after example after example, then you've got the right book in your
hands!

But this book is about a lot more than just modern C++ programming. A lot
more. First, this book may be the most complete and accessible exposition
on Test-Driven Development that I've seen (and I've seen a lot!). Virtually every
TDD issue we've uncovered in the last decade and a half is talked about in
these pages, from fragile tests to mocks, from the London school to the
Cleveland school, and from Single Assert to Given-When-Then. It’s all here,
plus a whole lot more. Moreover, it's not some academic compendium of dis-
connected issues. No, this book walks through the issues in the context of
examples and case studies. It shows the problems and the solutions in code.

Do you need to be a C++ programmer to understand it? Of course you don't.
The C++ code is so clean and is written so well and the concepts are so clear
that any Java, C#, C, or even Ruby programmer will have no trouble at all.

And then there are the design principles! For goodness sake, this book is a
design tutorial! It takes you on a step-by-step voyage through principle after
principle, issue after issue, and technique after technique. From the Single
Responsibility Principle to the Dependency Inversion Principle, from the
Interface Segregation Principle to the Agile principles of simple design, from

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Foreword ¢ xii

DRY to Tell-Don’t-Ask—this book is a gold mine of software design ideas and
solutions. And again, these ideas are presented in the context of real problems
and real solutions in real code.

And then there are the coding practices and techniques. This book is just
chock-full of them, from small methods to pair programming and from coding
katas to variable names. Not only is there a ton of code from which to glean
all these good practices and techniques, but the author drives each point
home with just the right amount of discussion and elaboration.

No, the title of this book is all wrong. It’s not a book about C++ programming.
It’s a book about good software craftsmanship that just happens to use C++
as the language for its examples. The name of this book should really be
Software Craftsmanship: With Examples in Modern C++.

So if you are a Java programmer, if you are a C# programmer, if you are a
Ruby, Python, PHP, VB, or even a COBOL programmer, you want to read this
book. Don't let the C++ on the cover scare you. Read the book anyway. And
while you are at it, read the code. You won’t find it hard to understand. And
while you are learning good design principles, coding techniques, craftsman-
ship, and Test-Driven Development, you might also discover that a little C++
never hurt anybody.

—"“Uncle Bob” Martin
Founder, Object Mentor Inc.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Introduction

Despite the current explosion in programming languages, C++ soldiers on. It
is the fourth-most popular programming language, per the July 2013 Tiobe
index. (You can find the latest index at http://www.tiobe.com/index.php/content/paper-
info/tpci/index.html.) The 2011 ISO standard (ISO/IEC 14822:2011, aka C++11)
brings features to C++ that may increase its acceptance...or at least soften
objections against its use.

C++ remains one of your best choices for building high-performance solutions.
If your company’s products integrate with hardware, chances are you have
a sizeable existing system built in C++. If your company has been around
since the 1990s or earlier, chances are you have a long-lived C++ system,
and chances are also good that it's not disappearing anytime in the next
several years.

Given that you're now working in C++, you might be thinking one of the fol-
lowing things:

e It's 2013. Why am I back in this difficult (but entertaining) language that
I thought I'd abandoned years ago? How am I going to survive without
shooting myself in the foot?

e I'm a seasoned C++ pro, I know this powerful language like the back of
my hand, and I've been developing successfully for years. Why would I
need to change how I work?

e Where’s my paycheck?

My personal sentiment is that I first worked with C++ around the early 1990s,
before the rise of things like templates (and template metaprogramming}),
RTTI, STL, and Boost. Since then, I've had a few occasions where I've had to
return to the powerful language and have done so with some dismay. Like
any language, C++ allows you to shoot yourself in the foot—but with C++,
you sometimes don’t realize you shot yourself until it’s too late. And you're
probably missing more toes than folks working with other languages.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Introduction ® xiv

If you've been working with C++ for years, you likely have adopted many
idioms and practices to help ensure your code remains of high quality.
Die-hard C++ veterans are some of the more careful programmers across all
languages because surviving in C++ for so long requires meticulous care and
attention to the code you craft.

With all this care taken, one might think that the code quality on C++ systems
should be high. Yet most C++ systems exhibit the same problems we all see
time and time again, usually regardless of language.

¢ Monstrous source files with thousands of lines

e Member functions with hundreds or thousands of lines of inscrutable
code

e Volumes of dead code

¢ Build times extending into several hours

e High numbers of defects

¢ Logic too convoluted by quick fixes to be safely managed

e Code duplicated across files, classes, and modules

Code riddled with long-obsolete coding practices

Is this decay inevitable? No! Test-Driven Development is a tool you can master
and wield in order to help stave off system entropy. It may even reinvigorate
your passion for programming,.

If you're simply seeking a paycheck, there are plenty of C++ jobs out there
that will keep you employed. However, C++ is a highly technical and nuanced
language. Wielding it carelessly will lead to defects, intermittent failures, and
possibly multiday debugging sessions—factors that can put your paycheck
at risk. TDD can help.

The effort required to add new functionality on such large, long-lived C++
systems usually disappoints and often is inestimable. Simply understanding
a passage of code in order to change a few lines of code can take hours, even
days. Productivity is further drained as developers wait hours to determine
whether their changes compiled and wait even longer to see whether they
integrated well with the remainder of the system.

It doesn’t have to be this way. Test-Driven Development (TDD), a software
design technique devised in the late 1990s, can help you wrestle your C++
system to the ground and keep it under control as you continue adding new
features. (Notions of writing tests before code have been around for consider-
ably longer. However, the TDD cycle in its formal, disciplined form was devised
by Ward Cunningham and Kent Beck [Test Driven Development: By Example
[Bec02]].)

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

But Can It Work for Me on My System? ® xv

The primary intent for this book is to teach you a disciplined approach for
the practical application of TDD. You'll learn the following:

e The fundamental mechanics of TDD

¢ The potential benefits of TDD

e How TDD helps you address design deficiencies as they arise
e The challenges and costs of doing TDD

e How TDD can reduce or even eliminate debugging sessions

¢ How to sustain TDD over time

But Can It Work for Me on My System?

“What’s all this fuss about unit testing? It doesn’t seem to be helping me
much.”

You might have already tried unit testing. Perhaps you are currently struggling
with writing unit tests against your legacy system. Maybe it seems like TDD
is OK for those rare other souls fortunate enough to be working on a new
system. But does it solve your day-to-day problems of working on a long-
entrenched, challenging C++ system?

Indeed, TDD is a useful tool but is no silver bullet for dealing with legacy
systems. While you can test-drive many of the new features you add to your
system, you’ll also need to begin chipping away at the years of accumulated
cruft. You'll need additional strategies and tactics for a sustained cleanup
approach. You'll need to learn about tactical dependency-breaking techniques
and safe code change approaches that Michael Feathers presents in the
essential book Working Effectively with Legacy Code [Fea0O4]. You'll need to
understand how to approach large-scale refactorings without creating large-
scale issues. For that, you'll learn about the Mikado Method [BE12]. This book
will teach such supportive practices and more.

Simply adding unit tests for code you've already written (something I call Test-
After Development [TAD]) usually has little impact as you struggle with “this
is just how the system is.” You might invest thousands of person-hours in
writing tests with little measurable impact to system quality.

If you allow TDD to help you shape your systems, your designs will by defini-
tion be testable. They will also be different—in many ways, better—than if
you did not use TDD. The more you understand what a good design should
look like, the more TDD will help guide you there.

To aid you in shifting how you think about design, this book emphasizes
principles that underlie good code management, such as the SOLID principles

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Introduction ® xvi

of object-oriented design described in Agile Software Development, Principles,
Patterns, and Practices [Mar02]. 1 discuss how this sense of good design sup-
ports ongoing development and productivity and how TDD can help a mindful
developer achieve more consistent and reliable results.

Who This Book Is For

This book is written to help C++ programmers of all skill levels, from novices
with a fundamental understanding of the language to old salts steeped in
language esoterica. If you've been away from C++ for some time, you’ll find
that the rapid feedback cycles of TDD will help you rapidly reramp up on the
language.

While the goal of this book is to teach TDD, you will find value in this book
regardless of your TDD experience. If you are a complete novice to the concept
of writing unit tests for your code, I'll take you small step by small step
through the basics of TDD. If you are fairly new to TDD, you’ll discover a
wealth of expert advice throughout the book, all presented in simple fashion
with straightforward examples. Even seasoned test-drivers should find some
useful nuggets of wisdom, a stronger theoretical basis for the practice, and
some new topics for exploration.

If you are a skeptic, you'll explore TDD from several angles. I'll inject my
thoughts throughout about why I think TDD works well, and I'll also share
experiences about when it didn’t work so well and why. The book is not a
sales brochure but an eyes-open exploration of a transformative technique.

Readers of all stripes will also find ideas for growing and sustaining TDD on
their team. It's easy to get started with TDD, but your team will encounter
many challenges along the way. How can you prevent these challenges from
derailing your transition effort? How do you prevent such disasters? I present
some ideas that I've seen work well in Growing and Sustaining TDD.

What You’'ll Need

To code any of the examples in this book, you’ll need a compiler, of course,
and a unit testing tool. Some of the examples also require third-party libraries.
This section overviews these three elements. You'll want to refer to Global
Setup for further details around what you'll need.

A Unit Testing Tool

Out of the dozens of available C++ unit testing tools, I chose Google Mock
(which sits atop Google Test) for most of the examples in this book. It currently
returns the most hits on a web search, but I primarily chose it because it

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

How to Use This Book ® xvii

supports Hamcrest notation (a matcher-based assertion form designed to
provide highly expressive tests). The information in Global Setup will help you
come up to speed on Google Mock.

However, this book is neither a comprehensive treatise nor a sales brochure
for Google Mock. It is instead a book that teaches the discipline of TDD. You’ll
learn enough Google Mock to practice TDD effectively.

You'll also use another unit testing tool named CppUTest for some of the
examples. You'll find that it’s fairly easy to learn another unit testing tool,
which should help ease any concerns you might have if you're not using
Google Mock or CppUTest.

If you are using a different unit testing tool such as CppUnit or Boost.Test,
no worries! These other tools work much like Google Mock in concept and
are often similar in implementation. You can easily follow along and do the
TDD examples using virtually any of the other C++ unit testing tools available.
See Comparing Unit Testing Tools for a discussion of what’s important in
choosing a unit testing tool.

Most examples in this book use Google Mock for mocking and stubbing (see
Test Doubles). Of course, Google Mock and Google Test work together, but
you might also be able to integrate Google Mock successfully with your unit
testing tool of choice.

A Compiler

You’'ll need access to a C++ compiler with support for C++11. The book
example code was originally built using gcc and works out of the box on Linux
and Mac OS. See Global Setup for information about building the example
code on Windows. All examples use the STL, an essential part of modern C++
development for many platforms.

Third-Party Libraries

Some of the examples use freely available third-party libraries. Refer to
Global Setup for the specific list of libraries you'll need to download.

How to Use This Book

I designed the chapters in the book to function as stand-alone as possible.
You should be able to pick up a random chapter and work through it without
having to fully read any other chapters. I provide ample cross-references
throughout to allow you to jump around easily if you're using an ereader.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Introduction ® xviii

Each chapter begins with a quick overview and ends with a chapter summary
plus a preview of the next chapter. I chose the names of these brief sections
to correspond cutely to the initialization and cleanup sections used by many
unit test frameworks—"“Setup” and “Teardown.”

The Source

The book contains numerous code examples. Most of the code presented will
reference a specific filename. You can find the complete set of example code
for this book at http:/pragprog.com/book/lotdd/modern-c-programming-with-test-driven-
development and also at my GitHub page, http://github.com/jlangr.

Within the code distribution, examples are grouped by chapter. Within the
directory for each chapter, you will find numbered directories, each number
effectively referring to a version number (which allows the book to use and
show examples of code changing as you progress through each chapter). As
an example, the code with caption c2/7/SoundexTest.cpp refers to the file Soundex-
Test.cpp located in the seventh revision of the Chapter 2 (c2) code directory.

Book Discussion

Please join the discussion forum at https://groups.google.com/forum/?fromgroups#!forum/
modern-cpp-with-tdd. The intent for the forum is to discuss the book as well as doing
TDD in C++ in general. I will also post useful information regarding the book.

If You Are New to TDD: What's in the Book

While this book is geared to all, its primary focus is on programmers new to
TDD, so its chapters are in a correspondingly sequential order. I highly rec-
ommend you work through the exercise in Test-Driven Development: A First
Example. It will give you a strong feel for many of the ideas behind TDD as
you work through a meaty example. Don’t just read—type along and make
sure your tests pass when they should!

The next two chapters, Test-Driven Development Foundations and Test Con-
struction, are also essential reading. They cover core ideas about what TDD
is (and is not) and how to construct your tests. Make sure you're comfortable
with the material in these chapters before learning about mocks (see the Test
Doubles chapter), a technique essential to building most production system_s.

Don’t skip the chapter on design and refactoring (Incremental Design) just
because you think you know what that means. An essential reason to practice
TDD is to enable you to evolve your design and keep your code clean contin-
ually through refactoring. Most systems exhibit poor design and difficult code,
partly because developers aren’t willing to refactor enough or don’t know how.

http://pragprog.com/book/lotdd/modern-c-programming-with-test-driven-development
http://pragprog.com/book/lotdd/modern-c-programming-with-test-driven-development
http://github.com/jlangr
https://groups.google.com/forum/?fromgroups#!forum/modern-cpp-with-tdd
https://groups.google.com/forum/?fromgroups#!forum/modern-cpp-with-tdd
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

How to Use This Book ® xix

You'll learn what’s far enough and how to start reaping the potential benefits
of a smaller, simpler system.

To wrap up core TDD techniques, Quality Tests takes a look at a number of
ways to improve your return on investment in TDD. Learning some of these
techniques can make the difference between surviving and thriving in TDD.

You'll of course be saddled with the struggles of an existing system that wasn’t
test-driven. You can get a jump start on some simple techniques to tackle
your legacy code by reading Legacy Challenges.

Just past the legacy code material, you'll find a chapter dedicated to test-driving
multithreaded code. The test-driven approach to TDD may surprise you.

The next chapter, Additional TDD Concepts and Discussions, dives deeper into
fairly specific areas and concerns. You’'ll discover some up-to-date ideas
around TDD, including some alternate approaches that differ from what you’ll
find elsewhere in this book.

Finally, you'll want to know what it takes to get TDD going in your team, and
you’ll of course want to make sure you're able to sustain your investment in
TDD. The last chapter, Growing and Sustaining TDD, provides some ideas
that you will want to incorporate into your shop.

If You Have Some Experience with TDD

You can probably get away with picking up chapters at random, but you'll
find a lot of nuggets of hard-earned wisdom strewn throughout the book.

Conventions Used in This Book

Any sizeable code segment will appear separately from the text. When the
text refers to code elements, the following conventions are used:

¢ A ClassName will appear in the same font as normal text (“text font”) and
will be UpperCamelCase.

* A TestName will also appear in the text font and be UpperCamelCase.

e All other code elements will appear in a code (nonproportional) font.
Examples of these include the following:

functionName() (which will show an empty argument list, even if it refers
to a function declaring one or more parameters). I will sometimes refer
to member functions as methods.

variableName

keyword

All other code snippets

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Introduction ® xx

To keep things simple and waste fewer pages, code listings will often omit
code irrelevant to the current discussion. A comment followed by ellipses
represents obscured code. For example, the body of the for loop is replaced
in this code snippet:

for (int i = 0; i < count; i++) {

// ...
}

About “Us”

I wrote this book to be a dialogue between us. Generally I'm talking to you,
as the reader. When I (ideally infrequently) refer to myself, it's usually to
describe an experience-based opinion or preference. The implication is that
it might not be a widely accepted concept (but it could be a fine idea!).

When it gets down to coding, I'd rather you didn’t have to work alone, partic-
ularly since you're trying to learn. We will work through all of the coding
exercises in the book together.

About Me

I've been programming since 1980, my junior year in high school, and profes-
sionally since 1982 (I worked at the University of Maryland while pursuing
my BS in computer science). I transitioned from programmer to consultant
in 2000, when I had the joy of working for Bob Martin and occasionally
alongside some great folks at Object Mentor.

I started Langr Software Solutions in 2003 to provide consulting and training
solutions related to Agile software development. Much of my work is either
pairing with developers doing TDD or teaching it. I insist on alternating
between consulting/training and being a “real” programmer on a real devel-
opment team so that I stay up-to-date and relevant. Since 2002, I have been
a full-time programmer in four different companies for significant durations.

I love writing about software development. It's part of how I learn things in
depth, but I also enjoy helping others come up to speed on building quality
code. This is my fourth book. I wrote Essential Java Style: Patterns for
Implementation [Lan99] and Agile Java: Crafting Code With Test-Driven
Development [Lan05], and I co-wrote Agile in a Flash [OL1 1] with Tim Ottinger.
I also contributed a couple chapters to Uncle Bob’s Clean Code: A Handbook
of Agile Software Craftsmanship [Mar0O8]. I've written more than a hundred
articles published at sites other than mine. I write regularly for my own blog
(at http://langrsoft.com/jeff) and have written or contributed to more than a hundred
blog entries for the Agile in a Flash project at http://agileinaflash.com.

http://langrsoft.com/jeff
http://agileinaflash.com
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

About the C++ Style in This Book ® xxi

In addition to C++, I've programmed in several other languages extensively:
Java, Smalltalk, C, C#, and Pascal, plus one other that shall remain un-
mentioned. I'm currently learning Erlang and can code enough Python and
Ruby to survive. I've played with at least another dozen or so languages to
see what they were like (or to support some short-lived effort).

About the C++ Style in This Book

While I have extensive experience on C++ systems of all sizes, ranging from
small to extremely large, I don’t consider myself a language expert. I've read
the important books by Meyers and Sutter, plus a few more. I know how to
make C++ work for me and how to make the resulting code expressive and
maintainable. I'm aware of most of the esoteric corners of the language but
purposefully avoid solutions requiring them. My definition for clever in the
context of this book is “difficult to maintain.” I'll steer you in a better direction.

My C++ style is very object-oriented (no doubt because of a lot of programming
in Smalltalk, Java, and C#). I prefer that most code ends up scoped to a class.
Most of the examples in this book fall in line with this style. For example, the
Soundex code from the first example (see Test-Driven Development: A First
Example) gets built as a class, but it doesn’t need to be. I like it that way, but
if it wads yer underwear, do it your way.

TDD can provide value regardless of your C++ style, so don’t let my style turn
you off to its potential. However, a heavier OO emphasis makes introducing
test doubles (see Test Doubles) easier when you must break problematic
dependencies. If you immerse yourself in TDD, you’ll likely find that your
style shifts more in this direction over time. It’s not a bad thing!

I'm a little lazy. Given the relatively small scope of the examples, I chose to
minimize the use of namespaces, though I would certainly incorporate them
on any real production code effort.

I also prefer to keep my code as streamlined as possible and thus avoid what
I sometimes view as visual clutter. In most implementation files, you’ll find
using namespace std; for this reason, although many consider that bad form.
(Keeping your classes and functions small and focused makes this and other
guidelines such as “All functions should have only one return” less useful.)
No worries; TDD won't prevent you from sticking to your own standards, and
neither will I.

A final word on C++: it’s a big language. I'm certain there are better ways to
code some of the examples in the book, and I would bet that there are library
constructs I'm not taking advantage of. The beauty of TDD is that you'll be

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Introduction ® xxii

able to rework an implementation a dozen different ways without fear of
breaking something. Regardless, please send me your suggestions for
improvement, but only if you're willing to test-drive them!

Acknowledgments

Thanks to my editor, Michael Swaine, and the great folks at PragProg for the
guidance and resources needed to create this book.

Thanks, Uncle Bob, for the exuberant foreword!

Many thanks to Dale Stewart, my technical editor, for providing valuable
assistance throughout the process, particularly feedback and help on the
C++ code throughout the book.

I always ask for brutally honest feedback during the writing process, and Bas
Vodde provided exactly that, supplying me with voluminous feedback on the
entire book. He was the invisible pair partner I needed to keep the conversation
honest.

Special thanks to Joe Miller, who painstakingly converted most of the examples
so that they will build and run on Windows.

Many thanks to all the other folks who provided ideas or invaluable feedback:
Steve Andrews, Kevin Brothaler, Marshall Clow, Chris Freeman, George
Dinwiddie, James Grenning, Michael Hill, Jeff Hoffman, Ron Jeffries, Neil
Johnson, Chisun Joung, Dale Keener, Bob Koss, Robert C. Martin, Paul
Nelson, Ken Oden, Tim Ottinger, Dave Rooney, Tan Yeong Sheng, Peter
Sommerlad, and Zhanyong Wan. My apologies if I missed anyone.

Thank you to those who supplied feedback on the PragProg errata page:
Bradford Baker, Jim Barnett, Travis Beatty, Kevin Brown, Brett DiFrischia,
Jared Grubb, David Pol, Bo Rydberg, Jon Seidel, Marton Suranyi, Curtis
Zimmerman, and many others.

Thanks again to Tim Ottinger, who supplied some of the words in the intro-
duction plus a few ideas for the book. I missed having you as a co-conspirator!

Thank you all for helping make this book better than I could ever hope to
make it on my own!

Dedication

This book is dedicated to those who continue to support me in doing what I
love, particularly my wife, Kathy.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

1.1

1.2

CHAPTER 1

Global Setup

Setup

Getting everything installed and working can be among the more painful tasks
in any software endeavor. In this chapter, you’ll learn what tools you will need
in order to build and execute the examples contained in the book. You’ll learn
a few relevant tips that may help prevent you from tripping over the same
things I did.

This chapter currently includes setup instructions for Linux and Mac OS. If
you are a Windows C++ programmer, refer to the information in Windows,
on page 3, for recommendations.

The Examples

You can download the source files for the book from http://pragprog.com/titles/lotdd/
source_code. The examples are grouped by chapter.

Much of what you will learn about TDD involves incrementally growing code.
As such, the examples you’ll see within each chapter present incremental
versions of the code. The versions correspond to numbered subdirectories (1,
2, 3, ...) within the directory for the chapter. For example, the first code snippet
in Test-Driven Development: A First Example is c2/1/SoundexTest.cpp; it shows the
first version of the file SoundexTest.cpp. The second version appears as
c2/2/SoundexTest.cpp.

You can also find the example code at GitHub (https://github.com/jlangr). At GitHub,
you will find a repository for each relevant book chapter. For example, the
repository named c2 corresponds to the Soundex example built in the second
chapter of the book.

The version number for a given code snippet shown in the book corresponds
to a branch within a GitHub repository. For example, you can find code for

http://pragprog.com/titles/lotdd/source_code
http://pragprog.com/titles/lotdd/source_code
https://github.com/jlangr
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 1. Global Setup * 2

the listing c5/4/PlaceDescriptionService.cpp in the file PlaceDescriptionService.cpp in the
branch named 4 in the cb repository.

Within each version directory you will find the necessary source, including a
main function to run tests and a CMake build script. You will need to install
and configure a few tools to run any examples. Some examples require the
installation of additional third-party libraries.

You will need a C++11-compliant compiler and make utility in order to build
the examples. Most require Google Mock as the unit testing tool. Examples
from three chapters use another unit testing tool named CppUTest.

You might want to change the source distribution to support other compilers
(or pre-C++11 compilers), incorporate a different build tool, or use a different
unit testing tool. Fortunately, most of the example codebases are small, with
the exception of the library code used in the Quality Tests chapter.

The following table identifies the subdirectory, unit testing tool, and additional
third-party libraries required for the examples in each chapter.

Chapter Directory Unit Testing Tool Third-Party Libraries

Test-Driven Development: A 2 Google Mock None

First Example

Test-Driven Development c3 Google Mock None

Foundations

Test Construction c3 Google Mock None

Test Doubles c5 Google Mock cURL, JsonCpp

Incremental Design c6 Google Mock Boost (gregorian)

Quality Tests c7 Google Mock Boost (gregorian,
algorithm, assign)

Legacy Challenges wav CppUTest rlog, Boost
(filesystem)

TDD and Threading c9 CppUTest None

Additional TDD Concepts and tpp CppUTest None

Discussions

Code Kata: Roman Numeral roman Google Mock None

Converter

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

1.3

C++ Compiler * 3

C++ Compiler

Ubuntu
I originally built the examples in this book on Ubuntu 12.10 using g++ 4.7.2.
Install g++ using the following command:

sudo apt-get install build-essential

0OS X

I successfully built the examples in this book on Mac OS X 10.8.3 (Mountain
Lion) using a gcc port. The version of gee shipped with Xcode at the time of
this writing, 4.2, will not successfully compile the C++ examples in this book.

To install the gcc port, you may need to install MacPorts, an infrastructure
that allows you to install free software onto your Mac. Refer to http://www.mac-
ports.org/install.php for further information.

You will want to first update MacPorts.

sudo port selfupdate

Install the gec port using the following command:

sudo port install gcc47

This command may take a considerable amount of time to execute.

(If you prefer, you can specify the +universal variant at the end of the port
command, which will enable compiling binaries for both PowerPC and Intel
architectures.)

Once you have successfully installed the gcc port, indicate that its installation
should be the default.

sudo port select gcc mp-gccd?7
You may want to add the command to the path name list.

hash gcc

Windows

On Windows, your best bet for getting the code working as it appears in this
book (and thus as it appears in the source distribution) is to consider a MinGW
or Cygwin port of g++. Other avenues for exploration include the Microsoft
Visual C++ Compiler November 2012 CTP and Clang, but at the time of this
writing they do not provide sufficient support for the C+11 standard. This

http://www.macports.org/install.php
http://www.macports.org/install.php
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 1. Global Setup * 4

subsection will give a brief overview of some of the challenges and suggestions
associated with getting the examples to run on Windows.

Visual C++ Compiler November 2012 CTP

You can download a community technology preview (CTP) release of the
Visual C++11 compiler.' A Visual C++ Team Blog entry” describes the release.

A cursory look at using the CTP for this book’s examples quickly revealed a
few things.

¢ In-class member initialization does not yet appear to be fully supported.

e Support for C++11 appears to be most deficient in the std library. For
example, the collection classes do not yet support uniform initializer lists.
There also appears to be no implementation for std::unordered_map.

e Google Mock/Google Test uses variadic templates, which are not yet fully
supported. You will receive a compilation error when building Google
Mock. You’'ll need to add an entry to your preprocessor definitions that
sets _VARIADIC_MAX to 10 for all affected projects. Refer to http://stackover-
flow.com/questions/12558327/google-test-in-visual-studio-2012 for further information
on how to get past this problem.

Windows Example Code

As this book approaches final publication, efforts are underway to create
working Windows code examples (by eliminating unsupported C++11 ele-
ments). You can find the reworked examples as a separate set of repositories
at my GitHub page (https://github.com/jlangr), one repository per chapter. Refer to
the Google Group discussion forum at https://groups.google.com/forum/?from-
groups#!forum/modern-cpp-with-tdd for further information about Windows examples

as they get posted.

The Windows GitHub repositories contain solution (.sln) and project (.vcxproj)
files. You should be able to use these files to load example code in Visual
Studio Express 2012 for Windows Desktop. You can also use MSBuild to
build and run tests for the examples from the command line.

If you want to rework the code examples on your own, it shouldn’'t be too
horrible an experience. Changing to out-of-class initialization should be easy.
You can replace std::unordered_map with std::map. And many of the new

1. http://www.microsoft.com/en-us/download/details.aspx?id=35515
2. http://blogs.msdn.com/b/vcblog/archive/2012/11/02/visual-c-c-11-and-the-future-of-c.aspx

http://stackoverflow.com/questions/12558327/google-test-in-visual-studio-2012
http://stackoverflow.com/questions/12558327/google-test-in-visual-studio-2012
https://github.com/jlangr
https://groups.google.com/forum/?fromgroups#!forum/modern-cpp-with-tdd
https://groups.google.com/forum/?fromgroups#!forum/modern-cpp-with-tdd
http://www.microsoft.com/en-us/download/details.aspx?id=35515
http://blogs.msdn.com/b/vcblog/archive/2012/11/02/visual-c-c-11-and-the-future-of-c.aspx
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

C++ Compiler ¢ 5

additions to C++11 originated in the boost::trl library, so you might be able
to directly substitute the Boost implementations.

A Few Windows Tips

I Googled my way through a number of roadblocks in the form of compilation
warnings, errors, and other build challenges. Here are a few things I learned
along the way:

Error/Challenge Resolution

C297: ’std:tuple’: too many template Add preprocessor definition for

arguments. _VARIADIC_MAX=10. See http://stackover-
flow.com/questions/8274588/c2977-stdtuple-too-
many-template-arguments-msvcll.

Specified platform toolset (v110) is not Set VisualStudioVersion 11.0.

installed or invalid.

Where is msbuild.exe? Mine is in c:\Windows\Microsoft.NET\Frame-
work\v4.0.30319.
Warning C4996: 'std::_Copy_impl”: -D_SCL_SECURE_NO_WARNINGS

Function call with parameters that
may be unsafe.

Console windows closes on completion Set Configuration Proper-

of running tests with Ctrl-F5. ties—Linker—System—>SubSystem to
Console (/SUBSYSTEM:CONSOLE).

Visual Studio tries to autolink Add BOOST_ALL_NO_LIB preproces-

libraries for header-only Boost sor directive.

features.

Many of the resolutions for these challenges are already embodied in the
project files.

Visual Studio 2013 Previews

Shortly before my final deadline for book changes, Microsoft released preview
downloads for Visual Studio 2013, which promises additional compliance
with the C++11 standard as well as support for some proposed C++14 features.
In the short term, the Windows code at the GitHub site will work under the
November 2012 CTP. But you’ll soon find updated versions that take even
more advantage of C++11 as we (myself and a few great folks helping out)
work with them under Visual Studio 2013. I'm hoping you eventually don’t
find Windows-specific versions at all. Here’s to a fully C++11-compliant
Windows compiler!

http://stackoverflow.com/questions/8274588/c2977-stdtuple-too-many-template-arguments-msvc11
http://stackoverflow.com/questions/8274588/c2977-stdtuple-too-many-template-arguments-msvc11
http://stackoverflow.com/questions/8274588/c2977-stdtuple-too-many-template-arguments-msvc11
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

1.4

1.5

Chapter 1. Global Setup * 6

CMake

For better or worse, I chose CMake in an attempt to support cross-platform
builds.

For Ubuntu users, the version used for building the examples is CMake 2.8.9.
You can install CMake using the following command:

sudo apt-get install cmake

For OS X users, the version used for building the examples is CMake 2.8.10.2.
You can install CMake using downloads at http://www.cmake.org/cmake/resources/
software.html.

When you run CMake against the build scripts provided, you might see the
following error:

Make Error: your CXX compiler: "CMAKE CXX COMPILER-NOTFOUND" was not found.
Please set CMAKE CXX COMPILER to a valid compiler path or name.

The message indicates that no appropriate compiler was found. You might
receive the error if you installed gcc and not g++. On Ubuntu, installing build-
essential should solve the problem. On OS X, defining or changing the
definition for CXX should solve the problem.

export CC=/opt/local/bin/x86 64-apple-darwinl2-gcc-4.7.2
export CXX=/opt/local/bin/x86 64-apple-darwinl2-g++-mp-4.7

Google Mock

Google Mock, used in many of the book’s examples, is a mocking and
matcher framework that includes the unit testing tool Google Test. I refer to
the two terms interchangeably throughout the book but most of the time refer
to Google Mock to keep things simple. You may need to peruse Google’s doc-
umentation for Google Test in order to understand features that I refer to as
belonging to Google Mock.

You will be linking Google Mock into your examples, which means you must
first build the Google Mock library. The following instructions may help you
get started. You might also choose to refer to the README.txt file supplied with
Google Mock for more detailed installation instructions: https://code.google.com/
p/googlemock/source/browse/trunk/README.

Installing Google Mock

The official Google Mock site is https://code.google.com/p/googlemock/. You can find
downloads at https://code.google.com/p/googlemock/downloads/list. The version used for
building the examples is Google Mock 1.6.0.

http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html
https://code.google.com/p/googlemock/source/browse/trunk/README
https://code.google.com/p/googlemock/source/browse/trunk/README
https://code.google.com/p/googlemock/
https://code.google.com/p/googlemock/downloads/list
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Google Mock * 7

Unzip the installation zip file (for example, gmock-1.6.0.zip), perhaps in your
home directory.

Create an environment variable called GMOCK_HOME that refers to this
directory. Here’s an example:

export GMOCK HOME=/home/jeff/gmock-1.6.0
Here it is on Windows:

setx GMOCK HOME c:\Users\jlangr\gmock-1.6.0

Unix

For Unix, if you want to skip the README build instructions, you might also
have success by following the steps I took. I chose to build Google Mock using
CMake. From the root of your Google Mock installation ($GMOCK_HOME, hence-
forth), do the following:

mkdir mybuild
cd mybuild
cmake ..

make

The build directory name mybuild is arbitrary. However, the build scripts used
by the examples in the book assume this name. If you change it, you’ll need
to alter all of the CMakeLists.txt files.

You will also need to build Google Test, which is nested within Google Mock.

cd $GMOCK HOME/gtest
mkdir mybuild

cd mybuild

cmake ..

make

Windows

Within the Google Mock distribution, you'll find the file .\msvc\2010\gmock.sin,
which should work for Visual Studio 2010 and newer versions. (You'll also
find .\msvc\2005.gmock.sin, which should presumably work for Visual Studio 2005
and 2008.)

To compile Google Mock from Visual Studio 2010 and Visual Studio 2012,
you will need to configure the projects to use the November 2012 CTP. From
the project properties, navigate to Configuration Properties—>General—Platform
Toolset and select the CTP.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

1.6

Chapter 1. Global Setup * 8

The CTP does not have support for variadic templates (Visual Studio 2013
might). They are instead artificially simulated.’ You will need to add a prepro-
cessor definition to bump up _VARIADIC_MAX above its default of 5. A value
of 10 should work fine.

When creating projects that use Google Mock, you’ll need to point them to
the proper location for include and library files. Under Configuration Proper-
ties=>VC++ Directories, do the following:

e Add $(GMOCK_HOME)\msvc\2010\Debug to Library Directories.
e Add $(GMOCK HOME)\include to Include Directories.
e Add $(GMOCK_HOME)\gtest\include to Include Directories.

Under Linker—Input, add gmock.lib to Additional Dependencies.

You'll want to ensure that both Google Mock and your project are built with
the same memory model. By default, Google Mock builds using /MTd.

Creating a Main for Running Google Mock Tests

Code for each of the examples in this book includes a main.cpp file designed
for use with Google Mock.

c2/1/main.cpp
#include "gmock/gmock.h"

int main(int argc, char** argv) {
testing::InitGoogleMock(&argc, argv);
return RUN ALL TESTS();

}

The main() function shown here first initializes Google Mock, passing along
any command-line arguments. It then runs all of the tests.

Most of the time, this is all you need in main(). Google Mock also provides a
default main() implementation that you can link to. Refer to http://code.google.com/
p/googletest/wiki/Primer#Writing the main() Function for further information.

CppUTest

CppUTest is another C++ unit testing framework that you might choose over
Google Test/Google Mock. It offers many comparable features, plus provides
a built-in memory leak detector. You can see more examples of CppUTest in
Test Driven Development for Embedded C [Grel0] by James Grenning.

3. http://stackoverflow.com/questions/12558327/google-test-in-visual-studio-2012

http://media.pragprog.com/titles/lotdd/code/c2/1/main.cpp
http://code.google.com/p/googletest/wiki/Primer#Writing_the_main()_Function
http://code.google.com/p/googletest/wiki/Primer#Writing_the_main()_Function
http://stackoverflow.com/questions/12558327/google-test-in-visual-studio-2012
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

1.7

libcurl * 9

Installing CppUTest

(Note: These instructions apply to CppUTest version 3.3. The newest version,
3.4, incorporates a number of changes, but was released just prior to my final
deadline for major changes, preventing me from incorporating use of it into
this book.)

You can find the project home for CppUTest at http://www.cpputest.org/, and you
can find downloads at http://cpputest.github.io/cpputest/. Download the appropriate
file and unpack, perhaps into a new directory named pputest within your home
directory.

Create a CPPUTEST_HOME environment variable. Here’s an example:

export CPPUTEST HOME=/home/jeff/cpputest

You can build CppUTest using make. You will also need to build CppUTestExt,
which provides mocking support.

cd $CPPUTEST HOME
./configure

make

make -f Makefile CppUTestExt

You can install CppUTest to /usr/local/lib using the command make install.
You can build CppUTest using CMake if you choose.

If you are running Windows, you will also find batch files for Visual Studio
2008 and 2010 that use MSBuild.

Creating a Main for Running CppUTest Tests

Code for the WAV Reader example in this book includes a testmain.cpp file
designed for use with CppUTest.

wav/1/testmain.cpp
#include "CppUTest/CommandLineTestRunner.h"

int main(int argc, char** argv) {
return CommandLineTestRunner::RunAllTests(argc, argv);

}

libcurl

libcurl provides a client-side URL transfer library that supports HTTP and
many other protocols. It supports the cURL command-line transfer tool. I
refer to the library as cURL elsewhere in the book.

http://www.cpputest.org/
http://cpputest.github.io/cpputest/
http://media.pragprog.com/titles/lotdd/code/wav/1/testmain.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

1.8

1.9

Chapter 1. Global Setup * 10

You can find the project home for cURL at http://curl.haxx.se/, and you can find
downloads at http://curl.haxx.se/download.html. Download the appropriate file and
unpack, perhaps into your home directory. Create a CURL_HOME environment
variable; here’s an example:

export CURL _HOME=/home/jeff/curl-7.29.0

You can build the library using CMake.

cd $CURL_HOME
mkdir build
cd build
cmake ..

make

JsonCpp

JsonCpp provides support for the data interchange format known as Java-
Script Object Notation (JSON).

You can find the project home for JsonCpp at http://jsoncpp.sourceforge.net/, and
you can find downloads at http://sourceforge.net/projects/jsoncpp/files/. Download the
appropriate file and unpack, perhaps into your home directory. Create a
JSONCPP_HOME environment variable; here’s an example:

export JSONCPP_HOME=/home/jeff/jsoncpp-src-0.5.0

JsonCpp requires Scons, a Python build system. To install Scons under
Ubuntu, use this:

sudo apt-get install scons

Navigate into $/SONCPP_HOME and use Scons to build the library.
scons platform=linux-gcc

For OS X, specifying a platform of linux-gcc worked for my install.

For my installation, building JsonCpp resulted in the creation of $JSON-
CPP_HOME/libs/linux-gcc-4.7/libjson_linux-gcc-4.7_libmt.a. Create a symbolic link to this
file with the following name:

cd $ISONCPP_HOME/1libs/linux-gcc-4.7
1n -s libjson linux-gcc-4.7 libmt.a libjson linux-gcc-4.7.a

rlog

rlog provides a message logging facility for C++.

http://curl.haxx.se/
http://curl.haxx.se/download.html
http://jsoncpp.sourceforge.net/
http://sourceforge.net/projects/jsoncpp/files/
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

rlog ¢ 11

You can find the project home for rlog at https://code.google.com/p/rlog/. Download

the appropriate file and unpack, perhaps into your home directory. Create
an environment variable for RLOG_HOME. Here’s an example:

export RLOG_HOME=/home/jeff/rlog-1.4

Under Ubuntu, you can build rlog using the following commands:

cd $RLOG_HOME
./configure
make

Under OS X, I was able to compile rlog only after applying a patch. See
https://code.google.com/p/rlog/issues/detail?id=7 for information about the issue as well
as the patch code. I used the code provided in the third comment (“This
smaller diff...”). You can also find this patch code in the source distribution
as code/wav/1/rlog.diff.

To apply the patch and build rlog, do the following:

cd $RLOG HOME

patch -pl [path to file]/rlog.diff
autoreconf

./configure

cp /opt/local/bin/glibtool libtool
make

sudo make install

The configure command copies a binary named libtool into the rlog directory,
but it is not the binary that rlog expects. The command that copies glibtool
atop libtool should correct this problem.

If the patch does not work for you, you can try making manual modifications.
In the file $RLOG_HOME/rlog/common.h.in, you will find the following line:

define RLOG SECTION attribute ((section("RLOG DATA")))
Replace that line with the following:

#ifdef _APPLE_

define RLOG_SECTION _ attribute ((section("_DATA, RLOG DATA")))
#else

define RLOG SECTION attribute ((section("RLOG DATA")))

#endif

If you still have problems building rlog (it's quite the challenge under both
MacOS and Windows), don’t worry. When working through the legacy code
example, skip ahead to Section 8.9, Creating a Test Double for rlog, on page
207, where you'll learn how to get rlog out of the mix entirely.

https://code.google.com/p/rlog/
https://code.google.com/p/rlog/issues/detail?id=7
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 1. Global Setup * 12

1.10 Boost

1.1

Boost provides a large set of essential C++ libraries.

You can find the project home for Boost at http://www.boost.org, and you can find
downloads at http://sourceforge.net/projects/boost/files/boost. Boost is updated regularly
to newer versions. Download the appropriate file and unpack, perhaps into
your home directory. Create environment variables for both BOOST_ROOT
and the Boost version you installed. Here’s an example:

export BOOST ROOT=/home/jeff/boost 1 53 0
export BOOST VERSION=1.53.0

Many Boost libraries require only header files. Following the preceding
instructions should allow you to build all of the examples that use Boost,
with the exception of the code in Legacy Challenges.

To build the code in Legacy Challenges, you will need to build and link libraries

from Boost. I used the following commands to build the appropriate libraries:

cd $BOOST ROOT
./bootstrap.sh --with-libraries=filesystem,system
./b2

The commands I executed might work for you, but in the event they do not,
refer to the instructions at http://ubuntuforums.org/showthread.php?t=1180792 (note,
though, that the bootstrap.sh argument --with-library should be --with-libraries).

Building Examples and Running Tests

Once you've installed the appropriate software, you can build any of the
example versions and subsequently execute tests. From within an example
version directory, you'll first use CMake to create a makefile.

mkdir build
cd build
cmake ..

The legacy codebase (see Legacy Challenges) uses libraries from Boost, not
just headers. CMakelLists.txt uses the BOOST_ROOT environment variable you
defined twice: first, explicitly, by include_directories to indicate where Boost

headers can be found, and second, implicitly, when CMake executes
find_package to locate Boost libraries.

When building the legacy codebase, you might receive an error indicating
that Boost cannot be found. If so, you can experiment with changing the
location by passing a value for BOOST_ROOT when you execute CMake.

cmake -DBOOST ROOT=/home/jeff/boost 1 53 0 ..

http://www.boost.org
http://sourceforge.net/projects/boost/files/boost
http://ubuntuforums.org/showthread.php?t=1180792
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

1.12

Teardown * 13

Otherwise, ensure that you have built the Boost libraries correctly.

Once you have created a make file using CMake, you can build an example
by navigating into the example’s build directory and then executing the
following:

make

To execute tests, navigate into the example’s build directory and then execute
the following:

./test

For the library example in Quality Tests, you will find the test executable in
build/libraryTests.

Teardown

In this chapter, you learned what you’ll need in order to build and run the
examples in this book. Remember that you’ll learn best when you get your
hands dirty and follow along with the examples.

If you get stuck with setting things up, first find a trusty pair partner to help.
A second set of eyes can quickly spot something that you might struggle with
for quite a while. You can also visit the book’s home page at http://pragprog.com/
titles/lotdd for helpful tips and a discussion forum. If you and your pair are both
still stuck, please send me an email.

http://pragprog.com/titles/lotdd
http://pragprog.com/titles/lotdd
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

2.1

2.2

CHAPTER 2

Test-Driven Development; A First Example

Setup

Write a test, get it to pass, clean up the design. That’s all there is to TDD. Yet
these three simple steps embody a significant amount of sophistication.
Understand how to take advantage of TDD, and you will be rewarded with
many benefits. Fail to heed what others have learned, and you will likely give
up on TDD.

Rather than let you flounder, I'd like to guide you through test-driving some
code in order to help you understand what happens at each step. You'll learn
best by coding along with the example in this chapter. Make sure you've set
up your environment properly (see Chapter 1, Global Setup, on page 1).

While not large, the example we’ll work through isn’t useless or trivial (but
it'’s also not rocket science). It provides many teaching points and demonstrates
how TDD can help you incrementally design a reasonably involved algorithm.

I hope you're ready to code!

The Soundex Class

Searching is a common need in many applications. An effective search should
find matches even if the user misspells words. Folks misspell my name in
endless ways: Langer, Lang, Langur, Lange, and Lutefisk, to name a few. I'd
prefer they find me regardless.

In this chapter, we will test-drive a Soundex class that can improve the search
capability in an application. The long-standing Soundex algorithm encodes
words into a letter plus three digits, mapping similarly sounding words to the
same encoding. Here are the rules for Soundex, per Wikipedia:'

1. http://en.wikipedia.org/wiki/Soundex

http://en.wikipedia.org/wiki/Soundex
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

2.3

Chapter 2. Test-Driven Development: A First Example ® 16

1. Retain the first letter. Drop all other occurrences of a, e, i, 0, u, y, h, w.

2. Replace consonants with digits (after the first letter):

b fip v 1
°*cgj kq s x z2
ed t:3

e L4

em n:5

16

3. If two adjacent letters encode to the same number, encode them instead
as a single number. Also, do so if two letters with the same number are
separated by h or w (but code them twice if separated by a vowel). This
rule also applies to the first letter.

4. Stop when you have a letter and three digits. Zero-pad if needed.

Getting Started

A common misconception of TDD is that you first define all the tests before
building an implementation. Instead, you focus on one test at a time and
incrementally consider the next behavior to drive into the system from there.

As a general approach to TDD, you seek to implement the next simplest rule in
turn. (For a more specific, formalized approach to TDD, refer to the TPP [Section
10.4, The Transformation Priority Premise, on page 281].) What useful behavior will
require the most straightforward, smallest increment of code to implement?

With that in mind, where do we start with test-driving the Soundex solution?
Let’s quickly speculate as to what implementing each rule might entail.

Soundex rule #3 appears most involved. Rule #4, indicating when to stop
encoding, would probably make more sense once the implementation of other
rules actually resulted in something getting encoded. The second rule hints
that the first letter should already be in place, so we’ll start with rule #1. It
seems straightforward.

The first rule tells us to retain the first letter of the name and...stop! Let’s
keep things as small as possible. What if we have only a single letter in the
word? Let’s test-drive that scenario.

c2/1/SoundexTest.cpp

Line1 #include "gmock/gmock.h"

2 TEST(SoundexEncoding, RetainsSolelLetterOfOneLetterWord) {
3 Soundex soundex;

4}

http://media.pragprog.com/titles/lotdd/code/c2/1/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Getting Started ® 17

Test Lists

Each test you write in TDD and get to pass represents a new, working piece of
behavior that you add to the system. Aside from getting an entire feature shipped,
your passing tests represent your best measure of progress. You name each test to
describe the small piece of behavior.

While you don’t determine all the tests up front, you’ll probably have an initial set of
thoughts about what you need to tackle. Many test-drivers capture their thoughts
about upcoming tests in a test list (described first in Test Driven Development: By

Example [Bec02]). The list can contain names of tests or reminders of code cleanup
that you need to do.

You can keep the test list on a scratch pad on the side of your workstation. (You
could also type it at the bottom of your test file as comments—just make sure you
delete them before checking in!) The list is yours alone, so you can make it as brief
or cryptic as you like.

As you test-drive and think of new test cases, add them to the list. As you add code
you know will need to be cleaned up, add a reminder to the list. As you complete a
test or other task, cross it off the list. It’s that simple. If you end up with outstanding
list items at the end of your programming session, set the list aside for a future
session.

You might think of the test list as a piece of initial design. It can help you clarify what
you think you need to build. It can also help trigger you to think about other things
you need to do.

Don’t let the test list constrain what you do or the order in which you do it, however.
TDD is a fluid process, and you should usually go where the tests suggest you go
next.

Managing test lists can be particularly useful when you’re learning TDD. Try it!

e On line 1, we include gmock, which gives us all the functionality we’ll need
to write tests.

¢ A simple test declaration requires use of the TEST macro (line 2). The TEST
macro takes two parameters: the name of the test case and a descriptive
name for the test. A test case, per Google’s documentation, is a related
collection of tests that can “share data and subroutines.” (The term is
overloaded; to some, a test case represents a single scenario.)

Reading the test case name and test name together, left to right, reveals
a sentence that describes what we want to verify: “Soundex encoding
retains [the] sole letter of [a] one-letter word.” As we write additional tests

http://code.google.com/p/googletest/wiki/V1 6 Primer#Introduction: Why Google C++ Testing Framework?

http://code.google.com/p/googletest/wiki/V1_6_Primer#Introduction:_Why_Google_C++_Testing_Framework?
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 2. Test-Driven Development: A First Example ® 18

for Soundex encoding behavior, we’ll use SoundexEncoding for the test
case name to help group these related tests.

Don’t discount the importance of crafting good test names—see the follow-
ing sidebar.

Take great care with naming. The small investment of deriving highly descriptive test
names pays well over time, as tests are read and reread by others who must maintain
the code. Crafting a good test name will also help you, the test writer, better under-
stand the intent of what you're about to build.

You’'ll be writing a number of tests for each new behavior in the system. Think about
the set of test names as a concordance that quickly provides a developer with a concise
summary of that behavior. The easier the test names are to digest, the more quickly
you and other developers will find what you seek.

e On line 3, we create a Soundex object, then...stop! Before we proceed with
more testing, we know we’ve just introduced code that won’t compile—we
haven’t yet defined a Soundex class! We'll stop coding our test and fix the
problem before moving on. This approach is in keeping with Uncle Bob’s
Three Rules of TDD:

— Write production code only to make a failing test pass.

— Write no more of a unit test than sufficient to fail. Compilation failures
are failures.

— Write only the production code needed to pass the one failing test.

(Uncle Bob is Robert C. Martin. See Section 3.4, The Three Rules of TDD,
on page 59 for more discussion of the rules.

Seeking incremental feedback can be a great approach in C++, where a
few lines of test can generate a mountain of compiler errors. Seeing an
error as soon as you write the code that generates it can make it easier
to resolve.

The three rules of TDD aside, you'll find that sometimes it makes more
sense to code the entire test before running it, perhaps to get a better feel
for how you should design the interface you're testing. You might also
find that waiting on additional slow compiles isn’t worth the trade-off in
more immediate feedback.

report erratum -« discuss

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Yy

Getting Started * 19

For now, particularly as you are learning TDD, seek feedback as soon as
it can be useful. Ultimately, it's up to you to decide how incrementally
you approach designing each test.

The compiler shows that we indeed need a Soundex class. We could add a
compilation unit (.h/.cpp combination) for Soundex, but let’s make life easier
for ourselves. Instead of mucking with separate files, we’ll simply declare
everything in the same file as the test.

Once we're ready to push our code up or once we experience pain from having
everything in one file, we’ll do things the proper way and split the tests from
the production code.

c2/2/SoundexTest.cpp
class Soundex {
}

#include "gmock/gmock.h"

TEST (SoundexEncoding, RetainsSolelLetterOfOneLetterWord) {
Soundex soundex;

}
Q.: Isn’t putting everything into a single file a dangerous shortcut?

A.: It's a calculated effort to save time in a manner that incurs no short-term
complexity costs. The hypothesis is that the cost of splitting files later is less than
the overhead of flipping between files the whole time. As you shape the design of
a new behavior using TDD, you'll likely be changing the interface often. Splitting
out a header file too early would only slow you down.

As far as “dangerous” is concerned: are you ever going to forget to split the files
before checking in?

Q.: But aren’t you supposed to be cleaning up code as you go as part of following
the TDD cycle? Don’t you want to always make sure that your code retains the
highest possible quality?

A.: In general, yes to both questions. But our code is fine; we’re simply choosing
a more effective organization until we know we need something better. We're
deferring complexity, which tends to slow us down, until we truly need it. (Some
Agile proponents use the acronym YAGNI—“You ain’t gonna need it.”)

If the notion bothers you deeply, go ahead and separate the files right off the bat.
You'll still be able to follow through with the rest of the exercise. But I'd prefer you
first try it this way. TDD provides you with safe opportunities to challenge yourself,
so don’t be afraid to experiment with what you might find to be more effective ways
to worle.

http://media.pragprog.com/titles/lotdd/code/c2/2/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 2. Test-Driven Development: A First Example ® 20

We're following the third rule for TDD: write only enough production code to
pass a test. Obviously, we don’t have a complete test yet. The Retains-
SoleLetterOfOneLetterWord test doesn’t really execute any behavior, and it
doesn’t verify anything. Still, we can react to each incremental bit of negative
feedback (in this case, failing compilation) and respond with just enough code
to get past the negative feedback. To compile, we added an empty declaration
for the Soundex class.

Building and running the tests at this point gives us positive feedback.

[==========] Running 1 test from 1 test case.

[-----mm--] Global test environment set-up.

[----------] 1 test from SoundexEncoding

[RUN] SoundexEncoding.RetainsSolelLetterOfOneLetterWord

[0K 1 SoundexEncoding.RetainsSolelLetterOfOneLetterWord (0 ms)
[-----nnn--] 1 test from SoundexEncoding (0 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test case ran. (0 ms total)
[PASSED] 1 test.

Party time!

Well, not quite. After all, the test does nothing other than construct an
instance of the empty Soundex class. Yet we have put some important ele-
ments in place. More importantly, we've proven that we've done so correctly.

Did you get this far? Did you mistype the include filename or forget to end the
class declaration with a semicolon? If so, you've created your mistake within
the fewest lines of code possible. In TDD, you practice safe coding by testing
early and often, so you usually have but one reason to fail.

Since our test passes, it might be a good time to make a local commit. Do
you have the right tool? A good version control system allows you to commit
easily every time the code is green (in other words, when all tests are passing).
If you get into trouble later, you can easily revert to a known good state and
try again.

Part of the TDD mentality is that every passing test represents a proven piece
of behavior that you've added to the system. It might not always be something
you could ship, of course. But the more you think in such incremental terms
and the more frequently you seek to integrate your locally proven behavior,
the more successful you’ll be.

Moving along, we add a line of code to the test that shows how we expect
client code to interact with Soundex objects.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYVYY

Getting Started * 21

c2/3/SoundexTest.cpp
TEST(SoundexEncoding, RetainsSolelLetterOfOneLetterWord) {
Soundex soundex;

auto encoded = soundex.encode("A");

}

We are making decisions as we add tests. Here we decided that the Soundex
class exposes a public member function called encode() that takes a string
argument. Attempting to compile with this change fails, since encode() doesn’t
exist. The negative feedback triggers us to write just enough code to get
everything to compile and run.

c2/4/SoundexTest.cpp
class Soundex
{
public:
std::string encode(const std::string& word) const {
return "";
}
}

The code compiles, and all the tests pass, which is still not a very interesting
event. It’s finally time to verify something useful: given the single letter A, can

encode() return an appropriate Soundex code? We express this interest using
an assertion.

c2/5/SoundexTest.cpp
TEST(SoundexEncoding, RetainsSolelLetterOfOneLetterWord) {
Soundex soundex;

auto encoded = soundex.encode("A");

ASSERT_THAT (encoded, testing::Eq("A"));
}

An assertion verifies whether things are as we expect. The assertion here
declares that the string returned by encode() is the same as the string we passed
it. Compilation succeeds, but we now see that our first assertion has failed.

[s=========] Running 1 test from 1 test case.

[-----nan--] Global test environment set-up.

[----mmeme-] 1 test from SoundexEncoding

[RUN] SoundexEncoding.RetainsSolelLetterOfOneLetterWord

SoundexTest.cpp:21: Failure
Value of: encoded
Expected: is equal to 0x806defb pointing to "A"
Actual: "" (of type std::string)
[FAILED] SoundexEncoding.RetainsSolelLetterOfOneLetterWord (0 ms)
[----------] 1 test from SoundexEncoding (0 ms total)

http://media.pragprog.com/titles/lotdd/code/c2/3/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/4/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/5/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 2. Test-Driven Development: A First Example ® 22

[----------] Global test environment tear-down

[==========] 1 test from 1 test case ran. (0 ms total)

[PASSED] 0 tests.

[FAILED] 1 test, listed below:

[FAILED] SoundexEncoding.RetainsSolelLetterOfOneLetterWord

1 FAILED TEST

At first glance, it’s probably hard to spot the relevant output from Google
Mock. We first read the very last line. If it says “PASSED,” we stop looking at
the test output—all our tests are working! If it says “FAILED” (it does in our
example), we note how many test cases failed. If it says something other than
“PASSED” or “FAILED,” the test application itself crashed in the middle of a
test.

With one or more failed tests, we scan upward to find the individual test that
failed. Google Mock prints a [RUN] record with each test name when it starts
and prints a [FAILED] or [OK] bookend when the test fails. On failure, the lines
between [RUN | and [OK] might help us understand our failure. In the output
for our first failed test shown earlier, we see the following:

[RUN] SoundexEncoding.RetainsSoleLetterOfOneLetterWord
SoundexTest.cpp:21: Failure
Value of: encoded
Expected: is equal to 0x806defb pointing to "A"
Actual: "" (of type std::string)
[FAILED] SoundexEncoding.RetainsSoleLetterOfOneLetterWord (0 ms)

Paraphrasing this assertion failure, Google Mock expected the local variable
encoded to contain the string "A", but the actual string it contained was equal to
the empty string.

We expected a failing assertion, since we deliberately hard-coded the empty
string to pass compilation. That negative feedback is a good thing and part
of the TDD cycle. We want to first ensure that a newly coded assertion—rep-
resenting functionality we haven’t built yet—doesn’t pass. (Sometimes it does,
which is usually not a good thing; see Section 3.5, Getting Green on Red, on
page 60.) We also want to make sure we've coded a legitimate test; seeing it
first fail and then pass when we write the appropriate code helps ensure our
test is honest.

The failing test prods us to write code, no more than necessary to pass the
assertion.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

24

Fixing Unclean Code ® 23

c2/6/SoundexTest.cpp
std::string encode(const std::string& word) const {
return "A";

}

We compile and rerun the tests. The final two lines of its output indicate that
all is well.

[==========] 1 test from 1 test case ran. (0 ms total)
[PASSED] 1 test.

Ship it!

I'm kidding, right? Well, no. We want to work incrementally. Let’s put it this
way: if someone told us to build a Soundex class that supported encoding
only the letter A, we’d be done. We’d want to clean things up a little bit, but
otherwise we’d need no additional logic.

Another way of looking at it is that the tests specify all of the behavior that
we have in the system to date. Right now we have one test. Why would we
have any more code than what that test states we need?

We're not done, of course. We have plenty of additional needs and require-
ments that we’ll incrementally test-drive into the system. We're not even done
with the current test. We must, must, must clean up the small messes we just
made.

Fixing Unclean Code

What? We wrote one line of production code and three lines of test code and
we have a problem? Indeed. It's extremely easy to introduce deficient code
even in a small number of lines. TDD provides the wonderful opportunity to
fix such small problems as they arise, before they add up to countless small
problems (or even a few big problems).

We read both the test and production code we've written, looking for deficien-
cies. We decide that the assertion in our test isn’t reader-friendly.

ASSERT THAT (encoded, testing::Eq("A"));

Much as the test declaration (the combination of test case and test name)
should read like a sentence, we want our asserts to do the same. We introduce
a using directive to help.

http://media.pragprog.com/titles/lotdd/code/c2/6/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 2. Test-Driven Development: A First Example * 24

c2/7/SoundexTest.cpp
#include "gmock/gmock.h"
using ::testing::Eq;

TEST(SoundexEncoding, RetainsSoleLetterOfOneLetterWord) {
Soundex soundex;
auto encoded = soundex.encode("A");
ASSERT_THAT (encoded, Eq("A"));

}

Now we can paraphrase the assertion with no hiccups: assert that the encoded
value is equal to the string "A".

Our small change is a refactoring, a code transformation in which we retain
existing behavior (as demonstrated by the test) but improve the design. In
this case, we improved the test’s design by enhancing its expressiveness. The
namespace of Eq() is an implementation detail not relevant to the test’s
meaning. Hiding that detail improves the level of abstraction in the test.

Code duplication is another common challenge we face. The costs and risks
of maintenance increase with the amount of code duplication.

Our Soundex class contains no obvious duplication. But looking at both the
test and production code in conjunction reveals a common magic literal, the
string "A". We want to eliminate this duplication. Another problem is that the
test name (RetainsSoleLetterOfOneLetterWord) declares a general behavior,
but the implementation supports only a specific, single letter. We want to
eliminate the hard-coded "A" in a way that solves both problems.

How about simply returning the word passed in?

c2/8/SoundexTest.cpp
class Soundex

{
public:

std::string encode(const std::string& word) const {

return word;

}
}
At any given point, your complete set of tests declares the behaviors you
intend your system to have. That implies the converse: if no test describes a
behavior, it either doesn’t exist or isn’t intended (or the tests do a poor job of
describing behavior).

Where am I going with this? We have one test. It says we support one-letter
words. Therefore, we can assume that the Soundex code needs to support

http://media.pragprog.com/titles/lotdd/code/c2/7/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/8/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

2.5

Incrementalism ® 25

only one-letter words—for now. And if all words are one letter, the simplest
generalized solution for our test is to simply return the whole word passed
to encode().

(There are other TDD schools of thought about what we might have coded at
this point. One alternate technique is triangulation®—see Triangulation, on
page 283—where you write a second, similar assertion but with a different
data expectation in order to drive in the generalized solution. You'll discover
more alternate approaches throughout the book, but we’ll keep things simple
for now.)

Our changes here are small, bordering on trivial, but now is the time to make
them. TDD’s refactoring step gives us an opportunity to focus on all issues,
significant or minor, that arise from a small, isolated code change. As we
drive through TDD cycles, we’ll use the refactoring step as our opportunity
to review the design impacts we just made to the system, fixing any problems
we just created.

Our primary refactoring focus will be on increasing expressiveness and elim-
inating duplication, two concerns that will give us the most benefit when it
comes to creating maintainable code. But we’ll use other nuggets of design
wisdom as we proceed, such as SOLID class design principles and code smells.

Incrementalism

It’'s question-and-answer (Q&A) time!
Q.: Do you really code like this, hard-coding things that you know you'll replace?
A.: I always get this question. Yes.
Q.: It seems stupid!

A.: That’s not a question, but yes, it’s an OK first reaction to think this is stupid.
It felt stupid to me at first, too. I got over it.

Q.: Are we going to keep working like this? How will we get anything done if we
hard-code everything?

A.: That’s two questions, but I'm happy to answer them both! Yes, we will keep
working incrementally. This technique allows us to get a first passing test in place
quickly. No worries, the hard-coded value will last only minutes at most. We know
we’re not done with what we need to build, so we’ll have to write more tests to
describe additional behavior. In this example, we know we must support the rest
of the rules. As we write additional tests, we’ll have to replace the hard-coding with
interesting logic in order to get the additional tests to pass.

3. Test Driven Development: By Example [BecO2]

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 2. Test-Driven Development: A First Example ® 26

Incrementalism is at the heart of what makes TDD successful. An incremental
approach will seem quite unnatural and slow at first. However, taking small
steps will increase your speed over time, partly because you will avoid errors
that arise from taking large, complicated steps. Hang in there!

Astute readers will note that we've already coded something that does not
completely meet the specification (spec) for Soundex. The last part of rule #4
says that we must “fill in zeros until there are three numbers.” Oh, the joy of
specs! We must read them comprehensively and carefully to fully understand
how all their parts interact. (Better that we had a customer to interact with,
someone who could clarify what was intended.) Right now it seems like rule
#4 contradicts what we’'ve already coded.

Imagine that the rules are being fed to us one by one. “Get the first part of
rule #1 working, and then I'll give you a new rule.” TDD aligns with this latter
approach—each portion of a spec is an incremental addition to the system.
An incremental approach allows us to build the system piecemeal, in any
order, with continually verified, forward progress. There is a trade-off: we
might spend additional time incorporating a new increment than if we had
done a bit more planning. We'll return to this concern throughout the book.
For now, let’s see what happens when we avoid worrying about it.

We have two jobs: write a new test that describes the behavior, and change
our existing test to ensure it meets the spec. Here’s our new test:

c2/9/SoundexTest.cpp
TEST (SoundexEncoding, PadsWithZerosToEnsureThreeDigits) {
Soundex soundex;

auto encoded = soundex.encode("I");

ASSERT_THAT (encoded, Eq("I000"));
}

(One reviewer asks, “Why didn’'t we read the Soundex rules more carefully
and write this first?” Good question. Indeed, we weren't careful. A strength
of TDD is its ability to let you move forward in the face of incomplete informa-
tion and in its ability to let you correct earlier choices as new information
arises.)

Each test we add is independent. We don’t use the outcome of one test as a
precondition for running another. Each test must set up its own context. Our
new test creates its own Soundex instance.

A failing test run shows that encode() returns the string "I" instead of "1000".
Getting it to pass is straightforward.

http://media.pragprog.com/titles/lotdd/code/c2/9/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYyvy

Incrementalism ® 27

c2/9/SoundexTest.cpp
std::string encode(const std::string& word) const {
return word + "000";

}

Hard-coding an answer may again ruffle feathers, but it will help us keep on
track. Per our tests so far, the Soundex class requires no additional behavior.
Also, by building the smallest possible increment, we're forced to write addi-
tional tests in order to add more behavior to the system.

Our new test passes, but the first test we wrote now fails. The behavior it
describes, by example, does not match the specification we derived from
Wikipedia.

When done test-driving, you’ll know that the tests correctly describe how your
system works, as long as they pass. They provide examples that can read
easier than specs, if crafted well. We’ll continue to focus on making the tests
readable in our exercises (and I might even casually refer to them as specs).

c2/9/SoundexTest.cpp
TEST(SoundexEncoding, RetainsSoleLetterOfOneLetterWord) {
Soundex soundex;

auto encoded = soundex.encode("A");

ASSERT_THAT (encoded, Eq("A000"));
}

That wasn’t too tough!

We now have two tests that perform the same steps, though the data differs
slightly. That’s OK; each test now discretely documents one piece of behavior.
We not only want to make sure the system works as expected, we want
everyone to understand its complete set of intended behaviors.

It’s time for refactoring. The statement in encode() isn’'t as clear about what'’s
going on as it could be. We decide to extract it to its own method with an
intention-revealing name.

c2/10/SoundexTest.cpp
public:
std::string encode(const std::string& word) const {
return zeroPad(word);

}

private:
std::string zeroPad(const std::string& word) const {
return word + "000";

}

http://media.pragprog.com/titles/lotdd/code/c2/9/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/9/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/10/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

2.6

YYVYY

\

Chapter 2. Test-Driven Development: A First Example ® 28

Fixtures and Setup

Not only do we want to look at production code for refactoring opportunities,
we want to look at the tests, too. Both our tests require the same line of code
to create a Soundex instance. We're not happy with even such seemingly
trivial duplication. It adds up quickly and often turns into more complex
duplication. It also clutters the tests, detracting from what’s important for a
reader to understand.

It's common for related tests to need common code. Google Mock lets us define
a fixture class in which we can declare functions and member data for a
related set of tests. (Technically, all Google Mock tests use a fixture that it
generates behind the scenes.)

c2/10/SoundexTest.cpp
class SoundexEncoding: public testing::Test {
public:

Soundex soundex;

};

TEST_F(SoundexEncoding, RetainsSolelLetterOfOneLetterWord) {
auto encoded = soundex.encode("A");

ASSERT THAT (encoded, Eq("A000"));
}

TEST F(SoundexEncoding, PadsWithZerosToEnsureThreeDigits) {
auto encoded = soundex.encode("I");

ASSERT_THAT (encoded, Eq("I000"));
}

We create the SoundexEncoding fixture (which must derive from ::testing::Test)
so that creating a Soundex instance gets done in one place. Within the fixture,
we declare a soundex member variable and make it public so that the tests have
visibility to it. (If you're concerned about exposing soundex, remember that our
fixture class lives in a .cpp file. We’d prefer to avoid every piece of unnecessary
clutter in our tests.)

Google Mock instantiates the fixture class once per test. Before Google Mock
executes RetainsSoleLetterOfOneLetterWord, it creates a SoundexEncoding
instance, and before it executes PadsWithZerosToEnsureThreeDigits, it creates
a separate SoundexEncoding instance. To code a custom fixture, we change
the TEST macro invocation to TEST F, with the F standing for “Fixture.” If we
forget to use TEST_F, any test code attempting to use fixture member errors
will fail compilation.

http://media.pragprog.com/titles/lotdd/code/c2/10/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Fixtures and Setup ® 29

We delete the local declarations of soundex, since the member is available to
each test. We make this change incrementally. After coding the fixture and
changing the macro, we delete the local declaration of soundex from the first
test. We run all the tests to verify the change, remove the declaration from
the second test, and run all the tests again.

Getting rid of the duplicate Soundex declaration does at least a couple things.

¢ It increases the abstraction level of our tests. We now see only two lines
in each test, which allows us to focus on what’s relevant. We don’t see
the irrelevant detail of how the Soundex object gets constructed (see
Section 7.4, Test Abstraction, on page 181 for more information on why
this is important).

¢ It can reduce future maintenance efforts. Imagine we have to change how
we construct Soundex objects (perhaps we need to be able to specify a
language as an argument). Moving Soundex construction into the fixture
means we would need to make our change in only one place, as opposed
to making the change across several tests.

With only two lines each, our tests are a little easier to read. What else might
we do? We can reduce each test to a single line without losing any readability.
I'm also not a fan of explicit using directives, so we clean that up too.

c2/11/SoundexTest.cpp
#include "gmock/gmock.h"
#include "Soundex.h"

using namespace testing;

class SoundexEncoding: public Test {
public:
Soundex soundex;

}

TEST_F(SoundexEncoding, RetainsSolelLetterOfOneLetterWord) {
ASSERT THAT (soundex.encode("A"), Eq("A000"));
}

TEST_F(SoundexEncoding, PadsWithZerosToEnsureThreeDigits) {
ASSERT THAT (soundex.encode("I"), Eq("I000"));
}

You’'ll note that the test now refers to Soundex.h. Having the tests and code in
a single file was helpful for a short while. Now, the bouncing up and down in
a single file is getting old. We split into the test and the header (we’ll decide
whether we should create an .impl file when we're done). Here’s the header:

http://media.pragprog.com/titles/lotdd/code/c2/11/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

2.7

Yy

Chapter 2. Test-Driven Development: A First Example ® 30

c2/11/Soundex.h

#ifndef Soundex h
#define Soundex h
#include <string>

class Soundex

{
public:
std::string encode(const std::string& word) const {
return zeroPad(word);
}
private:
std::string zeroPad(const std::string& word) const {
return word + "000";
}
b
#endif

Thinking and TDD

The cycle of TDD, once again in brief, is to write a small test, ensure it fails,
get it to pass, review and clean up the design (including that of the tests),
and ensure the tests all still pass. You repeat the cycle throughout the day,
keeping it short to maximize the feedback it gives you. Though repetitive, it’s
not mindless—at each point you have many things to think about. Thinking
and TDD, on page 58, contains a list of questions to answer at each small
step.

To keep things moving, I'll assume you're following the steps of the cycle and
remind you of them only occasionally. You may want to tack to your monitor
a handy reminder card of the cycle.

For our next test, we tackle rule #2 (“replace consonants with digits after the
first letter”). A look at the replacement table reveals that the letter b corre-
sponds to the digit 1.

c2/12/SoundexTest.cpp

TEST F(SoundexEncoding, ReplacesConsonantsWithAppropriateDigits) {
ASSERT THAT (soundex.encode("Ab"), Eq("A100"));

}

The test fails as expected.

Value of: soundex.encode("Ab")
Expected: is equal to 0x80b8a5f pointing to "Al00"
Actual: "Ab0GO" (of type std::string)

http://media.pragprog.com/titles/lotdd/code/c2/11/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/12/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYVYVYY

Thinking and TDD * 31

As with most tests we will write, there might be infinite ways to code a solution,
out of which maybe a handful are reasonable. Technically, our only job is to
make the test pass, after which our job is to clean up the solution.

However, the implementation that we seek is one that generalizes our solution
—but does not over-generalize it to support additional concerns—and doesn’t
introduce code that duplicates concepts already coded.

You could provide the following solution, which would pass all tests:

std::string encode(const std::string& word) const {
if (word == "Ab") return "Al100";
return zeroPad(word);

}

That code, though, does not move toward a more generalized solution for the
concern of replacing consonants with appropriate digits. It also introduces a
duplicate construct: the special case for "Ab" resolves to zero-padding the text
"Al", yet we already have generalized code that handles zero-padding any
word.

You might view this argument as weak, and it probably is. You could easily
argue any of the infinite alternate approaches for an equally infinite amount
of time. But TDD is not a hard science; instead, think of it as a craftperson’s
tool for incrementally growing a codebase. It's a tool that accommodates
continual experimentation, discovery, and refinement.

We'd rather move forward at a regular pace than argue. Here’s our solution
that sets the stage for a generalized approach:

c2/13/Soundex.h
std::string encode(const std::string& word) const {
auto encoded = word.substr(0, 1);

if (word.length() > 1)
encoded += "1";
return zeroPad(encoded);

}
We run the tests, but our new test does not pass.

Expected: is equal to 0x80b8ac4 pointing to "A100"
Actual: "A1000" (of type std::string)

The padding logic is insufficient. We must change it to account for the length
of the encoded string.

http://media.pragprog.com/titles/lotdd/code/c2/13/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

vy

YYY

YYVYY

Chapter 2. Test-Driven Development: A First Example ® 32

c2/14/Soundex.h

std::string zeroPad(const std::string& word) const {
auto zerosNeeded = 4 - word.length();
return word + std::string(zerosNeeded, '0');

}

Our tests pass. That’s great, but our code is starting to look tedious. Sure,
we know how encode() works, because we built it. But someone else will have
to spend just a little more time to carefully read the code in order to under-
stand its intent. We can do better than that. We refactor to a more declarative
solution.

c2/15/Soundex.h
class Soundex
{
public:
std::string encode(const std::string& word) const {
return zeroPad(head(word) + encodedDigits(word));

}

private:
std::string head(const std::string& word) const {
return word.substr(0, 1);

}

std::string encodedDigits(const std::string& word) const {
if (word.length() > 1) return "I";

return "";
}
std::string zeroPad(const std::string& word) const {
// ...
}

}

We're fleshing out the algorithm for Soundex encoding, bit by bit. At the same
time, our refactoring helps ensure that the core of the algorithm remains
crystal clear, uncluttered by implementation details.

Structuring code in this declarative manner makes code considerably easier
to understand. Separating interface (what) from implementation (how) is an
important aspect of design and provides a springboard for larger design
choices. You want to consider similar restructurings every time you hit the
refactoring step in TDD.

Some of you may be concerned about a few things in our implementation
details. First, shouldn't we use a stringstream instead of concatenating
strings? Second, why not use an individual char where possible? For example,

http://media.pragprog.com/titles/lotdd/code/c2/14/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/15/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YVYY

2.8

Test-Driving vs. Testing ® 33

why not replace return word.substr(0, 1); with return word.front();? Third, wouldn’t it
perform better to use return std::string(); instead of return "";?

These code alternatives might all perform better. But they all represent pre-
mature optimization. More important now is a good design, with consistent
interfaces and expressive code. Once we finish implementing correct behavior
with a solid design, we might or might not consider optimizing performance
(but not without first measuring; see Section 10.2, TDD and Performance, on
page 269 for a discussion about handling performance concerns).

Premature performance optimizations aside, the code does need a bit of work.
We eliminate the code smell of using a magic literal to represent the maximum
length of a Soundex code by replacing it with an appropriately named constant.

c2/16/Soundex.h

static const size t MaxCodelLength{4};

// ...

std::string zeroPad(const std::string& word) const {
auto zerosNeeded = MaxCodelLength - word.length();
return word + std::string(zerosNeeded, '0');

What about the hard-coded string "1" in encodedDigits()? Our code needs to
translate the letter b to the digit 1, so we can’t eliminate it using a variable.
We could introduce another constant, or we could return the literal from a
function whose name explains its meaning.

We could even leave the hardcoded string "1" in place to be driven out by the
next test. But can we guarantee we’ll write that test before integrating code?
What if we're distracted? Coming back to the code, we’ll waste a bit more time
deciphering what we wrote. Keeping with an incremental delivery mentality,
we choose to fix the problem now.

c2/17/Soundex.h
std::string encodedDigits(const std::string& word) const {
if (word.length() > 1) return encodedDigit();

return "";

}

std::string encodedDigit() const {
return "1";

}

Test-Driving vs. Testing

We need to test-drive more of the consonant conversion logic in order to
generalize our solution. Should we add an assertion to ReplacesConso-
nantsWithAppropriateDigits, or should we create an additional test?

http://media.pragprog.com/titles/lotdd/code/c2/16/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/17/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Yy

vy

>
>

Chapter 2. Test-Driven Development: A First Example * 34

The rule of thumb for TDD is one assert per test (see Section 7.3, One Assert
per Test, on page 178 for more information on this guideline). It’s a good idea
that promotes focusing on the behavior of the tests, instead of centering tests
around functions. We will follow this rule most of the time.

An assertion that represents encoding a second consonant doesn’t seem like
distinct behavior. Were we to create a new test, how would we name it?
ReplacesBWith1, ReplacesCWith2, and so on...yuk!

We make the rare choice of adding a second assertion, representing a discrete
test case, to the test. We’d prefer that if one assertion fails, the others still
execute. To accomplish that goal, we use the EXPECT THAT macro provided by
Google Mock, instead of ASSERT_THAT.

c2/18/SoundexTest.cpp

TEST F(SoundexEncoding, ReplacesConsonantsWithAppropriateDigits) {
EXPECT_THAT (soundex.encode("Ab"), Eq("A100"));
EXPECT_THAT (soundex.encode("Ac"), Eq("A200"));

}

The second consonant drives in the need for an if statement to handle the
special case.

c2/18/Soundex.h
std::string encodedDigits(const std::string& word) const {

if (word.length() > 1) return encodedDigit(word[1]);
return "";
}
std::string encodedDigit(char letter) const {
if (letter == 'c') return "2";
return "1";
}

We add a third data case.

c2/19/SoundexTest.cpp

TEST_F(SoundexEncoding, ReplacesConsonantsWithAppropriateDigits) {
EXPECT THAT (soundex.encode("Ab"), Eq("A100"));
EXPECT_THAT (soundex.encode("Ac"), Eq("A200"));
EXPECT THAT (soundex.encode("Ad"), Eq("A300"));

}

The need for a third consonant makes it clear that we need to replace the if
with a hash-based collection.

c2/19/Soundex.h
std::string encodedDigit(char letter) const {
const std::unordered map<char,std::string> encodings {
Ob', "1},

http://media.pragprog.com/titles/lotdd/code/c2/18/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/18/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/19/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/19/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYVYY

Test-Driving vs. Testing ® 35

f'ct, "2"},
{Idl, II3II}
};
return encodings.find(letter)->second;
}

Now we need to code support for the rest of the consonant conversions. The
question is, do we need to test-drive each one?

A mantra surfaced in the early TDD days that says, “Test everything that can
possibly break.” This is a glib response to the oft-asked question, “What do
I have to test?” Realistically, coding encodings map is a low-risk activity. It's
unlikely we’ll break anything in doing so.

A counterargument is that you can break just about anything, no matter how
simple (and I've done it). As the tedium of entering repetitive data increases,
so does our likelihood to make a mistake and not even notice it. Having tests
would decrease the chance that we create a defect.

Tests would provide a clear document of the conversions (though you could
argue that the table itself is the clearest document). On the flip side, were we
to create a table with hundreds of elements, having a test for each would be
ridiculous.

What's the right answer? Maybe the most important consideration is that we
are test-driving, not testing. “Is there a difference?” you ask. Yes. Using a
testing technique, you would seek to exhaustively analyze the specification
in question (and possibly the code) and devise tests that exhaustively cover
the behavior. TDD is instead a technique for driving the design of the code.
Your tests primarily serve the purpose of specifying the behavior of what you
will build. The tests in TDD are almost a by-product of the process. They
provide you with the necessary confidence to make subsequent changes to
the code.

The distinction between test-driving and testing may seem subtle. The
important aspect is that TDD represents more of a sufficiency mentality. You
write as many tests as you need to drive in the code necessary and no more.
You write tests to describe the next behavior needed. If you know that the
logic won’t need to change any further, you stop writing tests.

Of course, real experience provides the best determinant. Test-driving for
confidence works great until you ship a defect. When you do, remind yourself
to take smaller, safer steps.

We choose to test-drive. We complete the conversion table.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYYVYVYYVYY

2.9

Chapter 2. Test-Driven Development: A First Example ® 36

c2/20/Soundex.h
std::string encodedDigit(char letter) const {
const std::unordered map<char, std::string> encodings {

{'b', 1"}, {'f', "1"}, {'p', "1"}, {'v', "1},
{rc', "2"y, L'g', "2y, '), "2'), k', 2, ', 2,
{'s', "2"}, {'x', "2"}, {'z', "2"},
{'d', "3}, {'t', "3"},
(', ey,
{'m', "5"}, {'n', "5"},
{'r, "6"}
Iy
return encodings.find(letter)->second;

}

What about the tests? Do we need three assertions in ReplacesConsonantsWith-
AppropriateDigits? To answer that question, we ask ourselves whether having
the additional assertions provides increased understanding of how the feature
works. We answer ourselves: probably not. We eliminate two assertions,
change the remaining one to use ASSERT THAT, and choose a different encoding
just to bolster our confidence a little.

c2/20/SoundexTest.cpp

TEST_F(SoundexEncoding, ReplacesConsonantsWithAppropriateDigits) {
ASSERT_THAT (soundex.encode("Ax"), Eq("A200"));

}

What If?

Our implementation assumes that the letter passed to encodedDigit() will be
found in the encodings map. We make the assumption to allow moving forward
incrementally, writing only the minimal code needed to pass each test. But
we still have the responsibility of thinking about code that may need to be
written.

Will it ever be possible for encodedDigit() to be passed a letter that doesn’t appear
in the lookup map? If so, what should the function do? Wikipedia doesn’t
answer the question. We could guess, but the better answer is to ask the
customer. We don’t have one, but we can find a customer proxy online. A web
search quickly turns up a handful of Soundex calculator apps. We enter A#
into one of them and receive A000 as a response. Question answered: we need
to ignore unrecognized characters.

With TDD, you can choose to jot down the name of a would-be test, or you
can write it now. At times I've found that driving in a few exceptional cases
earlier would have saved me some debugging time later. Let’s put the test in
place now.

http://media.pragprog.com/titles/lotdd/code/c2/20/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/20/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Yy

2.10

One Thing ata Time * 37

c2/21/SoundexTest.cpp

TEST F(SoundexEncoding, IgnoresNonAlphabetics) {
ASSERT THAT (soundex.encode("A#"), Eq("A0O0"));

}

The test doesn’t simply fail; it crashes. The find() call returns an iterator
pointing to end() that we try to dereference. We change encodedDigit() to instead
return an empty string in this case.

c2/21/Soundex.h
std::string encodedDigit(char letter) const {
const std::unordered map<char, std::string> encodings {
{'b', "1'}y, {'F', "1"}, {'p', "I'}, {'v', "I'},

/]
+
auto it = encodings.find(letter);
return it == encodings.end() ? "" : it->second;
}
One Thing at a Time

We want to test-drive converting multiple characters in the tail of the word.

c2/22/SoundexTest.cpp

TEST_F(SoundexEncoding, ReplacesMultipleConsonantsWithDigits) {
ASSERT THAT (soundex.encode("Acdl"), Eq("A234"));

}

A simple solution would involve iterating through all but the first letter of the
word, converting each. But our code isn’t quite structured in a way that eas-
ily supports that. Let’s restructure the code.

One thing at a time, however. When test-driving, you want to keep each step
in the cycle distinct. When writing a test, don’t go off and refactor. Don’t
refactor when trying to get a test to pass, either. Combining the two activities
will waste your time when things go awry, which they will.

We comment out the test we just wrote, temporarily halting our “red” activity.
(In Google Mock, prepending DISABLED_ to the test name tells Google Mock to
skip executing it. See Disabling Tests, on page 76, to read about the implica-
tions of disabling tests.)

c2/23/SoundexTest.cpp

TEST _F(SoundexEncoding, DISABLED ReplacesMultipleConsonantsWithDigits) {
ASSERT THAT (soundex.encode("Acdl"), Eq("A234"));

}

We focus on refactoring activity and rework our solution a little. Rather than
pass the entire word to encodedDigits(), we pass it the tail of the word—all

http://media.pragprog.com/titles/lotdd/code/c2/21/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/21/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/22/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/23/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYY

Yy

YVYY

Chapter 2. Test-Driven Development: A First Example * 38

characters except the first. Passing only the tail should simplify the code we’ll
need to iterate through the letters to be converted. It also allows us to use a
couple string functions that help clarify what the code does: empty() and front().

c2/23/Soundex.h
std::string encode(const std::string& word) const {

return zeroPad(head(word) + encodedDigits(tail(word)));
}
private:
// ...
std::string tail(const std::string& word) const {
return word.substr(1);
}
std::string encodedDigits(const std::string& word) const {
if (word.empty()) return "";
return encodedDigit(word.front());

}

We run our tests again to ensure our changes break no tests. That ends the
refactoring activity.

We return to the start of the TDD cycle by reenabling ReplacesMultipleConso-
nantsWithDigits and watching it fail. We get our tests to pass by using a
range-based for loop to iterate the tail of the word.

c2/24/Soundex.h
std::string encodedDigits(const std::string& word) const {
if (word.empty()) return "";

std::string encoding;
for (auto letter: word) encoding += encodedDigit(letter);
return encoding;

}

Now that we've added a loop to encodedDigits(), we think we don’t need the guard
clause to return early if the word passed in is empty. As a refactoring step,
we remove it.

c2/25/Soundex.h

std::string encodedDigits(const std::string& word) const {
std::string encoding;
for (auto letter: word) encoding += encodedDigit(letter);
return encoding;

}

We rerun our tests. Success! Deleting unnecessary code is extremely satisfying,
but only when we can do so with confidence. Having tests to try these little
bits of cleanup rocks.

http://media.pragprog.com/titles/lotdd/code/c2/23/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/24/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/25/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Limiting Length * 39

2.11 Limiting Length
Rule #4 tells us the Soundex code must be four characters.

c2/26/SoundexTest.cpp

TEST F(SoundexEncoding, LimitsLengthToFourCharacters) {
ASSERT THAT (soundex.encode("Dcdlb").length(), Eq(4u));

}

The code throws an exception when Google Mock runs this new test. No
worries, because our test tool traps this exception, reports a test failure, and
continues running any subsequent tests.

[RUN] SoundexEncoding.LimitsLengthToFourCharacters

unknown file: Failure

C++ exception with description "basic_string:: S create" thrown in the test body.
[FAILED] SoundexEncoding.LimitsLengthToFourCharacters (1 ms)

By default, Google Mock swallows the problem and keeps running the rest of
your tests. If you prefer to crash the tests on an uncaught exception, you can
run Google Mock with the following command-line option:

--gtest catch exceptions=0

Looking at a backtrace in gdb (or a comparable debugging tool) tells us that
our problem is in zeroPad(). A web search reveals that the _S _create error occurs
when you attempt to create a string larger than the maximum allowed size.
With those two facts, we focus on the string construction in zeroPad(). Aha!
When the length of code exceeds MaxCodelength, zerosNeeded overflows with a
value that makes the string constructor unhappy.

TDD fosters an incremental approach that makes it easier to resolve problems,
because it exposes them as soon as you create them. We didn’t need to debug
to pinpoint our problem; a glance at the backtrace was all we needed.

(Yet, any time things crash, we always wonder about our approach. How
might we have better test-driven to make the source of problem more explicit?
Once we wrote zeroPad(), we might have considered elevating it as a public
utility method. At that point, our job would have been to more exhaustively
test it in order to document to other developers how it could be used. We
might have been more likely to stumble across the need to guard zeroPad()
against creating a string with an invalid length.)

For our solution to the problem, we could fix zeroPad(). We could also change
encodedDigits() to stop once it encodes enough letters. We choose the latter—once
encoding gets filled with encoded digits, we break out of the loop.

http://media.pragprog.com/titles/lotdd/code/c2/26/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Yy

N YVYY

Chapter 2. Test-Driven Development: A First Example ® 40

c2/26/Soundex.h

std::string encodedDigits(const std::string& word) const {
std::string encoding;
for (auto letter: word)

{
if (encoding.length() == MaxCodelLength - 1) break;
encoding += encodedDigit(letter);

}

return encoding;

}

The new statement doesn’t clearly and directly declare its intent. We immedi-
ately extract it to the intention-revealing function isComplete().

c2/27/Soundex.h
std::string encodedDigits(const std::string& word) const {
std::string encoding;
for (auto letter: word) {
if (isComplete(encoding)) break;
encoding += encodedDigit(letter);

}

return encoding;

}

bool isComplete (const std::string& encoding) const {
return encoding.length() == MaxCodelLength - 1;
}

Dropping Vowels

Rule #1 says to drop all occurrences of vowels and the letters w, h, and y.
For lack of a better name, we’ll refer to these as vowel-like letters.

c2/28/SoundexTest.cpp

TEST_F(SoundexEncoding, IgnoresVowellLikelLetters) {
ASSERT_THAT (soundex.encode("Baeiouhycdl"), Eq("B234"));

}

The test passes without us adding a lick of production code, because
encodedDigit() answers an empty string if the letter to be encoded wasn’t found.
Any vowels thus encode to the empty string, which gets harmlessly appended.

A test that passes with no change to your classes is always cause for humility
and pause (see Section 3.5, Getting Green on Red, on page 60). Ask yourself,
“What might I have done differently?”

If a stream of subsequent tests continues to pass, consider reverting your
effort. You're likely taking too-large steps, and you likely won't find as much
benefit in TDD. In our case, we could have written a test that demonstrates

http://media.pragprog.com/titles/lotdd/code/c2/26/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/27/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/28/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

2.13

YYY

Doing What It Takes to Clarify Tests ® 41

what happens for any unrecognized characters and at that point chosen to
have it return the same character instead of the empty string.

Doing What It Takes to Clarify Tests

For our next test, we tackle the case where two adjacent letters encode to the
same digit. Per Soundex rule #3, such duplicate letters get encoded as a single
digit. The rule also states that it applies to the first letter. Let’s deal with the
first case now and worry about the first letter next.

c2/29/SoundexTest.cpp

TEST_F(SoundexEncoding, CombinesDuplicateEncodings) {
ASSERT THAT (soundex.encode("Abfcgdt"), Eq("A123"));

}

That’s a confusing test! To understand why Abfcgdt encodes to A123, we have
to know that b and fboth encode to 1, c and g both encode to 2, and d and
t both encode to 3. We can learn these facts from reading other tests, such
as ReplacesConsonantsWithAppropriateDigits, but maybe we should make
the test more direct.

Let’s add a series of precondition assertions to help readers make the connec-
tion.

c2/30/SoundexTest.cpp
TEST F(SoundexEncoding, CombinesDuplicateEncodings) {

ASSERT THAT (soundex.encodedDigit ("
ASSERT THAT (soundex.encodedDigit(
ASSERT THAT (soundex.encodedDigit (

b'), Eq(soundex.encodedDigit('f')));

'c'), Eq(soundex.encodedDigit('g')));

'd'"), Eg(soundex.encodedDigit('t')));
ASSERT THAT (soundex.encode("Abfcgdt"), Eq("A123"));

}

The assertion doesn’t compile, since encodedDigit() is private. We choose to
simply make encodedDigit() public.

c2/30/Soundex.h
public:
std::string encodedDigit(char letter) const {
/] ...
}

private:
// ...

Uh-oh...I'm sensing consternation.

http://media.pragprog.com/titles/lotdd/code/c2/29/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/30/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/30/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 2. Test-Driven Development: A First Example ® 42

Q.: Wait, no! You can’t just go making private functions public.

A.: Wedo have other solutions. We could malce the test code a friend of the Soundex
class, but a friend is usually a poor choice, and that’s no different when test-driving.
We could move the function to another class, possibly named SoundexDigitEncoder,
but that seems overkill. We could also forego the preconditions and find another
way to make our test easier to read.

Q.: We've always been taught to not expose private implementation details.
Shouldn’t you follow that time-honored rule?

A.: First, we don’t willy-nilly expose everything, just things we need. Second, we’re
not exposing implementation details so much as broadening the public interface of
the Soundex class. Yes, we’re adding to it a function that production clients
of Soundex shouldn’t need, but our test—a client—needs it. We take on a low risk
of potential abuse and in return guarantee less wasted time for developers who
must read our test in the future.

We could make the case for precondition assertions in some of the other tests
we've written for Soundex. Use them sparingly, though. Often, introducing a
meaningfully named constant or local variable can be a simpler, as-effective
solution. Also, the compulsion to add a precondition assertion might suggest
you are missing another test. Are you? Go add it and then see whether having
that test eliminates the need for the precondition assertion.

To make CombinesDuplicateEncodings pass, we could introduce a local variable that
would track the last digit appended, updating it each iteration of the loop.
But that seems muddy. Let’s start with a declaration of intent.

c2/31/Soundex.h
std::string encodedDigits(const std::string& word) const {

}

std::string encoding;
for (auto letter: word) {
if (isComplete(encoding)) break;
if (encodedDigit(letter) !'= lastDigit(encoding))
encoding += encodedDigit(letter);
}

return encoding;

We know what lastDigit() needs to do. We think for a moment and come up with
one way that provides the how.

c2/31/Soundex.h
std::string lastDigit(const std::string& encoding) const {

nu,
’

if (encoding.empty()) return
return std::string(1l, encoding.back());

http://media.pragprog.com/titles/lotdd/code/c2/31/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/31/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

2.14

\/

YYVYY

>

Testing Outside the Box ® 43

Testing Outside the Box

Now we consider a test where the second letter duplicates the first. Hmm...our
tests so far always use an uppercase letter followed by lowercase letters, but
the algorithm shouldn’t really care. Let’s take a brief pause and implement
a couple tests that deal with case considerations. (We could also choose to
add to our test list and save the effort for later.)

We don’t have explicit specs for dealing with case, but part of doing TDD well
is thinking outside of what we're given. Creating a robust application requires
finding answers to critical concerns that aren’t explicitly specified. (Hint: ask
your customer.)

Soundex encodes similar words to the same code to allow for quick and easy
comparison. Case matters not in how words sound. To simplify comparing
Soundex codes, we need to use the same casing consistently.

c2/32/SoundexTest.cpp
TEST _F(SoundexEncoding, UppercasesFirstLetter) {

ASSERT THAT (soundex.encode("abcd"), StartsWith("A"));
}

We change the core algorithm outlined in encode() to include uppercasing the
head of the word, which we expect to be only a single character. (The casting
in upperFront() avoids potential problems with handling EOF.)

c2/32/Soundex.h
std::string encode(const std::string& word) const {
return zeroPad(upperFront(head(word)) + encodedDigits(tail(word)));

}

std::string upperFront(const std::string& string) const {
return std::string(1,
std::toupper(static_cast<unsigned char>(string.front())));

}

Thinking about case considerations prods us to revisit the test IgnoresVow-
elLikeLetters. Given what we learned earlier, we expect that our code will
ignore uppercase vowels just like it ignores lowercase vowels. But we’d like
to make sure. We update the test to verify our concern, putting us outside
the realm of TDD and into the realm of testing after the fact.

c2/33/SoundexTest.cpp
TEST_F(SoundexEncoding, IgnoresVowellLikelLetters) {

ASSERT THAT (soundex.encode("BaAeEiIoOuUhHyYcdl"), Eq("B234"));
}

http://media.pragprog.com/titles/lotdd/code/c2/32/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/32/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/33/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YVYY

Chapter 2. Test-Driven Development: A First Example ® 44

It passes. We could choose to discard our updated test. In this case, we decide
to retain the modified test in order to explicitly document the behavior for
other developers.

Since we felt compelled to write yet another test that passed immediately,
because we weren't quite sure what would happen, we decide to revisit our
code. The code in encodedDigits() appears a bit too implicit and difficult to follow.
We have to dig a bit to discover the following:

e Many letters don’t have corresponding encodings.
¢ encodedDigit() returns the empty string for these letters.

e Concatenating an empty string to the encodings variable in encodedDigits()
effectively does nothing.

We refactor to make the code more explicit. First, we change encodedDigit() to
return a constant named NotADigit when the encodings map contains no entry
for a digit. Then we add a conditional expression in encodedDigits() to explicitly
indicate that NotADigit encodings get ignored. We also alter lastDigit() to use the
same constant.

c2/34/Soundex.h
const std::string NotADigit{"*"};

std::string encodedDigits(const std::string& word) const {
std::string encoding;
for (auto letter: word) {
if (isComplete(encoding)) break;

auto digit = encodedDigit(letter);
if (digit !'= NotADigit && digit != lastDigit(encoding))
encoding += digit;
}
return encoding;

}

std::string lastDigit(const std::string& encoding) const {
if (encoding.empty()) return NotADigit;
return std::string(1l, encoding.back());

}

// ...

std::string encodedDigit(char letter) const {
const std::unordered map<char, std::string> encodings {

{'b", "1}, {"f", "1"}, {*p*, "1}, {'v', "1"},

/...
}i
auto it = encodings.find(letter);
return it == encodings.end() ? NotADigit : it->second;

http://media.pragprog.com/titles/lotdd/code/c2/34/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

i YVYY

Back on Track ¢ 45

(That listing summarizes a few incremental refactoring changes, each verified
with passing tests. In other words, we don’t make these changes all at once.)

Let’s move on to a test that deals with the casing of consonants.

c2/35/SoundexTest.cpp

TEST_F(SoundexEncoding, IgnoresCaseWhenEncodingConsonants) {
ASSERT_THAT (soundex.encode("BCDL"), Eq(soundex.encode("Bcdl")));

}

Our assertion takes on a slightly different form. It declares that the encoding
of "BCDL" should be equivalent to the encoding of "Bcdl". In other words, we
don’t care what the actual encoding is, as long as the uppercase input resolves
to the same encoding as the corresponding lowercase input.

Our solution is to lowercase the letter when querying the encodings lookup
table (in encodedDigit()).

c2/35/Soundex.h
std::string encodedDigit(char letter) const {
const std::unordered map<char, std::string> encodings {
{'b, "1}, {'f', 1"}, {'p', "1"}, {'v', "1},

// ...
}i
auto it = encodings.find(lower(letter));
return it == encodings.end() ? NotADigit : it->second;
}
private:

char lower(char c) const {
return std::tolower(static_cast<unsigned char>(c));

}

Back on Track

When we started the work in this section, we were trying to write a test to
handle the scenario where the second letter duplicates the first letter. That
triggered us to make our algorithm case-insensitive. We can now return to
our original goal and write this test:

c2/36/SoundexTest.cpp

TEST_F(SoundexEncoding, CombinesDuplicateCodesWhen2ndLetterDuplicateslst) {

ASSERT_THAT (soundex.encode("Bbcd"), Eq("B230"));
}

Our solution involves a little bit of change to the overall policy embodied in
encode(). We pass the entire word to encodedDigits() for encoding so that we can
compare the encoding of the second letter to the first. We append only the
tail of all encoded digits to the overall encoding.

http://media.pragprog.com/titles/lotdd/code/c2/35/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/35/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/36/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

2.16

Chapter 2. Test-Driven Development: A First Example ® 46

In encodedDigits(), we encode the word’s first character so that comparisons to
the prior digit can compare against it. Since encodedDigits() now encodes the
entire word, we alter isComplete() to accommodate one more character. We also
change the core loop in encodedDigits() to iterate across the tail of the word.

c2/36/Soundex.h
std::string encode(const std::string& word) const {
return zeroPad(upperFront(head(word)) + tail(encodedDigits(word)));

}

std::string encodedDigits(const std::string& word) const {
std::string encoding;

encoding += encodedDigit(word.front());

for (auto letter: tail(word)) {
if (isComplete(encoding)) break;

auto digit = encodedDigit(letter);
if (digit != NotADigit && digit != lastDigit(encoding))
encoding += digit;
}

return encoding;

}

bool isComplete (const std::string& encoding) const {
return encoding.length() == MaxCodelLength;
}

Refactoring to Single-Responsibility Functions

The encodedDigits() function continues to increase in complexity. We inserted
blank lines in order to visually group related statements, a dead giveaway
that a function does too much.

The single responsibility principle (SRP) tells us that each function should
have one reason to Change.4 encodedDigits() exhibits a classic violation of the
SRP: it mixes high-level policy with implementation details.

Our encodedDigits() function accomplishes its goal using a two-step algorithm.
First append the encoded first letter to the encoding, and then iterate through
the rest of the letters and append them. The problem is that encodedDigits() also
includes the low-level details to accomplish those two steps. encodedDigits()
violates SRP, because it must change for two reasons: if we want to alter
implementation details or if we need to change the overall policy for encoding.

4. Agile Software Development, Principles, Patterns, and Practices [MarO2]

http://media.pragprog.com/titles/lotdd/code/c2/36/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Refactoring to Single-Responsibility Functions ® 47

We can extract the two steps from encodedDigits() into two separate functions,
each containing implementation details for a simple abstract concept. What
remains in encodedDigits() declares our solution’s policy.

c2/37/Soundex.h
std::string encodedDigits(const std::string& word) const {
std::string encoding;
encodeHead (encoding, word);
encodeTail(encoding, word);
return encoding;

}

void encodeHead(std::string& encoding, const std::string& word) const {
encoding += encodedDigit(word.front());

}

void encodeTail(std::string& encoding, const std::string& word) const {
for (auto letter: tail(word)) {
if (isComplete(encoding)) break;

auto digit = encodedDigit(letter);
if (digit != NotADigit && digit '= lastDigit(encoding))
encoding += digit;

}

That’s better. Let’s go one step further and extract some of the body of the for
loop in encodeTail().

c2/38/Soundex.h
void encodeTail(std::string& encoding, const std::string& word) const {
for (auto letter: tail(word))
if (!isComplete(encoding))
encodeletter(encoding, letter);

}

void encodelLetter(std::string& encoding, char letter) const {
auto digit = encodedDigit(letter);
if (digit != NotADigit && digit != lastDigit(encoding))
encoding += digit;

}

The resulting refactored code creates some visual similarity that suggests the
possibility for more tightening of the algorithm. Is encoding a single character
in encodeHead() simply a special case of the encoding loop in encodeTail()? Feel
free to experiment—you can do so safely, because you've got tests! We think
the algorithm is clear enough for now and choose to move on.

http://media.pragprog.com/titles/lotdd/code/c2/37/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/38/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 2. Test-Driven Development: A First Example ® 48

2.17 Finishing Up

What about vowels? Rule #3 also states that otherwise-duplicate encodings
separated by a vowel (not h or w) get coded twice.

c2/39/SoundexTest.cpp

TEST_F(SoundexEncoding, DoesNotCombineDuplicateEncodingsSeparatedByVowels) {
ASSERT THAT (soundex.encode("Jbob"), Eq("J110"));

}

Once again we solve our challenge by declaring what we want to accomplish.
We change the conditional expression in encodeletter() to append a digit only
if it is not a duplicate or if the last letter is a vowel. This declaration drives a
few corresponding changes.

c2/39/Soundex.h
void encodeTail(std::string& encoding, const std::string& word) const {
for (auto i = lu; i < word.length(); i++)
if (!isComplete(encoding))
encodeletter(encoding, word[i], word[i - 11);

YVYY

}

» void encodelLetter(std::string& encoding, char letter, char lastlLetter) const {
auto digit = encodedDigit(letter);
if (digit !'= NotADigit &&

> (digit !'= lastDigit(encoding) || isVowel(lastLetter)))
encoding += digit;
}
» bool isVowel(char letter) const {
> return
> std::string("aeiouy").find(lower(letter)) != std::string::npos;
>}

Is passing in the previous letter the best way to do this? It's direct and
expressive. We'll stick with it for now.

2.18 What Tests Are We Missing?

We're rarely handed all the specs on a silver platter. Few are so lucky. Even
our Soundex rules, seemingly complete, don’t cover everything. While we were
coding, some of the tests and some of our implementation triggered other
thoughts. We'll either make mental notes or sometimes write down our
thoughts on an index card or notepad. Here’s a list for the Soundex exercise:

e What if we're passed a word with characters normally considered as word
separators, such as periods (for example, “Mr.Smith”)? Should we ignore
the characters (like we currently do), throw an exception because the
client should have split the word properly, or do something else?

http://media.pragprog.com/titles/lotdd/code/c2/39/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/39/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

2.19

Our Solution * 49

Speaking of exceptions, how do we test-drive exception handling into our
code? In Exception-Based Tests, on page 94, you'll learn how to design
tests that expect exceptions to be thrown.

¢ What encoding should an empty string return? (Or can we assume we’ll
not be passed an empty string?)

e What should we do with non-English alphabet consonants (such as i)?
Does the Soundex algorithm even apply? Our isVowel() function needs to
support vowels with diacritical marks.

Many of these concerns are critical to designing a robust, fail-safe Soundex
class. Without addressing them, our application may fail in production.

We don’t have definitive answers for all of these “what ifs.” As programmers,
we've learned to make decisions at times on our own. But an oft-better route
is to ask the customer or even collaborate with them to define acceptance
tests (see Section 10.3, Unit Tests, Integration Tests, and Acceptance Tests,
on page 278).

“Should the system do A, or should it do B?” In the old days, we would have
simply coded our choice and moved on. What we lost in doing so was imme-
diate documentation on which choice we made. Somewhere, the solution for
B was encoded in the midst of a lot of other code. Sure, we could analyze the
codebase to determine what decisions were made, but often at excessive cost.
We've all spent too many hours trying to determine how code behaves.

In contrast, test-driving leaves behind a clear document. We waste no analysis
time uncovering a choice made moons ago.

Test-driving solutions to any of our earlier “what if” questions is no different
from what we’'ve done so far. I'll leave coding the missing tests as an exercise
for you.

Our Solution

We arrived at a test-driven solution for Soundex. Our solution is by no means
the only one or even the best. But we have high confidence that we could ship
it (barring the outstanding items discussed in Section 2.18, What Tests Are
We Missing?, on page 48), and that’s what’s most important.

I've test-driven Soundex a handful of times, each time deriving a different
solution. Most solutions differed only in a few small ways, but one was dra-
matically different (and poorly performing) when I actively sought to solve the
problem in an extremely declarative manner. Each pass through the process

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

2.20

Chapter 2. Test-Driven Development: A First Example ® 50

of test-driving Soundex taught me a bit more about the algorithm, but I also
learned more about what works well from a test-driving stance.

You might find similar value in test-driving the Soundex algorithm a few
times. The notion of repeatedly practicing TDD against the same example is
known as a kata. See Section 11.5, Katas and Dogjos, on page 310 for further
information on katas.

There is no one right way to code any solution. There are important solution
characteristics.

¢ It implements what the customer asked for. If not, it’s a bad solution, no
matter what. The tests you build using TDD can help you understand
whether your solution is in line with what the customer requested. Suffi-
cient performance is one of those things your customer likely wants. Part
of your job is to ensure you understand their specific performance needs,
not introduce the costs of optimization when it’s not needed.

e It works. If a solution exhibits significant defects, it’s bad, no matter how
elegant. TDD helps ensure that the software we deliver behaves the way
we expect. TDD is not a silver bullet. You'll still ship defects, and you still
need many other forms of testing. However, TDD gives you opportunities
to ship code with considerably fewer defects.

e It’s readily understood. Everyone wastes excessive time trying to understand
poorly written code. Following TDD will provide you with safe opportunities
to rename and restructure your code for better understanding.

e It's easily changed. Usually, ease of change aligns with design quality.
TDD allows you to make the continual tweaks necessary to keep design
quality high.

Our solution isn't very procedural. The complete algorithm isn’t in one function
that you can read from top to bottom. Instead, we implemented it in the form
of numerous small member functions, most one or two lines long. Each of
these functions contains code at a single level of abstraction. Initial encounters
with code like this can cause fits of apoplexy: “Dagnabbit, where’s all the work
happening?” To learn more about why we code this way, refer to Benefits of
Small Methods, on page 156.

The Soundex Class

Since we're ready to check in, let’s take a look at our solution. We decide that we
don’t yet have a compelling reason to split out an implementation (.cpp) file, though
that might be an essential part of making it production-ready in your system.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

The Soundex Class ® 51

c2/40/SoundexTest.cpp
#include "gmock/gmock.h"
#include "Soundex.h"
using namespace testing;

class SoundexEncoding: public Test {
public:
Soundex soundex;

}

TEST F(SoundexEncoding, RetainsSolelLetterOfOneLetterWord) {
ASSERT THAT (soundex.encode("A"), Eq("A000"));
}

TEST F(SoundexEncoding, PadsWithZerosToEnsureThreeDigits) {
ASSERT_THAT (soundex.encode("I"), Eq("I000"));
}

TEST F(SoundexEncoding, ReplacesConsonantsWithAppropriateDigits) {
ASSERT THAT (soundex.encode("Ax"), Eq("A200"));
}

TEST F(SoundexEncoding, IgnoresNonAlphabetics) {
ASSERT THAT (soundex.encode("A#"), Eq("A000"));
}

TEST F(SoundexEncoding, ReplacesMultipleConsonantsWithDigits) {
ASSERT THAT (soundex.encode("Acdl"), Eq("A234"));
}

TEST_F(SoundexEncoding, LimitsLengthToFourCharacters) {
ASSERT _THAT (soundex.encode("Dcdlb").length(), Eq(4u));
}

TEST F(SoundexEncoding, IgnoresVowellLikelLetters) {
ASSERT_ THAT (soundex.encode("BaAeEiIoOuUhHyYcdl"), Eq("B234"));
}

TEST_F(SoundexEncoding, CombinesDuplicateEncodings) {
ASSERT THAT (soundex.encodedDigit('b'), Eq(soundex.encodedDigit('f')));
ASSERT THAT (soundex.encodedDigit('c'), Eq(soundex.encodedDigit('g')));
ASSERT THAT (soundex.encodedDigit('d'), Eq(soundex.encodedDigit('t')))

’

ASSERT THAT (soundex.encode("Abfcgdt"), Eq("A123"));
}

TEST F(SoundexEncoding, UppercasesFirstLetter) {
ASSERT THAT (soundex.encode("abcd"), StartsWith("A"));
}

http://media.pragprog.com/titles/lotdd/code/c2/40/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 2. Test-Driven Development: A First Example ® 52

TEST_F(SoundexEncoding, IgnoresCaseWhenEncodingConsonants) {
ASSERT_THAT (soundex.encode("BCDL"), Eq(soundex.encode("Bcdl")));
}

TEST F(SoundexEncoding, CombinesDuplicateCodesWhen2ndLetterDuplicateslst) {
ASSERT THAT (soundex.encode("Bbcd"), Eq("B230"));
}

TEST_F(SoundexEncoding, DoesNotCombineDuplicateEncodingsSeparatedByVowels) {
ASSERT THAT (soundex.encode("Jbob"), Eq("J110"));
}

c2/40/Soundex.h
#ifndef Soundex h
#define Soundex_h

#include <string>
#include <unordered map>

#include "CharUtil.h"
#include "StringUtil.h"

class Soundex

{
public:
static const size t MaxCodeLength{4};
std::string encode(const std::string& word) const {
return stringutil::zeroPad(
stringutil::upperFront(stringutil::head(word)) +
stringutil::tail(encodedDigits(word)),
MaxCodelLength);
}
std::string encodedDigit(char letter) const {
const std::unordered map<char, std::string> encodings {
{'b, "1}, {'f', "1"}, {'p', "1"}, {'v', "1},
{'c', "2"}y, {'g", "2"}, {'j', "2}, {'k', "2"}, {'q', 2"},
{'s', "2"}, {'x', 2"}, {'z', 2"},
{"d", "3"}, {'t', "3},
{1, "4,
{'m', "5}, {'n', 5"},
{'r, "6"}
+
auto it = encodings.find(charutil::lower(letter));
return it == encodings.end() ? NotADigit : it->second;
}
private:

const std::string NotADigit{"*"};

http://media.pragprog.com/titles/lotdd/code/c2/40/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

The Soundex Class ® 53

std::string encodedDigits(const std::string& word) const {
std::string encoding;
encodeHead (encoding, word);
encodeTail(encoding, word);
return encoding;

}

void encodeHead(std::string& encoding, const std::string& word) const {
encoding += encodedDigit(word.front());

}

void encodeTail(std::string& encoding, const std::string& word) const {
for (auto i = 1lu; i < word.length(); i++)
if (!isComplete(encoding))
encodeletter(encoding, word[i], word[i - 1]);

}

void encodelLetter(std::string& encoding, char letter, char lastlLetter) const {

auto digit = encodedDigit(letter);
if (digit != NotADigit &&
(digit != lastDigit(encoding) || charutil::isVowel(lastLetter)))
encoding += digit;

}

std::string lastDigit(const std::string& encoding) const {
if (encoding.empty()) return NotADigit;
return std::string(1l, encoding.back());

}

bool isComplete(const std::string& encoding) const {
return encoding.length() == MaxCodelLength;
}
}i

#endif

Wait...some things have changed! Where are the head(), tail(), and zeroPad()
functions? Where are isVowel() and upper()? And lastDigit() looks different!

While you were busy reading, I did a bit of additional refactoring. Those
missing functions, once defined in Soundex, now appear as free functions
declared in StringUtilL.h and CharUtil.h. With a small bit of refactoring, they now
represent highly reusable functions.

Simply moving the functions out of Soundex isn’'t quite sufficient. The func-
tions in their new home as public utilities need to be aptly described so other
programmers can understand their intent and use. That means they need
tests to show by example how a programmer might use them in their own
client code. You can find both the utility functions and their tests in the
downloadable source code for this book.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

2.21

Chapter 2. Test-Driven Development: A First Example ® 54

We test-drove one possible solution for Soundex. How a solution evolves is
entirely up to you. The more you practice TDD, the more likely your style will
evolve. Code I test-drove only two years ago differs dramatically from code I
test-drive today.

Teardown

In this chapter, you experienced hands-on, nitty-gritty TDD. Did you work
through the code on your own? If so, you implemented a Soundex class that
you could almost introduce into a production application. If not, open your
editor and build the Soundex class. Learning by writing code is more effective
than reading code.

Ready to really learn TDD? Go again! Test-drive the Soundex class a second
time, but this time do it on your own, without reading this chapter (unless
you get stuck). What happens if you introduce the Soundex rules in a different
order? What if you consider a different style of programming? What happens
if, for example, you implement each rule as a separate function that transforms
input text and build a Soundex implementation by chaining together a series
of transforms?

When you're ready to move on, Test-Driven Development Foundations takes
a step back and looks at TDD from a more holistic stance. It presents funda-
mental definitions for TDD and provides strategic as well as tactical advice
for success.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

3.1

3.2

CHAPTER 3

Test-Driven Development Foundations

Setup

The detailed example from Test-Driven Development: A First Example shows
what Test-Driven Development should look like in practice. As we worked
through the example, we touched on a considerable number of concepts and
good practices. (You might also have chosen to skip that chapter if you're
already familiar with TDD.) This chapter explores these topics in more detail,
providing a bit more background and rationale behind each.

¢ The definition of unit

e The TDD cycle of red-green-refactor

¢ The three rules of TDD

e Why you should never skip observing test failure
¢ Mind-sets for success

¢ Mechanics for success

When you've worked through each of these topics, you'll be well grounded in
the process and concepts behind TDD.
Unit Test and TDD Fundamentals

TDD results in unit tests. A unit test verifies the behavior of a code unit, where
a unit is the smallest testable piece of an application. You typically write a
unit test in the programming language of the unit.

Unit Test Organization and Execution

A single unit test consists of a descriptive name and a series of code state-
ments, conceptually divided into four (ordered) parts.

1. (Optional) statements that set up a context for execution
2. One or more statements to invoke the behavior you want to verify

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 3. Test-Driven Development Foundations ® 56

3. One or more statements to verify the expected outcome
4. (Optional) cleanup statements (for example, to release allocated memory)

Some folks refer to the first three parts as Given-When-Then. In other words,
Given a context, When the test executes some code, Then some behavior is
verified. Other developers might call this breakdown Arrange-Act-Assert (see
Arrange-Act-Assert/Given-When-Then, on page 84).

Typically you group related tests in a single source file. Google Mock, like
most unit testing tools, allows you to logically group unit tests into fixtures.
You might start with one fixture per C++ class being test-driven, but don’t
let that constrain you. It’s not unusual to end up with more than one fixture
for a single C++ class or one fixture that tests related behaviors from multiple
classes. File Organization, on page 79, contains further detail on files and

fixtures.

You use one of dozens of available C++ unit testing tools to execute your unit
tests. While most of these tools share many similarities, no cross-tool stan-
dards exist. As a result, C++ unit tests are not directly portable between tools.
Each tool defines its own rules for how tests are structured, what assertions
look like, and how tests get executed.

Using the tool to execute all our tests is a test run or suite run. During a test
run, the tool iterates all tests, executing each in isolation. For each test, the
tool executes its statements from top to bottom. When the tool executes an
assertion statement, the test fails if the condition expected by the assertion
does not hold true. The test passes if no assertions fail.

Unit testing practice varies widely, as does the granularity of the tests involved.
Most developers writing unit tests (but not doing TDD) seek only the verifica-
tion it provides. These developers typically write tests once they complete
functional portions of production code. Such tests written after development
can be tougher to write and maintain, primarily because they weren’t written
with testing in mind. We’ll do better and use TDD.

Test-Driving Units

In contrast to plain ol’ unit testing (POUT), TDD is a more concisely defined
process that incorporates the activity of unit testing. When doing TDD, you
write the tests first, you strive to keep the granularity of tests small and
consistent, and you seek myriad other benefits—most importantly the ability
to safely change existing code.

You use TDD to test-drive new behavior into your system in quite small
increments. In other words, to add a new piece of behavior to the system, you

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

33

The TDD Cycle: Red-Green-Refactor * 57

first write a test to define that behavior. The existence of a test that will not
pass forces (drives) you to implement the corresponding behavior.

“Quite small?” No formal size constraint exists, so you want to move in the
direction of an ideal instead. Each test should represent the smallest mean-
ingful increment you can think of. Your favorite tests contain one, two, or
three lines (see Arrange-Act-Assert/Given-When-Then, on page 84) with one

assertion (Section 7.3, One Assert per Test, on page 178). You'll of course have
plenty of tests that are longer, and that may be OK, but having an ideal will
remind you to question the size of each longer test—is it doing too much?

Tests with no more than three lines and a single assertion take only minutes to
write and usually only minutes to implement—how much code can you meaning-
fully verify in a single assert? These small bits of related new code you add to the
system in response to a failing test are logical groupings, or units of code.

You don’t seek to write tests that cover a wide swath of functionality. The
responsibility for such end-to-end tests lies elsewhere, perhaps in the realm
of acceptance tests/customer tests or system tests. The term this book uses
for tests against such aggregate code behavior is integration tests (see Section
10.3, Unit Tests, Integration Tests, and Acceptance Tests, on page 278). Integra-
tion tests verify code that must integrate with other code or with external
entities (the file system, databases, web protocols, and other APIs). In contrast,
unit tests allow you to verify units in isolation from other code.

The first rule of TDD (Section 3.4, The Three Rules of TDD, on page 59) states
that you cannot write production code unless to make a failing test pass.
Following the first rule of TDD, you’ll inevitably need to test-drive code that
interacts with external entities. Doing so puts you in the realm of integration
tests, but that may be OK; nothing about TDD prevents you from creating
them. Don’t sweat the terminology distinction much. What’s more important

is that you are systematically driving every piece of code into the system by
first specifying its behavior.

In Test Doubles, you’'ll learn how to use test doubles to break dependencies
on external entities. Your integration tests, slow by their nature, will morph
into fast unit tests.

The TDD Cycle: Red-Green-Refactor
When doing TDD, you repeat a short cycle of the following:

1. Write a test (“red”).
2. Get the test to pass (“green”).
3. Optimize the design (“refactor”).

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 3. Test-Driven Development Foundations ® 58

-

&
Q(‘
%o

This cycle is often summarized as red-green-refactor, a phrase that stems
from unit testing tools used for TDD. Red (fail) and pass (green) derive from
SUnit (the first unit testing tool designed to support TDD') and similar GUI
tools that use the colors to provide immediate feedback on test results. The
text-based output of Google Mock uses red and green when executed in a
terminal with color support.

During the refactoring step, you seek to ensure your codebase has the best
possible design, which allows you to extend and maintain your system at
reasonable cost. You refactor (a term popularized by Martin Fowler’s
Refactoring: Improving the Design of Existing Code [FBBO99]) when you improve
your code’s design without changing its behavior, something that having tests
allows you to safely do. The Incremental Design chapter covers refactoring.

Thinking and TDD

The goal of “burning the TDD cycle in your brain” is to make you comfortable
with writing tests first to specify behavior and with cleaning up code each
time through the cycle. Ingraining this habit will free your mind to instead
think about the more challenging problem of growing a solution incrementally.

At each point in the TDD cycle, you must be able to answer many questions.

e Write a small test. What's the smallest possible piece of behavior you can
increment the system by (What's the Next Test?, on page 73, offers a few
ideas)? Does the system already have that behavior? How can you concisely
describe the behavior in the test’s name? Does the interface expressed in
the test represent the best possible way for client code to use the behavior?

e Ensure the new test fails. If it doesn’t, why not? Does the behavior already
exist? Did you forget to compile? Did you take too large a step in the prior
test? Is its assertion valid?

1. http://sunit.sourceforge.net

http://sunit.sourceforge.net
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

34

The Three Rules of TDD ® 59

e Write the code you think makes the test pass. Are you writing no more

code than needed to meet the current set of behaviors specified by the
tests? Are you recognizing where the code you just wrote will need to be
cleaned up? Are you following your team’s standards?

Ensure all the tests pass. If not, did you code things incorrectly, or is your
specification incorrect?

Clean up the code changes you just made. What do you need to do in order
to get your code to follow team standards? Does your new code duplicate
other code in the system that you should clean up, too? Does the code
exhibit questionable smells? Are you following good design principles?
What else do you know about design and clean code that you should
apply here? Otherwise, is the design evolving in a good direction? Does
your code change impact the design of other code areas that you should
also change?

Ensure the tests all still pass. Do you trust that you have adequate unit
test coverage? Should you run a slower set of tests to have the confidence
to move on? What'’s the next test?

You'll find ample resources in this book to help you answer these questions.

There’s plenty to think about every few moments throughout your development
day. The cycle of TDD is simple, but the reality of building production-quality
code rarely is. Doing TDD is not a mindless exercise.

The Three Rules of TDD

Robert C. Martin (“Uncle Bob”) provides a concise set of rules for practicing

TDD.?

1. Write production code only to pass a failing unit test.

2. Write no more of a unit test than sufficient to fail (compilation failures
are failures).

3. Write no more production code than necessary to pass the one failing

unit test.

Rule #1 says to write tests first—understand and specify, in the form of a
unit test example, behavior you must build into the system.

Rule #2 says to proceed as incrementally as possible—after each line you
write, get feedback (via compilation or test run) if you can before moving on.

2. http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

35

Chapter 3. Test-Driven Development Foundations ® 60

When test-driving a RetweetCollection class, we stop as soon as we write this
much of a first test:

c3/1/RetweetCollectionTest.cpp
#include "gmock/gmock.h"

TEST (ARetweetCollection, IsEmptyWhenCreated) {
RetweetCollection retweets;

}

We haven't yet defined RetweetCollection, so we know that this one line of
test code shouldn’t compile. We write the code that defines the RetweetCollec-
tion class and recompile until we get it right. Only then do we move on to
writing the assertion that demonstrates the collection is empty.

Rule #2 is controversial and by no means universally accepted as a TDD
standard. In C++, it might not be effective if compilation requires you to wait
long. You might also find it's more effective to flesh out the design of a complete
test first. But before you abandon the rule, give it an honest effort. (As a long-
time TDD practitioner, I employ rule #2 on a case-by-case basis.)

Rule #3 says to write no more code than your tests specify. That’s why rule
#1 says “to pass a failing unit test.” If you write more code than needed—if
you implement behavior for which no test exists—you’ll be unable to follow
rule #1, because you’'ll soon be writing tests that immediately pass.

As you grow in your mastery of TDD, you’ll find cases where it’s near impos-
sible to lead with a failing test. (The following section, Getting Green on Red,
talks about this further.)

Learning by following the rules will help you later understand the adverse
implications of breaking them.

Getting Green on Red

The first rule of TDD requires you to first demonstrate test failure before you
can write any code. In spirit, this is a simple rule to follow. If you write only
just enough code to make a test to pass, another test for additional function-
ality should fail automatically. In practice, however, you'll find yourself
sometimes writing tests that pass right off the bat. I refer to these undesired
events as premature passes.

You might experience a premature pass for one of many reasons:

¢ Running the wrong tests
¢ Testing the wrong code

http://media.pragprog.com/titles/lotdd/code/c3/1/RetweetCollectionTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Getting Green on Red ® 61

¢ Unfortunate test specification

¢ Invalid assumptions about the system
e Suboptimal test order

e Linked production code

e Overcoding

e Testing for confidence

Running the Wrong Tests

The first thing to do when sitting down is run your test suite. How many tests
do you have? Each time you add a new test, anxiously await the new count
when your run your test suite. “Hmm...why am I getting a green? Well, I
should have forty-three tests now...but wait! There are only forty-two. The
test run doesn’t include my new test.”

Tracking your test count helps you quickly determine when you've made one
of the following silly mistakes:

¢ You ran the wrong suite.

e Your Google Mock filter (see Running a Subset of the Tests, on page 87)
omits the new test.

¢ You didn’t compile or link in the new test.

e You disabled (Disabling Tests, on page 76) the new test.

If you don't first observe test failure, things get worse. You write the test, skip
running the test suite, write the code, and run the tests. You think they're
all passing because you wrote the right code, but in reality they pass because
the test run doesn’t include the new test. You might blissfully chug along for
a good while before you discover that you've coded a broken heap of sludge.

Keeping to the TDD cycle can prevent you from wasting a lot of time.

Testing the Wrong Code

Similar to running the wrong tests, you can test the wrong code. Usually it’s
related to a build error but not always. Here are a few reasons why you might
end up running the wrong code:

* You forgot to save or build, in which case the “wrong” code is the last
compiled version that doesn’t incorporate your new changes. Ways to
eliminate this mistake include making the unit test run dependent upon
compilation or running tests as part of a postbuild step.

e The build failed and you didn’t notice, thinking it had passed.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 3. Test-Driven Development Foundations ® 62

e The build script is flawed. Did you link the wrong object module? Is
another object module with a same-named module clashing?

* You are testing the wrong class. If you're doing interesting things with
test doubles, which allow you to use polymorphic substitution in order
to make testing easier, your test might be exercising a different implemen-
tation than you think.

Unfortunate Test Specification

You accidentally coded a test to assert one thing when you meant another.

Suppose we code a test as follows:

TEST F(APortfolio, IsEmptyWhenCreated) {
ASSERT THAT (portfolio.isEmpty(), Eq(false));
}

Well, no. Portfolios should be empty when created, per the test name; there-
fore, we should expect the call to isEmpty() to return true, not false. Oops.

On a premature pass, always reread your test to ensure it specifies the
proper behavior.

Invalid Assumptions About the System

Suppose you write a test and it passes immediately. You affirm you're running
the right tests and testing the right code. You reread the test to ensure it does
what you want. That means the system already has the behavior you just
specified in the new test. Hmmm.

You wrote the test because you assumed the behavior didn’t already exist
(unless you were testing out of insecurity—see Testing for Confidence on page
69). A passing test tells you that your assumption was wrong. The behavior
galready in the system! You must stop and analyze the system in the light

of the behavior you thought we were adding, until you understand the circum-
stances enough to move on.

Getting a passing test in this case represents a good thing. You've been
alerted to something important. Perhaps it is your misunderstanding of how
a third-party component behaves. Taking the time to investigate may well
save you from shipping a defect.

Suboptimal Test Order

The interface for RetweetCollection requires size() and a convenience member
function called isEmpty(). After getting our first two tests for these concepts to

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Getting Green on Red * 63

pass, we refactor the implementation of isEmpty() to delegate to size() so that we
don’t have variant algorithms for two related concepts.

c3/2/RetweetCollectionTest.cpp
#include "gmock/gmock.h"
#include "RetweetCollection.h"

using namespace ::testing;

class ARetweetCollection: public Test {
public:

RetweetCollection collection;
};

TEST F(ARetweetCollection, IsEmptyWhenCreated) {
ASSERT _TRUE(collection.isEmpty());
}

TEST_F(ARetweetCollection, HasSizeZeroWhenCreated) {
ASSERT THAT (collection.size(), Eq(Ou));
}

c3/2/RetweetCollection.h

#ifndef RetweetCollection h
#define RetweetCollection_h
class RetweetCollection {

public:
bool isEmpty() const {
return 0 == size();
}
unsigned int size() const {
return 0;
}
}
#endif

To expand on the concept of emptiness, we write a subsequent test to ensure
a retweet collection isn’t empty once tweets are added to it.

c3/3/RetweetCollectionTest.cpp
#include "Tweet.h"

TEST_F(ARetweetCollection, IsNoLongerEmptyAfterTweetAdded) {
collection.add(Tweet());

ASSERT FALSE(collection.isEmpty());
}

(For now, we don’t care about the content of a tweet, so all we need to supply
for the Tweet class definition in Tweet.h is simply class Tweet {};.)

http://media.pragprog.com/titles/lotdd/code/c3/2/RetweetCollectionTest.cpp
http://media.pragprog.com/titles/lotdd/code/c3/2/RetweetCollection.h
http://media.pragprog.com/titles/lotdd/code/c3/3/RetweetCollectionTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Yvy

\AAA/

Yy

Chapter 3. Test-Driven Development Foundations ® 64

Getting IsNoLongerEmptyAfterTweetAdded to pass is a simple matter of
introducing a member variable to track the collection’s size.

c3/3/RetweetCollection.h
#include "Tweet.h"

class RetweetCollection {

public:
RetweetCollection()
1 size (0) {
}

bool isEmpty() const {
return 0 == size();

}

unsigned int size() const {
return size ;

}
void add(const Tweet& tweet) {
size = 1;
}
private:

unsigned int size ;
}
But we now have a problem. If we want to explore the behavior of size() after
adding a tweet, it will pass immediately.

c3/4/RetweetCollectionTest.cpp
TEST _F(ARetweetCollection, HasSizeOfOneAfterTweetAdded) {
collection.add(Tweet());

ASSERT_THAT(collection.size(), Eq(1u));
}

What might we have done to avoid writing a test that passed?

Before answering that question, maybe we need a different perspective. Did
we need to even write this test? TDD is about confidence, not exhaustive
testing. Once we have an implementation we are confident is sufficient, we
can stop writing tests. Perhaps we should delete HasSizeOfOneAfterTweet-
Added and move on. Or, perhaps we should retain it for its documentation
value.

Otherwise, any time we get a premature pass, we look at the code we wrote
to pass the prior test. Did we write too much code? In this case, no, the code

http://media.pragprog.com/titles/lotdd/code/c3/3/RetweetCollection.h
http://media.pragprog.com/titles/lotdd/code/c3/4/RetweetCollectionTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Getting Green on Red ® 65

was as simple as it could have been. But what if we had explored the empti-
ness behavior further before introducing the size() behavior? With tests in the
order IsEmptyWhenCreated, IsNoLongerEmptyAfterTweetAdded, and Has-
SizeZeroWhenCreated, we would have ended up with a slightly different
scenario.

c3/5/RetweetCollection.h
class RetweetCollection {
public:
RetweetCollection()
: empty (true) {
}

bool isEmpty() const {
return empty ;

}

void add(const Tweet& tweet) {
empty = false;
}

unsigned int size() const {
return 0;

}

private:
bool empty ;
Iy

We can't link size() to isEmpty() at this point, since we have no tests that define
how size() behaves after a purchase. Thus, we can’t refactor size(); it remains
as is with a hard-coded return. Now when we code HasSizeOfOneAfterTweet-
Added, it will fail. The simplest implementation to get it to pass is a little odd,
but that’s OK!

c3/6/RetweetCollection.h

unsigned int size() const {
return isEmpty() ? 0 : 1;

}

It’s easy to be lazy as a programmer. You'll likely resist reverting your changes
and starting over in order to find a path that avoids a premature pass. Yet
you’ll learn some of the most valuable lessons in the rework. If you choose
not to, at least rack your brain and think how you might have avoided the
premature pass, which might help you avoid the problem next time.

http://media.pragprog.com/titles/lotdd/code/c3/5/RetweetCollection.h
http://media.pragprog.com/titles/lotdd/code/c3/6/RetweetCollection.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 3. Test-Driven Development Foundations ® 66

Linked Production Code

In Suboptimal Test Order, on page 62, isEmpty() is a convenience method
designed to make client code clearer. We know it’s linked to the concept of
size (we coded it!). The collection is empty when the size is zero and not
empty when the size is greater than zero.

Adding a convenience method such as isEmpty() creates duplication on the side
of the code’s interface. It represents a different way for clients to interface
with behavior that we've already test-driven. That means a test against
isEmpty() will pass automatically. We still want to clearly document its behavior,
though.

As we add new functionality to RetweetCollection, such as combining similar
tweets, we’ll want to verify that the new behavior properly impacts the collec-
tion’s size and emptiness. We have several ways to address verifying both
attributes.

The first option is for every size-related assertion, add a second assertion
around emptiness. This choice produces unnecessarily repetition and cluttered
tests.

c3/7/RetweetCollectionTest.cpp
TEST_F(ARetweetCollection, DecreasesSizeAfterRemovingTweet) {
collection.add(Tweet());

collection.remove(Tweet());

ASSERT THAT(collection.size(), Eq(Ou));
ASSERT _TRUE(collection.isEmpty()); // DON'T DO THIS
}

The second option is for every test around size, write a second test for
emptiness. While keeping in line with the notion of one assert per test, this
choice would also produce too much duplication.

c3/8/RetweetCollectionTest.cpp

TEST F(ARetweetCollection, DecreasesSizeAfterRemovingTweet) {
collection.add(Tweet());
collection.remove(Tweet());
ASSERT THAT(collection.size(), Eq(Ou));

}

// AVOID doing this

TEST_F(ARetweetCollection, IsEmptyAfterRemovingTweet) {
collection.add(Tweet());
collection.remove(Tweet());
ASSERT TRUE(collection.isEmpty());

http://media.pragprog.com/titles/lotdd/code/c3/7/RetweetCollectionTest.cpp
http://media.pragprog.com/titles/lotdd/code/c3/8/RetweetCollectionTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYVYVYY

Getting Green on Red * 67

The third option is to create a helper method or custom assertion. Since the
code contains a conceptual link between size and emptiness, perhaps we
should link the concepts in the assertions.

c3/9/RetweetCollectionTest.cpp
MATCHER P(HasSize, expected, "") {

return
arg.size() == expected &&
arg.isEmpty() == (0 == expected);

}

TEST F(ARetweetCollection, DecreasesSizeAfterRemovingTweet) {
collection.add(Tweet());

collection.remove(Tweet());

ASSERT_THAT(collection, HasSize(Ou));
}

The MATCHER_P macro in Google Mock defines a custom matcher that accepts
a single argument. See https://code.google.com/p/googlemock/wiki/CheatSheet for further
information. You can use a simple helper method if your unit testing tool
doesn’t support custom matchers.

The fourth option is to create tests that explicitly document the link between
the two concepts. In a sense, these tests are a form of documenting invariants.
From there on out, we can stop worrying about testing for emptiness in any
additional tests.

c3/10/RetweetCollectionTest.cpp
TEST F(ARetweetCollection, IsEmptyWhenItsSizeIsZero) {
ASSERT THAT(collection.size(), Eq(0u));

ASSERT TRUE(collection.isEmpty());
}

TEST _F(ARetweetCollection, IsNotEmptyWhenItsSizeIsNonZero) {
collection.add(Tweet());
ASSERT _THAT(collection.size(), Gt(0u));

ASSERT FALSE(collection.isEmpty());
}

(In the expression Gt(0), Gt stands for greater than.)

The asserts that relate to checking size in these two tests act as precondition
assertions. They are technically unnecessary but in this case serve to bolster
the relationship between the two concepts.

http://media.pragprog.com/titles/lotdd/code/c3/9/RetweetCollectionTest.cpp
https://code.google.com/p/googlemock/wiki/CheatSheet
http://media.pragprog.com/titles/lotdd/code/c3/10/RetweetCollectionTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 3. Test-Driven Development Foundations ® 68

I will usually prefer the fourth option, though sometimes find the third useful.
TDD is not an exact science. It provides room for many different approaches,
meaning that you must stop and assess the situation from time to time and
choose a solution that works best in context.

Overcoding

If you've programmed for any length of time, you have a normal tendency to
jump right with what you know is needed for an end solution. “I know we're
gonna need a dictionary data structure, so let’s just code in the map now.”
Or, “Yeah, that could throw an exception that we need to handle. Let’s code
for that case and log the error in the catch block and then rethrow.”

These inclinations and intuitions about what the code needs to do are what
makes a good programmer. You don’t have to discard these thoughts that
come to mind. Knowing about hash-based structures can help guide you to
better solutions, and knowing what errors can arise is important.

But to succeed with TDD, you must ensure that you introduce these concepts
incrementally and with tests. Keeping to the red-green-refactor rhythm pro-
vides many safeguards and also helps grow the number and coverage of unit
tests.

Introducing a map prematurely can present you with premature passes for
some time, since it will immediately cover many of the cases your code needs
to handle. You might omit a number of useful tests as a result. You can
instead incrementally grow the underlying data structure, using failing tests
as proof for a need to generalize the solution.

Sometimes you’ll realize that you don’t even need a map. Resisting a more-
than-necessary implementation allows you to keep the code simpler in the
meantime. You'll also avoid permanent over-complexity when there’s a simpler
end solution.

Writing tests for things like exception handling means that client programmers
will have an easier time understanding how to interact with your class. You
force yourself to clearly understand and document the scenarios in which
problems can occur.

Learning to produce just enough code is one of the more challenging facets
of TDD, but it can pay off dramatically. Sticking to red-green-refactor can
help reinforce the incremental approach of TDD.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

3.6

Mind-Sets for Successful Adoption of TDD ® 69

Testing for Confidence

Sometimes you just don’t know what the code does in certain cases. Test-
driving generated what you believe to be a complete solution, but you're not
sure. “Does our algorithm handle this case?” You write the corresponding
test as a probe of the solution. If it fails, you're still in the red-green-refactor
cycle, with a failing test prodding you to write the code that handles the new
case.

If your probe passes, great! The system works as you hoped. You can move
on. But should you keep or discard the new test? Your answer should reflect
its documentation value. Does it help a future consumer or developer to
understand something important? Does it help better document why another
test fails? If so, retain the test. Otherwise, remove it.

Writing a test to probe behavior represents an assumption you're making
about the system that you want to verify. You might liken testing for confidence
to Invalid Assumptions About the System, on page 62. The distinction is that
every time you write a test, you should know whether you expect it to fail or

pass. If you expect a test to fail and you're surprised when it doesn’t, you've
made an invalid assumption. If you write a test that you expect to pass, you're
testing for confidence.

Stop and Think

Premature passes should be fairly rare. But they’re significant, particularly
when you're learning to practice TDD. Each time one occurs, ask yourself
these questions: What did I miss? Did I take too large a step? Did I make a
dumb mistake? What might I have done differently? Like compiler warnings,
you always want to listen to what premature passes are telling you.

Mind-Sets for Successful Adoption of TDD

TDD is a discipline to help you grow a quality design, not just a haphazard
approach to verifying pieces of a system. Success with TDD derives from
adopting a proper mentality about how to approach it. Here are a half-dozen
useful mind-sets to adopt when doing TDD.

Incrementalism

TDD is a way to grow a codebase from nothing into a fully functional system,
bit by bit (or unit by unit). Every time you add a new unit of behavior into
the system, you know it all still works—you wrote a test for the new behavior,
and you have tests for every other unit already built. You don’t move on unless
everything still works with the new feature in place. Also, you know exactly

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 3. Test-Driven Development Foundations ® 70

what the system was designed to do, because your unit tests describe the
behaviors you drove into the system.

The incremental approach of TDD meshes well with an Agile process (though
you can certainly use TDD in any process, Agile or not). Agile defines short
iterations (typically a week or two) in which you define, build, and deliver a
small amount of functionality. Each iteration represents the highest-priority
features the business wants. The business may completely change priorities
with each subsequent iteration. They may even choose to cancel the project
prematurely. That's OK, because by definition you will have delivered the
features that the business wanted most. Contrast the result with a classic
approach, where you first spend months on analysis and then on design,
before proceeding to code. No real value is delivered until well after you
complete analysis and design and usually not until all coding is considered
complete.

TDD offers support in the small for a similar incremental mind-set. You
tackle units one by one, defining and verifying them with tests. At any given
point, you can stop development and know that you have built everything
the tests say the system does. Anything not tested is not implemented, and
anything tested is implemented correctly and completely.

Test Behavior, Not Methods

A common mistake for TDD newbies is to focus on testing member functions.
“We have an add() member function. Let’s write TEST(ARetweetCollection, Add).” But
fully covering add behavior requires coding to a few different scenarios. The
result is that you must lump a bunch of different behaviors into a single test.
The documentation value of the tests diminishes, and the time to understand
a single test increases.

Instead, focus on behaviors or cases that describe behaviors. What happens
when you add a tweet that you've already added before? What if a client
passes in an empty tweet? What if the user is no longer a valid Twitter user?

We translate the set of concerns around adding tweets into separate tests.

TEST(ARetweetCollection, IgnoresDuplicateTweetAdded)
TEST (ARetweetCollection, UsesOriginalTweetTextWhenEmptyTweetAdded)
TEST (ARetweetCollection, ThrowsExceptionWhenUserNotValidForAddedTweet)

As a result, you can holistically look at the test names and know exactly the
behaviors that the system supports.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Mind-Sets for Successful Adoption of TDD © 71

Using Tests to Describe Behavior

Think of your tests as examples that describe, or document, the behavior of
your system. The full understanding of a well-written test is best gleaned by
combining two things: the test name, which summarizes the behavior exhib-
ited given a specific context, and the test statements themselves, which
demonstrate the summarized behavior for a single example.

c3/11/RetweetCollectionTest.cpp

TEST F(ARetweetCollection, IgnoresDuplicateTweetAdded) {
Tweet tweet("msg", "@user");
Tweet duplicate(tweet);
collection.add(tweet);

collection.add(duplicate);

ASSERT _THAT(collection.size(), Eq(1lu));
}

The test name provides a high-level summary: a duplicate tweet added should
be ignored. But what makes a tweet a duplicate, and what does it mean to
ignore a tweet? The test provides a simple example that makes the answers
to those two questions clear in a matter of seconds. A duplicate tweet is an
exact copy of another, and the size remains unchanged after the duplicate is
added.

The more you think about TDD as documentation, the more you understand
the importance of a high-quality test. The documentation aspect of the tests
is a by-product of doing TDD. To ensure your investment in unit tests returns
well on value, you must ensure that others can readily understand your tests.
Otherwise, your tests will waste their time.

Good tests will save time by acting as a trustworthy body of comprehensive
documentation on the behaviors your system exhibits. As long as all your
tests pass, they accurately impart what the system does. Your documentation
won't get stale.

Keeping It Simple

The cost of unnecessary complexity never ends. You've no doubt wasted
countless hours struggling to decipher a complex member function or convo-
luted design. Most of the time, you could have programmed the solution more
simply and saved everyone a lot of time.

Developers create unnecessary complexity for numerous reasons.

http://media.pragprog.com/titles/lotdd/code/c3/11/RetweetCollectionTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 3. Test-Driven Development Foundations ® 72

e Time pressure. “We just need to ship this code and move on. We have no
time to make it pretty.” Sooner or later, you'll have no time, period, because
it’s taking ten times longer to do anything. Haste allows complexity to
grow, which slows you down in so many ways (comprehension, cost of
change, build time).

¢ Lack of education. You need to want better code, and you need to admit
when your code sucks, but that means you must know the difference.
Seek honest feedback from teammates through pairing and other review
forms. Learn how to recognize design deficiencies and code smells. Learn
how to correct them with better approaches—take advantage of the many
great books on creating clean designs and code.

e Existing complexity. A convoluted legacy codebase will make you code
through hoops to add new behavior. Long methods promote longer
methods, and tightly coupled designs promote even more coupling.

e Fear of changing code. Without fast tests, you don’t always do the right
things in code. “If it ain’t broke, don't fix it.” Fear inhibits proper refactor-
ing toward a good, sustainable design. With TDD, every green bar you get
represents an opportunity to improve the codebase (or at least prevent it
from degrading). Incremental Design is dedicated to doing the right things
in code.

¢ Speculation. “We’re probably going to have a many-to-many relationship
between customers and accounts down the road, so let’s just build that
in now.” Maybe you’ll be right most of the time, but you'll live with prema-
ture complexity in the meantime. Sometimes you’ll travel a different road
entirely and end up paying for the (unused) additional complexity forever,
or at least paying dearly to undo the wrong complexity. Instead, wait until
you really need it. It usually won’t cost anything more.

Simplicity is how you survive in a continually changing environment. In an
Agile shop, you deliver new features each iteration, some of which you might
never have considered before. That's a challenge; you'll find yourself force-
fitting new features if the existing system can’t accommodate change. Your
best defense is a simple design: code that is readable, code that doesn’t
exhibit duplication, and code that eschews other unnecessary complexities.
These characteristics maximally reduce your maintenance costs.

Sticking to the Cycle

Not following red-green-refactor will cost you. See Section 3.5, Getting Green
on Red, on page 60 for many reasons why it’s important to first observe a red

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

3.7

Mechanics for Success ® 73

bar. Obviously, not getting a green when you want one means you're not
adding code that works. More importantly, not taking advantage of the
refactoring step of the cycle means that your design will degrade. Without
following a disciplined approach to TDD, you will slow down.

Mechanics for Success

The prior section, Section 3.6, Mind-Sets for Successful Adoption of TDD, on
page 69, emphasizes a philosophy for success with TDD. This section discusses
various specific techniques that will help keep you on track.

What's the Next Test?

As you embark on learning TDD, one of the biggest questions always on your
mind will be, “What’s the next test I should write?” The examples in this book
should suggest a few answers to this question.

One answer is to write the test that results in the simplest possible increment
of production code. But just what does that mean?

Uncle Bob has devised a scheme to categorize each increment as a transfor-
mation form (see Section 10.4, The Transformation Priority Premise, on page
281). All transformations are prioritized from simplest (highest priority) to most
anlex (lowest priority). Your job is to choose the transformation with the
highest-priority order and write the test that generates that transformation.
Incrementing in transformation priority order will produce an ideal ordering
of tests. That’s the premise—the Transformation Priority Premise (TPP).

If the TPP sounds complex, that’s because it is. It’s a theory. So far, it’s been
demonstrated to provide value for many algorithmic-oriented solutions.

Otherwise, you can use the following list of questions to help decide:

e What's the next most logically meaningful behavior?

e What's the smallest piece of that meaningful behavior you can verify?

e Can you write a test that demonstrates that the current behavior is
insufficient?

Let’s work through an example and test-drive a class named SQL whose job
is to generate SQL statements (select, insert, delete, and so on) given database
metadata about a table.

We seek meaningful behavior with each new test. That means we don’t directly
test-drive getters, setters, or constructors. (Theyll get coded as needed when
driving in useful behaviors.) Generating a SQL statement that operates on a table
seems useful and small enough. We can choose from drop table or truncate table.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 3. Test-Driven Development Foundations ® 74

Test name GeneratesDropUsingTableName

Implementation return "drop" + tableName_

That’s trivial and represents a couple minutes coding. We can quickly add
support for truncate.

SQL generation so far seems to involve appending the table name to a com-
mand string, which suggests a refactored implementation that simplifies
creating drop and truncate statements. (The variables Drop and Truncate represent
constant strings, each with a trailing space, in the example.)
std::string dropStatement() const {

return createCommand(Drop);

}

std::string truncateStatement() const {
return createCommand(Truncate);

}

std::string createCommand(const std::string& name) const {
return name + tableName ;

}

We recognize that our behavior is insufficient. We’ll have a problem if client
code passes in an empty table name.

Sometimes it’s worth considering exceptional cases early on, before you get
too deep in all the happy path cases. Other times, you can save them until
later. You can often code an exceptional test in a short time, needing only a
small bit of minimally invasive code to make it pass.

Test name ConstructionThrowsWhenTableNameEmpty
Implementation if (tableName_.empty()) throw ...

Next we tackle the select statement as a meaningful increment. The simplest
case is to support select *.

Test name GeneratesSelectStar

Implementation return createCommand(SelectStarFrom)

It’s important to support iterating columns, since most developers consider
it better practice than select *.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Mechanics for Success ® 75

Test name GeneratesSelectWithColumnList

Implementation return Select + columnList() + From + tableName_

Now we’re hitting a tiny bit more complexity. It might take a few minutes to
implement columnList(), but getting the test to pass is still not an extensive effort.

Our select statement is insufficient. We explore the ability to specify a where clause.

Test name GeneratesSelectWhereColumnEqual
Implementation return selectStatement() + whereEq(columnName, value)

The implementation for GeneratesSelectWithColumnList would probably
reside in a member function with signature std::string selectStatement() const. The
subsequent test, GeneratesSelectWhereColumnEqual, can simply reuse
selectStatement(). This is what we want: each small test increment builds upon
a prior small increment with minimal impact.

Over time, you’'ll get a good mental picture of the implementation required to
get a given test to pass. Your job is to make life easy on yourself, so you’ll get
better at choosing the test that corresponds to the implementation with the
simplest increment.

You will make less than ideal choices from time to time when choosing the
next test. See Suboptimal Test Order, on page 62, for an example. A willingness
to backtrack and discard a small bit of code can help you better learn how
to take more incremental routes through an implementation.

Ten-Minute Limit

TDD depends on short feedback cycles. As long as you're sticking to the red-
green-refactor cycle, you should do well with TDD. But it’s still possible to
bog down. From time to time, you'll struggle getting a test to pass. Or you'll
attempt to clean up some code but break a few tests in the process. Or you’ll
feel compelled to bring up the debugger to understand what’s going on.

Struggle is expected, but set a limit on the length of your suffering. Allow no
more than ten minutes to elapse from the time your tests last passed. Some
developers go as far as to use a timer. You need not be quite so strict about
the time, but it is important to realize when your attempt at a solution derails.

If the time limit hits, discard your current effort and start over. A good version
control tool like git makes reverting easy, rapid, effective, and very safe. (If
you don’t use git, consider running it locally with a bridging tool like git-svn.)

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 3. Test-Driven Development Foundations ® 76

Don’t get overly attached to code, particularly not code you struggled with.
Throw it out with extreme prejudice. It’s at most ten minutes of code, and
your solution was likely poor. Take a short break, clear your mind, and
approach the problem with a new, improved outlook.

If you were stymied by something that didn’t work before, take smaller steps
this second time and see where that gets you. Introduce additional asserts
to verify all questionable assumptions. You'll at least pinpoint the very line
of code that caused the problem, and you’ll probably build a better solution.

Defects

You will have defects. It’s inevitable. However, TDD gives you the potential to
have close to zero defects in your new code. I saw one test-driving team’s
defect report for software that showed only fifteen defects during its first
eleven months in production. Other great TDD success stories exist.

Your dumb logic defects will almost disappear with TDD. What will remain?
It will be all the other things that can and do go wrong: conditions no one
ever expected, external things out of sync (for example, config files), and
curious combinations of behavior involving several methods and/or classes.
You'll also have defects because of specification problems, including inadver-
tent omissions and misunderstandings between you and the customer.

TDD isn’t a silver bullet. But it is a great way to help eliminate dumb logic
mistakes we all make. (More importantly, it's a beautiful way to shape your
system’s design well.)

When QA or support finally does shove a defect in your face, what do you do?
Well, you're test-driving. You might first write a few simple tests to probe the
existing system. Tests with a tighter focus on related code might help you
better understand how the code behaves, which in turn might help you
decipher the failure. You can sometimes retain these probes as useful char-
acterization tests (Chapter 8, Legacy Challenges, on page 195). Other times,
you discard them as one-time tools.

Once you think you've pinpointed the problem source, don’t simply fix it and
move on. This is TDD! Instead, write a test that you think emulates the
behavior that exposed the defect. Ensure that the test fails (red!). Fix it (green!).
Refactor (refactor!).

Disabling Tests

Normally, work on one thing at a time when test-driving code. Occasionally
you'll find yourself with a second test that fails while you’'re working on getting

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

3.8

Teardown ® 77

a first test to pass. Having another test always fail means that you won’t be
able to follow the red-green-refactor cycle for the first test (unless they are
both failing for the same reason).

Instead of allowing the second, failing test to distract you or divert your
attention, you can disable it temporarily. Commenting out the test code would
work, but a better mechanism is to mark the test as disabled. Many tools
support the ability to explicitly disable a test and can remind you when you
run your tests that one or more tests are disabled. The reminder should help
prevent you from the crime of accidentally checking in disabled tests.

Using Google Mock, you disable a test by prepending DISABLED_ to its name.

TEST(ATweet, DISABLED RequiresUserNameToStartWithAnAtSign)

When you run your test suite, Google Mock will print a reminder at the end
to let you know you have one or more disabled tests.

[----------] Global test environment tear-down
[==========] 17 tests from 3 test cases ran. (2 ms total)
[PASSED] 17 tests.

YOU HAVE 1 DISABLED TEST

Don’t check in code with disabled (or commented-out) tests unless you have
a really good reason. The code you integrate should reflect current capabilities
of the system. Commented-out tests (and production code too) waste time for
other developers. “Is this test commented out because the behavior no longer
exists? Is it broken? In-flux? Does it run slowly and people enable it when
they want to run it? Should I talk to someone else about it?”

Teardown

In this chapter, you learned key fundamentals about TDD, including how it
differs from unit testing, how to follow the TDD cycle (and what to do when
it doesn’t go as expected), and some important mind-sets and mechanisms
for success with TDD. The underlying concepts and philosophies covered here
provide the foundation for moving forward with TDD. In the next chapter,
you’ll learn some nuts and bolts about how to translate these concepts into
actual tests.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

4.1

4.2

CHAPTER 4

Test Construction

Setup

By now you should have a solid understanding of the process and concepts
behind TDD. This chapter delves into the specifics of implementing your tests:
file organization, fixtures, setup, teardown, filters, assertions, and exception-
based assertions, plus a few other odds and ends.

Organization

How do you organize your tests, from both a file standpoint and a logical one?
In this section, you’ll learn about how to group your tests using fixtures, as
well as how to take advantage of their setup and teardown hooks. You’'ll learn
how to approach organization within your tests as well, using the concept of
Given-When-Then (also known as Arrange-Act-Assert).

File Organization

You test-drive related behavior by defining tests in a single test file. For
example, to test-drive a RetweetCollection class (implemented in RetweetCollec-
tion.cpp/h), start with RetweetCollectionTest.cpp. Don’t create a header file for your
test functions—it demands extra effort for no value.

You may end up with multiple test files that verify related behavior. You may
also have one test file cover behavior located in a few areas. Don’t limit
yourself to one test file per class. Setup and Teardown, on page 81, provides
one reason why you'd want multiple test files per class.

Name the file based on the tests it contains. Summarize the related behavior
and encode it in the test name. Decide on a naming scheme, something like
BehaviorDescriptionTest.cpp, BehaviorDescriptionTests.cpp, or TestBehavior-
Description.cpp. It doesn’t matter which as long as your codebase consistently

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 4. Test Construction ® 80

adheres to the standard. A consistent naming convention will help program-
mers readily locate the tests they seek.

Fixtures

Most unit testing tools let you logically group related tests. In Google Mock,
you group related tests using what Google calls the test case name. The
following test declaration has a test case name of ARetweetCollection. Incre-
mentsSizeWhenTweetAdded is the name of a test within the test case.

TEST(ARetweetCollection, IncrementsSizeWhenTweetAdded)

Related tests need to run in the same environment. You'll have many tests
that require common initialization or helper functions. Many test tools let
you define a fixture—a class that provides support for cross-test reuse.

In Google Mock, you define a fixture as a class derived from ::testing::Test.
You typically define the fixture at the beginning of your test file.

using namespace ::testing;

class ARetweetCollection: public Test {
b

The following two tests exhibit duplication; they both create an instance of
RetweetCollection:

TEST (ARetweetCollection, IsEmptyWhenCreated) {
RetweetCollection collection;

ASSERT THAT(collection.isEmpty(), Eq(true));
}

TEST (ARetweetCollection, IsNolLongerEmptyAfterTweetAdded) {
RetweetCollection collection;
collection.add(Tweet());

ASSERT THAT (collection.isEmpty(), Eq(false));
}

You can eliminate the local definitions of RetweetCollection by defining
RetweetCollection once in the fixture.

class ARetweetCollection: public Test {
public:

RetweetCollection collection;
}

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Organization ® 81

To give a test access to members defined in the fixture class, you must change
the TEST macro definition to TEST_F (the trailing F stands for fixture). Here are
the cleaned-up tests:

TEST F(ARetweetCollection, IsEmptyWhenCreated) {
ASSERT THAT(collection.isEmpty(), Eq(true));
}

TEST F(ARetweetCollection, IsNoLongerEmptyAfterTweetAdded) {
collection.add(Tweet());

ASSERT THAT(collection.isEmpty(), Eq(false));
}

The test case name must match the fixture name! If not or if you forget to
append _F to the macro name, you’ll get a compile error where the tests refer-
ence elements from the fixture (collection in this example).

Creation of a collection variable is a detail that test readers don’t usually need
to see in order to understand what’s going on. Moving the instantiation to a
fixture removes that distraction from each of the two tests in this example.
If you remove an element from a test in this manner, reread the test. If its
intent remains clear, great. If not, undo the change, or consider renaming
the variable to make the intent obvious.

You can and should also move all common functions into the fixture, particu-
larly if you are not enclosing your tests within a namespace.

Setup and Teardown

If all of the tests in a test case require one or more statements of common
initialization, you can move that code into a setup function that you define
in the fixture. In Google Mock, you must name this member function SetUp (it
overrides a virtual function in the base class ::testing::Test).

For each test belonging to the fixture, Google Mock creates a new, separate
instance of the fixture. This isolation helps minimize problems created when
the statements executed in one test impact another test. The implication is
that each test must create its own context from scratch and not depend upon
the context created by any other tests. After creating the fixture instance,
Google Mock executes the code in SetUp() and then executes the test itself.

Both of the following tests add a Tweet object to the collection in order to
create an initial context:

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 4. Test Construction ¢ 82

c3/14/RetweetCollectionTest.cpp

TEST _F(ARetweetCollection, IsNoLongerEmptyAfterTweetAdded) {
collection.add(Tweet());
ASSERT FALSE(collection.isEmpty());

}

TEST _F(ARetweetCollection, HasSizeOfOneAfterTweetAdded) {
collection.add(Tweet());
ASSERT_THAT(collection.size(), Eq(1u));

}

We define a new fixture for RetweetCollection tests that represents a collection
populated with a single tweet. We choose a fixture name that describes that
context: ARetweetCollectionWithOneTweet.

c3/15/RetweetCollectionTest.cpp
class ARetweetCollectionWithOneTweet: public Test {
public:

RetweetCollection collection;

void SetUp() override {

collection.add(Tweet());

}
};
We take advantage of the common initialization, creating tests that are ever-
so-simpler to read.

c3/15/RetweetCollectionTest.cpp

TEST F(ARetweetCollectionWithOneTweet, IsNoLongerEmpty) {
ASSERT FALSE(collection.isEmpty());

}

TEST F(ARetweetCollectionWithOneTweet, HasSizeOfOne) {
ASSERT_THAT(collection.size(), Eq(lu));
}

When removing duplication, be careful not to remove information critical to
understanding the test. Does the fixture name clearly describe the context?
ARetweetCollectionWithOneTweet seems self-explanatory, but then again it’s
easy to convince yourself. Ask another programmer. If they’re compelled to
read the fixture’s setup code, find a way to make the test more explicit.

The first test previously had the test case.test name combination ARetweet-
Collection.IsNoLongerEmptyAfterTweetAdded (Google Mock refers to this
combination as its full name). Now the full name is ARetweetCollectionWith-
OneTweet.IsNoLongerEmpty. We can avoid having to encode redundant
descriptions of our context into each test name by using fixtures with names
that describe the context.

http://media.pragprog.com/titles/lotdd/code/c3/14/RetweetCollectionTest.cpp
http://media.pragprog.com/titles/lotdd/code/c3/15/RetweetCollectionTest.cpp
http://media.pragprog.com/titles/lotdd/code/c3/15/RetweetCollectionTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Organization ® 83

We have one more test we can clean up.

c3/15/RetweetCollectionTest.cpp
TEST F(ARetweetCollection, IgnoresDuplicateTweetAdded) {
Tweet tweet("msg", "@user");
Tweet duplicate(tweet);
collection.add(tweet);
collection.add(duplicate);

ASSERT THAT (collection.size(), Eq(1u));
}

The first Tweet object added in the test differs from the Tweet objects created
in the other tests; it passes values for both of the Tweet’s constructor argu-
ments, whereas the other Tweet objects are initialized using default arguments.
But we don't really care what Tweet object ends up in the collection in those
tests, just that the collection contains a tweet, any tweet. We choose to use
the more interesting tweet for all tests.

c3/16/RetweetCollectionTest.cpp
class ARetweetCollectionWithOneTweet: public Test {
public:
RetweetCollection collection;
void SetUp() override {
collection.add(Tweet("msg", "@user"));
}
}

But we need to reference that tweet from IgnoresDuplicateTweetAdded in
order to create a second, duplicate Tweet object. We'll want to introduce a
member variable to the ARetweetCollectionWithOneTweet fixture. That means
we’ll have to declare it as a pointer type that we initialize in setup. We can
use regular o’ C++ pointers that we delete in a teardown function.

c3/17/RetweetCollectionTest.cpp
class ARetweetCollectionWithOneTweet: public Test {
public:
RetweetCollection collection;
Tweet* tweet;
void SetUp() override {
tweet = new Tweet("msg", "@user")
collection.add(*tweet);

}

void TearDown() override {
delete tweet;
tweet = nullptr;

http://media.pragprog.com/titles/lotdd/code/c3/15/RetweetCollectionTest.cpp
http://media.pragprog.com/titles/lotdd/code/c3/16/RetweetCollectionTest.cpp
http://media.pragprog.com/titles/lotdd/code/c3/17/RetweetCollectionTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 4. Test Construction ¢ 84

The teardown function is essentially the opposite of the setup function. It
executes after each test, even if the test threw an exception. You use the
teardown function for cleanup purposes—to release memory (as in this
example), to relinquish expensive resources (for example, database connec-
tions), or to clean up other bits of state, such as data stored in static variables.

Using pointers requires a small change to our test, since the tweet variable
now requires pointer semantics. The exciting payoff is that we are able to
reduce the number of lines in the test from five to three that represent the
core of what we're demonstrating in the test.

c3/17/RetweetCollectionTest.cpp

TEST_F(ARetweetCollectionWithOneTweet, IgnoresDuplicateTweetAdded) {
Tweet duplicate(*tweet);
collection.add(duplicate);

ASSERT THAT (collection.size(), Eq(1lu));
}

Here’s a version of the fixture that uses smart pointers:

c3/18/RetweetCollectionTest.cpp
class ARetweetCollectionWithOneTweet: public Test {
public:

RetweetCollection collection;

shared ptr<Tweet> tweet;

void SetUp() override {
tweet = shared ptr<Tweet>(new Tweet('msg", "@user"));
collection.add(*tweet);
}
¥
Setup initialization code should apply to all associated tests. Setup context
that only a fraction of tests use creates unnecessary confusion. If some tests
require a tweet and some tests don’t, create a second fixture and apportion
the tests appropriately.

Don’t hesitate to create additional fixtures. But each time you create a new
fixture, determine whether that need represents a design deficiency in the
production code. The need for two distinct fixtures might indicate that the
class you're testing violates the SRP, and you might want to split it into two.

Arrange-Act-Assert/Given-When-Then

Tests have a common flow. A test first sets up proper conditions, then executes
code representing the behavior that you want to verify, and finally verifies
that the expected behavior occurred as expected. (Some tests may also need

http://media.pragprog.com/titles/lotdd/code/c3/17/RetweetCollectionTest.cpp
http://media.pragprog.com/titles/lotdd/code/c3/18/RetweetCollectionTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Organization ® 85

to clean up after themselves. For example, a test may need to close a database
connection opened by earlier-executing test code.)

Your tests should declare intent with as much immediacy as possible. That
means your tests shouldn’t require readers to slowly slog through each line
of the test, trying to discern what’s going on. A reader should readily under-
stand the essential elements of a test’s setup (arrange), what behavior it
executes (act), and how that behavior gets verified (assert).

The mnemonic Arrange, Act, Assert (AAA, usually spoken as triple-A), devised
by Bill Wake,' reminds you to visually organize your tests for rapid recognition.
Looking at this next test, can you quickly discern which lines of the test relate
to setting up a context, which line represents execution of the behavior we
want to verify, and which lines relate to the actual assertion?

c3/14/RetweetCollectionTest.cpp
TEST_F(ARetweetCollection, IgnoresDuplicateTweetAdded) {
Tweet tweet("msg", "@user");
Tweet duplicate(tweet);
collection.add(tweet);
collection.add(duplicate);
ASSERT THAT (collection.size(), Eq(1lu));
}

With the lines clumped together, it takes a few extra moments to see exactly
what’s being tested. Contrast that version of the test with code that makes
the Arrange, Act, and Assert portions of the test obvious.

c3/13/RetweetCollectionTest.cpp

TEST_F(ARetweetCollection, IgnoresDuplicateTweetAdded) {
Tweet tweet("msg", "@user");
Tweet duplicate(tweet);
collection.add(tweet);

collection.add(duplicate);

ASSERT THAT (collection.size(), Eq(1u));
}

Some test-drivers prefer the mnemonic Given-When-Then. Given a context,
When the test invokes some behavior, Then some result is verified. (The
cleanup task isn’t part of the mnemonic; it's considered housekeeping with
minimal significance to an understanding of the behavior your test verifies.)
You might also hear the phrase Setup—Execute—Verify (—Teardown). Given-
When-Then provides a slight additional connotation that your focus when

1. http://xp123.com/articles/3a-arrange-act-assert

http://media.pragprog.com/titles/lotdd/code/c3/14/RetweetCollectionTest.cpp
http://media.pragprog.com/titles/lotdd/code/c3/13/RetweetCollectionTest.cpp
http://xp123.com/articles/3a-arrange-act-assert
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

4.3

Chapter 4. Test Construction ® 86

doing TDD is on verifying behavior, not executing tests. It also aligns with an
analogous concept used for Acceptance Test-Driven Development (see Section
10.3, Unit Tests, Integration Tests, and Acceptance Tests, on page 278).

The concept of AAA won’t shatter any earths, but applying it consistently will
eliminate unnecessary friction that haphazardly organized tests create for
the reader.

Fast Tests, Slow Tests, Filters, and Suites

If you test-drive small, isolated units of code, each of your tests has the abil-
ity to run blazingly fast. A typical test might run in less than a millisecond
on a decent machine. With that speed, you can run at least thousands of unit
tests in a couple seconds.

Dependencies on collaborators that interact with slow resources such as
databases and external services will slow things down. Simply establishing
a database connection might take 50ms. If a large percentage of your tests
must interact with a database, your thousands of tests will require minutes
to run. Some shops wait more than a half hour for all their tests to run.

You'll learn how to begin breaking those dependencies on slow collaborators
in the chapter Test Doubles. Building fast tests might represent the difference
between succeeding with TDD and abandoning it prematurely. Why?

A core goal of doing TDD is to obtain as much feedback as possible as often
as possible. When you change a small bit of code, you want to know immedi-
ately whether your change was correct. Did you break something in a far-flung
corner of the codebase?

You want to run all of your unit tests with each small change. A significant
payoff of TDD is the ability to obtain this ridiculously rapid and powerful
feedback. If you built fast unit tests, it’'s absolutely possible, as suggested, to
run all your tests in a few seconds. Running all your tests all the time is not
unreasonable with such short wait times.

If instead your tests complete executing in more than a few seconds, you
won’t run them as often. How often would you wait two minutes for your tests
to run—perhaps five times an hour? What if the tests take twenty minutes
to run? You might run those tests a handful of times per day.

TDD begins to diminish in power as the feedback cycle lengthens. The longer
the time between feedback, the more questionable code you will create. It's
easy and typical to introduce small, or even large, problems as you code. In
contrast, running tests after every small change allows you to incrementally

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Fast Tests, Slow Tests, Filters, and Suites ® 87

address these problems. If your test reveals a defect after you've added a
couple minutes of new code, you can easily pinpoint code that caused the
problem. If you created a few lines of difficult code, you can clean it up read-
ily and safely.

Slow tests create such a problem for TDD that some folks no longer call them
unit tests but instead refer to them as integration tests. (See Section 10.3,
Unit Tests, Integration Tests, and Acceptance Tests, on page 278.)

Running a Subset of the Tests

You might already have a set of tests (a suite) that verifies a portion of your
system. Chances are good that your test suite isn’t so fast, since most existing
systems exhibit countless dependencies on slow collaborators.

The first natural reaction to a slow test suite is to run tests less frequently.
That strategy doesn’t work if you want to do TDD. The second reaction is to
run a subset of the tests all the time. While less than ideal, this strategy might
just work, as long as you understand the implications.

Google Mock makes it easy to run a subset of the tests by specifying what is
known as a test filter. You specify a test filter as a command-line argument
to your test executable. The filter allows you to specify tests to execute in the
form test case name.test name. For example, to run a single, specific test, do
this:

./test --gtest filter=ATweet.CanBeCopyConstructed # weak

Don’t get in a regular habit of running only one test at a time, however. You
can use a wildcard character (¥) to run numerous tests. Let’s at least run all
of the tests associated with the ATweet test case.

./test --gtest filter=ATweet.* # slightly less weak

If you're test-driving a class related to tweets, perhaps the best thing you can
do is find a way to run all other tests related to tweets, too. You have wild-
cards, dude (or dude-ess)! Take advantage of them.

./test --gtest filter=*weet*.*

Now we're talking! That filter also includes all of the tests against RetweetCol-
lection. (I cleverly omitted the capital T since it doesn’t match the lowercase
t of RetweetCollection.)

What if you want to run all tests related to tweets but avoid any construction
tests for the Tweet class? Google Mock lets you create complex filters.

./test --gtest filter=*Retweet*.*:ATweet.*:-ATweet*.*Construct*

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 4. Test Construction ¢ 88

You use a colon (;) to separate individual filters. Once Google Mock encounters
a negative sign (hyphen), all filters thereafter are subtractive. In the previous
example, -ATweet* *Construct* tells Google Mock to ignore all ATweet tests with
the word Construct somewhere in their name.

So, what’s the problem with running a subset of the tests? The more tests
you can run in a short time, the more likely you will know the moment you
introduce a defect. The fewer tests you run, the longer it will be on average
before you discover a defect. In general, the longer the time between introduc-
ing a defect and discovering it, the longer it will take to correct. There are a
few simple reasons. First, if you've worked on other things in the interim, you
will often expend additional time to understand the original solution. Second,
newer code in the area may increase the comprehension effort required as
well as the difficulty of making a fix.

Many unit test tools (but not Google Mock) directly support the ability to
permanently specify arbitrary suites. For example, CppUnit provides a Test-
Suite class that allows you to programmatically add tests to a collection of
tests to run.

Test Triaging

| worked recently with a customer that had a sizable C++ codebase. They had embarked on TDD
not long before my arrival and had built a few hundred tests. The majority of their tests ran
slowly, and the entire test run took about three minutes, far too long for the number of tests in
place. Most tests took about 300 or more milliseconds to execute.

Using Google Mock, we quickly wrote a test listener whose job was to produce afile, slowTests.txt,
containing a list of tests that took longer than 10ms to execute. We then altered Google Mock
code to support reading a list of filters from afile. That change essentially provided suite support
for Google Mock. We then changed Google Mock to support running the converse of a specified
filter. Using the slowTests.txt file, the team could run either the slow subset of all tests or the fast
subset of all tests. The slow suite took most of the three minutes to run (see Section 10.3, Unit
Tests, Integration Tests, and Acceptance Tests, on page 278); the fast suite took a couple seconds.

We altered Google Mock to fail if an individual test exceeded a specified number of milliseconds
(passed in as acommand-line argument named slow_test_threshold). The customer then configured
the continuous integration (Cl) build to first run the fast test suite, triggering it to fail if any test
was too slow, and then to run the slow suite.

We told the developers to run the fast suite continually at their desk as they test-drove code.
The developers were to specify the slow_test_threshold value as they ran fast tests, so they knew
as soon as they introduced an unacceptably slow test. Upon check-in, they were to run both
slow and fast suites. We asked the developers to try to shrink the size of slowTests.txt over time,
by finding ways to eliminate bad dependencies that made those tests run slowly (see the chapter
Test Doubles).

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

4.4

Assertions ® 89

The team got the message and ended up with the bulk of their unit tests as fast tests. Last | heard,
they were rapidly growing their test-driven codebase successfully.

I've helped a few teams through a similar process of test triaging. Often it's the 80-20 rule: 20
percent of the tests take 80 percent of the execution time. Bucketing the tests into fast and slow
suites allows a team to quickly improve their ability to do TDD.

The ability to define suites provides the basis for splitting tests so that you
can run fast tests only. The identification of the slow tests allows you to
incrementally transform crummy slow tests into spiffy fast tests.

You will usually need integration tests (tests that must integrate with external
services; see Section 10.3, Unit Tests, Integration Tests, and Acceptance Tests,
on page 278). They will be slow. Having the ability to arbitrarily define suites
allows you to maintain many collections of tests that you run in the CI build
as appropriate.

Assertions

Assertions turn a test into an automated test. In the absence of an assertion,
Google Mock simply executes a block of code. If you want to verify that the
block of code worked, you'd need to manually inspect the results (perhaps
by step-debugging or printing the contents of some variables).

You don’t have time for manual verification. TDD generates automated unit
tests, which self-verify (see Section 7.2, Tests Come FIRST, on page 173), saving
you from the risky and tedious work of visually inspecting results. There’s
hardly anything more wasteful than manually bringing up the GUI for an
application, time and time again, in order to verify something that a unit test
could have verified automatically.

When your test framework runs an individual test, it executes statements
from the top to the bottom of the test’s code block. Each assertion encountered
represents an attempt to verify that something occurred as expected. If the
assertion’s condition is not met, the test framework aborts execution of the
remainder of the test. (This is often accomplished by having the assertion
throw an exception that the framework traps.) The framework stores informa-
tion about the test failure, runs any teardown logic, and moves on to another
test.

Some tools, Google Mock included, provide an alternate assertion mechanism
that allows a test to continue executing even if the assertion fails. These
assertions are known as nonfatal assertions (in contrast to fatal assertions
that abort the test).

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 4. Test Construction ® 90

Your production tests should use fatal assertions. A test should abort once
an assertion failure occurs. It makes little sense to continue executing a test
once an assumption verified by an assertion no longer holds true. If you strive
for one assert per test (Section 7.3, One Assert per Test, on page 178), you'll
rarely have code that executes after that sole assertion.

When designing tests or deciphering test failures, you might use additional
assertions as probes. Is a member variable initialized to a specific value? Does
setup put things into the state I expect? If a nonfatal assertion fails, the rest
of the test still runs, perhaps providing you with additional useful knowledge.
You would normally remove such probes when you're ready to check in code.

Classic Form Assertions

Most, if not all, frameworks support what I'll refer to as classic-form asserts.
They follow a pattern first set out with SUnit, a Smalltalk unit testing frame-
work built in the 1990s. Nothing is wrong with using this form, but you might
also consider the more literary form of assertions known as Hamcrest (see
Hamcrest Assertions, on page 91). You'll want to learn both, since you’ll
encounter plenty of code using classic assertions.

The table here shows the two core workhorse assertions for Google Mock.
Your framework will use similar verbiage.

Form Description (Passing) Example
ASSERT TRUE(expression) Fail the test if expression returns a ASSERT TRUE(4 < 7)
false (or O) value.

ASSERT_EQ(expected, Fail the test if expected == actual ASSERT EQ(4,20/5)
actual) returns false.

Google Mock, like most C++ unit-testing frameworks, uses macros to imple-
ment the behavior for assertions. The assertion implementations for equality
comparisons are generally overloaded to support comparison of all primitive

types.

Most frameworks provide several additional assertion forms designed to
improve expressiveness. For example, Google Mock supports ASSERT FALSE
(assert that an expression returns false) plus a series of relational assertions
such as ASSERT GT (assert that a first argument is greater than a second). You
would express the first assertion in the preceding table as ASSERT_LT(4, 7).

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Assertions ® 91

Hamcrest Assertions

Your unit testing tool provides a small fixed set of classic-form assertions.
The most prevalent assertion, comparing two values for equality (ASSERT EQ in
Google Mock), is idiomatic. You have to remember that the expected value
comes first. Were you to read an assertion out loud, it would sound like “Assert
equals the expected value of 5 to the actual value of x.” It’s not a big deal,
because you’ll be reading thousands of asserts over time, but the awkward
phrasing slightly detracts from the readability of a test. Also, it’s easier for
newbies to mistakenly invert the order of actual and expected values.

Hamcrest assertions were introduced into unit testing tools several years ago
in an attempt to improve the expressiveness of tests, the flexibility of creating
complex assertions, and the information supplied by failure messages.
Hamcrest uses matchers (“Hamcrest” is an anagram of “matchers”) to declare
comparisons against actual results. Matchers can be combined to build
complex yet easily understood comparison expressions. You can also create
custom matchers.

A few simple examples are worth a thousand words, or at least the number
of words in the preceding paragraph.

string actual = string("al") + "pha";
ASSERT THAT(actual, Eq("alpha"));

The assertion reads left to right: assert that the actual value is Equal to the
string "alpha". For simple equality comparisons, the improved readability comes
at the low cost of a few extra characters.

Hamcrest can seem like overkill initially. But the wealth of matchers should make
it clear that Hamcrest provides ample opportunities for high levels of expressive-
ness in your tests. Many of the matchers can actually reduce the amount of code
you write at the same time they increase the abstraction level in your tests.

ASSERT THAT (actual, StartsWith("alx"));

A list of the provided matchers appears in the Google Mock documentation.”
You’'ll want to add a using declaration to your test file.

using namespace ::testing;

Otherwise, the assertions that you so dearly want to be expressive will be
filled with clutter.

ASSERT_THAT (actual, ::testing::StartswWith("al"));

2. http://code.google.com/p/googlemock/wiki/V1 6 CheatSheet#Matchers

http://code.google.com/p/googlemock/wiki/V1_6_CheatSheet#Matchers
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 4. Test Construction ® 92

The value of using Hamcrest increases even more with the improved readabil-
ity of the failure messages.

Expected: starts with "alx"
Actual: "alpha" (of type std::string)

The ability to combine matchers can reduce multiple lines needed to assert
something into a single-line assertion.

ASSERT_THAT (actual,
AL10f (StartsWith("al"), EndsWith("ha"), Ne("aloha")));

In this example, AllOf indicates that all of the matcher arguments must succeed
in order for the entire assert to pass. Thus, the actual string must start with
"al", end with "ha", and not be equal to "aloha".

Most developers eschew the use of Hamcrest for assertions against boolean
values and prefer to use the classic-form assertion instead.

ASSERT TRUE (someBooleanExpression);
ASSERT_FALSE (someBooleanExpression);

Finally, if the set of matchers Google Mock provides is insufficient for your
needs, you can create custom matchers.’

Choosing the Right Assertion

The goal of an assertion in your test is to succinctly describe the expected
outcome of preceding statements executed in the test. Usually you want the
assertion to be specific. If you know that the value of a variable should be 3,
use an equality assertion form and assert exactly that.

ASSERT THAT (tweetsAdded, Eq(3));

Weaker comparisons can at times be more expressive, but most of the time
you want to avoid them.

ASSERT_THAT (tweetsAdded, Gt(0)); // avoid broad assertions

Most of your assertions should use the equality form. You could technically
use the ASSERT TRUE form for everything, but the equality form assertions
(Hamcrest or not) provide a better message when an assertion does fail. When
the following assertion fails...

unsigned int tweetsAdded(5);
ASSERT TRUE (tweetsAdded == 3);

the failure message provides minimal information.

3. http://code.google.com/p/googlemock/wiki/V1 6 CheatSheet#Defining Matchers

http://code.google.com/p/googlemock/wiki/V1_6_CheatSheet#Defining_Matchers
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Assertions ® 93

Value of: tweetsAdded ==
Actual: false
Expected: true

However, when you use an equality form...

ASSERT THAT (tweetsAdded, Eq(3));

the failure message tells you what the assertion expected plus what was
actually received.

Value of: tweetsAdded
Expected: is equal to 3
Actual: 5 (of type unsigned int)

The wording of the failure message is why you always want to specify the
expected and actual values in the correct order. Unintentionally reversing the
order creates a confusing failure message that will take additional time to
decipher. If you use ASSERT THAT(), the actual value comes first; if you use
ASSERT EQ(), the expected value comes first.

Comparing Floats

Floating-point numbers are imprecise binary representations of real numbers.
As such, the result of a float-based calculation might not exactly match another
float value, even though it appears as if they should. Here’s an example:

double x{4.0};
double y{0.56};
ASSERT THAT(x + y, Eq(4.56));

On my machine, I receive the following failure when I execute the previous
assertion:

Value of: x + vy
Expected: is equal to 4.56
Actual: 4.56 (of type double)

Google Mock and other tools provide special assertion forms that allow you to
compare two floating-point quantities using a tolerance. If the two quantities differ
by an amount greater than the tolerance, the assertion fails. Google Mock provides
a simpler comparison by using units in the last place (ULPs) as the default
tolerance.

ASSERT_THAT(x + y, DoubleEq(4.56));

(In a forthcoming version of Google Test, you can also specify the tolerance value
itself if you are daring enough—ULPs and comparing floating-point numbers are
complex topics (http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm).

http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 4. Test Construction ® 94

Exception-Based Tests

As a good programmer, you know the possibilities for failure that could arise
from executing code. You know when to throw exceptions and also when you
might need to protect your application by introducing try-catch blocks. Your
intimate knowledge of the code paths is what allows you to know when you
need to worry about handling exceptions.

When doing TDD, you drive code to handle these concerns into your system
by first writing a failing test. The result is a test that documents to other
developers—who don’t have your intimate knowledge of the code paths—what
could go wrong and what should happen when it does. A client developer
armed with this knowledge can consume your classes with much higher
confidence.

Suppose you are testing a bit of code that throws an exception under certain
circumstances. Your job as a professional is to document that case in a test.

Some unit testing frameworks allow you to declare that an exception should
be thrown and fail the test if an exception is not thrown. Using Google Mock,
we code the following:

c3/12/TweetTest.cpp
TEST (ATweet, RequiresUserToStartWithAtSign) {
string invalidUser("notStartingWith@");
ASSERT_ANY_THROW(Tweet tweet("msg", invalidUser));
}

The ASSERT_ANY_THROW macro fails the test if the expression it encloses does
not throw an exception. We run all the tests and await the failure of this test.

Expected: Tweet tweet("msg", invalidUser) throws an exception.
Actual: it doesn't.

Here is corresponding code that gets the test to pass:

c3/12/Tweet.h
Tweet (const std::string& message="",
const std::string& user=Tweet::NULL USER)
1 message (message)

, user (user) {
if (!isValid(user_)) throw InvalidUserException();

}

bool isValid(const std::string& user) const {
return '@' == user[0];

}

http://media.pragprog.com/titles/lotdd/code/c3/12/TweetTest.cpp
http://media.pragprog.com/titles/lotdd/code/c3/12/Tweet.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Assertions ® 95

(The implementation of isValid() is sufficient for the one new test we added to
TweetTest. Its implementation assumes that Tweet’s constructor is passed a
nonempty string for the user argument. So, what other test do we need to
write?)

If you know the type of the exception that will be thrown, you can specify it.

c3/12/TweetTest.cpp
TEST(ATweet, RequiresUserToStartWithAnAtSign) {
string invalidUser("notStartingWith@");
ASSERT THROW(Tweet tweet("msg", invalidUser), InvalidUserException);

}

The failure message tells you when the expected exception type does not
match what was actually thrown.
Expected: Tweet tweet("msg", invalidUser) throws an exception

of type InvalidUserException.
Actual: it throws a different type.

If your framework does not support a single-line declarative assert that ensures
an exception is thrown, you can use the following structure in your test:
c3/12/TweetTest.cpp

TEST (ATweet, RequiresUserNameToStartWithAnAtSign) {
string invalidUser("notStartingWith@");

try {
Tweet tweet("msg", invalidUser);
FAIL();

}

catch (const InvalidUserException& expected) {}

}

We could code this in a number of ways, but I prefer the technique shown
here. It's the generally preferred idiom in the TDD community. You might
also need to use the try-catch structure if you must verify any postconditions
after the exception is thrown. For example, you may want to verify the text
associated with the thrown exception object.

c3/13/TweetTest.cpp
TEST(ATweet, RequiresUserNameToStartWithAtSign) {
string invalidUser("notStartingWith@");

try {
Tweet tweet("msg", invalidUser);
FAIL();

}

catch (const InvalidUserException& expected) {
ASSERT STREQ("notStartingWith@", expected.what());

}

http://media.pragprog.com/titles/lotdd/code/c3/12/TweetTest.cpp
http://media.pragprog.com/titles/lotdd/code/c3/12/TweetTest.cpp
http://media.pragprog.com/titles/lotdd/code/c3/13/TweetTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

4.5

Chapter 4. Test Construction ® 96

Note the use of ASSERT STREQ. Google Mock supplies four assertion macros
(ASSERT_STREQ, ASSERT STRNE, ASSERT_STRCASEEQ, and ASSERT_STRCASENE) designed
to support C-style (null-terminated) strings, in other words, char* variables.

Inspecting Privates

New test-drivers inevitably ask two questions: Is it OK to write tests against
private member data? What about private member functions? These are two
related but distinct topics that both relate to design choices you must make.

Private Data

The Tell-Don’t-Ask design concept says that you should tell an object to do
something and let that object go off and complete its work. If you ask lots of
questions of the object, you're violating Tell-Don’t-Ask. A system consisting
of excessive queries to other objects will be entangled and complex. Client C
asks an object S for information, does some work that’s possibly a responsi-
bility S could take on, asks another question of S, and so on, creating a tight
interaction between C and S. Since S is not taking on the responsibility it
should, clients other than C are likely asking similar questions and thus
coding duplicate bits of logic to handle the responses.

An object told to do something will sometimes delegate the work to a collabo-
rator object. Accordingly, a test would verify the interaction—“Did the
collaborator receive the message?”—using a test double (see Test Doubles).
This is known as interaction-based testing.

Still, not all interactions require spying on collaborators. When test-driving
a simple container, for example, you’ll want to verify that the container holds
on to any objects added. Simply ask the container what it contains using its
public interface and assert against the answer. Tests that verify by inspecting
attributes of an object are known as state-based tests.

It’s only fair game to allow clients to know what they themselves stuffed into
an object. Add an accessor. (If you're worried about evil clients using this
access for cracking purposes, have the accessor return a copy instead.)

You might have the rare need to hold onto the result of some intermediate
calculation—essentially a side effect of making a function call that will be
used later. It's acceptable to create an accessor to expose this value that might
not otherwise need to be part of the interface for the class. You might declare
the test as a friend of the target class, but don’t do that. Add a brief comment
to declare your intent.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Inspecting Privates ® 97

public:
// exposed for testing purposes; avoid direct production use:
unsigned int currentWeighting;

Exposing data solely for the purpose of testing will bother some folks, but it’s
more important to know that your code works as intended.

Excessive state-based testing is a design smell, however. Any time you expose
data solely to support an assertion, think about how you might verify
behavior instead. Refer to Schools of Mock, on page 134, for further discussion
of state vs. interaction testing.

Private Behavior

When test-driving, everything flows from the public interface design of your
class. To add detailed behavior, you test-drive it as if your test were a produc-
tion client of the class. As the details get more detailed and the code more
complex, you'll find yourself naturally refactoring to additional extracted
methods. You might find yourself wondering if you should directly write tests
against those extracted methods.

The library system defines a HoldingService class that provides the public API
for checking out and checking in holdings. Its Checkin() method provides a
reasonable (though slightly messy) high-level policy implementation for
checking in holdings.

c7/2/library/HoldingService.cpp
void HoldingService::CheckIn(
const string& barCode, date date, const string& branchlId)

{
Branch branch(branchId);
mBranchService.Find(branch);

Holding holding(barCode);
FindByBarCode(holding);

holding.CheckIn(date, branch);
mCatalog.Update(holding);

Patron patronWithBook = FindPatron(holding);
patronWithBook.ReturnHolding(holding);

if (IsLate(holding, date))
ApplyFine(patronWithBook, holding);

mPatronService.Update(patronWithBook);

http://media.pragprog.com/titles/lotdd/code/c7/2/library/HoldingService.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 4. Test Construction ¢ 98

The challenge is the ApplyFine() function. The programmer who originally test-
drove the implementation of Checkin() started with a simple implementation
for a single case but extracted the function as it became complex.

c7/2/library/HoldingService.cpp
void HoldingService: :ApplyFine(Patron& patronWithHolding, Holding& holding)
{

int daysLate = CalculateDaysPastDue(holding);

ClassificationService service;
Book book = service.RetrieveDetails(holding.Classification());

switch (book.Type()) {
case Book::TYPE_BOOK:
patronwWithHolding.AddFine (Book: :BOOK DAILY FINE * dayslLate);
break;
case Book::TYPE_MOVIE:

{

int fine = 100 + Book::MOVIE DAILY FINE * daysLate;

if (fine > 1000)

fine = 1000;

patronWithHolding.AddFine(fine);
}
break;

case Book::TYPE NEW RELEASE:

patronwWithHolding.AddFine(Book: :NEW RELEASE DAILY FINE * dayslLate);
break;

}

Each test built around ApplyFine() must run in a context that requires a patron
first check a book out and then check it in. Wouldn't it make more sense to
exhaust all of the ApplyFine() code paths by testing it directly?

Writing tests against ApplyFine() directly should make us feel a twinge bad
because of the information-hiding violation. More importantly, our design
senses should be tingling. ApplyFine() violates the SRP for HoldingService: a
HoldingService should provide a high-level workflow only for clients. Imple-
mentation details for each step should appear elsewhere. Viewed another
way, ApplyFine() exhibits feature envy—it wants to live in another class, perhaps
Patron.

Most of the time, when you feel compelled to test private behavior, instead
move the code to another class or to a new class.

ApplyFine() isn’t yet a candidate for moving wholesale to Patron, because it does
a few things: it asks another function on the service to calculate the number
of days past due, determines the book type for the given book, and applies a

http://media.pragprog.com/titles/lotdd/code/c7/2/library/HoldingService.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Inspecting Privates ® 99

calculated fine to the patron. The first two responsibilities require access to
other HoldingService features, so they need to stay in HoldingService for now.
But we can split apart and move the fine calculation.

c7/3/library/HoldingService.cpp
void HoldingService: :ApplyFine(Patron& patronWithHolding, Holding& holding)

{
unsigned int dayslLate = CalculateDaysPastDue(holding);

ClassificationService service;
Book book = service.RetrieveDetails(holding.Classification());
patronWithHolding.ApplyFine(book, dayslLate);

}

c7/3/library/Patron.cpp
void Patron::ApplyFine(Book& book, unsigned int daysLate)

{
switch (book.Type()) {
case Book::TYPE BOOK:
AddFine(Book: :BOOK_DAILY FINE * daysLate);
break;

case Book::TYPE MOVIE:
{
int fine = 100 + Book::MOVIE DAILY FINE * dayslLate;
if (fine > 1000)
fine = 1000;
AddFine(fine);
}

break;

case Book::TYPE NEW RELEASE:
AddFine(Book: :NEW RELEASE DAILY FINE * daysLate);
break;

}

Now that we look at the moved function in its new home, we see that we still
have problems. Asking about the type of book still exhibits possible feature
envy. The switch statement represents another code smell. Replacing it with a
polymorphic hierarchy would allow us to create more direct, more focused
tests. For now, though, we've put Applyfine() in a place where we should feel
comfortable about making it public so that we can directly test it.

Q.: Won'tI end up with thousands of extra special-purpose classes by coding this
way?

A.: You will end up with more classes, certainly, but not thousands more. Each
class will be significantly smaller, easier to understand/test/maintain, and faster
to build! (See Section 4.3, Fast Tests, Slow Tests, Filters, and Suites, on page 86.)

http://media.pragprog.com/titles/lotdd/code/c7/3/library/HoldingService.cpp
http://media.pragprog.com/titles/lotdd/code/c7/3/library/Patron.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

4.6

Chapter 4. Test Construction ® 100

Q.: I'mnot a fan of creating more classes.

A.: It's where you start truly taking advantage of OO. As you start creating more
single-purpose classes, each containing a small number of single-purpose methods,
you'll start to recognize more opportunities for reuse. It's impossible to reuse large,
highly detailed classes. In contrast, SRP-compliant classes begin to give you the
hope of reducing your overall amount of code.

What if you're dealing with legacy code? Suppose you want to begin refactoring
a large class with dozens of member functions, many private. Like private
behavior, simply relax access and add a few tests around some of the private
functions. (Again, don’t worry about abuse; it doesn’t happen.) Seek to move
the function to a better home later. See Legacy Challenges for more on getting

legacy code under control.

Testing vs. Test-Driving: Parameterized Tests and Other Toys

Despite the word test appearing in its name, TDD is less about testing than
it is about design. Yes, you produce unit tests as a result of practicing TDD,
but they are almost a by-product. It might seem like a subtle difference, but
the true goal is to allow you to keep the design clean over time so that you
may introduce new behavior or change existing behavior with high confidence
and reasonable cost.

With a testing mentality, you seek to create tests that cover a breadth of
concerns. You create tests for five types of cases: zero, one, many, boundary,
and exceptional cases. With a test-driving mentality, you write tests in order
to drive in code that you believe meets desired specifications. While both
testing and test-driving are about providing enough confidence to ship code,
you stop test-driving as soon you have the confidence that you've built all
you need (and your tests all pass, of course). In contrast, a good tester seeks
to cover the five types of cases as exhaustively as reasonable.

Nothing prohibits you from writing additional after-the-fact tests when doing
TDD. Usually, though, you stop as soon as you believe you have a correct
and clean implementation that covers the cases you know you must support.
Stated another way, stop once you can't think of how to write a test that
would fail.

As an example, consider the Roman number converter (see Code Kata: Roman
Numeral Converter), which converts an Arabic numeral to a corresponding
Roman numeral. A good tester would probably test at least a couple dozen
conversions to ensure that all the various digits and combinations thereof
were covered. In contrast, when test-driving the solution, I could stop at about
a dozen tests. At that point, I have the confidence that I've built the right

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Testing vs. Test-Driving: Parameterized Tests and Other Toys ® 101

algorithm, and the remainder of the work is simply filling in a digit-to-digit
conversion table. (In the appendix, I drive through a few more assertions for
confidence and demonstration purposes.)

The genesis of many code-level testing tools was to support the writing of
tests, not to support doing TDD. As such, many tools provide sophisticated
features to make testing easier. For example, some tools allow you to define
dependencies between tests. It’s a nice optimization feature if you have a suite
of integration tests (see Section 10.3, Unit Tests, Integration Tests, and
Acceptance Tests, on page 278) that run slowly; you can speed up your test
run by stringing tests together in a certain order. (The maintenance costs of
and pains from using such tightly coupled tests increase.) But when doing
TDD, you seek fast, independent tests and therefore don’'t need the complex-
ity of test dependencies.

Nothing is wrong with wanting or using any of these testing features from
time to time. However, question the desire: Does this feature suggest that I'm
outside the bounds of TDD? Is there an approach that better aligns with the
goals of TDD?

This section will cover, briefly, some tempting test tool features. Refer to your
test tool for further details about these features if you still feel compelled to
use them (even after I attempt to dissuade you).

Parameterized Tests

The Roman numeral converter (Code Kata: Roman Numeral Converter) must
convert the numbers from 1 through 3999. Perhaps it would be nice if you
could simply iterate a list of expected inputs and outputs and pump this into
a single test that took an input and an output as arguments. The parameter-
ized tests feature exists in some test tools (Google Mock included) to support
this need.

Let’s demonstrate with this very trivial class called Adder:

c3/18/ParameterizedTest.cpp
class Adder {
public:
static int sum(int a, int b) {
return a + b;
}
}

Here is a normal TDD-generated test that drove in the implementation for
sum():

http://media.pragprog.com/titles/lotdd/code/c3/18/ParameterizedTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 4. Test Construction ® 102

c3/18/ParameterizedTest.cpp

TEST(AnAdder, GeneratesASumFromTwoNumbers) {
ASSERT THAT (Adder::sum(1l, 1), Eq(2));

}

But that test covers only a single case! Yes, and we're confident that the code
works, and we shouldn’t feel the need to create a bunch of additional cases.

For more complex code, it might make us a tad more confident to blast through
a bunch of cases. For the Adder example, we first define a fixture that derives
from TestWithParam<T>, where T is the parameter type.

c3/18/ParameterizedTest.cpp
class AnAdder: public TestWithParam<SumCase> {
+

Our parameter type is SumCase, designed to capture two input numbers and
an expected sum.

c3/18/ParameterizedTest.cpp
struct SumCase {
int a, b, expected;
SumCase(int anA, int aB, int anExpected)
: a(anA), b(aB), expected(anExpected) {}
b

With these elements in place, we can write a parameterized test. We use TEST P,
P for parameterized, to declare the test.

c3/18/ParameterizedTest.cpp
TEST P(AnAdder, GeneratesLotsOfSumsFromTwoNumbers) {
SumCase input = GetParam();
ASSERT THAT (Adder: :sum(input.a, input.b), Eq(input.expected));
}
SumCase sums[] = {
SumCase(1, 1, 2),
SumCase(1l, 2, 3),
SumCase(2, 2, 4)
b
INSTANTIATE TEST CASE P(BulkTest, AnAdder, ValuesIn(sums));

The last line kicks off calling the test with injected parameters. INSTANTI-
ATE_TEST_CASE_P takes the name of the fixture as its second argument and takes
the values to be injected as the third argument. (The first argument, BulkTest,
represents a prefix that Google Mock appends to the test name.) The Valuesin()
function indicates that the injection process should use an element from the
array sums to inject into the test (GeneratesLotsOfSumsFromTwoNumbers)
each time it’s called. The first line in the test calls GetParam(), which returns
the injected value (a SumCase object).

http://media.pragprog.com/titles/lotdd/code/c3/18/ParameterizedTest.cpp
http://media.pragprog.com/titles/lotdd/code/c3/18/ParameterizedTest.cpp
http://media.pragprog.com/titles/lotdd/code/c3/18/ParameterizedTest.cpp
http://media.pragprog.com/titles/lotdd/code/c3/18/ParameterizedTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

4.7

Teardown * 103

Cool! But in the dozen-plus years I've been doing TDD, I've used parameterized
tests less than a handful of times. It works well if you have a lot of simple
data you want to crunch through. Perhaps someone gave you a spreadsheet
with a bunch of data cases. You might dump those values as parameters (and
maybe even write a bit of code to pull the parameters directly from the
spreadsheet). These are perfectly fine ideas, but you're no longer in the realm
of TDD.

Also, remember that a goal of TDD is to have tests that document behaviors
by example, each named to aptly describe the unique behavior being driven
in. Parameterized tests can meet this need, but more often than not, they
simply act as tests.

Comments in Tests

The code examples distributed as part of the documentation for a prominent
test tool include a number of well-annotated tests. Comments appear, I pre-
sume, for pedantic reasons.

// Tests the c'tor that accepts a C string.
TEST (MyString, ConstructorFromCString)

It takes a lot to offend me, but this comment comes pretty close. What a waste
of typing effort, space, and time for those who must read the code.

Of course, comments aren’t a test tool feature but a language feature. In both
production code and test code, your best choice is to transform as many
comments as you can into more-expressive code. The remaining comments
will likely answer questions like “Why in the world did I code it that way?”

Outside of perhaps explaining a “why,” if you need a comment to explain your
test, it stinks. Tests should clearly document class capabilities. You can
always rename and structure your tests in a way (see Section 7.3, One Assert
per Test, on page 178 and Arrange-Act-Assert/Given-When-Then, on page 84)
that obviates explanatory comments.

In case I haven't quite belabored the point, don’t summarize a test with a
descriptive comment. Fix its name. Don’t guide readers through the test with
comments. Clean up the steps in the test.

Teardown

Armed with the mechanics of constructing tests provided in this chapter and
the concepts of TDD from the prior chapter, you're ready to tackle some bigger
issues. How do you write tests against objects that must interact with other
objects, particularly when those objects exhibit troublesome dependencies?

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

5.1

5.2

CHAPTER 5

Test Doubles

Setup

In the prior three chapters, you test-drove a stand-alone class and learned
all about the fundamentals of TDD. If only life were so simple! The reality is
that objects must work with other objects (collaborators) in a production OO
system. Sometimes the dependencies on collaborators can cause pesky
challenges for test-driving—they can be slow, unstable, or not even around
to help you yet.

In this chapter, you'll learn how to brush away those challenges using test
doubles. You'll first learn how to break dependencies using handcrafted test
doubles. You'll then see how you might simplify the creation of test doubles
by using a tool. You'll learn about different ways of setting up your code so
that it can use test doubles (also known as injection techniques). Finally,
you’'ll read about the design impacts of using test doubles, as well as strategies
for their best use.

Dependency Challenges

Objects often must collaborate with other objects in order to get their work
done. An object tells another to do something or asks it for information. If an
object A depends upon a collaborator object B in order to accomplish its work,
A is dependent upon B.

Story: Place Description Service
As a programmer on map-based applications, | want a service that returns a one-line description
of the named place nearest a given location (latitude and longitude).

An important part of building the Place Description Service involves calling
an external API that takes a location and returns place data. I found an open,
free Representational State Transfer (REST) service that returns the place

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

5.3

Chapter 5. Test Doubles * 106

data in JSON format, given a GET URL. This Nominatim Search Service is
part of the Open MapQuest APIL."?

Test-driving the Place Description Service presents a challenge—the depen-
dency on the REST call is problematic for at least a few reasons.

e Making an actual HTTP call to invoke a REST service is very slow and will
bog down your test run. (See Section 4.3, Fast Tests, Slow Tests, Filters,
and Suites, on page 86.)

e The service might not always be available.
* You can’t guarantee what results the call will return.

Why do these dependency concerns create testing challenges? First, a
dependency on slow collaborators results in undesirably slow tests. Second,
a dependency on a volatile service (either unavailable or returning different
answers each time) results in intermittently failing tests.

The dependency concern of sheer existence can exist. What if you have no
utility code that supports making an HTTP call? In a team environment, the
job of designing and implementing an appropriate HTTP utility class might
be on someone else’s plate. You don’t have the time to sit and wait for someone
else to complete their work, and you don’t have the time to create an HTTP
class yourself.

What if you are the person on the hook for building HTTP support? Maybe
you’'d like to first explore the design of the Place Description Service imple-
mentation overall and worry about the implementation details of an HTTP
utility class later.

Test Doubles

You can avoid being blocked, in any of these cases, by employing a test double.
A test double is a stand-in—a doppelganger (literally: “double walker”)—for
a production class. HTTP giving you trouble? Create a test double HTTP
implementation! The job of the test double will be to support the needs of the
test. When a client sends a GET request to the HTTP object, the test double
can return a canned response. The test itself determines the response that
the test double should return.

You can find details on the API at http://open.mapguestapi.com/nominatim.
Wikipedia provides an overview of REST at https://en.wikipedia.org/wiki/Representational state trans-
fer.

N =

http://open.mapquestapi.com/nominatim
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

5.4

A Hand-Crafted Test Double * 107

Imagine you are on the hook to build the service but you aren’t concerned
with unit testing it (perhaps you plan on writing an integration test). You have
access to some classes that you can readily reuse.

e CurlHttp, which uses cURL’ to make HTTP requests. It derives from the
pure virtual base class Http, which defines two functions, get() and initialize().
Clients must call initialize() before they can make calls to get().

¢ Address, a struct containing a few fields.

* AddressExtractor, which populates an Address struct from a JSON* string
using J sonCpp.°

You might code the following:

CurlHttp http;
http.initialize();
auto jsonResponse = http.get(createGetRequestUrl(latitude, longitude));

AddressExtractor extractor;
auto address = extractor.addressFrom(jsonResponse);

return summaryDescription(address);

Now imagine you want to add tests for that small bit of code. It won’t be so
easy, because the CurlHttp class contains unfortunate dependencies you
don’t want. Faced with this challenge, many developers would choose to run
a few manual tests and move on.

You're better than that. You're test-driving! That means you want to add code
to your system only in order to make a failing test pass. But how will you
write a test that sidesteps the dependency challenges of the CurlHttp class?
In the next section, we’ll work through a solution.

A Hand-Crafted Test Double

To use a test double, you must be able to supplant the behavior of the Curl-
Http class. C++ provides many different ways, but the predominant manner
is to take advantage of polymorphism. Let’s take a look at the Http interface
that the CurlHttp class implements (realizes):

c5/1/Http.h

virtual ~Http() {}

virtual void initialize() = 0;

virtual std::string get(const std::string& url) const = 0;

3. http://curl.haxx.se/libcurl/cplusplus/
4. http://www.json.org
5. http://jsoncpp.sourceforge.net

http://media.pragprog.com/titles/lotdd/code/c5/1/Http.h
http://curl.haxx.se/libcurl/cplusplus/
http://www.json.org
http://jsoncpp.sourceforge.net
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 5. Test Doubles * 108

Your solution is to override the virtual methods on a derived class, provide
special behavior to support testing in the override, and pass the Place
Description Service code a base class pointer.

Let’s see some code.

c5/1/PlaceDescriptionServiceTest.cpp

TEST F(APlaceDescriptionService, ReturnsDescriptionForValidLocation) {
HttpStub httpStub;
PlaceDescriptionService service{&httpStub};

auto description = service.summaryDescription(ValidLatitude, ValidLongitude);

ASSERT THAT (description, Eq("Drury Ln, Fountain, CO, US"));
}

We create an instance of HttpStub in the test. HttpStub is the type of our test
double, a class that derives from Http. We define HttpStub directly in the test
file so that we can readily see the test double’s behavior along with the tests
that use it.

c5/1/PlaceDescriptionServiceTest.cpp
class HttpStub: public Http {
void initialize() override {}
std::string get(const std::string& url) const override {
return "?777";
}
i

Returning a string with question marks is of little use. What do we need to
return from get()? Since the external Nominatim Search Service returns a
JSON response, we should return an appropriate JSON response that will
generate the description expected in our test’s assertion.

c5/2/PlaceDescriptionServiceTest.cpp
class HttpStub: public Http {
void initialize() override {}
std::string get(const std::string& url) const override {
return R"({ "address": {
"road":"Drury Ln",
"city":"Fountain",
"state":"CO",
"country":"US" }})";
}
+

How did I come up with that JSON? I ran a live GET request using my
browser (the Nominatim Search Service API page shows you how) and captured
the resulting output.

http://media.pragprog.com/titles/lotdd/code/c5/1/PlaceDescriptionServiceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c5/1/PlaceDescriptionServiceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c5/2/PlaceDescriptionServiceTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

A Hand-Crafted Test Double * 109

From the test, we inject our HttpStub instance into a PlaceDescriptionService object
via its constructor. We're changing our design from what we speculated.
Instead of the service constructing its own Http instance, the client of the
service will now need to construct the instance and inject it into (pass it to)
the service. The service constructor holds on to the instance via a base class
pointer.

c5/2/PlaceDescriptionService.cpp
PlaceDescriptionService: :PlaceDescriptionService(Http* http) : http (http) {}

Simple polymorphism gives us the test double magic we need. A PlaceDe-
scriptionService object knows not whether it holds a production Http instance
or an instance designed solely for testing.

Once we get our test to compile and fail, we code summaryDescription().

c5/2/PlaceDescriptionService.cpp
string PlaceDescriptionService::summaryDescription(
const string& latitude, const string& longitude) const {
auto getRequestUrl = "";
auto jsonResponse = http ->get(getRequestUrl);

AddressExtractor extractor;

auto address = extractor.addressFrom(jsonResponse);

return address.road + ", " + address.city + ", " +
address.state + ", " + address.country;

}

(We're fortunate: someone else has already built AddressExtractor for us. It
parses a JSON response and populates an Address struct.)

When the test invokes summaryDescription(), the call to the Http method get() is
received by the HttpStub instance. The result is that get() returns our hard-
coded JSON string. A test double that returns a hard-coded value is a stub.
You can similarly refer to the get() method as a stub method.

We test-drove the relevant code into summaryDescription(). But what about the
request URL? When the code you're testing interacts with a collaborator, you
want to make sure that you pass the correct elements to it. How do we know
that we pass a legitimate URL to the Http instance?

In fact, we passed an empty string to the get() function in order to make
incremental progress. We need to drive in the code necessary to populate
getRequestUrl correctly. We could triangulate and assert against a second location
(see Triangulation, on page 283).

Better, we can add an assertion to the get() stub method we defined on
HttpStub.

http://media.pragprog.com/titles/lotdd/code/c5/2/PlaceDescriptionService.cpp
http://media.pragprog.com/titles/lotdd/code/c5/2/PlaceDescriptionService.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YVvYy

Chapter 5. Test Doubles ® 110

c5/3/PlaceDescriptionServiceTest.cpp
class HttpStub: public Http {
void initialize() override {}
std::string get(const std::string& url) const override {
verify(url);
return R"({ "address": {
"road":"Drury Ln",
"city":"Fountain",
"state":"CO",
"country":"US" }})";
}
void verify(const string& url) const {
auto expectedArgs(
"lat=" + APlaceDescriptionService::ValidLatitude + "&" +
"lon=" + APlaceDescriptionService::ValidLongitude);
ASSERT THAT(url, EndsWith(expectedArgs));

};

(Why did we create a separate method, verify(), for our assertion logic? It's
because of a Google Mock limitation: you can use assertions that cause fatal
failures only in functions with void return.®)

Now, when get() gets called, the stub implementation ensures the parameters
are as expected. The stub’s assertion tests the most important aspect of the
URL: does it contain correct latitude/longitude arguments? Currently it fails,
since we pass get() an empty string. Let’s make it pass.

c5/3/PlaceDescriptionService.cpp
string PlaceDescriptionService: :summaryDescription(
const string& latitude, const string& longitude) const {
auto getRequestUrl = "lat=" + latitude + "&lon=" + longitude;
auto jsonResponse = http ->get(getRequestUrl);
// ...
}

Our URL won't quite work, since it specifies no server or document. We bolster
our verify() function to supply the full URL before passing it to get().

c5/4/PlaceDescriptionServiceTest.cpp
void verify(const string& url) const {
string urlStart(
"http://open.mapquestapi.com/nominatim/v1/reverse?format=json&");
string expected(urlStart +
"lat=" + APlaceDescriptionService::ValidLatitude + "&" +
"lon=" + APlaceDescriptionService::ValidlLongitude);
ASSERT THAT (url, Eq(expected));

6. http://code.google.com/p/googletest/wiki/AdvancedGuide#Assertion_Placement

http://media.pragprog.com/titles/lotdd/code/c5/3/PlaceDescriptionServiceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c5/3/PlaceDescriptionService.cpp
http://media.pragprog.com/titles/lotdd/code/c5/4/PlaceDescriptionServiceTest.cpp
http://code.google.com/p/googletest/wiki/AdvancedGuide#Assertion_Placement
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

A Hand-Crafted Test Double ® 111

Once we get the test to pass, we undertake a bit of refactoring. Our summary-
Description() method violates cohesion, and the way we construct key-value
pairs in both the test and production code exhibits duplication.

c5/4/PlaceDescriptionService.cpp
string PlaceDescriptionService::summaryDescription(
const string& latitude, const string& longitude) const {
auto request = createGetRequestUrl(latitude, longitude);
auto response = get(request);
return summaryDescription(response);
}
string PlaceDescriptionService: :summaryDescription(
const string& response) const {
AddressExtractor extractor;
auto address = extractor.addressFrom(response);
return address.summaryDescription();

}

string PlaceDescriptionService::get(const string& requestUrl) const {
return http ->get(requestUrl);
}

string PlaceDescriptionService::createGetRequestUrl(
const string& latitude, const string& longitude) const {
string server{"http://open.mapquestapi.com/"};
string document{"nominatim/v1/reverse"};
return server + document + "?" +
keyValue("format", "json") + "&" +
keyValue("lat", latitude) + "&" +
keyValue("lon", longitude);
}
string PlaceDescriptionService::keyValue(
const string& key, const string& value) const {
return key + "=" + value;

}

What about all that other duplication? (“What duplication?” you ask.) The
text expressed in the test matches the text expressed in the production code.
Should we strive to eliminate this duplication? There are several approaches
we might take; for further discussion, refer to Implicit Meaning, on page 191.

Otherwise, our production code design appears sufficient for the time being.
Functions are composed and expressive. As a side effect, we're poised for change.
The function keyValue() appears ripe for reuse. We can also sense that generalizing
our design to support a second service would be a quick increment, since we’d
be able to reuse some of the structure in PlaceDescriptionService.

Our test’s design is insufficient, however. For programmers not involved in
its creation, it is too difficult to follow. Read on.

http://media.pragprog.com/titles/lotdd/code/c5/4/PlaceDescriptionService.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 5. Test Doubles ® 112

5.5 Improving Test Abstraction When Using Test Doubles

It’'s easy to craft tests that are difficult for others to read. When using test
doubles, it’s even easier to craft tests that obscure information critical to their
understanding.

ReturnsDescriptionForValidLocation is difficult to understand because it
hides relevant information, violating the concept of test abstraction (see Section
7.4, Test Abstraction, on page 181).

c5/4/PlaceDescriptionServiceTest.cpp

TEST _F(APlaceDescriptionService, ReturnsDescriptionForValidLocation) {
HttpStub httpStub;
PlaceDescriptionService service{&httpStub};

auto description = service.summaryDescription(ValidLatitude, ValidLongitude);

ASSERT THAT (description, Eq("Drury Ln, Fountain, CO, US"));
}

Why do we expect the description to be an address in Fountain, Colorado?
Readers must poke around to discover that the expected address correlates
to the JSON address in the HttpStub implementation.

We must refactor the test so that stands on its own. We can change the
implementation of HttpStub so that the test is responsible for setting up the
return value of its get() method.

c5/5/PlaceDescriptionServiceTest.cpp
class HttpStub: public Http {
» public:
> string returnResponse;
void initialize() override {}
std::string get(const std::string& url) const override {
verify(url);
> return returnResponse;

}

void verify(const string& url) const {
// ...
}
+i

TEST _F(APlaceDescriptionService, ReturnsDescriptionForValidLocation) {
HttpStub httpStub;
httpStub.returnResponse = R"({"address": {
"road":"Drury Ln",
"city":"Fountain",
"state":"CO",
"country":"US" }})";

YYVYVYY

http://media.pragprog.com/titles/lotdd/code/c5/4/PlaceDescriptionServiceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c5/5/PlaceDescriptionServiceTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYVYVYY

Improving Test Abstraction When Using Test Doubles ¢ 113

PlaceDescriptionService service{&httpStub};

auto description = service.summaryDescription(ValidLatitude, ValidLongitude);

ASSERT THAT (description, Eq("Drury Ln, Fountain, CO, US"));
}

Now the test reader can correlate the summary description to the JSON object
returned by HttpStub.

We can similarly move the URL verification to the test.

c5/6/PlaceDescriptionServiceTest.cpp
class HttpStub: public Http {
public:
string returnResponse;
string expectedURL;
void initialize() override {}
std::string get(const std::string& url) const override {
verify(url);
return returnResponse;
}
void verify(const string& url) const {
ASSERT THAT(url, Eq(expectedURL));
}
}

TEST _F(APlaceDescriptionService, ReturnsDescriptionForValidLocation) {
HttpStub httpStub;
httpStub.returnResponse = // ...
string urlStart{
"http://open.mapquestapi.com/nominatim/v1/reverse?format=json&"};
httpStub.expectedURL = urlStart +
"lat=" + APlaceDescriptionService::ValidLatitude + "&" +
"lon=" + APlaceDescriptionService::ValidLongitude;
PlaceDescriptionService service{&httpStub};

auto description = service.summaryDescription(ValidLatitude, ValidLongitude);

ASSERT THAT (description, Eq("Drury Ln, Fountain, CO, US"));
}

Our test is now a little longer but expresses its intent clearly. In contrast, we
pared down HttpStub to a simple little class that captures expectations and
values to return. Since it also verifies those expectations, however, HttpStub
has evolved from being a stub to becoming a mock. A mock is a test double
that captures expectations and self-verifies that those expectations were met.”
In our example, an HttpStub object verifies that it will be passed an expected
URL.

7. xUnit Test Patterns [Mes07]

http://media.pragprog.com/titles/lotdd/code/c5/6/PlaceDescriptionServiceTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

5.6

Yy

Chapter 5. Test Doubles * 114

To test-drive a system with dependencies on things such as databases and
external service calls, you'll need several mocks. If they’re only “simple little
classes that manage expectations and values to return,” theyll all start
looking the same. Mock tools can reduce some of the duplicate effort required
to define test doubles.

Using Mock Tools

Mock tools such as Google Mock, CppUMock, or Hippo Mocks simplify your
effort to define mocks and set up expectations. You’'ll learn how to use Google
Mock in this section.

Defining a Derivative

Let’s test-drive summaryDescription() again. We'll need to mock the HTTP methods
get() and initialize().

c5/7/Http.h

virtual ~Http() {}

virtual void initialize() = 0;

virtual std::string get(const std::string& url) const = 0;

The first step in using the mock support built into Google Mock is to create
a derived class that declares mock methods. Google Mock allows us to define
the HttpStub derivative succinctly.

c5/7/PlaceDescriptionServiceTest.cpp
class HttpStub: public Http {
public:

MOCK _METHODO(initialize, void());

MOCK_CONST_METHOD1(get, string(const string&));
}i
To declare a mock method, you use one of a few macro forms. MOCK_CONST_METHOD1
tells Google Mock to define a const member function taking one argument (that’s
the 1 at the end of MOCK_CONST_METHOD1). The first macro argument, get(), represents
the name of the member function. You supply the rest of the member function’s
signature—its return value and argument declarations—as the second macro
argument (string(const string&)).

To mock initialize(), you use MOCK_METHODO, which creates a nonconst, zero-
argument override. The second macro argument, void(), says to declare a
function that takes no arguments and returns void.

Google Mock also provides support for mocking template functions and for
specifying the calling convention.®

8. http://code.google.com/p/googlemock/wiki/V1 6 CheatSheet#Defining a Mock Class

http://media.pragprog.com/titles/lotdd/code/c5/7/Http.h
http://media.pragprog.com/titles/lotdd/code/c5/7/PlaceDescriptionServiceTest.cpp
http://code.google.com/p/googlemock/wiki/V1_6_CheatSheet#Defining_a_Mock_Class
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Using Mock Tools ® 115

Google Mock translates a mock declaration into a member function defined
on the derived class. Behind the scenes, Google Mock synthesizes an imple-
mentation for that function to manage interactions with it. If the member
function doesn’t override the appropriate base class function, you won’t get
the behavior you want.

(Under C++11, the override keyword lets the compiler verify that you've properly
overridden a function. However, the MOCK_METHOD macros don’t yet accommo-
date the override keyword. See https://code.google.com/p/googlemock/issues/detail?id=157
for a patch that you can apply to Google Mock to fix this shortfall.)

Setting Expectations

We decide to delete our implementation of summaryDescription() and test-drive it
again. We choose to shrink the scope of the first test. Instead of driving an
implementation for all of summaryDescription(), we’ll drive in only the code that
sends off an HTTP request. A new test name captures our intent.

c5/7/PlaceDescriptionServiceTest.cpp
TEST _F(APlaceDescriptionService, MakesHttpRequestToObtainAddress) {
HttpStub httpStub;
string urlStart{
"http://open.mapquestapi.com/nominatim/v1/reverse?format=json&"};
auto expectedURL = urlStart +
"lat=" + APlaceDescriptionService::ValidLatitude + "&" +
"lon=" + APlaceDescriptionService::ValidLongitude;
EXPECT CALL(httpStub, get(expectedURL));
PlaceDescriptionService service{&httpStub};

service.summaryDescription(ValidLatitude, ValidLongitude);

}

We use the EXPECT CALL() macro to set up expectations as part of the test’s
Arrange step (see Arrange-Act-Assert/Given-When-Then, on page 84). The
macro configures Google Mock to verify that a message get() gets sent to the
httpStub object with an argument that matches expectedURL.

Where’s the assertion? Google Mock does its verification when the mock object
goes out of scope. Visually, our test doesn’t follow AAA, but the assertion step
still executes—it just does so implicitly. Some mock tools require you to add
an explicit verification call, which would once again make your assert step
visible.

If needed, you can force Google Mock to run its verification before the mock
goes out of scope.

Mock: :VerifyAndClearExpectations (&httpStub);

https://code.google.com/p/googlemock/issues/detail?id=157
http://media.pragprog.com/titles/lotdd/code/c5/7/PlaceDescriptionServiceTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYYVYYYY

Chapter 5. Test Doubles ® 116

Seeing an explicit assert step might make some folks happy, but it's not
necessary. You'll quickly learn how to read a test when you see mock expec-
tations being set.

We implement just enough of summaryDescription() to compile.

c5/7/PlaceDescriptionService.cpp
string PlaceDescriptionService: :summaryDescription(
const string& latitude, const string& longitude) const {
return "";

}
Running our tests produces the following failure:

Actual function call count doesn't match EXPECT CALL(httpStub, get(expectedURL))...
Expected: to be called once
Actual: never called - unsatisfied and active

The expectation was not met. No code called get() on httpStub by the time our
test completed. That’s a good failure! We implement enough code to pass the
test.

c5/8/PlaceDescriptionService.cpp
string PlaceDescriptionService: :summaryDescription(
const string& latitude, const string& longitude) const {
string server{"http://open.mapquestapi.com/"};
string document{"nominatim/v1l/reverse"};
string url = server + document + "?" +
keyValue("format", "json") + "&" +
keyValue("lat", latitude) + "&" +
keyValue("lon", longitude);
http ->get(url);
return "";

}
We write a second test to flesh out summaryDescription().

c5/9/PlaceDescriptionServiceTest.cpp
TEST F(APlaceDescriptionService, FormatsRetrievedAddressIntoSummaryDescription) {
HttpStub httpStub;
EXPECT CALL(httpStub, get())
.WillOnce(Return(
R"({ "address": {
"road":"Drury Ln",
"city":"Fountain",
"state":"CO",
"country":"US" }})"));
PlaceDescriptionService service(&httpStub);
auto description = service.summaryDescription(ValidLatitude, ValidLongitude);
ASSERT THAT(description, Eq("Drury Ln, Fountain, CO, US"));

http://media.pragprog.com/titles/lotdd/code/c5/7/PlaceDescriptionService.cpp
http://media.pragprog.com/titles/lotdd/code/c5/8/PlaceDescriptionService.cpp
http://media.pragprog.com/titles/lotdd/code/c5/9/PlaceDescriptionServiceTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

\]

YVYY

Using Mock Tools ® 117

The EXPECT_CALL() invocation in the test tells Google Mock what to return from
a call to get(). To paraphrase the code, a call on the HttpStub object to get() will
once (and only once) return a specific JSON string value.

We don’t care what gets passed in the get() call, since we verified that behavior
in MakesHttpRequestToObtainAddress. Our EXPECT CALL() uses the wildcard
matcher _ (an underscore; its qualified name is testing::) as an argument to
get(). The wildcard allows Google Mock to match on any call to the function,
regardless of the argument.

The wildcard increases the test’s level of abstraction by removing an irrelevant
detail. However, the lack of concern over the URL argument means that we’d
better have that other test (MakesHttpRequestToObtainAddress) that is con-
cerned with proper argument passing. In other words, don’t use wildcard
matchers unless you truly don’t care about the arguments or if you already
have other tests that do care.

(The wildcard is one of many matchers provided by Google Mock. The
matchers are the same ones you've been using for your assertions. See the
Google Mock documentation® for the full list of matchers.)

We get the test to pass.

c5/9/PlaceDescriptionService.cpp
string PlaceDescriptionService: :summaryDescription(
const string& latitude, const string& longitude) const {
string server{"http://open.mapquestapi.com/"};
string document{"nominatim/v1l/reverse"};
string url = server + document + "?" +
keyValue("format", "json") + "&" +
keyValue("lat", latitude) + "&" +
keyValue("lon", longitude);
auto response = http_->get(url);

AddressExtractor extractor;
auto address = extractor.addressFrom(response);
return address.summaryDescription();

}

We can refactor to the same implementation as when we test-drove using a
hand-crafted mock (see code/c5/10 in the source distribution).

Nice Mocks and Strict Mocks

Astute readers may have noted that we don’t follow the proper CurlHttp pro-
tocol in our implementations of summaryDescription(). We don’t call initialize() before

9. http://code.google.com/p/googlemock/wiki/V1 6 CheatSheet#Matchers

http://media.pragprog.com/titles/lotdd/code/c5/9/PlaceDescriptionService.cpp
http://code.google.com/p/googlemock/wiki/V1_6_CheatSheet#Matchers
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 5. Test Doubles ® 118

calling get(). (Don’t forget to run your integration tests!) To drive in a call to
initialize(), we can add an expectation to the MakesHttpRequestToObtainAddress
test.

c5/11/PlaceDescriptionServiceTest.cpp
TEST F(APlaceDescriptionService, MakesHttpRequestToObtainAddress) {
HttpStub httpStub;
string urlStart{
"http://open.mapquestapi.com/nominatim/v1/reverse?format=json&"};
auto expectedURL = urlStart +
"lat=" + APlaceDescriptionService::ValidLatitude + "&" +
"lon=" + APlaceDescriptionService::ValidLongitude;
EXPECT_CALL(httpStub, initialize());
EXPECT CALL(httpStub, get(expectedURL));
PlaceDescriptionService service{&httpStub};

service.summaryDescription(ValidLatitude, ValidLongitude);

}

The high-level policy in summaryDescription() remains untouched. We make an
isolated change to get() to update its implementation detail.

c5/11/PlaceDescriptionService.cpp

string PlaceDescriptionService::get(const string& url) const {
http ->initialize();
return http ->get(url);

}

When we run the tests, we receive a warning—not for MakesHttpRequestToOb-
tainAddress but for FormatsRetrievedAddressIntoSummaryDescription, which
is the other test.

GMOCK WARNING:
Uninteresting mock function call - returning directly.
function call: initialize()

Google Mock captures all interactions with a mock object, not just the ones
for which you set expectations. The warning is intended to help by telling you
about an interaction you might not have expected.

Your goal should always be zero warnings. Either turn them all off or fix them
as soon as they arise. Any other strategy that allows warnings to stick around
will breed hundreds or thousands of warnings over time. At that point, they’re
all pretty much useless. Ignoring the Google Mock warning is unacceptable;
we must eliminate it.

We have other choices. We could add the expectation to FormatsRetrievedAd-
dressIntoSummaryDescription, but that adds a bit of clutter to the test that

http://media.pragprog.com/titles/lotdd/code/c5/11/PlaceDescriptionServiceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c5/11/PlaceDescriptionService.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Using Mock Tools ® 119

has nothing to do with its goal. We’ll avoid this solution that goes against the
concept of test abstraction.

Always question design when you're presented with a challenge like this. The
initialization call is required, but does it belong elsewhere (perhaps in an
initialization() function called after construction of PlaceDescriptionService)?
Moving the call to a different place wouldn’t eliminate the warning, though.

What about the test design? We split one test into two when we changed from
a hand-rolled mock solution to one using Google Mock. If we expressed
everything in a single test, that one test could set up the expectations to
cover all three significant events (initialization, message passing to get(), and
return from get()). That’s an easy fix, but we’d end up with a cluttered test.
See Section 7.3, One Assert per Test, on page 178 for further discussion about
this choice. For now, let’s stick with separate tests.

We could also create a fixture helper function that added the expectation on
initialize() and then returned the HttpStub instance. We might name such a
function createHttpStubExpectinglnitialization().

Google Mock provides a simpler solution (and many other mock tools provide
similar solutions). The NiceMock template effectively tells Google Mock to
track interactions only for methods on which expectations exist.
c5/12/PlaceDescriptionServiceTest.cpp
TEST _F(APlaceDescriptionService, FormatsRetrievedAddressIntoSummaryDescription) {
NiceMock<HttpStub> httpStub;
EXPECT CALL (httpStub, get())
.WillOnce(Return(
// ...
}

In contrast, wrapping a mock in StrictMock turns the uninteresting mock
call warning into an error.

StrictMock<HttpStub> httpStub;

By using NiceMock, we take on a small risk. If the code later somehow changes
to invoke another method on the Http interface, our tests aren’t going to know
about it. You should use NiceMock when you need it, not habitually. Seek to
fix your design if you seem to require it often.

You can read more about NiceMock and StrictMock in the Google Mock
documentation. '’

10. http://code.google.com/p/googlemock/wiki/CookBook#Nice Mocks and Strict Mocks

http://media.pragprog.com/titles/lotdd/code/c5/12/PlaceDescriptionServiceTest.cpp
http://code.google.com/p/googlemock/wiki/CookBook#Nice_Mocks_and_Strict_Mocks
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYY

Chapter 5. Test Doubles ® 120

Order in the Mock

It’s unlikely, but what if we inadvertently swapped the order of the calls to
Http’s initialize() and get() functions?
c5/13/PlaceDescriptionService.cpp
string PlaceDescriptionService::get(const string& url) const {
auto response = http ->get(url);
http ->initialize();
return response;

}

Surprise, the tests still pass! By default, Google Mock doesn’t concern itself
with verifying the order in which expectations are met. If you're concerned
about order, you can tell Google Mock (and many other C++ mocking tools)
to verify it. The simplest way is to declare an instance of InSequence at the top
of the test and ensure that subsequent EXPECT_CALLs appear in the order you
expect.

c5/13/PlaceDescriptionServiceTest.cpp

TEST F(APlaceDescriptionService, MakesHttpRequestToObtainAddress) {
InSequence forceExpectationOrder;
HttpStub httpStub;

string urlStart{
"http://open.mapquestapi.com/nominatim/v1/reverse?format=json&"};

auto expectedURL = urlStart +
"lat=" + APlaceDescriptionService::ValidLatitude + "&" +
"lon=" + APlaceDescriptionService::ValidLongitude;
EXPECT CALL(httpStub, initialize());
EXPECT CALL(httpStub, get(expectedURL));
PlaceDescriptionService service{&httpStub};

service.summaryDescription(ValidLatitude, ValidLongitude);

}

Google Mock provides finer control over order if you require it. The After() clause
says that an expectation is met only if it executes after another expectation.
Google Mock also lets you define an ordered list of expected calls. Refer to
the Google Mock documentation'' for further information.

Making a Mockery of Things: Clever Mock Tool Features

The EXPECT_CALL macro supports a number of additional modifiers. Here’s its
syntax:

11. http://code.google.com/p/googlemock/wiki/CheatSheet#Expectation Order

http://media.pragprog.com/titles/lotdd/code/c5/13/PlaceDescriptionService.cpp
http://media.pragprog.com/titles/lotdd/code/c5/13/PlaceDescriptionServiceTest.cpp
http://code.google.com/p/googlemock/wiki/CheatSheet#Expectation_Order
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YVYY

Using Mock Tools ¢ 121

EXPECT_CALL (mock_object, method(matchers))
With(multi argument matcher)
.Times(cardinality)
.InSequence(sequences)
.After(expectations)
.WillOnce(action)
.WillRepeatedly(action)
.RetiresOnSaturation();

NN X X X N N

(The ? and * represent the cardinality of each modifier: ? indicates that you
can optionally call the modifier once, and * indicates that you can call the
modifier any number of times.)

The most likely useful modifier is Times(), which lets you specify the exact
number of times you expect a method to be called. You can specify WillRepeat-
edly() if you know a method will be called many times but aren’t concerned
with exactly how many. Refer to the Google Mock documentation'” for further
nuances and details.

Google Mock is a general-purpose unit testing tool that supports mocking for
just about any convolution that you can code. For example, suppose you need
to mock a function to populate an out parameter. Yup, Google Mock can do
that. The following interface, defined on a class named DifficultCollaborator, rep-
resents a function that both returns a value and populates an argument:

c5/13/OutParameterTest.cpp
virtual bool calculate(int* result)

You can specify one action for a Google Mock expectation, using either WillOnce()
or WillRepeatedly(). Most of the time, that action will be to return a value. In the
case of a function that needs to do more, you can use DoAll(), which creates a
composite action from two or more actions.

c5/13/OutParameterTest.cpp
DifficultCollaboratorMock difficult;
Target calc;
EXPECT_CALL(difficult, calculate(_))
.WillOnce(DoAl1l(
SetArgPointee<0>(3),
Return(true)));

auto result = calc.execute(&difficult);

ASSERT THAT(result, Eq(3));

12. http://code.google.com/p/googlemock/wiki/CheatSheet#Setting Expectations, http://code.google.com/p/
googlemock/wiki/ForDummies#Setting Expectations

http://media.pragprog.com/titles/lotdd/code/c5/13/OutParameterTest.cpp
http://media.pragprog.com/titles/lotdd/code/c5/13/OutParameterTest.cpp
http://code.google.com/p/googlemock/wiki/CheatSheet#Setting_Expectations
http://code.google.com/p/googlemock/wiki/ForDummies#Setting_Expectations
http://code.google.com/p/googlemock/wiki/ForDummies#Setting_Expectations
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 5. Test Doubles ® 122

Our additional action for this example is SetArgPointee<0>(3), which tells Google
Mock to set the pointee (the thing that’s getting pointed at) for the Oth argu-
ment to the value 3.

Google Mock has solid support for other side-effect actions, including the
ability to throw exceptions, set variable values, delete arguments, and invoke
functions or functors. Refer to the Google Mock documentation'® for the
complete list.

Just because you can doesn’t necessarily mean you should, though. Most of
the time, the basic Google Mock mechanisms you learned earlier will suffice.
When test-driving, if you find yourself seeking esoteric mock tool features
frequently, stop and take a look at your design. Are you testing a method
that’s doing too much? Can you restructure your design in a manner so that
you don’t need such complex mocking? More often than not, you can.

Where you may need the more powerful features of your mock tool is when
you tackle the challenge of writing tests around non-test-driven, poorly
structured code. You'll learn about these challenges in Legacy Challenges.

Troubleshooting Mock Failures

You will invariably struggle with defining mocks properly. I'll come clean: in
coding our current example for this book, I scratched my head for several
minutes when I received the following failure message:

Actual function call count doesn't match EXPECT CALL(httpStub, get(expectedURL))...
Expected: to be called once
Actual: never called - unsatisfied and active

The first thing to determine is whether the production code actually makes
the proper call. (Have you even coded anything yet?) Second, have you defined
the mock method properly? If youre not sure, you either can add a cout
statement as the first line of the production implementation or can crank up
the debugger.

Did you make the member function getting mocked virtual?

Did you botch the MOCK_METHOD() declaration? All type information must match
precisely; otherwise, the mock method is not an override. Ensure all const
declarations match.

13. http://code.google.com/p/googlemock/wiki/CheatSheet#Actions

http://code.google.com/p/googlemock/wiki/CheatSheet#Actions
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

5.7

Getting Test Doubles in Place * 123

If you're still stuck, eliminate any concerns about argument matching. Use
the wildcard matcher (testing::) for all arguments and rerun the tests. If they
pass, then one of the arguments is not recognized as a match by Google Mock.

My stupidity was that I had inadvertently stripped the const declaration from
the URL argument.

One Test or Two?

When using a handcrafted mock, we ended up with a single test to verify the
true end goal, the ability to generate a summary description for a location.
In the second example, however, we ended up with two tests. Which is right?

From the stance of documenting public behaviors—those a client would care
about—PlaceDescriptionService’s sole goal is to return a summary string
given a location. Describing this behavior in a single test might be simpler
for a reader. The interaction of summaryDescription() with its Http collaborator
isn’t of interest to the client. It's an implementation detail (you might imagine
a solution where we have all the geolocation data locally). Does it make sense
to create a second test to document that interaction?

Absolutely. TDD’s most important value is in helping you drive and shape
the design of your system. Interactions with collaborators are a key aspect
of that design. Having tests that describe those interactions will be of high
value to other developers.

Having two tests provides additional benefits. First, a mock verification is an
assertion. We already require an assertion to verify the summary string.
Splitting into two tests falls in line with one assert per test (Section 7.3, One
Assert per Test, on page 178). Second, the separated tests are eminently more
readable. Setting expectations in Google Mock makes it harder to spot the
assertion points (and also to keep in line with Arrange-Act-Assert/Given-When-
Then, on page 84), so anything we can do to simplify mock-based tests pays
off.

Getting Test Doubles in Place

You have two jobs when introducing a test double. First, code the test double.
Second, get the target to use an instance of it. Certain techniques for doing
so are known as dependency injection (DI).

In the PlaceDescriptionService example, we injected the test double via a
constructor. In some circumstances, you might find it more appropriate to
pass the test double using a setter member function. These ways to inject a
test double are known as (surprise!) constructor injection or setter injection.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YVYY

\ A A/

Chapter 5. Test Doubles * 124

Other techniques for getting test doubles in place exist. Use the one that’s
most appropriate for your circumstance.

Override Factory Method and Override Getter

To apply Override Factory Method, you must change the production code to
use a factory method any time a collaborator instance is needed. Here’s one
way to implement the change in the PlaceDescriptionService:

c5/15/PlaceDescriptionService.h
#include <memory>
// ...
virtual ~PlaceDescriptionService() {}
// ...
protected:
virtual std::shared ptr<Http> httpService() const;

c5/15/PlaceDescriptionService.cpp

#include "CurlHttp.h"

string PlaceDescriptionService::get(const string& url) const {
auto http = httpService();
http->initialize();
return http->get(url);

}

shared ptr<Http> PlaceDescriptionService::httpService() const {
return make shared<CurlHttp>();

}

Instead of referring to the member variable http_for interactions with the HTTP
service, the code now calls the protected member function httpService() to obtain
an Http pointer.

In the test, we define a derivative of PlaceDescriptionService. The primary job
of this subclass is to override the factory method (httpService()) that returns an
Http instance.

c5/15/PlaceDescriptionServiceTest.cpp
class PlaceDescriptionService StubHttpService: public PlaceDescriptionService
public:

PlaceDescriptionService StubHttpService(shared ptr<HttpStub> httpStub)

¢ httpStub_ {httpStub} {}

shared ptr<Http> httpService() const override { return httpStub ; }

shared ptr<Http> httpStub ;
}s

We change our tests to create an HttpStub shared pointer and store it in the
PlaceDescriptionService_StubHttpService instance. Here's what MakesHttpRequest-
ToObtainAddress now looks like:

http://media.pragprog.com/titles/lotdd/code/c5/15/PlaceDescriptionService.h
http://media.pragprog.com/titles/lotdd/code/c5/15/PlaceDescriptionService.cpp
http://media.pragprog.com/titles/lotdd/code/c5/15/PlaceDescriptionServiceTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYY

Getting Test Doubles in Place ® 125

c5/15/PlaceDescriptionServiceTest.cpp

TEST _F(APlaceDescriptionService, MakesHttpRequestToObtainAddress) {
InSequence forceExpectationOrder;
shared ptr<HttpStub> httpStub{new HttpStub};

string urlStart{
"http://open.mapquestapi.com/nominatim/v1/reverse?format=json&"};

auto expectedURL = urlStart +
"lat=" + APlaceDescriptionService::ValidLatitude + "&" +
"lon=" + APlaceDescriptionService::ValidLongitude;
EXPECT CALL (*httpStub, initialize());
EXPECT CALL(*httpStub, get(expectedURL));
PlaceDescriptionService StubHttpService service{httpStub};

service.summaryDescription(ValidLatitude, ValidLongitude);

}

Override Factory Method demonstrates the hole in coverage created by using
test doubles. Since our test overrides the production implementation of
httpService(), code in that method never gets exercised by the tests. As stated
before, make sure you have an integration test that requires use of the real
service! Also, don’t let any real logic sneak into the factory method; otherwise,
you’'ll grow the amount of untested code. The factory method should return
only an instance of the collaborator type.

As an alternative to Override Factory Method, you can use Override Getter.
With respect to our example, the difference is that the httpServer() function is
a simple getter that returns a member variable referencing an existing
instance, whereas in Override Factory, httpServer() is responsible for constructing
the instance. The test remains the same.

c5/16/PlaceDescriptionService.h
class PlaceDescriptionService {
public:
PlaceDescriptionService();
virtual ~PlaceDescriptionService() {}
std::string summaryDescription(
const std::string& latitude, const std::string& longitude) const;

private:
// ...
std::shared ptr<Http> http_;

protected:
virtual std::shared ptr<Http> httpService() const;
}

http://media.pragprog.com/titles/lotdd/code/c5/15/PlaceDescriptionServiceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c5/16/PlaceDescriptionService.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 5. Test Doubles * 126

c5/16/PlaceDescriptionService.cpp

PlaceDescriptionService: :PlaceDescriptionService()
: http {make shared<CurlHttp>()} {}

// ...

shared ptr<Http> PlaceDescriptionService::httpService() const {
return http_;

}

Used sparingly, Override Factory Method and Override Getter are simple and
effective, particularly in legacy code situations (see Legacy Challenges). Prefer
constructor or setter injection, however.

Introduce via Factory

A factory class is responsible for creating and returning instances. If you have
an HttpFactory, you can have your tests tell it to return an HttpStub instance
instead of an Http (production) instance. If you don’t already have a legitimate
use for a factory, don’t use this technique. Introducing a factory only to sup-
port testing is a poor choice.

Here’s our factory implementation:

c5/18/HttpFactory.cpp
#include "HttpFactory.h"
#include "CurlHttp.h"
#include <memory>

using namespace std;

HttpFactory::HttpFactory() {
reset();

}

shared ptr<Http> HttpFactory::get() {
return instance;

}

void HttpFactory::reset() {
instance = make shared<CurlHttp>();

}

void HttpFactory::setInstance(shared ptr<Http> newInstance) {
instance = newInstance;

}

During setup, the test creates a factory and injects an HttpStub instance into
it. Subsequent requests to get() on the factory return this test double.

http://media.pragprog.com/titles/lotdd/code/c5/16/PlaceDescriptionService.cpp
http://media.pragprog.com/titles/lotdd/code/c5/18/HttpFactory.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Getting Test Doubles in Place * 127

c5/18/PlaceDescriptionServiceTest.cpp
class APlaceDescriptionService: public Test {
public:

static const string ValidLatitude;

static const string ValidLongitude;

shared ptr<HttpStub> httpStub;
shared ptr<HttpFactory> factory;
shared ptr<PlaceDescriptionService> service;

virtual void SetUp() override {
factory = make shared<HttpFactory>();
service = make shared<PlaceDescriptionService>(factory);

}

void TearDown() override {
factory.reset();
httpStub.reset();

+

class APlaceDescriptionService WithHttpMock: public APlaceDescriptionService {
public:
void SetUp() override {
APlaceDescriptionService::SetUp();
httpStub = make shared<HttpStub>();
factory->setInstance(httpStub);

}

TEST F(APlaceDescriptionService WithHttpMock, MakesHttpRequestToObtainAddress) {
string urlStart{
"http://open.mapquestapi.com/nominatim/v1/reverse?format=json&"};
auto expectedURL = urlStart +
"lat=" + APlaceDescriptionService::ValidLatitude + "&" +
"lon=" + APlaceDescriptionService::ValidlLongitude;
EXPECT CALL(*httpStub, initialize());
EXPECT CALL (*httpStub, get(expectedURL));
service->summaryDescription(ValidLatitude, ValidLongitude);

}

We change the production code in summaryDescription() to obtain its Http instance
from the factory.

c5/18/PlaceDescriptionService.cpp
string PlaceDescriptionService::get(const string& url) const {
> auto http = httpFactory ->get();
http->initialize();
return http->get(url);

http://media.pragprog.com/titles/lotdd/code/c5/18/PlaceDescriptionServiceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c5/18/PlaceDescriptionService.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 5. Test Doubles * 128

Since we're passing the factory through the constructor, this pattern is little
different from constructor injection, except that we now have an extra layer
of indirection.

Introduce via Template Parameter

Some of the injection techniques can be somewhat clever. Injecting via a
template parameter is another option that doesn’t require clients to pass a
collaborator instance. Its use is best constrained to legacy situations where
a template already exists.

We declare the PlaceDescriptionService class as a template that can be bound to
a single typename, HTTP. We add a member variable, http_, of the parameter
type HTTP. Since we want clients to use the class name PlaceDescriptionSer-
vice, we rename the template class to PlaceDescriptionServiceTemplate. After
the template definition, we supply a typedef that defines the type
PlaceDescriptionService as PlaceDescriptionServiceTemplate bound to the
production class Http. Here’s the code:

c5/19/PlaceDescriptionService.h
template<typename HTTP>
class PlaceDescriptionServiceTemplate {
public:
// ...
// mocks in tests need the reference
HTTP& http() {
return http_;
}
private:
// ...
std::string get(const std::string& url) {
http .initialize();
return http .get(url);

}

// ...

HTTP http ;
+
class Http;

typedef PlaceDescriptionServiceTemplate<Http> PlaceDescriptionService;

In the test fixture, we declare the service to be of type PlaceDescriptionSer-
viceTemplate bound to the mock type, HttpStub:

c5/19/PlaceDescriptionServiceTest.cpp
class APlaceDescriptionService WithHttpMock: public APlaceDescriptionService {
public:
PlaceDescriptionServiceTemplate<HttpStub> service;
}

http://media.pragprog.com/titles/lotdd/code/c5/19/PlaceDescriptionService.h
http://media.pragprog.com/titles/lotdd/code/c5/19/PlaceDescriptionServiceTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

vy

Getting Test Doubles in Place * 129

The test doesn’t provide PlaceDescriptionService with an instance of the mock;
it supplies the mock’s type. PlaceDescriptionService creates its own instance
of this type (as the member variable http_). Since Google Mock will be looking
to verify interaction expectations on the template object’s instance, we need
to provide the test with access to it. We change the test to obtain the stub
instance via an accessor function on PlaceDescriptionServiceTemplate named
http().

c5/19/PlaceDescriptionServiceTest.cpp

TEST _F(APlaceDescriptionService WithHttpMock, MakesHttpRequestToObtainAddress) {

string urlStart{
"http://open.mapquestapi.com/nominatim/v1/reverse?format=json&"};

auto expectedURL = urlStart +
"lat=" + APlaceDescriptionService::ValidLatitude + "&" +
"lon=" + APlaceDescriptionService::ValidlLongitude;
EXPECT_CALL(service.http(), initialize());
EXPECT CALL(service.http(), get(expectedURL));

service.summaryDescription(ValidLatitude, ValidLongitude);

}

You can support introducing a mock via a template parameter in a number
of ways, some even more clever than this implementation (which is based on
the Template Redefinition pattern in Working Effectively with Legacy Code
[Fea04]).

Injection Tools

Tools to handle injecting collaborators as dependent objects are known as
dependency injection (DI) tools. Two known C++ examples are Autumn
Framework'* and Qt IoC Container.'® Michael Feathers weighs in on the state
of DI frameworks in C++: “It seems that to do DI in C++, you have to place
constraints on the classes you create...you have to make them inherit from
some other class, use macro preregistration or a metaobject library.”'® You
should first master the manual injection techniques described here and then
investigate the tools to see whether they improve things. DI tools are generally
much more effective in languages that support full reflective capabilities.

14. http://code.google.com/p/autumnframework

15. http://sourceforge.net/projects/qgtioccontainer
16. http://michaelfeathers.typepad.com/michael feathers blog/2006/10/dependency inje.html

http://media.pragprog.com/titles/lotdd/code/c5/19/PlaceDescriptionServiceTest.cpp
http://code.google.com/p/autumnframework
http://sourceforge.net/projects/qtioccontainer
http://michaelfeathers.typepad.com/michael_feathers_blog/2006/10/dependency_inje.html
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

5.8

Chapter 5. Test Doubles * 130

Design Will Change

Your first reaction to test doubles may be that using them will change your
approach to design. You might find that prospect unsettling. Don’t worry, it's
a natural response.

Cohesion and Coupling

When faced with a troublesome dependency (such as a slow or volatile collab-
orator), the best option is to isolate it to a separate class. Granted, making
an HTTP request isn’t very involved. Putting the logic in a small, separate
Http class might not seem worth the effort, but you’ll have more potential for
reuse and more design flexibility (the ability to replace it with a polymorphic
substitute, for example). You’'ll also have a few more options when it comes
to creating a test double.

The alternative is to create more procedural, less cohesive code. Take a look
at a more typical solution for the PlaceDescriptionService, created in the world
of test-after:

c5/17/PlaceDescriptionService.cpp
string PlaceDescriptionService::summaryDescription(
const string& latitude, const string& longitude) const {
// retrieve JSON response via API
response = "";
auto url = createGetRequestUrl(latitude, longitude);
curl easy setopt(curl, CURLOPT URL, url.c str());
curl _easy perform(curl);
curl easy cleanup(curl);

// parse json response

Value location;

Reader reader;

reader.parse(response , location);

auto jsonAddress = location.get("address", Value::null);

// populate address from json
Address address;
address.road = jsonAddress.get("road",

) .asString();

address.city = jsonAddress.get("hamlet", "").asString();
address.state = jsonAddress.get("state", "").asString();
address.country = jsonAddress.get("country", "").asString();
return address.road + ", " + address.city + ", " +

address.state + ", " + address.country;

http://media.pragprog.com/titles/lotdd/code/c5/17/PlaceDescriptionService.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Design Will Change ® 131

The implementation is but twenty lines that read fairly well, particularly with
the guiding comments. It’s typical of most test-after code. While it could be
broken into several smaller functions, like we did earlier, developers often
don’t bother. Test-after developers aren’t as habituated to regular refactoring,
and they don’t usually have the fast tests needed to make it quick and safe.
So what? Is there anything wrong with code that looks like this? We could
refactor it if and when we needed.

From a design stance, the twenty lines violate the SRP—many reasons exist
for summaryDescription() to change. The function is tightly coupled to cURL.
Further, the twenty lines represent the code smell known as Long Method,
making for code that requires too much time to fully understand.

Longer functions like this promote unnecessary duplication. Other services
are likely to need some of the same cURL logic, for example. Developers will
often re-code the three lines related to cURL rather than try to reuse them.
Reuse begins with isolation of reusable constructs that other programmers
can readily identify. As long as the potentially reusable chunks of code lay
buried in a Long Method, reuse won’t happen.

Build a system this way, and you’ll create double the lines of code.

You can still test the twenty lines. You can use link substitution to support
writing a fast unit test (see Section 8.9, Creating a Test Double for rlog, on
page 207). Or you can write an integration test that generates a live call to the
REST service. But both types of test will be larger, with more setup and veri-
fication in a single test (though, overall, the amount of initial test coding effort
isn’t much different). The integration test will be slow and brittle.

The bulk of code in the world looks even worse than these twenty lines. Your
code will look better, because you will seek cohesive, decoupled designs as
you practice TDD. You'll start to realize the benefit of a more flexible design.
You'll quickly discover how these better designs align with tests that are much
smaller and easier to write, read, and maintain.

Shifting Private Dependencies

If you weren’t concerned about testing, the HTTP call in the PlaceDescription-
Service could remain a private dependency, meaning that clients of
PlaceDescriptionService would be oblivious to the existence of the HTTP call.
When you use setter or constructor injection, however, clients take on the
responsibility of creating Http objects and passing them in. You shift the
dependency of PlaceDescriptionService to the client.

Developers can be concerned about the ramifications of this choice.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

5.9

Chapter 5. Test Doubles ® 132

@Q.: Doesn't setter or constructor injection violate the notion of information hiding?

A.: Fromthe stance of the client, yes. You can use an alternate form of dependency
injection (see Section 5.7, Getting Test Doubles in Place, on page 123). The information
you're exposing is unlilkely to cause future grief if someone takes advantage of it.

You also have the option of providing a default instance. We can configure
PlaceDescriptionService to contain a CurlHttp instance that gets replaced when the
test provides an HttpStub. The production client need not change.

Q.: But what if a nefarious developer chooses to pass in a destructive Http
instance?

A.: Choose an alternate injection form if clients are outside your team. If you're
worried about developers within the team deliberately taking advantage of the
injection point to do evil things, you have bigger problems.

Q.: TDD is growing on me, but I'm concerned about changing how I design solely
Jor purposes of testing. My teammates probably feel the same way.

A.: Knowing that software works as expected is a great reason to change the way
you design code. Have this conversation with your teammates: “I'm more concerned
about whether the code works. Allowing this small concession means we can more
easily test our code, and getting more tests in place can help us shape the design
more easily and trust the code more. Can we rethink our standards?”

Strategies for Using Test Doubles

Test doubles are like any tool; the bigger challenge is not in learning how to
use them but in knowing when to use them. This section describes a few
schools of thought and provides some recommendations for appropriate use
of test doubles.

Exploring Design

Suppose AddressExtractor does not exist. When you test-drive summaryDescrip-
tion(), you’ll of course recognize the need for logic that takes a JSON response
and ultimately returns a formatted string. You could code the entire imple-
mentation for that in the PlaceDescriptionService. It’s not much code (a little
more than a dozen lines, based on the code in AddressExtractor as it exists).

Some programmers always wear the designer hat, seeking designs that
exhibit the potential for reuse, increased flexibility, and improved ease of
understanding the code. To adhere to the SRP, they might break the required
logic into two needs: parsing the JSON response and formatting the output.

TDD allows you...no, it requires you to make conscious design choices at all
times. You have the option of implementing the summaryDescription() logic in an
infinite number of ways. TDD helps you explore that design. Often that’s done

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Strategies for Using Test Doubles * 133

by coding something that works and then refactoring to an appropriate
solution.

Or, you could first write a test that describes how summaryDescription() should
interact with a collaborator. The job of this collaborator is to take a JSON
response and return a corresponding address data structure. For the time
being, you ignore the details of how to implement the collaborator. You focus
instead on test-driving the implementation of summaryDescription() using mocks,
just as we did for interactions with the Http object.

When test-driving in this manner, you introduce mocks to supply otherwise-
missing collaborator behavior. You design interfaces for the collaborators
based on the interests and needs of the client.

At some point, you or someone else will implement the collaborator. You have
a choice: remove the mocks so that the code under test uses the production
collaborator or keep the mocks in place.

The issue may already be decided for you. If the collaborator introduces
troublesome dependencies, you'll need to retain the mock. If it does not,
removing the mock means removing a bit of extra complexity in your tests.
However, you might choose to retain the mocks, particularly if interactions
with the collaborator are an important aspect of design that you should
describe.

The best guideline probably takes into account the effort required to maintain
and understand the tests. It can be simpler without mocks in place, but that’s
not always the case. It can require a lot of setup code to initialize some collab-
orators, which can increase your effort to maintain the tests.

Too Much Mocking?

For seven months in 2003, | worked as a programmer on a large Java development team doing
XP. On arrival, | was enthusiastic about seeing a large number of unit tests but not quite so
enthusiastic about the test quality or production code quality. None of it was terrible, but I noted
too much duplication, methods and tests longer than necessary, and heavy use of mocks. The
system worked, though, exhibiting very few defects.

Months later, attempts to scale the system from eleven to more than fifty users resulted in per-
formanceissues. All signs pointed to suboptimal use of the middleware framework as the culprit.
A team of high-dollar middleware framework experts worked closely with our team to rework
the code.

Many of the mocks for controller-level code verified sequences of events by expecting that
methods were called in a certain order. (Worse, the tool they used required method expectations
to be represented as strings. Renaming a method meant you had to remember to update the
string literals used by the mocks.) But these methods were not as abstract as they might have
been. When the optimizing team started reworking the code to improve performance, they

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 5. Test Doubles * 134

often changed the underlying design of a given message flow through the system. That meant
moving methods around, renaming methods, compressing two methods into one, deleting
others, and so on. Every time they made such a change...uh oh! Tests broke, sometimes more
than a dozen at once.

Since the tests were tightly coupled to the target implementation, transforming the code went
very slowly. Yelling by the VPs and other hostilities commenced. All programmers and TDD itself
were called into question.

Having tests highly dependent on implementation specifics—which methods are called in which
order—created significant problems. But in hindsight, the far larger problem was our inadequate
system design. We might have had an easier time had we factored away duplication across tests.
Another significant problem was not having appropriate performance/scaling tests.

Schools of Mock

Practitioners who view TDD primarily as a design exploration tool fall into
what’s sometimes called the London school. Founders of this school include
Tim MacKinnon, Steve Freeman, and Philip Craig, authors of the original
paper on mocks, Endo-Testing: Unit Testing with Mock Objects [MFCO1]. The
highly regarded book Growing Object-Oriented Software, Guided by Tests
[FPO9], by Freeman and Nat Pryce, focuses on using TDD to grow out a system
in this manner.

Because of its emphasis on object interactions, the London school approach
promotes the notion of Tell-Don’t-Ask. In an object-oriented system, you (a
client object) want to tell an object to do something by sending it a message
and letting it go do its work. You don’t want to ask an object for information
and then do work that could be the responsibility of that object. Tell-Don’t-
Ask promotes a more decoupled design.

The classic school (sometimes called the Cleveland school) emphasizes verifi-
cation of behavior by inspecting state. Kent Beck’s book Test Driven
Development: By Example [BecOZ2] focuses almost entirely on this approach
to TDD. Folks in this camp avoid introducing mocks until a dependency
concern forces the issue.

Introducing a mock creates a dependency of the tests on the implementation
details of the target. If you employ a tool, you also create a dependency on
that tool. Both dependencies can make your designs more rigid and your
tests more fragile if you're not careful. The best defense against challenges
created by dependencies is good design: isolate and minimize them.

Using mocks also generates additional complexity that you'll pay for (as I just
did, wasting several minutes with my mock declaration mistake).

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Strategies for Using Test Doubles ® 135

As a professional, you owe it to yourself to learn about both approaches. While
you might choose to follow one school or another, it’s possible to incorporate
elements of both London and classic schools into your TDD practice.

Using Test Doubles Wisely

If you want a fully test-driven system with fast tests, the predominance of
systems will require you to use test doubles. When you use test doubles,
consider the following recommendations:

Reconsider the design. Does your compulsion to mock exist in order to simplify
creation of dependent objects? Revisit your dependency structure. Are
you mocking the same thing in multiple places? Restructure the design
to eliminate this duplication.

Recognize the concession to unit testing coverage. A test double represents a
hole of sorts in your system’s coverage. The lines of logic that your test
double supplants is code that your unit tests will not execute. You must
ensure that other tests cover that logic.

Refactor your tests. Don’t let your increased dependency on a third-party tool
create a problem. A haphazard approach can quickly generate rampant
mocking, resulting in lots of duplication and otherwise difficult tests.
Refactor your tests as much as you refactor your production code!
Encapsulate expectation declarations in common helper methods to
improve abstraction, reduce the extent of the dependency, and minimize
duplicate code. When you later want to upgrade to a newer, better tool
than Google Mock, you won't be faced with quite as devastating a change.

Question overly complex use of test doubles. If you're struggling with mocks,
it could be because either you're trying to test too much or your design
is deficient. Having multiple levels of mocks is usually a recipe for
headaches. Using fakes, as discussed in Section 5.10, Miscellaneous Test

Double Topics, on page 136, usually leads to more struggle. If stuck, sim-
plify what you're trying to do by breaking things into smaller tests. Look
also at the potential of splitting apart the code you are testing.

Choose expressiveness over power. Choose your mock tool because it helps
you create highly abstract tests that document behaviors and design, not
because it has cool features and can do clever, esoteric things. Use those
clever, esoteric features only when you must.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 5. Test Doubles * 136

5.10 Miscellaneous Test Double Topics

In this final section, you’'ll learn a few odds and ends about using test doubles,
including generally accepted terminology, where to define them, whether to
mock concrete classes, and their potential impact on performance.

What Do You Call Them?

So far, this chapter has used the terms test double, mock, and stub. Most of
the TDD community has accepted common definitions for these terms plus
a few others that you might find useful. You will often hear the word mock
used in place of test double. Most of the time, that’s appropriate, since most
developers use mock tools. Still, if you want to communicate more effectively,
use the term most appropriate to your circumstance. xUnit Test Patterns
[MesO07] acts as the definitive guide for these definitions.

Test double: An element that emulates a production element for testing
purposes

Stub: A test double that returns hard-coded values
Spy: A test double that captures information sent to it for later verification
Mock: A test double that self-verifies based on expectations sent to it

Falce: A test double that provides a light-weight implementation of a production
class

Our handcrafted test double implementation for get() acted as both a stub
and a spy. It acted as a spy by verifying that the URL sent to it contained an
accurate HTTP GET request URL. It acted as a stub by returning hard-coded
JSON text. We turned it into a mock by using Google Mock to capture
expectations and automatically verify whether they were met.

The canonical example for a fake is an in-memory database. Since interacting
with file-system-based databases is inherently slow, many teams have
implemented a test double class to emulate much of the interaction with the
database. The underlying implementation is typically a hash-based structure
that provides simple and rapid key-based lookup.

The challenge with fakes is that they become first-rate classes, often growing
into complex implementations that contain their own defects. With a database
fake, for example, you must properly replicate all the semantics of database
interaction using a hash table implementation. It’s not impossible, but there
are many easy mistakes to make.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Miscellaneous Test Double Topics ® 137

Avoid fakes. You will otherwise undoubtedly waste half an afternoon at some
point fixing a problem caused by a subtle defect in the fake. (I've wasted sev-
eral such hours.) Your test suite exists to simplify and speed up development,
not to waste time by creating problems of its own.

If you do employ fakes, you'll want to ensure that they are themselves unit
tested. Tests for the fake will need to prove that the logic matches behavior
in the emulated object.

Where Do They Go?

Start by defining your test double within the same file as the tests that use
it. Developers can then readily see the test double declaration that the tests
use. Once multiple fixtures use the same test double, you will want to move
the declaration to a separate header file. You should move your test doubles
out of sight once they become so dumb that you never need to look at them
again.

Remember that changes to the production interface will break tests that use
derived test doubles. If you're all on the same team and following collective
code ownership guidelines (everyone has to right to change any code), the
developer changing the production interface is responsible for running all
tests and fixing any that break. In other circumstances, sending out a message
that clearly communicates the change (and implications) is prudent.

Vtables and Performance

You introduce test doubles to support test-driving a class with a problematic
dependency. Many techniques for creating test doubles involve creating derived
types that override virtual member functions. If the production class previously
contained no virtual methods, it now does and thus now contains a vtable.
The vtable carries the overhead of an extra level of indirection.

The introduction of a vtable represents a performance concern, since C++
now requires an additional lookup into the vtable (instead of simply calling
a function). Also, the compiler can no longer inline a virtual function.

But in most cases, the performance impact of vtables is negligible or even
nonexistent. The compiler is able to optimize away some of the cost in certain
cases. You'll want the better, polymorphic design most of the time.

However, if you must call the mocked production function extensively, you
will want to first profile performance. If the measured degradation is
unacceptable, consider a different mocking form (perhaps a template-based
solution), rework the design (and possibly recoup the performance loss by

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

5.11

Chapter 5. Test Doubles * 138

optimizing elsewhere), or introduce integration tests to compensate for the
loss of the ability to unit test. Visit Section 10.2, TDD and Performance, on
page 269 for more discussion.

Mocking Concrete Classes

We created a mock by implementing the pure virtual Http interface. Many
systems predominantly consist of concrete classes with few such interfaces.
From a design stance, introducing interfaces can start to provide you with
means of isolating one part of the system from another. The Dependency
Inversion Principle (DIP)'” promotes breaking dependencies by having clients
depend on abstractions, not concrete implementations. Introducing these
abstractions in the form of pure virtual classes can improve build times and
isolate complexity. More importantly, they can make testing simpler.

You can, if you must, create a mock that derives from a concrete class. The
problem is that the resulting class represents a mix of production and mocked
behavior, a beast referred to as a partial mock. First, a partial mock is usually
a sign that the class you're mocking is too large—if you need to stub some of
its elements but not all, you can likely split the class into two around these
boundaries. Second, you will likely get into trouble when working with partial
mocks. You can quickly end up in “mock hell.”

For example, if you were to mock CurlHttp directly by defining a derived class
for it, you’'d invoke its destructor by default. Is that a problem? Maybe, because
it happens to directly interact with the cURL library. That's probably not
behavior you want your test to be exercising. In some cases, you can end up
with devious defects: “Aha! I thought the code was interacting with the mock
method at this point, but it looks like it’s interacting with the real method.”
You don’t want to waste the kind of time often needed to get to the “aha!”

When you reach for a clever tool like a partial mock, your design is giving off
smells. A cleaner design might, for example, adapt the concrete class with a
class that derives from an interface. Tests would no longer require a partial
mock, instead creating a test double for the interface.

Teardown

This chapter provided you with techniques for breaking collaborator depen-
dencies when test-driving. You’ll want to review the documentation for your
mock tool to fully understand its additional features and nuances. Otherwise,

17. Agile Software Development, Principles, Patterns, and Practices [Mar0O2]

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Teardown * 139

you now have a basic understanding of the core TDD mechanisms you’'ll need
to build a production system.

That doesn’t mean you can stop reading, particularly not if you want to suc-
ceed in the long run. You're just starting to get to the good stuff. Now that
you can test-drive all your code, how can you take advantage of it so that
your design stays clean and simple? And how can you ensure that your tests,
too, stay clean and simple? The next two chapters focus on improving the
design of both your production code and tests so that your maintenance
efforts remain minimal over time.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

6.1

6.2

CHAPTER 6

Incremental Design

Setup

You've learned the core fundamentals of TDD, from mechanics to preferred
practices to techniques for dealing with dependencies. You've also refactored
along the way, incrementally shaping your code with each change—but to
what end?

The primary reason to practice TDD is to support the ability to add or change
features at a sustained, stable maintenance cost. TDD provides this support
by letting you continually refine the design as you drive changes into your
system. The tests produced by practicing TDD demonstrate that your system
logic behaves as expected, which allows you to clean up new code as soon as
you add it. The implication is momentous. Without TDD, you don’t have the
rapid feedback to allow you to safely and easily make incremental code
changes. Without making incremental code changes, your codebase will
steadily degrade.

In this chapter, you’ll learn what sorts of things you want to do when in the
refactoring step. We'll focus primarily on Kent Beck’s concept of simple design
(see Extreme Programming Explained: Embrace Change [Bec0OO)), a great starter
set of rules for keeping your code clean.

Simple Design

If you knew nothing whatsoever about design, you might consider following
three simple rules when practicing TDD.

¢ Ensure your code is always highly readable and expressive.

e Eliminate all duplication, as long as doing so doesn’t interfere with the
first rule.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 6. Incremental Design ¢ 142

e Ensure that you don’t introduce unnecessary complexity into your system.
Avoid speculative constructs (“I just know we're gonna have to support
many-to-many someday”) and abstractions that don't add to your system’s
expressiveness.

The final rule is important, but the other two hold slightly higher priority. In
other words, prefer introducing an abstraction such as a new member function
or class if it improves expressiveness.

Following these rules can give you an eminently maintainable system.

The Cost of Duplication

In our coding exercises, we've focused a lot on eliminating duplication. But
why?

Duplication is perhaps the biggest cost in maintaining a codebase over time.
Imagine your system requires two lines of code to audit important events.
Sure, they could go into a helper member function, but it’s just two lines of
code, right? When you need to add an audit event, it’s simple enough to find
another audit point and then copy and paste the two lines.

Two lines duplicated doesn’t sound bad, but now visualize those two lines of
audit code repeated one hundred times throughout your codebase. And then
imagine that the auditing requirements change ever so slightly and you need
to add a third line of logic. Uh-oh. You'll have to find all one hundred change
points, add the missing line, and retest everything, all at considerably higher
cost than if there were a single place to do so. What if one of the duplicate
pair of lines is slightly different? You may have to spend additional analysis
time to determine whether the variation is deliberate. What if you find only
ninety-nine of the duplicates but neglect to find and fix the hundredth? You've
shipped defective code.

Most developers are lazy about creating new member functions, and sometimes
they resist doing so because of dubious claims about degrading performance.
But ultimately they are only creating more future work for themselves.

That’s not the only way duplicate code emerges. Imagine you’ve been told to
add a variant to an existing feature. Your changes require a half-dozen lines
of code executed if some condition exists, else execute a half-dozen lines of
existing code.

You discover that the existing feature is implemented in an untested 200-line
member function. The right thing would be a design that extracts the 195 or
so lines of commonality and allows you to introduce your variant as an

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Simple Design * 143

extension. Perhaps the template method or strategy design pattern would
provide the basis for an appropriate solution.

Most programmers don’t do the right thing, not because they don’t know how
but because they are lazy and fearful. “If I change the existing code and it
breaks, I'll get blamed for breaking something that I shouldn’t have been
messing with in the first place.” It's easier to copy the 200 lines, make the
changes needed, and move on.

Because of this somewhat natural tendency toward duplication, most large
systems contain substantially more code than required. The extra code
dramatically increases maintenance costs and risks.

You have the potential to stave off this systematic degradation by incremen-
tally refactoring as part of the TDD cycle.

The Portfolio Manager

Let’s take a look at how Beck’s notion of simple design plays out in developing
a small subsystem.

Story: Portfolio Manager
Investors want to track stock purchases and sales to provide the basis for financial analysis.

In test-driving the portfolio manager, we've ended up with the following effort.
(Note: Much of the code for this example will be built behind the scenes. I'll
present only the code that’s relevant to our design discussions. Refer to the
source code download for full listings.)

c6/1/PortfolioTest.cpp
#include "gmock/gmock.h"
#include "Portfolio.h"

using namespace ::testing;

class APortfolio: public Test {
public:

Portfolio portfolio ;
b

TEST F(APortfolio, IsEmptyWhenCreated) {
ASSERT _TRUE(portfolio .IsEmpty());
}

TEST F(APortfolio, IsNotEmptyAfterPurchase) {
portfolio .Purchase("IBM", 1);

ASSERT FALSE(portfolio .IsEmpty());

http://media.pragprog.com/titles/lotdd/code/c6/1/PortfolioTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 6. Incremental Design ¢ 144

TEST F(APortfolio, AnswersZeroForShareCountOfUnpurchasedSymbol) {
ASSERT THAT (portfolio .ShareCount("AAPL"), Eq(OQu));
}

TEST F(APortfolio, AnswersShareCountForPurchasedSymbol) {
portfolio .Purchase("IBM", 2);
ASSERT THAT (portfolio .ShareCount("IBM"), Eq(2u));

}

c6/1/Portfolio.h
#ifndef Portfolio h
#define Portfolio_h

#include <string>

class Portfolio {
public:
Portfolio();
bool IsEmpty() const;
void Purchase(const std::string& symbol, unsigned int shareCount);
unsigned int ShareCount(const std::string& symbol) const;

private:
bool isEmpty ;
unsigned int shareCount_;

}
#endif

c6/1/Portfolio.cpp
#include "Portfolio.h"
using namespace std;
Portfolio::Portfolio()
1 isEmpty {true}
, shareCount {OQu} {
}
bool Portfolio::IsEmpty() const {
return isEmpty ;

}

void Portfolio::Purchase(const string& symbol, unsigned int shareCount) {
isEmpty = false;
shareCount = shareCount;

}

unsigned int Portfolio::ShareCount(const string& symbol) const {
return shareCount_;

}

Were you able to understand what the Portfolio class does by reading the
tests? You should be building the habit of reading test names as your first

http://media.pragprog.com/titles/lotdd/code/c6/1/Portfolio.h
http://media.pragprog.com/titles/lotdd/code/c6/1/Portfolio.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Simple Design ® 145

understanding of what a class has been designed to do. The tests are your
gateway to understanding.

Simple Duplication in the Portfolio Manager

We have duplication in both our tests and our production code. The string
literal "IBM" repeats three times across two tests: it appears once in
IsNotEmptyAfterPurchase and twice in AnswersShareCountForPurchasedSym-
bol. Extracting the literal to a constant makes reading things a little easier,
it reduces the risk of mistyping the literal in the future, and it makes new
tests a little easier to write. Further, if the symbol for IBM needs to change,
we can make that change in one place.

c6/2/PortfolioTest.cpp
#include "gmock/gmock.h"
#include "Portfolio.h"

using namespace ::testing;
using namespace std;

class APortfolio: public Test {

public:
static const string IBM;
Portfolio portfolio ;

Iy

const string APortfolio::IBM("IBM");

// ...

TEST F(APortfolio, IsEmptyWhenCreated) {
ASSERT TRUE(portfolio .IsEmpty());

}

TEST F(APortfolio, IsNotEmptyAfterPurchase) {
portfolio .Purchase(IBM, 1);
ASSERT FALSE(portfolio .IsEmpty());

}

// ...

TEST F(APortfolio, AnswersZeroForShareCountOfUnpurchasedSymbol) {
ASSERT THAT(portfolio .ShareCount("AAPL"), Eq(@u));

}

TEST F(APortfolio, AnswersShareCountForPurchasedSymbol) {
portfolio .Purchase(IBM, 2);

ASSERT THAT (portfolio .ShareCount(IBM), Eq(2u));
}

TEST_F(APortfolio, ThrowsOnPurchaseOfZeroShares) {
ASSERT THROW(portfolio .Purchase(IBM, 0), InvalidPurchaseException);
}

http://media.pragprog.com/titles/lotdd/code/c6/2/PortfolioTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

>

Chapter 6. Incremental Design ¢ 146

Does that mean you should always extract common literals to a variable?
Suppose AnswersShareCountForPurchasedSymbol was the only test in which
we needed the "IBM" literal. Creating a local variable IBM would have given us
the benefits as claimed before. But the value of the variable in this case seems
to be less. We can easily see all uses of the literal in a two-line test, so it's
trivial and safe to change both if needed.

Design choices are often judgment calls. Strive to adhere to the design prin-
ciples set out in this chapter to better understand how they benefit your
system. With that experience, when you encounter code that requires a
judgment call, you’ll understand the implication of forgoing a design rule.

Take a look at the production code and see whether you can spot the
duplication:

c6/1/Portfolio.cpp
#include "Portfolio.h"
using namespace std;
Portfolio::Portfolio()
1 isEmpty {true}
, shareCount {Ou} {

}
bool Portfolio::IsEmpty() const {
return isEmpty ;

}

void Portfolio::Purchase(const string& symbol, unsigned int shareCount) {
isEmpty = false;
shareCount_ = shareCount;

}

unsigned int Portfolio::ShareCount(const string& symbol) const {
return shareCount_;

}

The code doesn’'t exhibit visibly obvious line-for-line (or expression-for-
expression) duplication. Instead, it contains algorithmic duplication. The
IsEmpty() member function returns the value of a bool that changes when
Purchase() gets called. Yet the notion of emptiness is directly tied to the number
of shares, stored also when Purchase() gets called. We can eliminate this con-
ceptual duplication by eliminating the isEmpty_variable and instead having
IsEmpty() ask about the number of shares.

c6/2/Portfolio.cpp
bool Portfolio::IsEmpty() const {
return 0 == shareCount_;

}

http://media.pragprog.com/titles/lotdd/code/c6/1/Portfolio.cpp
http://media.pragprog.com/titles/lotdd/code/c6/2/Portfolio.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Simple Design ¢ 147

(Yes, it’s slightly awkward to ask for the number of shares overall in order to
determine emptiness, but it’s correct for now, in other words, in the incremen-
tal sense. Writing what you know to be short-term code should trigger
interesting thoughts, which might in turn translate to new tests. The problem
with our implementation is that the portfolio will return empty if someone
purchases zero shares of a symbol. Our definition of empty is whether the
portfolio contains any symbols. So, is that empty? Or should we disallow such
purchases? For the purposes of moving forward, we choose the latter and
write a test named ThrowsOnPurchaseOfZeroShares.)

Algorithmic duplication—different ways of solving the same problem, or pieces
of a problem—becomes a significant problem as your system grows. More
often than not, the duplication morphs into unintentional variance, as changes
to one implementation don’t get rolled into the other implementations.

Can We Really Stick to an Incremental Approach?

A bit of coding later, and we have the following tests written (just the test
signature now, as you should be able to imagine what these tests look like)...

c6/3/PortfolioTest.cpp

TEST F(APortfolio, IsEmptyWhenCreated) {

TEST F(APortfolio, IsNotEmptyAfterPurchase) {

TEST_F(APortfolio, AnswersZeroForShareCountOfUnpurchasedSymbol) {
TEST_F(APortfolio, AnswersShareCountForPurchasedSymbol) {

TEST F(APortfolio, ThrowsOnPurchaseOfZeroShares) {

TEST F(APortfolio, AnswersShareCountForAppropriateSymbol) {

TEST F(APortfolio, ShareCountReflectsAccumulatedPurchasesOfSameSymbol) {
TEST F(APortfolio, ReducesShareCountOfSymbolOnSell) {

TEST _F(APortfolio, ThrowsWhenSellingMoreSharesThanPurchased) {

with the following implementation:

c6/3/Portfolio.cpp

#include "Portfolio.h"

using namespace std;

bool Portfolio::IsEmpty() const {

return 0 == holdings .size();

}

void Portfolio::Purchase(const string& symbol, unsigned int shareCount) {
if (0 == shareCount) throw InvalidPurchaseException();
holdings [symbol] = shareCount + ShareCount(symbol);

}

void Portfolio::Sell(const std::string& symbol, unsigned int shareCount) {
if (shareCount > ShareCount(symbol)) throw InvalidSellException();
holdings [symbol] = ShareCount(symbol) - shareCount;

http://media.pragprog.com/titles/lotdd/code/c6/3/PortfolioTest.cpp
http://media.pragprog.com/titles/lotdd/code/c6/3/Portfolio.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 6. Incremental Design ¢ 148

unsigned int Portfolio::ShareCount(const string& symbol) const {
auto it = holdings .find(symbol);
if (it == holdings .end()) return 0;
return it->second;

}
We're told a new story.

Story: Show Purchase History
Investors want to see a list of purchase records for a given symbol, with each record showing
the date of purchase and number of shares.

The story throws a wrench into our implementation—we’re not tracking
individual purchases, and we're not capturing the date on our signatures.
This is where many developers question the wisdom of TDD. Had we spent
additional time up front vetting the requirements, we might have figured out
that we need to track the date of purchase. Our initial design could have
incorporated that need.

The story seems to represent a good-sized change, one that might take a bit
more than ten minutes. We must define a data structure to represent a pur-
chase, change the signature on the method, supply a date from client code
(right now, just our tests), populate the data structure appropriately, and
store it.

Nah, let’s not do that...at least not all at once. Let’s see if we can proceed
incrementally, seeking positive feedback every few minutes. One way to do
that is to make assumptions. Let’s create a test that makes one purchase
and then demonstrates that a corresponding record exists in the retrieved
list of purchase records. Our assumption is that purchases are always made
on a specific date. That makes our current task simpler because we can ignore
the need to pass a date to Purchase().

c6/4/PortfolioTest.cpp

TEST F(APortfolio, AnswersThePurchaseRecordForASinglePurchase) {
portfolio .Purchase(SAMSUNG, 5);
auto purchases = portfolio .Purchases(SAMSUNG);

auto purchase = purchases[0];
ASSERT THAT (purchase.ShareCount, Eq(5u));
ASSERT_THAT (purchase.Date, Eq(Portfolio::FIXED_PURCHASE_DATE));

}

To get this test to pass, we don’t even need to associate the purchase record
with the holdings_ data structure. Since our current assumption is that this
works for only a single purchase, we can define a “global” purchase record
collection for Portfolio.

http://media.pragprog.com/titles/lotdd/code/c6/4/PortfolioTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Simple Design ¢ 149

c6/4/Portfolio.h
struct PurchaseRecord {
PurchaseRecord(unsigned int shareCount, const boost::gregorian::date& date)
: ShareCount(shareCount)
, Date(date) {
}

unsigned int ShareCount;
boost::gregorian::date Date;
b

class Portfolio {
public:
static const boost::gregorian::date FIXED PURCHASE DATE;

bool IsEmpty() const;

void Purchase(const std::string& symbol, unsigned int shareCount);
void Sell(const std::string& symbol, unsigned int shareCount);

unsigned int ShareCount(const std::string& symbol) const;
std: :vector<PurchaseRecord> Purchases(const std::string& symbol) const;

private:
std::unordered map<std::string, unsigned int> holdings_;
std: :vector<PurchaseRecord> purchases ;

};

c6/4/Portfolio.cpp
const date Portfolio::FIXED PURCHASE DATE(date(2014, Jan, 1));

void Portfolio::Purchase(const string& symbol, unsigned int shareCount) {
if (0 == shareCount) throw InvalidPurchaseException();
holdings [symbol] = shareCount + ShareCount(symbol);
purchases_.push_back(PurchaseRecord(shareCount, FIXED_ PURCHASE DATE));

}

vector<PurchaseRecord> Portfolio::Purchases(const string& symbol) const {
return purchases_;

}

That’s simple code, but it takes a few minutes to put into place, each minute
inviting more possibilities for making dumb mistakes. It’s nice to get positive
feedback that we've entered code correctly before moving on.

We created a production constant, FIXED_PURCHASE_DATE, to allow us to make
quick, demonstrable progress. We know it’s bogus. Let's get rid of it by
removing our temporary but useful assumption that all purchases are on the
same date.

http://media.pragprog.com/titles/lotdd/code/c6/4/Portfolio.h
http://media.pragprog.com/titles/lotdd/code/c6/4/Portfolio.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 6. Incremental Design ¢ 150

c6/5/PortfolioTest.cpp

TEST F(APortfolio, AnswersThePurchaseRecordForASinglePurchase) {
> date dateOfPurchase(2014, Mar, 17);
> portfolio .Purchase(SAMSUNG, 5, dateOfPurchase);

auto purchases = portfolio .Purchases(SAMSUNG);

auto purchase = purchases[0];

ASSERT THAT (purchase.ShareCount, Eq(5u));

ASSERT THAT (purchase.Date, Eq(dateOfPurchase));
}

Rather than having to fix all the other tests that call the Purchase() member
function, we can take a smaller step and default the date parameter.

c6/5/Portfolio.h
void Purchase(
const std::string& symbol,

unsigned int shareCount,

const boost::gregorian::date& transactionDate=
> Portfolio: :FIXED PURCHASE DATE);

c6/5/Portfolio.cpp

» void Portfolio::Purchase(
> const string& symbol, unsigned int shareCount, const date& transactionDate) {
if (0 == shareCount) throw InvalidPurchaseException();
holdings [symbol] = shareCount + ShareCount(symbol);
> purchases .push back(PurchaseRecord(shareCount, transactionDate));
}

Using a fixed date isn’t a valid long-term requirement (although defaulting to
the current time might be), so we now want to eliminate the default parameter
on Purchase(). Unfortunately, we have at least a handful of tests that call
Purchase() without passing a date.

One solution is to add a date argument to the calls in all of the affected tests.
That seems tedious. It also might violate the principle of test abstraction (see
Section 7.4, Test Abstraction, on page 181) for those tests—none of them cares
about the purchase date.

That we need to change many tests at once, without changing the behavior
they describe, tells us they contain duplication that we should have eliminated.
What if we supply a fixture helper method that handles the call to Purchase()
and provides a default value for the date so that the tests need not specify
it?

http://media.pragprog.com/titles/lotdd/code/c6/5/PortfolioTest.cpp
http://media.pragprog.com/titles/lotdd/code/c6/5/Portfolio.h
http://media.pragprog.com/titles/lotdd/code/c6/5/Portfolio.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYYVYYY

Simple Design ® 151

c6/6/PortfolioTest.cpp
class APortfolio: public Test {
public:

};

static const string IBM;

static const string SAMSUNG;
Portfolio portfolio ;

static const date ArbitraryDate;

void Purchase(
const string& symbol,
unsigned int shareCount,
const date& transactionDate=APortfolio::ArbitraryDate) {
portfolio .Purchase(symbol, shareCount, transactionDate);

}

TEST F(APortfolio, ReducesShareCountOfSymbolOnSell) {

}

Purchase (SAMSUNG, 30);
portfolio .Sell(SAMSUNG, 13);

ASSERT THAT (portfolio .ShareCount(SAMSUNG), Eq(30u - 13));

TEST F(APortfolio, AnswersThePurchaseRecordForASinglePurchase) {

}

date dateOfPurchase(2014, Mar, 17);
Purchase(SAMSUNG, 5, dateOfPurchase);

auto purchases = portfolio .Purchases(SAMSUNG);
auto purchase = purchases[0];

ASSERT THAT (purchase.ShareCount, Eq(5u));
ASSERT THAT (purchase.Date, Eq(dateOfPurchase));

One point of potential debate is that the helper function Purchase() removes a
bit of information from the tests—specifically, that it's delegating to the portfolio_
instance. A first-time reader must navigate into the helper method to see just
what it’s doing. But it’s a simple function and doesn’t bury key information
that the reader will have a hard time remembering.

As a rule of thumb, avoid hiding Act (see Arrange-Act-Assert/Given-When-
Then, on page 84) specifics. We can use the helper method when we need to

make a purchase as part of setting up a test. But for tests where we're
specifically testing Purchase() behavior, we should directly invoke it. Thus,
ReducesShareCountOfSymbolOnSell can use the helper, since it makes a
purchase as part of arranging the test. AnswersShareCountForPurchasedSym-
bol verifies purchase behavior, so it retains the direct call to portfolio_.Purchase().

http://media.pragprog.com/titles/lotdd/code/c6/6/PortfolioTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 6. Incremental Design ¢ 152

c6/7/PortfolioTest.cpp

TEST F(APortfolio, AnswersShareCountForPurchasedSymbol) {
portfolio .Purchase(IBM, 2);
ASSERT THAT(portfolio .ShareCount(IBM), Eq(2u));

}

TEST F(APortfolio, ReducesShareCountOfSymbolOnSell) {
Purchase (SAMSUNG, 30);

portfolio .Sell(SAMSUNG, 13);
ASSERT THAT(portfolio .ShareCount(SAMSUNG), Eq(30u - 13));
}

Personally, I don’t like the inconsistencies this creates in the way the tests
look. I'm OK with running everything through the helper method, as long as
it’s a simple one-liner delegation, as it is in this case. If that bothers you,
another solution is to simply include the date parameter in each of the tests
and use a constant with a name like ArbitraryPurchaseDate.

We've been taking an incremental approach with very small steps. Does it
cost us? You betcha! It often requires introducing small bits of code that we
later remove—tiny bits of waste product.

In return, we get the much more valuable ability to make continual forward
progress on creating well-designed, correct code. We don’t worry about tackling
new, never-before-considered features—we use TDD to incorporate them as
a similar series of small steps. The more we keep our code clean, the easier
it is to make our changes.

More Duplication

After a bit of test and production code cleanup, our tests around the purchase
record are short and sweet.

c6/8/PortfolioTest.cpp
TEST F(APortfolio, AnswersThePurchaseRecordForASinglePurchase) {
Purchase(SAMSUNG, 5, ArbitraryDate);

auto purchases = portfolio .Purchases(SAMSUNG);
ASSERT PURCHASE (purchases[0], 5, ArbitraryDate);
}

TEST F(APortfolio, IncludesSalesInPurchaseRecords) {
Purchase (SAMSUNG, 10);
Sell(SAMSUNG, 5, ArbitraryDate);

auto sales = portfolio .Purchases(SAMSUNG);
ASSERT_PURCHASE (sales[1], -5, ArbitraryDate);

http://media.pragprog.com/titles/lotdd/code/c6/7/PortfolioTest.cpp
http://media.pragprog.com/titles/lotdd/code/c6/8/PortfolioTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Simple Design * 153

To support the negative amounts in the purchase record, we changed the
ShareCount member to a signed integer.

c6/8/Portfolio.h
struct PurchaseRecord {
PurchaseRecord(int shareCount, const boost::gregorian::date& date)
: ShareCount(shareCount)
, Date(date) {}
int ShareCount;
boost::gregorian::date Date;

+

c6/8/PortfolioTest.cpp
void ASSERT PURCHASE (
PurchaseRecord& purchase, int shareCount, const date& date) {
ASSERT THAT (purchase.ShareCount, Eq(shareCount));
ASSERT THAT(purchase.Date, Eq(date));
}

The production code for the two transaction functions, Purchase() and Sell(), is
already looking a bit dense in just three lines each.

c6/8/Portfolio.cpp
void Portfolio: :Purchase(
const string& symbol, unsigned int shareCount, const date& transactionDate) {
if (0 == shareCount) throw InvalidPurchaseException();
holdings [symbol] = shareCount + ShareCount(symbol);
purchases .push back(PurchaseRecord(shareCount, transactionDate));

}

void Portfolio::Sell(
const string& symbol, unsigned int shareCount, const date& transactionDate) {
if (shareCount > ShareCount(symbol)) throw InvalidSellException();
holdings [symbol] = ShareCount(symbol) - shareCount;
purchases .push back(PurchaseRecord(-shareCount, transactionDate));

}

Further, they're fairly similar in nature. We haven’t yet coded the proper logic
to associate the purchase records with the appropriate symbol (perhaps using
a hash table), and when we do, we don’t want to have to code it twice. Let’s
see what duplication we can eliminate.

The Purchase() and Sell() functions have small variances between each of the
three lines. Let’s take a look at each line in turn and see whether we can
make them similar. The first line in each is a guard clause that enforces a
constraint: sales cannot be for more shares than held, and purchases cannot
be for zero shares. But shouldn’t sales have the same constraint—that you
cannot sell zero shares? Our customer says yes.

http://media.pragprog.com/titles/lotdd/code/c6/8/Portfolio.h
http://media.pragprog.com/titles/lotdd/code/c6/8/PortfolioTest.cpp
http://media.pragprog.com/titles/lotdd/code/c6/8/Portfolio.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YvYyYy

Chapter 6. Incremental Design ¢ 154

A slight problem is that the exception type name InvalidPurchaseException
is inappropriate for use in the Sell() function. Let’s make it something more
specific that both functions can use—ShareCountCannotBeZeroException.

c6/9/PortfolioTest.cpp
TEST F(APortfolio, ThrowsOnPurchaseOfZeroShares) {
ASSERT _THROW(Purchase(IBM, 0), ShareCountCannotBeZeroException);
}
// ...
TEST F(APortfolio, ThrowsOnSellOfZeroShares) {
ASSERT THROW(Sell(IBM, 0), ShareCountCannotBeZeroException);
}

Both transaction methods end up with the same guard clause.

c6/9/Portfolio.cpp
void Portfolio: :Purchase(
const string& symbol, unsigned int shareCount, const date& transactionDate) {
if (0 == shareCount) throw ShareCountCannotBeZeroException();
holdings [symbol] = shareCount + ShareCount(symbol);
purchases .push back(PurchaseRecord(shareCount, transactionDate));

}

void Portfolio::Sell(
const string& symbol, unsigned int shareCount, const date& transactionDate) {
if (shareCount > ShareCount(symbol)) throw InvalidSellException();
if (0 == shareCount) throw ShareCountCannotBeZeroException();
holdings [symbol] = ShareCount(symbol) - shareCount;
purchases .push back(PurchaseRecord(-shareCount, transactionDate));

}

Moving on to the next line in each transaction method, we update the holdings
entry for the appropriate symbol, by either adding to or subtracting from the
existing shares for the symbol. But subtraction is the same as adding the
inverse.

Let’s introduce a signed variable called shareChange to capture the inverse. Note
that we can also use it in the final line of code (where we add the purchase
record).

c6/10/Portfolio.cpp
void Portfolio::Sell(
const string& symbol, unsigned int shareCount, const date& transactionDate) {
if (shareCount > ShareCount(symbol)) throw InvalidSellException();
if (0 == shareCount) throw ShareCountCannotBeZeroException();
int shareChange = -shareCount;
holdings [symbol] = ShareCount(symbol) + shareChange;
purchases .push back(PurchaseRecord(shareChange, transactionDate));

http://media.pragprog.com/titles/lotdd/code/c6/9/PortfolioTest.cpp
http://media.pragprog.com/titles/lotdd/code/c6/9/Portfolio.cpp
http://media.pragprog.com/titles/lotdd/code/c6/10/Portfolio.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYY

YVYY

YYYy

Simple Design ® 155

Now we bounce back to Purchase() and try to make it look more like Sell().

¢6/11/Portfolio.cpp
void Portfolio: :Purchase(
const string& symbol, unsigned int shareCount, const date& transactionDate) {
if (0 == shareCount) throw ShareCountCannotBeZeroException();
int shareChange = shareCount;
holdings [symbol] = ShareCount(symbol) + shareChange;
purchases .push back(PurchaseRecord(shareChange, transactionDate));

}

We now have two lines of code at the end of each function that duplicate each
other, plus the same guard clause in each. Let's move the initialization of
shareChange up a line to above the guard clause. Our tests will ensure that it’s
a safe move, since moving lines up or down is highly risky.

We end up with three common lines at the end of each function. We also
rename the use of shareCount in the guard clause to shareChange so that all three
to-be-extracted lines use a common variable.

c6/12/Portfolio.cpp
void Portfolio::Purchase(
const string& symbol, unsigned int shareCount, const date& transactionDate) {
int shareChange = shareCount;
if (0 == shareChange) throw ShareCountCannotBeZeroException();
holdings [symbol] = ShareCount(symbol) + shareChange;
purchases .push back(PurchaseRecord(shareChange, transactionDate));

}

void Portfolio::Sell(
const string& symbol, unsigned int shareCount, const date& transactionDate) {
if (shareCount > ShareCount(symbol)) throw InvalidSellException();
int shareChange = -shareCount;
if (0 == shareChange) throw ShareCountCannotBeZeroException();
holdings [symbol] = ShareCount(symbol) + shareChange;
purchases .push back(PurchaseRecord(shareChange, transactionDate));

}
Finally, we extract.

¢6/13/Portfolio.cpp
void Portfolio: :Purchase(
const string& symbol, unsigned int shareCount, const date& transactionDate) {
Transact(symbol, shareCount, transactionDate);

}

void Portfolio::Sell(
const string& symbol, unsigned int shareCount, const date& transactionDate) {
if (shareCount > ShareCount(symbol)) throw InvalidSellException();
Transact(symbol, -shareCount, transactionDate);

http://media.pragprog.com/titles/lotdd/code/c6/11/Portfolio.cpp
http://media.pragprog.com/titles/lotdd/code/c6/12/Portfolio.cpp
http://media.pragprog.com/titles/lotdd/code/c6/13/Portfolio.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 6. Incremental Design ¢ 156

void Portfolio::Transact(
const string& symbol, int shareChange, const date& transactionDate) {
if (0 == shareChange) throw ShareCountCannotBeZeroException();
holdings [symbol] = ShareCount(symbol) + shareChange;
purchases .push back(PurchaseRecord(shareChange, transactionDate));

}

One more little expressiveness thing is that the name of our exception type
InvalidSellException is not very good. Let’s change it to InsufficientSharesEx-
ception.
c6/14/PortfolioTest.cpp
TEST F(APortfolio, ThrowsWhenSellingMoreSharesThanPurchased) {

ASSERT THROW(Sell(SAMSUNG, 1), InsufficientSharesException);
}

c6/14/Portfolio.cpp
void Portfolio::Sell(
const string& symbol, unsigned int shareCount, const date& transactionDate) {
if (shareCount > ShareCount(symbol)) throw InsufficientSharesException();
Transact(symbol, -shareCount, transactionDate);

}

Is there anything else we could do from the stance of our two simple design
rules? It appears that we've squashed all the duplication. What of readability?
Purchase() does nothing other than delegate, so it’s clear, and Sell() simply adds
a constraint and reverses the shares, so it too makes immediate sense. Transact()
doesn’t quite have the immediacy we want.

Benefits of Small Methods

To read Transact(), we must slow down and carefully pick out what each line
is really trying to accomplish. The first line throws an exception if the change
in the number of shares is zero. The second line obtains the shares for the
symbol, adds the share change, and assigns it to an appropriate entry in the
hashtable. The third line creates a purchase record and adds it to the overall
list of purchases.

Transact() consists of three simple one-liners. But if all one-liners require that
sort of meticulous reading, then your system overall will be all that more dif-
ficult to navigate. It’s simply not expressive enough. Let’s fix that.

c6/15/Portfolio.cpp
void Portfolio::Transact(
const string& symbol, int shareChange, const date& transactionDate) {
ThrowIfShareCountIsZero(shareChange);
UpdateShareCount(symbol, shareChange);
AddPurchaseRecord(shareChange, transactionDate);

http://media.pragprog.com/titles/lotdd/code/c6/14/PortfolioTest.cpp
http://media.pragprog.com/titles/lotdd/code/c6/14/Portfolio.cpp
http://media.pragprog.com/titles/lotdd/code/c6/15/Portfolio.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Simple Design ¢ 157

void Portfolio::ThrowIfShareCountIsZero(int shareChange) const {
if (0 == shareChange) throw ShareCountCannotBeZeroException();

}

void Portfolio::UpdateShareCount(const string& symbol, int shareChange) {
holdings [symbol] = ShareCount(symbol) + shareChange;
}

void Portfolio::AddPurchaseRecord(int shareChange, const date& date) {
purchases .push _back(PurchaseRecord(shareChange, date));

}

I have amazing extra-sensory powers. Back in time, in early 2013 as I write
this chapter, I can see the future faces of many readers. I sense consternation.
And I understand it.

Here are the reasons you might offer for not doing what we just did:
e It's extra effort. Creating new functions is a pain.
¢ Creating a function for a one-liner used in only one place seems ridiculous.
¢ The additional function calls incur performance overhead.
e It’s harder to follow the entire flow through all the code.

* You'll end up with tens of thousands of little crummy methods, each with
horribly long names.

And here are some reasons why you should consider moving your code in
this direction:

¢ It adheres to the simple design rule of expressiveness. The code requires
no explanatory comments. Its functions, each consisting of either one
detailed line or a few declarative statements, are immediately understood.
Problems stand out like sore thumbs in such small functions.

In contrast, most systems have lots of dense, long functions that take far
too long to comprehend. Defects hide easily in these functions.

e It adheres to the design concept of cohesion and the SRP. All lines of code
in a given function are at the same level of abstraction. Each function
has one reason to change.

e It paves the way for simpler future design changes. We still need to
associate purchase records with the proper symbol. We can now do that
in one place, as opposed to two. If we need to specialize AddPurchaseRecord(),
we're ready to go. If we need to create a more sophisticated purchase
record subsystem, we can quickly move the existing logic to a new class.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 6. Incremental Design ¢ 158

If we need to support undo and redo or additional sophistications around
purchasing and selling, we're poised to factor into a command pattern
with a base class of Transaction.

Following the flow of code is more easily done without implementation
details in the way. Transact() acts as a declaration of policy. The helper
methods—ThrowlfShareCountlsZero(), UpdateShareCount(), and AddPurchaseRecord()
—are implementation details you don’'t need to know most of the time.
Think about the notion of separating interface from implementation or
separating abstractions from concrete details.

The performance overhead of extract methods in this fashion is almost
never a problem. See Section 10.2, TDD and Performance, on page 269.

Small functions represent the start of real reuse. As you extract more
similarly small functions, you will begin to more readily spot duplicate
concepts and constructs in your development efforts. You won’t end up
with an unmanageable mass of tiny methods. You will instead shrink
your production code size dramatically.

Enough preaching. While you might not be ready to embrace this drastic
change in style, you should be willing to at least give it an honest effort as
you practice TDD more. Be willing to move in the direction of smaller functions
and see what happens.

Finishing the Functionality

We're not done. A portfolio can return a list of purchase records, but only for

a single symbol. Our next test requires the portfolio to answer the correct set
of purchase records when multiple symbols have been purchased.

c6/16/PortfolioTest.cpp
bool operator==(const PurchaseRecord& lhs, const PurchaseRecord& rhs) {

}

return lhs.ShareCount == rhs.ShareCount && lhs.Date == rhs.Date;

TEST F(APortfolio, SeparatesPurchaseRecordsBySymbol) {

}

Purchase(SAMSUNG, 5, ArbitraryDate);
Purchase(IBM, 1, ArbitraryDate);

auto sales = portfolio .Purchases(SAMSUNG);
ASSERT THAT (sales, ElementsAre(PurchaseRecord(5, ArbitraryDate)));

Google Mock provides the ElementsAre() matcher for verifying explicit elements
in a collection. The comparison requires the ability to compare two PurchaseRe-
cord objects, so we add an appropriate implementation for operator==(). (We

http://media.pragprog.com/titles/lotdd/code/c6/16/PortfolioTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYVYY

Simple Design ¢ 159

might also have chosen to implement operator==() as a member function on
PurchaseRecord, but currently we only have need for it in a test.) The test
initially fails, since the purchases_vector holds onto two purchase records—one
for Samsung, one for IBM.

To get the test to pass, we first declare the purchaseRecords. member variable
in Portfolio.h, an unordered map that stores a vector of PurchaseRecord objects
for each symbol. We also change the signature of AddPurchaseRecord() to take a
symbol.

c6/16/Portfolio.h
class Portfolio {

public:

bool IsEmpty() const;
void Purchase(

const std::string& symbol,

unsigned int shareCount,

const boost::gregorian::date& transactionDate);
void Sell(const std::string& symbol,

unsigned int shareCount,

const boost::gregorian::date& transactionDate);
unsigned int ShareCount(const std::string& symbol) const;
std::vector<PurchaseRecord> Purchases(const std::string& symbol) const;

private:
void Transact(const std::string& symbol,
int shareChange,
const boost::gregorian::date&);
void UpdateShareCount(const std::string& symbol, int shareChange);
void AddPurchaseRecord(
const std::string& symbol,
int shareCount,
const boost::gregorian::date&);
void ThrowIfShareCountIsZero(int shareChange) const;

std::unordered map<std::string, unsigned int> holdings ;
std: :vector<PurchaseRecord> purchases ;

std::unordered map<std::string, std::vector<PurchaseRecord>> purchaseRecords ;

}

We correspondingly update the implementation of Transact() to pass the symbol
to AddPurchaseRecord(). In AddPurchaseRecord(), we write new code that adds a
PurchaseRecord to the purchaseRecords_ map (first inserting an empty vector if
needed). We leave the existing logic that adds to the purchases_ vector un-
touched—we want to get our new code working before we worry about cleaning
up old code.

http://media.pragprog.com/titles/lotdd/code/c6/16/Portfolio.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYVYY

vy

Chapter 6. Incremental Design ¢ 160

c6/16/Portfolio.cpp
void Portfolio::Transact(
const string& symbol, int shareChange, const date& transactionDate) {
ThrowIfShareCountIsZero(shareChange);
UpdateShareCount(symbol, shareChange);
AddPurchaseRecord(symbol, shareChange, transactionDate);

}

void Portfolio::AddPurchaseRecord(
const string& symbol, int shareChange, const date& date) {
purchases .push back(PurchaseRecord(shareChange, date));
auto it = purchaseRecords .find(symbol);
if (it == purchaseRecords .end())
purchaseRecords [symbol] = vector<PurchaseRecord>();
purchaseRecords [symbol].push back(PurchaseRecord(shareChange, date));

}

unsigned int Portfolio::ShareCount(const string& symbol) const {
auto it = holdings .find(symbol);
if (it == holdings .end()) return 0;
return it->second;
}
vector<PurchaseRecord> Portfolio::Purchases(const string& symbol) const {
// return purchases ;
return purchaseRecords .find(symbol)->second;

}

In the Purchases() function, we return the vector of purchase records correspond-
ing to the symbol. We write just enough code, not worrying yet about the
possibility that the symbol is not found. Instead of worrying, we add an entry
(“deal with symbol not found in Purchases”) to our test list.

Once our tests all pass, we clean up our code by removing references to
purchases_. We write the test we just added to our test lists. We clean things
up a bit more. Expressiveness-wise, AddPurchaseRecord() is a bit dense. Duplica-
tion-wise, ShareCount() and Purchases() contain redundant code around finding
elements from a map. We fix both problems.

c6/17/PortfolioTest.cpp

TEST F(APortfolio, AnswersEmptyPurchaseRecordVectorWhenSymbolNotFound) {
ASSERT THAT(portfolio .Purchases(SAMSUNG), Eq(vector<PurchaseRecord>()));

}

c6/17/Portfolio.h

template<typename T>

T Find(std::unordered map<std::string, T> map, const std::string& key) const {
auto it = map.find(key);
return it == map.end() ? T{} : it->second;

http://media.pragprog.com/titles/lotdd/code/c6/16/Portfolio.cpp
http://media.pragprog.com/titles/lotdd/code/c6/17/PortfolioTest.cpp
http://media.pragprog.com/titles/lotdd/code/c6/17/Portfolio.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Simple Design ® 161

c6/17/Portfolio.cpp

#include "Portfolio.h"

#include "PurchaseRecord.h"

using namespace std;

using namespace boost::gregorian;

bool Portfolio::IsEmpty() const {
return 0 == holdings .size();

}

void Portfolio: :Purchase(
const string& symbol,
unsigned int shareCount,
const date& transactionDate) {
Transact(symbol, shareCount, transactionDate);

}

void Portfolio::Sell(
const string& symbol,
unsigned int shareCount,
const date& transactionDate) {
if (shareCount > ShareCount(symbol)) throw InvalidSellException();
Transact(symbol, -shareCount, transactionDate);

}

void Portfolio::Transact(
const string& symbol, int shareChange, const date& transactionDate) {
ThrowIfShareCountIsZero(shareChange);
UpdateShareCount(symbol, shareChange);
AddPurchaseRecord(symbol, shareChange, transactionDate);

}

void Portfolio::ThrowIfShareCountIsZero(int shareChange) const {
if (0@ == shareChange) throw ShareCountCannotBeZeroException();

}

void Portfolio::UpdateShareCount(const string& symbol, int shareChange) {
holdings [symbol] = ShareCount(symbol) + shareChange;
}

void Portfolio::AddPurchaseRecord(
const string& symbol, int shareChange, const date& date) {
if (!ContainsSymbol(symbol))
InitializePurchaseRecords(symbol);
Add(symbol, {shareChange, date});
}

void Portfolio::InitializePurchaseRecords(const string& symbol) {
purchaseRecords [symbol] = vector<PurchaseRecord>();

}

http://media.pragprog.com/titles/lotdd/code/c6/17/Portfolio.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 6. Incremental Design ¢ 162

void Portfolio::Add(const string& symbol, PurchaseRecord&& record) {
purchaseRecords [symbol].push back(record);

}

bool Portfolio::ContainsSymbol(const string& symbol) const {
return purchaseRecords .find(symbol) != purchaseRecords .end();

}

unsigned int Portfolio::ShareCount(const string& symbol) const {
return Find<unsigned int>(holdings , symbol);

}

vector<PurchaseRecord> Portfolio::Purchases(const string& symbol) const {
return Find<vector<PurchaseRecord>>(purchaseRecords , symbol);

}

Well, we didn’t clean things up just a “bit,” did we? We once again did dramat-
ic, lots-of-small-functions refactoring. AddPurchaseRecord() now declares high-level
policy, and each of the three functions representing steps in that policy
encapsulates details. Overkill? Perhaps. Benefits? Immediacy of comprehen-
sion, certainly. The isolation of implementation details also means that if we
wanted to use a different data structure, our changes would be easier to spot
and also isolated, thus diminishing risk. Also, we can clearly spot each of the
steps that alters the state of the Portfolio because of our use of const on
appropriate member functions.

Finally, we poised ourselves for a better design. In the next section, our col-
lection of purchase records ends up a first-level class on its own. Our current
cleanup of encapsulating all operations on this collection provides for an
easier transition to that new design.

To be clear, we aren’t prethinking our design. Instead, we get an increment
of code to work and then seek to optimize the design of the current solution.
The side effect is that subsequent changes are easier.

Incremental Design Made Simple

Our Portfolio contains two collections that parallel each other: holdings_ maps
the symbol to a total of shares, and purchaseRecords_ maps the symbol to a list
of purchase records. We could eliminate holdings_ and instead calculate the
total of shares for a given symbol on demand.

Keeping two collections represents a performance optimization. It results in
slightly more complex code, and we need to ensure that the two collections
always match each other. That’s ultimately your call. If you think you need

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Simple Design ® 163

the performance, keep things the way they are. We don’t need it yet, so we’ll
factor out the common code.

The first step is to change the ShareCount() function to dynamically calculate
the number of shares for a given symbol.

c6/18/Portfolio.cpp
unsigned int Portfolio::ShareCount(const string& symbol) const {
auto records = Find<vector<PurchaseRecord>>(purchaseRecords , symbol);
return accumulate(records.begin(), records.end(), O,
[1 (int total, PurchaseRecord record) {
return total + record.ShareCount; });

}

We no longer need to make a call to UpdateShareCount() from Transact(). We can
safely delete UpdateShareCount()! We then change IsEmpty() to refer to purchaseRecords_
instead of holdings_, which allows us to finally delete the declaration for holdings .

c6/18/Portfolio.cpp
bool Portfolio::IsEmpty() const {
return 0 == purchaseRecords .size();

}

void Portfolio::Transact(
const string& symbol, int shareChange, const date& transactionDate) {
ThrowIfShareCountIsZero(shareChange);
AddPurchaseRecord(symbol, shareChange, transactionDate);

}
That was easy enough.

The final effort is to move all code related to the collection of purchase records
to a separate class. Why? The Portfolio class is violating the SRP. Its primary
reason to change is any modification to the policy of how we manage the
portfolio. But it has an additional reason to change—implementation specifics
around the collection of purchase records.

So what? Well, we just made a design change that simplifies our code, but
that change could also represent an unacceptable performance degradation.
Isolating the purchase record code would represent an SRP-compliant design.
It would allow us to more easily pinpoint where our performance change
should go. Extracting the code would decrease our chance of accidentally
breaking something else in Portfolio.

We can once again make this change incrementally, adding a bit of new code
and running our tests to ensure things still work. The first step is to introduce
anew member variable that maps symbols to holdings. We can name it holdings_
(hey, that sounds familiar!).

http://media.pragprog.com/titles/lotdd/code/c6/18/Portfolio.cpp
http://media.pragprog.com/titles/lotdd/code/c6/18/Portfolio.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 6. Incremental Design * 164

c6/19/Portfolio.h
std::unordered map<std::string, Holding> holdings ;

Next, we incrementally start adding parallel support to update the holdings_
map, starting first in InitializePurchaseRecords().

c6/19/Portfolio.cpp

void Portfolio::InitializePurchaseRecords(const string& symbol) {
purchaseRecords [symbol] = vector<PurchaseRecord>();
holdings [symbol] = Holding();

}

In the Add() function, we delegate to a function with the same name in the
Holding class. We obtain the code for the Holding class by copying it over
from Portfolio and simplifying it appropriately.

c6/19/Portfolio.cpp

void Portfolio::Add(const string& symbol, PurchaseRecord&& record) {
purchaseRecords [symbol].push back(record);
holdings [symbol].Add(record);

}

¢6/19/Holding.h
void Add(PurchaseRecord& record) {
purchaseRecords .push back(record);

}

std::vector<PurchaseRecord> purchaseRecords ;

On to the Purchases() function. We replace the existing code (now commented
out—don’t worry, these commented lines won't stick around in our code) with
a simpler version, again delegating to a new function defined on Holding.

c6/19/Portfolio.cpp

vector<PurchaseRecord> Portfolio::Purchases(const string& symbol) const {

// return Find<vector<PurchaseRecord>>(purchaseRecords , symbol);
return Find<Holding>(holdings , symbol).Purchases();

}

¢6/19/Holding.h
std::vector<PurchaseRecord> Purchases() const {
return purchaseRecords ;

}

We update ContainsSymbol() by asking the same question of holdings_ as we previ-
ously did of the purchaseRecords_ collection.

¢6/19/Portfolio.cpp

bool Portfolio::ContainsSymbol(const string& symbol) const {

// return purchaseRecords .find(symbol) != purchaseRecords .end();
return holdings .find(symbol) != holdings .end();

http://media.pragprog.com/titles/lotdd/code/c6/19/Portfolio.h
http://media.pragprog.com/titles/lotdd/code/c6/19/Portfolio.cpp
http://media.pragprog.com/titles/lotdd/code/c6/19/Portfolio.cpp
http://media.pragprog.com/titles/lotdd/code/c6/19/Holding.h
http://media.pragprog.com/titles/lotdd/code/c6/19/Portfolio.cpp
http://media.pragprog.com/titles/lotdd/code/c6/19/Holding.h
http://media.pragprog.com/titles/lotdd/code/c6/19/Portfolio.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Simple Design ® 165

Changing ShareCount() is another delegation effort.

¢6/19/Portfolio.cpp

unsigned int Portfolio::ShareCount(const string& symbol) const {

// auto records = Find<vector<PurchaseRecord>>(purchaseRecords , symbol);
// return accumulate(records.begin(), records.end(), 0,

// [] (int total, PurchaseRecord record) {

// return total + record.ShareCount; });
return Find<Holding>(holdings , symbol).ShareCount();

}

¢6/19/Holding.h
unsigned int ShareCount() const {
return accumulate(purchaseRecords .begin(), purchaseRecords .end(), O,
[1 (int total, PurchaseRecord record) {
return total + record.ShareCount; });

}

Last, we try to remove the purchaseRecords_ member variable. The compiler tells
us which code still references the variable. We delete those references and
make sure our tests still run. (They do!)

c6/19/Portfolio.h
// no longer needed!
std::unordered map<std::string, std::vector<PurchaseRecord>> purchaseRecords ;

We're almost done. The last job is to ensure that we've written tests for the
Holding class. The code is already tested, in the context of Portfolio, so why
add tests? The reason is that we also want the documentation value that tests
can provide. If a developer wants to use the Holding class, they should be
able to understand how it’s used by reading tests that directly document its
behavior.

When extracting a new class in this fashion, you’ll sometimes be able to move
tests directly across (for example, from PortfolioTest to HoldingTest). The tests
often simplify, and you’ll likely need to reconsider their name. (Look at the
source download to see the final tests.)

The end result is that the code in Holding is excruciatingly simple, all one-
liners, and immediately understood. The code in Portfolio is also fairly simple,
all one- or two-liners, each immediately understood.

Another beautiful thing throughout this whole process is that we were able
to make dramatic changes to our design, bit by bit, without worrying. I'll be
honest, while initially coding this example for the book, I made at least one
dumb mistake and was happy to have tests that immediately let me know.

http://media.pragprog.com/titles/lotdd/code/c6/19/Portfolio.cpp
http://media.pragprog.com/titles/lotdd/code/c6/19/Holding.h
http://media.pragprog.com/titles/lotdd/code/c6/19/Portfolio.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

6.3

Chapter 6. Incremental Design * 166

As far as performance goes, getting back the original performance would be
straightforward. If needed, we could cache the share total in a member variable
defined on Holding, add to that total on each call to Add(), and simply return
that value from ShareCount().

Where Is the Up-Front Design?

If you were building code in the 1990s, odds are good that your team
expended a considerable amount of up-front effort to produce design models.
You might have worked with use cases to understand the requirements and
subsequently created class diagrams, state models, sequence diagrams, col-
laboration diagrams, component models, and so on.

Chances are that you create few of these models today. The interest in Agile
has led to teams abandoning the production of detailed design models. “Agile
says we don’t have to do design,” or so I've heard.

Just what does Agile say about design? The Agile principles (part of the Agile
Manifesto; see http://agilemanifesto.org/principles.html) suggest that the software must
be valuable to the customer, that it can accommodate changing requirements
at any time, that it works, that it has a good design, and that it is no more
complex than need be. There’s no definition for “good” and no notion of when
design actually occurs.

The challenge with Agile is that you are expected to respond to change. A new
feature is requested, one that you might not have ever before imagined. You
must figure out how to code support for the feature into a system that wasn’t
explicitly designed to accommodate it.

Suppose you spend a lot of time determining what an “entire” new system
must do. You derive the perfect set of corresponding design models and then
build out the system. Your team is fast (or so they think) because they're not
spending time doing TDD. Each of the analysis, design, and implementation
steps take two months, meaning you ship after six months.

Any new requirement cropping up thereafter isn’t covered by your extensive
up-front design. Sometimes that’s OK, but more often than not, this is where
your system starts the faster path to degradation. You're able to work in some
of the new feature requests simply, but you notice that many other changes
are difficult. Some changes require bad hacks, as your system’s design can’t
accommodate them otherwise. Many of the new feature requests require
widespread changes throughout the system. The time to analyze the system
to know where the changes must go increases.

http://agilemanifesto.org/principles.html
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Where Is the Up-Front Design? ® 167

The speed of building continues to slow as the system’s dependency structure
degrades. Your team slows down even further as the new changes introduce
difficult-to-fix and sometimes seemingly unrelated defects. You wish you had
better control over your system in the form of fast unit tests.

It’s still worthwhile to sketch an initial design, given what you know about
what the system must do. But it’s not worthwhile to expend substantial effort
in detailing the initial design. Concern yourself with high-level structure:
what are the key classes and dependencies in the system, what are interfaces
between subsystems and to external systems, and what are some of the core
message flows? You can derive a good high-level, starter design in a small
fraction of the two months that you might have otherwise taken.

TDD is a means of addressing design on a continual basis. Consider that you
are taking all the time saved in initial detailed design efforts and spreading
it out across the rest of the product’s life span. The studies (Research on TDD,
on page 303) show that TDD initially takes more development effort but results
in higher-quality code. What the studies don’t discuss is the amount of time
you save by minimizing up-front design efforts.

You should certainly invest in up-front design, but accept that your models
will almost always be wrong. Once you start coding, many changes can occur:
the customer changes their mind, the marketplace changes, you learn more
and discover better ways to address the design, or someone realizes require-
ments are missing or incorrect.

An up-front design is a good starting road map. Discussions around the
design help uncover key elements about what the software must do and how
you might initially lay it out. But the vast amount of detail required to build
out your system will change. A class diagram is a fine thing to create, for
example, but don’t sweat the low-level details: private vs. public, attribute
detail, aggregation vs. composition, and so on. These will come out in the
test-driving. Instead, focus on class names, dependencies, and maybe a few
key public behaviors.

TDD allows you to retain the simplest possible design for a model based on
the current business needs. If you keep your design as clean as possible over
time, you have the best chance to incorporate new, never-before-conceived
features. If you instead allow your system to degrade (and exhibit lots of
duplication and difficult-to-understand code), you’ll have a tough time with
any new feature request that comes along.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 6. Incremental Design ¢ 168

But Where’s the Real Meaty Design Talk?

We just had it. Reread the portfolio example. Granted, it’s a simple piece of
an application, but the concepts all scale up to very large systems.

“No, I mean, where’s all that stuff about coupling, cohesion, single responsi-
bility principle and the other SOLID design principles, dependency structures,
code smells, law of Demeter, patterns, encapsulation, composition vs. inher-
itance, and so on?” Good question. First, this isn’t a book on classic OO design
concepts. This is a book on TDD, and the goal of this chapter was to demon-
strate how you can incrementally deal with a continually evolving design.

Second, regarding all those classic design concepts, you should really know
all of that. You should also always be seeking to learn more about design. It's
all good as long as it makes incremental change easier. If you don’t know it
all now, don’t worry. The simple design concepts will get you a large portion
of the way there. But keep digging.

When you’re in the refactoring step of TDD, you want to have all the knowledge
you possibly can about what constitutes a good design. You'll also want to
have all the knowledge possible about what your team thinks. You're in a
shared codebase, and you need to agree as a team on what is acceptable and
what is not regarding design.

Most of the time, the classic design concepts are in alignment with the notion
of simple design. Design patterns, for example, are primarily about the
expressiveness of a solution. Some, such as Template Method, are explicitly
about eliminating duplication.

Where Do Simple Design and Classic Design Concepts Clash?

There are a few places where you should supplant classic (aka old) concepts
about design with modern, incremental design ideas. The following list covers
some of the common clashes between old-school design and incremental
design via TDD:

e Accessibility: You still should prefer keeping members as private as pos-
sible. It makes some changes easier (for example, safely renaming a
public member function requires a lot more work than renaming a private
function). Though unlikely, exposing members unnecessarily might open
you up to harm from nefarious or stupid clients.

However, if you need to relax access to allow tests to verify that things
actually work as intended, you shouldn’t worry most of the time. If
everything is tested, the tests will likely protect your system against

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Refactoring Inhibitors * 169

stupidity. Knowing the system works is far more compelling than over-
doting on a vague concern about future abuse. If you're still worried, there
are clever but safe means that should relax everyone. Just remember that
clever is often a glittery cousin of stupid.

In tests, absolutely stop sweating unnecessary design clutter such as
private vs. public. No one is calling your tests. Access specifiers in tests
only serve to detract from readability.

e Timeliness: Old-school design told you that you needed to try to derive a
design as close to perfect as possible. With simple design, that’s simply
not true. In fact, the more you come up with a design that accommodates
every last possible forthcoming feature, the more you’ll pay in the mean-
time, and odds are also that you’ll still have substantial rework when the
feature does arrive. It’s better to learn how to continually accommodate
changes via simple, incremental design.

6.4 Refactoring Inhibitors

With the notion of using simple, incremental design as your primary design
driver, the refactoring step is where much of the real work gets done. Anything
that keeps you from refactoring easily, or even from wanting to refactor, is
bad. Very bad. When you stop refactoring incrementally, your system will
start degrading quickly.

Be on guard for the following inhibitors to refactoring:

e Insufficient tests: Following TDD provides you with fast tests for every
small bit of discrete logic you build into your system. These tests provide
you with high confidence to change the code for the better. In contrast,
when you have fewer fast unit tests and thus lower test coverage, your
interest and ability to refactor shrinks dramatically. Your approach to
coding becomes fear-based: “If it ain’t broke, don'’t fix it!” You may well
know that the right thing to do, for example, is to factor common code
into a helper function. But you don’t, because those changes involve
touching other code—not “yours”—that’s already working.

e Long-lived branches: Anyone who’s had to merge code from a separate
branch with lots of activity knows that extensive refactoring makes for
merge hell. Developers working on a branch may be asked to minimize
the scope of their changes. Doing so might make merges easier but will
also make the source base suffer forever. If you must sustain branches
over long periods of time, seek to continually integrate from mainline.
Otherwise, avoid long-lived branches.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 6. Incremental Design ¢ 170

* Implementation-specific tests: When test-driving, you specify the behavior
of a class through its public interface. By definition, refactoring is
changing design without changing externally recognized (public) behavior.
Tests that have an awareness of what would otherwise be private details
run the risk of breaking when those private details change. You want the
ability to change the underlying structure of your code as needed,
extracting or inlining methods at will.

Heavy mocking or stubbing of collaborators can expose information to
tests that otherwise would remain private. Done judiciously, using test
doubles won’t cause problems. With careless use of test doubles, however,
you may find yourself breaking lots of tests when you want to refactor
your code. That’s a good enough reason for many developers to not want
to bother refactoring.

* Crushing technical debt: The sheer volume of difficult code may be enough
to cause many developers to give up. “Where do I start?” The worse you
let your code get, the harder it will be to do anything about it. Make sure
you always take advantage of the refactoring step.

¢ No know-how: Anything you don’t know can and will be used against you.
You probably know a bit about design, and you learned about simple
design in this chapter, but learn more. If you don’t have a solid grounding
in design, odds are you won't refactor enough.

e Premature performance obsession: Many of the ideas promoted in this
book about design center around small classes and functions, which
incurs the overhead of creating additional objects and calling extra
methods. Many developers resist such changes and are content with
longer functions and classes.

Ensure you first create a clean, maintainable design. Profile the proper
design to determine whether it exhibits performance deficiencies. Optimize
the code only if absolutely necessary. Most optimizations increase the
difficulty of understanding and maintaining the code.

e Management metric mandates: If their standing in the company or consid-
erable money (in the form of salaries or bonuses) is tied to specific goals,
smart employees will do whatever it takes to meet the goal. If the goal is
represented by a singular metric, chances are that sharp developers will
find a way to more easily achieve that number, whether or not doing so
serves the real business need.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Teardown ® 171

As an example, consider the defect density metric, defined as defects per
kilo lines of code (KLOC). (Note: You can also capture defect density as
defects per function point, but the effort to calculate function points is
not trivial. Most shops go with the simpler measure, defects/KLOC.) If
your manager heavily emphasizes shrinking defect density, the team will
react accordingly. Ensuring the code exhibits fewer defects is harder than
“gaming” the metric. The easier route is to increase the lines of code.

Perhaps you believe most programmers aren’t that devious. Perhaps not.
But when you ask them to factor two near-duplicate 1,000+ line functions
into a single function, they're thinking about the loss of a KLOC and the
accordant increase in defect density. Good luck convincing them that
eliminating the duplication is important.

e Short-sighted infatuation with speed: “Just ship it. Stop spending time on
refactoring.” Can you blame a project manager for not understanding the
importance of keeping your system’s design clean? Sure, it might look
like you're speedy for a while, but you’ll eventually suffer dramatically
(sometimes devastatingly) for letting your system’s quality slide.

Just say no, and otherwise keep your refactoring to yourself. Work to
keep your code clean every few minutes as part of the TDD cycle. If asked,
you can say “This is how I work as a responsible professional.”

You must take advantage of the opportunity that each passing test pro-
vides you; otherwise, code cruft will build up quickly and begin to slow
the rate of development. You might even feel compelled to ask for a
refactoring iteration. Don’t! Nontechnical folks have no idea what refactor-
ing is. They will simply translate your request as “The programmers just
want to play around with the software, and I won'’t get any business value
this iteration.”

Unfortunately, no matter how hard you try, you will inevitably have itera-
tions where a new feature doesn't fit easily into the code, causing you to
deliver the feature later than expected. When this occurs, ask for forgive-
ness, and run an honest investigation into how you might have prevented
the additional effort. Don'’t let it happen habitually.

6.5 Teardown

In this chapter, you learned how to ensure your software retains a quality
design so that you can easily maintain it over time. You learned how to apply
the concepts of simple design during the refactoring step in the TDD cycle.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 6. Incremental Design ¢ 172

You also learned about the importance of continual, incremental refactoring
and how certain factors can result in insufficient refactoring efforts.

Don’t stop here. You'll want to ensure that you apply similar design concepts
to your tests, a topic you’ll read about in more detail in the next chapter.
You'll also want to read more about object-oriented design from other sources.

Everything you learn about good design will help you succeed with growing
your system.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

7.1

7.2

CHAPTER 7

Quality Tests

Setup

You've learned how to test-drive, and more importantly, you learned in the
Incremental Design chapter how to use TDD to shape your system’s design.
Safe, continual refactoring sustains the life of your production code. In this
chapter, you’ll learn how to design your tests well to extend their return on
value and keep them from becoming a maintenance burden.

You'll learn about quality tests using a few core concepts.

e The FIRST mnemonic, a great way to vet your tests
* One Assert per Test, a guideline to help constrain the size of your tests
e Test Abstraction, a core principle for readable tests

Tests Come FIRST

Wondering if you've built a good unit test? Vet it against the FIRST
mnemonic, devised by Brett Schuchert and Tim Ottinger. The mnemonic
reminds you of a key part of TDD’s definition: tests come first.

FIRST breaks down into the following;:

e Ffor Fast

e] for Isolated

¢ R for Repeatable

e S for Self-verifying
e T for Timely

Fast

TDD supports incremental and iterative development through its core cycle
of specify, build, and refactor. How long should a cycle take? The shorter, the

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 7. Quality Tests ® 174

better. You want to know as soon as your code either doesn’t work or breaks
something else. The more code you grow between introducing a defect and
discovering it, the more time you stand to waste in pinpointing and fixing the
problem. You want ultra-rapid feedback!

We all make mistakes as we code. We all also initially craft code that exhibits
less-than-ideal design characteristics. Much as writers create rough drafts,
we create rough code for our first pass. But code gets harder to change as we
build slop upon slop. Our best hope for sanity? Continually examine and
clean up each small bit of code.

Not only must you ensure your changed or new unit test runs, you must
ensure your small change doesn’t break something in a far-slung corner of
your system. You want to run all existing unit tests with each small change.

Ideally, you want to code a tiny bit of logic, perhaps a line or two, before getting
feedback. But doing so incurs the cost of compiling, linking, and running
your test suite.

How important is it to keep this cycle cost low? If it takes on average three
or four seconds to compile, link, and run your tests, your code increments
can be small and your feedback high. But imagine your suite takes two min-
utes to build and run. How often will you run it? Perhaps once every ten to
fifteen minutes? If your tests take twenty minutes to run, you might run a
couple times a day.

In the absence of rapid feedback, you will write fewer tests, refactor your code
less, and increase the time between introducing a problem and discovering
it. Falling back to these old results means that you’ll likely see few of the
potential benefits of TDD. You might choose to abandon TDD at this point.
Don’t be that guy!

The Cost of Building

Build times in C++ present a hefty challenge. A compile and link in a sizeable
system can require several minutes and sometimes much more.

The lion’s share of the build time directly relates to the dependency structure
of your code. Code dependent on a change must be rebuilt.

Part of doing TDD well requires crafting a design that minimizes rampant rebuilds.
If your heavily used class exposes a large interface, clients must rebuild when it
changes, even if your changes have little to do with their interests in your class.
Per the Interface Segregation Principle (ISP) (Agile Software Development, Principles,
Patterns, and Practices [Mar02]), forcing clients to depend upon interfaces they
don’t use indicates a design deficiency.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Tests Come FIRST ® 175

Similarly, abusing other principles can result in longer build times. The
Dependency Inversion Principle (DIP) tells you to depend upon abstractions,
not details (Agile Software Development, Principles, Patterns, and Practices
[Mar02]). If you change details of a concrete class, all its clients must rebuild.

You can introduce an interface—a pure virtual void class—that your concrete
class realizes. Client code interacts through the abstraction provided by the
interface and isn't triggered to recompile if the implementation details of the
concrete class change.

If you're introducing new private methods as part of refactoring, you can find
yourself waiting impatiently on long rebuilds. You might consider using the
“pointer to implementation” (PIMPL) idiom. To use PIMPL, extract your concrete
details to a separate implementation class. Delegate to the implementation
as needed from the interface functions. You're then free to change the
implementation all you want, creating new functions at will, without triggering
recompiles on the code dependent on the public interface.

With TDD, your design choices no longer represent nebulous concerns; they
directly relate to your ability to succeed. Success in TDD is a matter of keeping
things clean and fast.

Dependencies on Collaborators

Dependencies on what youre changing increases build time. For running
tests, the concern about dependencies moves in the other direction: depen-
dencies from what you're testing on other code increases test execution time.

If you test code that interacts with another class that in turn must invoke an
external API (for example, a database call), the tests must wait on the API
call. (They're now integration tests, not unit tests.) A few milliseconds to
establish a connection and execute a query might not seem like much. But
if most tests in your suite of thousands must incur this overhead, the suite
will take several minutes or more to complete.

Running a Subset of the Tests

Most unit testing tools allow you to run a subset of the entire test suite. Google
Test, for example, allows you to specify a filter. For example, passing the fol-
lowing filter to your test executable will run all tests whose fixture name starts
with Holding and whose test name includes the word Avail. Running a
smaller subset of tests might save you a bit of execution time.

./test --gtest filter=Holding*.*Avail*

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 7. Quality Tests ® 176

Just because you can doesn’t mean that you should...at least not habitually.
Regularly filtering your test run suggests you have a bigger problem—your
tests have too many dependencies on slower things. Fix the real problem first!

When you aren’t able to easily run all your tests, don’t immediately jump to
running a single unit test at a time. Find a way to run as many tests as pos-
sible. At least try to run all of the tests in a given fixture (for example, Holding*.*)
before giving up and running only a single test at a time.

Running a subset of the tests might save you time up front, but remember
that the fewer tests you run, the more likely you will find problems later. The
more you find problems later, the more likely they’ll take longer to fix.

Isolated

If you're doing TDD, each of your tests should always fail at least once. When
you're creating a new test, you’ll know the reason it fails. But what about
three days or three months down the road? Will the reason a test fails be
clear? Creating tests that can fail for several reasons can waste time for you
or someone else needing to pinpoint the cause.

You want your tests to be isolated—failing for a single reason. Small and
focused tests, each driving in the existence of a small bit of behavior, increase
isolation.

Also, each test should verify a small bit of logic independent from external
concerns. If the code it tests interacts with a database, file system, or other
API, a failure could be because of one of many reasons. Introducing test
doubles (see Chapter 5, Test Doubles, on page 105) can create isolation.

Not only should tests be independent from external production system factors,
they should also be independent from other tests. Any test that uses static
data runs the risk of failing because of stale data.

If your test requires extensive setup or if the production code could be holding
on to stale data, you might find yourself digging to find out that a subtle
system change broke the test. You might introduce a precondition assertion
that verifies any assumptions your test makes in its Arrange portion.

c7/2/libraryTest/HoldingTest.cpp
TEST_F(ACheckedInHolding, UpdatesDateDueOnCheckout)
{
ASSERT TRUE(IsAvailableAt(holding, *arbitraryBranch));
holding->CheckOut(ArbitraryDate);
ASSERT THAT (holding->DueDate(),
Eq(ArbitraryDate + date duration(Book::BOOK CHECKOUT PERIOD)));

http://media.pragprog.com/titles/lotdd/code/c7/2/libraryTest/HoldingTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Tests Come FIRST ® 177

The Library Application

Code examples in this chapter come from a small demo library system. Definitions
for a few key terms may help you better understand the examples. A patron is a person
who checks out, or borrows, holdings from branches—physical locations in the library
system. A holding is a single copy of a book at the library.

When a precondition assertion fails, you’ll waste less time finding and fixing
the problem. If you find yourself employing this technique often, though, find
a way to simplify your design instead—precondition asserts suggest that the
level of understanding you have about your system is insufficient. They might
also suggest you're burying too much information in setup.

Repeatable

Quality unit tests are repeatable—you can run them time after time and
always obtain the same results, regardless of which other tests (if any) ran
first. I appreciate the rapid feedback my test suite provides so much that I'll
sometimes run it a second time, just to get the gratification of seeing the tests
all pass. Every once in a while, though, my subsequent test run will fail when
the previous run succeeded.

Intermittent test failures are bad news. They indicate some level of nondeter-
ministic or otherwise varying behavior in your test runs. Pinpointing the cause
of variant behavior can require considerable effort.

Your tests might fail intermittently for one of the following reasons:

e Static data: A good unit test doesn’t depend upon the side effects of other
tests and similarly doesn’t let these remnants cause problems. If your
test can potentially fail because of lingering static data, you might not
see it fail until you add new tests or remove others. In some unit testing
frameworks, tests are added to a hash-based collection, meaning that
their order of execution can change as the number of tests changes.

e Volatility of external services: Avoid writing unit tests that depend on
external forces out of your control, such as the current time, file system,
databases, and other API calls. Introduce test doubles (Chapter 5, Test
Doubles, on page 105) as needed to break the dependency.

e Concurrency: Threaded or other multiprocessing execution will introduce
nondeterministic behavior that can be exceptionally challenging for unit
tests. Refer to TDD and Threading for a few suggestions on how to test-
drive multithreaded code.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

7.3

Chapter 7. Quality Tests ® 178

Self-Verifying

You automate tests to get your human self out of the picture—to eliminate
slow and risky manual testing. A unit test must execute code and verify that
it worked without involving you. A unit test must have at least one assertion;
it must have failed at least once in the course of its existence, and there must
be some way for it to fail sometime in the future.

Avoid any concessions to this guideline. Don’t add cout statements to your
tests as substitutes for assertions. Manually verifying console or log file output
wastes time and increases risk.

Devious programmers looking to bump up their code coverage numbers (a goal
sometimes demanded by misguided managers) quickly figure out that they
can write tests without assertions. These nontests are a complete waste of
effort, but executing a broad swath of code without asserting anything does
improve the metrics.

Timely

When do you write tests? In a timely fashion, meaning that you write them
first. Why? Because youre doing TDD, of course, and you're doing TDD
because it’s the best way to sustain a high-quality codebase.

You also don’t write a bunch of tests in advance of any code. Instead, you
write one test at a time, and even within that one test you write one assertion
at a time. Your approach is as incremental as it can be, viewing each test as
a small bit of specification that you use to immediately drive in accordant
behavior.

One Assert per Test

You test-drive small, discrete bits of behavior into your system. With each
pass through the TDD cycle, you specify behavior plus a way to verify that
the behavior actually works—an assertion.

To allow a future programmer to understand the behavior you designed into
the system, your test must clearly state intent. The most important declaration
of intent is the test’s name, which should clarify the context and goal.

The more behavior you drive from a single test, the less your test name can
concisely describe the behavior.

In the library system, a holding is unavailable when a patron has checked it
out and is available once a patron has checked it in. We might design a single
test focused on availability.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

One Assert per Test ® 179

c7/3/libraryTest/HoldingTest.cpp

TEST F(HoldingTest, Availability)

{
holding->Transfer (EAST BRANCH);
holding->CheckOut (ArbitraryDate);
EXPECT FALSE(holding->IsAvailable());

date nextDay = ArbitraryDate + date duration(1l);
holding->CheckIn(nextDay, EAST BRANCH);
EXPECT TRUE(holding->IsAvailable());

}

Combining behaviors into a single test puts them all into the same place—sort
of. You'll likely find that many of your methods work in concert with other
methods, meaning that it can be a real challenge to figure out to which
method-focused test the test code belongs. The downside is that it will take
additional time for a reader to understand what’s going on, particularly as
you add a third, fourth, or umpteenth behavior to the test.

Splitting into multiple tests allows you to derive names that clearly state what
happens under what conditions. It also allows you to take advantage of
Arrange-Act-Assert/Given-When-Then for increased clarity.

c7/3/libraryTest/HoldingTest.cpp
TEST F(AHolding, IsNotAvailableAfterCheckout)

{ holding->Transfer(EAST BRANCH) ;
holding->CheckOut (ArbitraryDate);
EXPECT THAT(holding->IsAvailable(), Eq(false));
}
TEST F(AHolding, IsAvailableAfterCheckin)
! holding->Transfer (EAST BRANCH);
holding->CheckOut (ArbitraryDate);
holding->CheckIn(ArbitraryDate + date duration(1l), EAST BRANCH);
EXPECT THAT (holding->IsAvailable(), Eq(true));
}

The names of single-purpose tests stand on their own—you don’t have to read
a test to understand what it does. The complete set of such test names acts
as a concordance of system capabilities. You start to view test names as
related groupings of behaviors, not just discrete verifications.

http://media.pragprog.com/titles/lotdd/code/c7/3/libraryTest/HoldingTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/3/libraryTest/HoldingTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 7. Quality Tests ® 180

Looking at test names holistically can trigger thoughts about missing tests.
“We have library tests that describe availability on checkout and check-in.
What holds true about availability when we've added a new book to the system
through an inventory process? We’d better write that test!”

Should you ever have more than one assert per test? Strive hard to have only
one. Sometimes it makes sense to have more, though.

Assertions are postconditions. If multiple assertions are required to describe
a single behavior, you can justify a second assertion in a test. Consider the
method IsEmpty(), often added to increase expressiveness beyond what a
function like Size() produces. You might choose to involve both functions as
postcondition tests around emptiness of a new collection.

You might also choose to have multiple assertions to verify a bunch of data
elements.

c7/3/libraryTest/HoldingTest.cpp
TEST F(AHolding, CanBeCreatedFromAnother)

{
Holding holding(THE TRIAL CLASSIFICATION, 1);
holding.Transfer(EAST BRANCH);
Holding copy(holding, 2);
ASSERT_THAT (copy.Classification(), Eq(THE_TRIAL_CLASSIFICATION));
ASSERT_THAT (copy.CopyNumber(), Eq(2));
ASSERT _THAT (copy.CurrentBranch(), Eq(EAST BRANCH));
ASSERT TRUE(copy.LastCheckedOutOn().is not a date());
}

Finally, you might combine assertions where the description of behavior
doesn’t vary but the implementation is getting more specialized as more data
variants are added. For example, this utility converts Arabic numbers to
Roman numbers:

c7/3/libraryTest/RomanTest.cpp
TEST (ARomanConverter, AnswersArabicEquivalents)

{

RomanConverter converter;

ASSERT EQ("I", converter.convert(l));
ASSERT EQ("II", converter.convert(2));
ASSERT EQ("III", converter.convert(3));
ASSERT EQ("IV", converter.convert(4));
ASSERT EQ("V", converter.convert(5));
// ...

http://media.pragprog.com/titles/lotdd/code/c7/3/libraryTest/HoldingTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/3/libraryTest/RomanTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

7.4

YYYvY

Test Abstraction ¢ 181

You could choose to split tests in either of these cases. But having separate
tests doesn’t appear to have as much value, evidenced by the names you
might come up with: ConvertsRomanIIToArabic, ConvertsRomanlIIToArabic,
and so on. Or CopyPopulatesClassification, CopyPopulatesCopyNumber, and
SO on.

The key thing to remember is to have one behavior per test. And in case it's
not obvious, any test with conditional logic (for example, if statements) is
almost certainly violating this guideline.

One Assert per Test isn’'t a hard rule, but it’s usually a better choice. Head
in the direction of fewer assertions per test, not more. The more you do it,
the more you’ll find the value. For now, strive for a single assert per test and
contemplate the results.

Test Abstraction

Uncle Bob defines abstraction as “amplification of the essential and elimination
of the irrelevant.” Abstraction is as important in your tests as it is in object-
oriented design. Since you want to be able to read your tests as documenta-
tion, they must cut to the chase, declaring their intent as clearly and simply
as possible.

From a simplistic stance, you can increase abstraction in your tests by
making them more cohesive (One Assert per Test), focusing on better naming
(for the test itself as well as the code within), and abstracting away the rest
of the cruft (using perhaps fixture helper functions or SetUp()).

We'll work through identifying nine different test smells and cleaning up test
code accordingly.

Bloated Construction

Let’s start with one of the tests for a LineReader class. The test names don’t
tell us much about how LineReader works. We hope that cleaning up the
tests will help.

c7/3/linereader/LineReaderTest.cpp
TEST(LineReaderTest, OnelLine) {
const int fd = TemporaryFile();
write(fd, "a", 1);
lseek(fd, 0, SEEK SET);
LineReader reader(fd);

const char *line;
unsigned len;
ASSERT TRUE(reader.GetNextLine(&line, &len));

http://media.pragprog.com/titles/lotdd/code/c7/3/linereader/LineReaderTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

>

Chapter 7. Quality Tests ® 182

ASSERT EQ(len, (unsigned)1l);
ASSERT EQ(line[0], 'a');
ASSERT EQ(line[l], 0);
reader.PopLine(len);

ASSERT FALSE(reader.GetNextLine(&line, &len));

close(fd);
}

The highlighted three lines appear to create a temporary file, populate it with
a single character ("a"), and reset the file pointer to its beginning. This bloated
construction requires the reader to wade through unnecessary test setup
details. We can replace the bloat with a single-line abstraction.

c7/4/linereader/LineReaderTest.cpp
TEST(LineReaderTest, OneLine) {
const int fd = WriteTemporaryFile("a");
LineReader reader(fd);

const char *line;

unsigned len;

ASSERT TRUE(reader.GetNextLine(&line, &len));
ASSERT EQ(len, (unsigned)l);

ASSERT EQ(line[0], 'a');

ASSERT EQ(line[1l], 0);

reader.PopLine(len);

ASSERT FALSE(reader.GetNextLine(&line, &len));

close(fd);
}

The test is a couple lines shorter and hides the implementation details required
to create a file with a small amount of data. We won’t usually care, and in
the rare case we do, we can simply navigate to see what WriteTemporaryFile()
really does.

Irrelevant Details

The test first creates a temporary file. The original programmer, being a good
coding citizen, made sure the file was closed at the end of the test.

c7/5/linereader/LineReaderTest.cpp
TEST(LineReaderTest, OnelLine) {
const int fd = WriteTemporaryFile("a");
LineReader reader(fd);

const char *line;
unsigned len;

http://media.pragprog.com/titles/lotdd/code/c7/4/linereader/LineReaderTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/5/linereader/LineReaderTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

>

Test Abstraction ® 183

ASSERT TRUE(reader.GetNextLine(&line, &len));
ASSERT EQ(len, (unsigned)1l);

ASSERT EQ(line[0], 'a');

ASSERT EQ(line[1], 0);

reader.PopLine(len);

ASSERT FALSE(reader.GetNextLine(&line, &len));

close(fd);
}

The call to close() is clutter, another detail that distracts from understanding
the test. We can take advantage of the TearDown() hook to ensure the file gets
closed. We can also eliminate the type information from the variable declara-
tion for fd (file descriptor, presumably), moving it too into the fixture.

c7/6/linereader/LineReaderTest.cpp
class LineReaderTest: public testing::Test {

public:
int fd;
void TearDown() {
close(fd);
}
}

TEST F(LineReaderTest, OnelLine) {
fd = WriteTemporaryFile("a");
LineReader reader(fd);

const char *line;

unsigned len;

ASSERT TRUE(reader.GetNextLine(&line, &len));
ASSERT EQ(len, (unsigned)l);

ASSERT EQ(line[0], 'a');

ASSERT EQ(line[l1], 0);

reader.PopLine(len);

ASSERT FALSE(reader.GetNextLine(&line, &len));
}

The temporary now seems of little use. We collapse the creation of the
LineReader into a single line.

c7/7/linereader/LineReaderTest.cpp
TEST F(LineReaderTest, OneLine) {
LineReader reader(WriteTemporaryFile("a"));

const char *line;
unsigned len;
ASSERT TRUE(reader.GetNextLine(&line, &len));

http://media.pragprog.com/titles/lotdd/code/c7/6/linereader/LineReaderTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/7/linereader/LineReaderTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

vy

Chapter 7. Quality Tests * 184

ASSERT EQ(len, (unsigned)1l);
ASSERT EQ(line[0], 'a');
ASSERT EQ(line[l], 0);
reader.PopLine(len);

ASSERT FALSE(reader.GetNextLine(&line, &len));
}

Hmm...there’s a slight problem. We're no longer closing the temporary file in
TearDown() (we're instead attempting to close using the uninitialized file
descriptor fd). We choose to improve the design of the LineReader by supporting
RAIl and closing the file itself on destruction. (See http://en.wikipedia.org/wiki/
Resource Acquisition Is Initialization for further information about the RAII idiom.)
Code details left to the reader! (Or, you can look at the supplied source.)

The test still contains details we don’t need to see most of the time—two lines
declare the line and len variables. They're also replicated throughout several
other LineReader tests. Let’s get rid of the clutter and duplication.

c7/8/linereader/LineReaderTest.cpp
class LineReaderTest: public testing::Test {
public:

int fd;

const char *line;

unsigned len;

+

TEST F(LineReaderTest, OnelLine) {
LineReader reader(WriteTemporaryFile("a"));

ASSERT TRUE(reader.GetNextLine(&line, &len));
ASSERT EQ(len, (unsigned)1l);

ASSERT EQ(line[0], 'a');

ASSERT EQ(line[1], 0);

reader.PopLine(len);

ASSERT FALSE(reader.GetNextLine(&line, &len));
}

Missing Abstractions

Many developers too often overlook the opportunity to create simple abstrac-
tions. Despite seeming like extra effort for questionable gain, extracting small
chunks of code to helper methods and classes is win-win-win. First, it
amplifies your code’s expressiveness, potentially eliminating the need for an
explanatory comment. Second, it promotes reuse of those small chunks of
code, which in turn can help you eliminate sizeable amounts of duplicative
code. Third, it makes subsequent tests easier to write.

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://media.pragprog.com/titles/lotdd/code/c7/8/linereader/LineReaderTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Yvy

Test Abstraction ¢ 185

Our test currently requires three lines of code to verify the results of getting
the next line from the reader.

c7/9/linereader/LineReaderTest.cpp
TEST _F(LineReaderTest, OneLine) {
LineReader reader(WriteTemporaryFile("a"));

ASSERT_TRUE(reader.GetNextLine(&line, &len));
ASSERT EQ(len, (unsigned)l);

ASSERT EQ(line[0], 'a');

ASSERT EQ(line[1], 0);

reader.PopLine(len);

ASSERT FALSE(reader.GetNextLine(&line, &len));
}

A helper function reduces the three assertions to a single, more abstract
declaration. (You could also introduce a custom assertion on the matcher if
your unit testing tool supports it.)

c7/10/linereader/LineReaderTest.cpp

void ASSERT EQ WITH LENGTH(
const char* expected, const char* actual, unsigned length) {
ASSERT EQ(length, strlen(actual));
ASSERT STREQ(expected, actual);

}

TEST F(LineReaderTest, OnelLine) {
LineReader reader(WriteTemporaryFile("a"));

ASSERT_TRUE(reader.GetNextLine(&line, &len));
ASSERT EQ WITH LENGTH("a", line, len);
reader.PopLine(len);

ASSERT FALSE(reader.GetNextLine(&line, &len));
}

Multiple Assertions

We've whittled down the test to a couple statements and three assertions. We
take advantage of One Assert per Test, creating three tests, each with a clear
name that summarizes its one goal.

c7/11/linereader/LineReaderTest.cpp

TEST_F(GetNextLinefromLineReader, UpdatesLineAndLenOnRead) {
LineReader reader(WriteTemporaryFile("a"));
reader.GetNextLine(&line, &len);
ASSERT EQ WITH LENGTH("a", line, len);

}

http://media.pragprog.com/titles/lotdd/code/c7/9/linereader/LineReaderTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/10/linereader/LineReaderTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/11/linereader/LineReaderTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

>

Chapter 7. Quality Tests * 186

TEST F(GetNextLinefromLineReader, AnswersTrueWhenLineAvailable) {
LineReader reader(WriteTemporaryFile("a"));
bool wasLineRead = reader.GetNextLine(&line, &len);
ASSERT TRUE (wasLineRead);

}

TEST _F(GetNextLinefromLineReader, AnswersFalseWhenAtEOF) {
LineReader reader(WriteTemporaryFile("a"));
reader.GetNextLine(&line, &len);
reader.PopLine(len);
bool wasLineRead = reader.GetNextLine(&line, &len);
ASSERT FALSE(wasLineRead);

}

Reviewing the new tests and their names, it should be apparent that we are
missing tests. The behavior of PopLine() isn’t adequately explained without some
analysis and intuition, and we wonder what happens when GetNextLine() gets
called twice in succession. We can add the missing tests AdvancesToNextLin-
eAfterPop and RepeatedlyReturnsCurrentRecord (an exercise again left to the
reader).

Continually reviewing your whole set of test names will help you find the holes
in your specifications.

Irrelevant Data

Data used in a test should help tell its story. Embedded literals are otherwise
a distraction or, worse, a puzzle. If a function call requires arguments but
they have no relevance to the test at hand, you can often get away with
passing O or similar values indicating emptiness (such as " for string literals).
To a reader, these literals should suggest “nothing interesting to see here.”
(If zero is a meaningful value, introduce a constant to help explain why.)

Sometimes you’ll have no choice but to pass a nonzero or nonempty value.
A simple constant can quickly tell a reader all they need to know. In the test
AnswersTrueWhenLineAvailable, we don’t care about the file contents, so we
replace the literal "a" passed to WriteTemporaryFile() with an intention-revealing
name.

c7/12/linereader/LineReaderTest.cpp
TEST _F(GetNextLinefromLineReader, AnswersTrueWhenLineAvailable) {
LineReader reader(WriteTemporaryFile(ArbitraryText));

bool wasLineRead = reader.GetNextLine(&line, &len);

ASSERT_TRUE (wasLineRead) ;
}

http://media.pragprog.com/titles/lotdd/code/c7/12/linereader/LineReaderTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Test Abstraction ¢ 187

After a few passes through an overblown test, we've ended up with three
concise tests, each a handful of lines or less. We clearly understand what
each test does in a matter of seconds. And we now better understand the
behaviors LineReader supports.

To sniff out a few more smells, we’ll take a look at some other not-so-clean
tests—the LineReader tests are good enough for now.

Unnecessary Test Code

Some elements don’t belong in tests at all. This section discusses a few code
constructs you can remove outright from your tests.

Assert Not Null

Seg faults are no fun. If you dereference a null pointer, you're going have a
bad time as the rest of your test run crashes. Coding defensively is an
understandable reaction.

c7/12/libraryTest/PersistenceTest.cpp
TEST P(PersistenceTest, AddedItemCanBeRetrievedById)

{
persister->Add(*objectWithIdl);
auto found = persister->Get("1");
ASSERT THAT(found, NotNull());
ASSERT_THAT (*found, Eq(*objectWithIdl));
}

But remember, you are designing tests either to drive happy-path behavior
or to generate and expect failure. For the persister code, a test already exists
that demonstrates when the Get() call can return null.

c7/12/libraryTest/PersistenceTest.cpp
TEST_P(PersistenceTest, ReturnsNullPointerWhenItemNotFound)

{
ASSERT THAT (persister->Get("no id there"), IsNull());

}

AddedItemCanBeRetrievedByld is a happy-path test. Once we get it working,
it should always work...barring a defect that someone codes in the future or
a failure to allocate memory. As such, the null check (ASSERT THAT(found, NotNull()))
will unlikely ever fail for this happy-path test.

We'll eliminate the assert not null statement. (We should really avoid raw
pointers at all to make this a nonissue.) It adds no documentation value to
the test and acts only as a safeguard. The downside is if we remove the guard

http://media.pragprog.com/titles/lotdd/code/c7/12/libraryTest/PersistenceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/12/libraryTest/PersistenceTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 7. Quality Tests * 188

clause and the pointer ends up null, we get a seg fault. We're willing to take
that trade-off—in the worst, very unlikely case, we acknowledge the seg fault,
add a null check, and rerun the test to verify our assumption. If our tests are
fast, it’s not a big deal.

If you're reluctant to let an occasional test run crash with a seg fault, some
unit test frameworks provide alternate solutions that don’t require an entire
additional line to verify each pointer. Google Test, for example, supplies the
Pointee() matcher.

c7/13/libraryTest/PersistenceTest.cpp
TEST_P(PersistenceTest, AddedItemCanBeRetrievedById)

{

persister->Add(*objectWithIdl);

auto found = persister->Get("1");

ASSERT THAT(found, Pointee(*objectWithIdl));
}

When doing TDD, it’s conceivable you coded an assertion for a null check as
an incremental step. It's OK to take that small step. However, once you think
a test is complete, take a look back and eliminate any elements that don’t
add documentation value. Usually, not null assertions fall into this category.

Exception Handling

If the code you're test-driving can generate an exception, you need to test-
drive a case that documents how that happens. In the library system, the
function to add a branch can throw an exception in at least one case.

c7/13/libraryTest/BranchServiceTest.cpp
TEST F(BranchServiceTest, AddThrowsWhenNameNotUnique)
{

service.Add("samename", "");

ASSERT _THROW(service.Add("samename", ""), DuplicateBranchNameException);
}

Since the add() function can throw an exception, some programmers want to
protect themselves in other tests that call add().

c7/13/libraryTest/BranchServiceTest.cpp
TEST _F(BranchServiceTest, AddGeneratesUniqueld)
{
// Don't do this!
// Eliminate try/catch in tests that should
// not generate exceptions

http://media.pragprog.com/titles/lotdd/code/c7/13/libraryTest/PersistenceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/13/libraryTest/BranchServiceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/13/libraryTest/BranchServiceTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Test Abstraction ® 189

try

{
string idl = service.Add("namel", "");
string id2 = service.Add("name2", "");
ASSERT THAT(id1l, Ne(id2));

}

catch (...) {
FAIL();

}

}

You design most of your tests for the happy path that should never generate
an exception. If you similarly add a try/catch block to ten other tests that call
add(), you've added sixty lines of exception handling code. The unnecessary
exception handling code only detracts from readability and increases mainte-
nance cost.

The relevant test code is so much clearer when it’s not buried amid exception
handling clutter.

c7/14/libraryTest/BranchServiceTest.cpp
TEST F(BranchServiceTest, AddGeneratesUniqueld)
{

string idl = service.Add("namel", "");
string id2 = service.Add("name2", "");

ASSERT_THAT(id1l, Ne(id2));
}

Assertion Failure Comments

Not all unit test frameworks support Hamcrest-style notation (ASSERT THAT).
Or your codebase may be a little older, still using classic form assertions
(ASSERT_TRUE, for example; see Classic Form Assertions, on page 90). (Or you
might not find much value in Hamcrest.)

Hamcrest-style assertions have a bonus benefit of improved failure messages.
In contrast, when a simple ASSERT TRUE fails, the resulting failure message
may not instantly tell you all you want to know. Some frameworks, such as
CppUnit, let you provide an additional argument representing a message to
display if the assertion fails.

CPPUNIT_ASSERT MESSAGE(service.Find(*eastBranch),
"unable to find the east branch");

My recommendation is to omit such assertion failure comments. If added to
every assertion, they result in considerable clutter that detracts from the

http://media.pragprog.com/titles/lotdd/code/c7/14/libraryTest/BranchServiceTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 7. Quality Tests ® 190

ability to easily read the test and increases the amount of code that must be
maintained. The assertion without the message reads well.

CPPUNIT ASSERT(service.Find(*eastBranch));

The assertion with the message doesn’t add anything useful. Like normal
code comments, you should strive to obviate the need for them. If your
assertion doesn’t make sense without an assertion failure comment, address
the other problems in your test first.

If a test unexpectedly fails in the midst of a suite run, the reason might not
be immediately clear from the failure output. Usually you'll get the information
you need, though, to be able to pinpoint the failing line of test code. If neces-
sary, add a temporary failure message and run again.

Comments

If you must add comments to explain what your test does, you've missed the
point of using tests as documentation. Rework your test, focusing on better
naming and improved cohesion.

You might at times see test code that looks like this:

c7/15/libraryTest/BranchServiceTest.cpp
// test that adding a branch increments the count
TEST F(BranchServiceTest, AddBranchIncrementsCount)

{

// first branch

service.Add(*eastBranch); // East

ASSERT THAT(service.BranchCount(), Eq(1l));

// second branch

service.Add(*westBranch); // West

ASSERT THAT(service.BranchCount(), Eq(2)); // count now 2
}

Some folks find it helpful, but comments shouldn’t restate what code already
clearly states—or could clearly state if it was better structured. Find a way
to eliminate comments while retaining test expressiveness. You can lose all
of the comments in the prior example without losing any meaning.

c7/16/libraryTest/BranchServiceTest.cpp

TEST _F(BranchServiceTest, AddBranchIncrementsCount)

{
service.Add
ASSERT_THAT
service.Add
ASSERT THAT

*eastBranch);
service.BranchCount(), Eq(1l));
*westBranch);
service.BranchCount(), Eq(2));

—~ o~~~

http://media.pragprog.com/titles/lotdd/code/c7/15/libraryTest/BranchServiceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/16/libraryTest/BranchServiceTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Test Abstraction ® 191

Implicit Meaning
“Why does this test assert what it does?” You want readers of your tests to

be able to answer that question without wasting time on careful analysis of
the test or production code.

You will often move details from the test into SetUp() or another helper method.
But be careful not to hide too much; otherwise, you'll make test readers dig
about for answers. Proper function and variable naming can go a long way
toward keeping the test’s meaning explicit.

The following test requires a little bit of reading between the lines:

c7/16/libraryTest/BranchServiceTest.cpp
TEST F(ABranchService, ThrowsWhenDuplicateBranchAdded)

{
ASSERT THROW(service.Add("east", ""), DuplicateBranchNameException);

}

We might surmise that code in SetUp() inserts the East branch into the system.
Perhaps all of the tests in the fixture require the existence of one branch, so
eliminating the duplication of adding East in SetUp() is a good idea. But why
require readers to make the extra effort?

We can clarify the test by changing its name and introducing a fixture variable
with a meaningful name.

c7/17/libraryTest/BranchServiceTest.cpp
TEST_F(ABranchServiceWithOneBranchAdded, ThrowsWhenDuplicateBranchAdded)

{
ASSERT _THROW(service.Add(alreadyAddedBranch->Name(), ""),
DuplicateBranchNameException);

}

Here’s a simple example of a test that requires the reader to dig deep into
detail and count the number of days between two dates:

c7/17/libraryTest/HoldingTest.cpp
TEST_F(AMovieHolding, AnswersDateDueWhenCheckedOut)

{
movie->CheckOut(date(2013, Mar, 1));
date due = movie->DueDate();
ASSERT THAT(due, Eq(date(2013, Mar, 8)));
}

Asserting against a simple expression can dramatically increase understanding.

http://media.pragprog.com/titles/lotdd/code/c7/16/libraryTest/BranchServiceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/17/libraryTest/BranchServiceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/17/libraryTest/HoldingTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 7. Quality Tests ® 192

c7/18/libraryTest/HoldingTest.cpp
TEST _F(AMovieHolding, AnswersDateDueWhenCheckedOut)
{
date checkoutDate(2013, Mar, 1);
movie->CheckOut(checkoutDate);
date due = movie->DueDate();
ASSERT THAT (due, Eq(checkoutDate + date duration(Book::MOVIE CHECKOUT PERIOD)));
}

Correlating expected output with test context is a bit of an art. You'll need to be
creative from time to time. You'll also need to remind yourself that you know the
intimate details of what’s going on in the test you just designed, but others wom't.

Misleading Organization

Once you get into the habit of organizing your tests using Arrange-Act-
Assert/Given-When-Then and expecting to see it in other tests, you slow down
a little when you encounter a noncompliant test. Immediate understanding
disappears because you must work a little harder to figure out what’s test
setup and what’s actual functionality. How long does it take you to discern
the goal of the following test (with a deliberately useless name)?

c7/18/libraryTest/HoldingServiceTest.cpp
TEST F(HoldingServiceTest, X)
{
HoldingBarcode barcode(THE TRIAL CLASSIFICATION, 1);
string patronCardNumber("p5");
CheckOut (barcode, branchl, patronCardNumber);
date duration oneDaylLate(Book::BOOK CHECKOUT PERIOD + 1);
holdingService.CheckIn(barcode.AsString(),
*arbitraryDate + oneDaylLate, branch2->Id());
ASSERT_THAT (FindPatronWithId(patronCardNumber).FineBalance(),
Eq(Book: :BOOK DAILY FINE));
}

Here is the code reworked using AAA to emphasize what'’s relevant:

c7/19/libraryTest/HoldingServiceTest.cpp
TEST F(HoldingServiceTest, X)
{
HoldingBarcode barcode(THE TRIAL CLASSIFICATION, 1);
string patronCardNumber("p5");
CheckOQut(barcode, branchl, patronCardNumber);
date duration oneDaylLate(Book::BOOK CHECKOUT PERIOD + 1);
holdingService.CheckIn(barcode.AsString(),
*arbitraryDate + oneDaylLate, branch2->Id());
ASSERT_THAT (FindPatronWithId(patronCardNumber).FineBalance(),
Eq(Book: :BOOK DAILY FINE));

http://media.pragprog.com/titles/lotdd/code/c7/18/libraryTest/HoldingTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/18/libraryTest/HoldingServiceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/19/libraryTest/HoldingServiceTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Test Abstraction ® 193

With the execution statement isolated, it's immediately clear that the test
focuses on check-ins. Further reading across the execution line adds the
suggestion that the test is concerned with late check-ins. With that under-
standing of what gets invoked in the system, you can quickly move to the
assert portion of the test and determine that the behavior being verified is
that a patron’s fine balance has been updated accordingly.

Your time to understand existing code is one of the larger expenses in software
development. Every little thing you do can help diminish some of that effort,
and the beauty of AAA is that it costs almost nothing.

Obscure or Missing Name

Naming things well is one of the most important things you can do in software
design. A good name is often the solution to a test correlation problem (see
Implicit Meaning, on page 191). You'll also find that the inability to derive a
concise name indicates a possible design problem.

Tests are no different. A test exhibiting confusing names, or lacking a name
where one is needed to explain, does not provide useful documentation.

c7/19/libraryTest/PersistenceTest.cpp
TEST P(PersistenceTest, RetrievedItemIsNewInstance)

{
persister->Add(*obj);

ASSERT FALSE(obj == persister->Get("1").get());
}

The simple change that makes all the difference for the reader is as follows:

c7/20/libraryTest/PersistenceTest.cpp
TEST P(PersistenceTest, RetrievedItemIsNewInstance)

{
persister->Add(*objectWithIdl);

ASSERT_FALSE(objectWithIdl == persister->Get("1").get());
}

You don’t need to name every relevant piece of data, as long as it can be
readily correlated to something else. Here’s an example:

c7/19/libraryTest/PatronTest.cpp
TEST _F(PatronTest, AddFineUpdatesFineBalance)

{
jane->AddFine(10);

ASSERT THAT (jane->FineBalance(), Eq(10));

http://media.pragprog.com/titles/lotdd/code/c7/19/libraryTest/PersistenceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/20/libraryTest/PersistenceTest.cpp
http://media.pragprog.com/titles/lotdd/code/c7/19/libraryTest/PatronTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

7.5

Chapter 7. Quality Tests * 194

It's obvious that the argument 10 passed to AddFine() corresponds to the
expected fine balance of 10.

Teardown

Keeping your tests clean and direct will promote your regular use of them as
documentation artifacts. The more you seek to actively read tests and to
always reach for the tests first, the more likely you will invest the effort
needed to sustain them long-term. Use the guidelines provided in this chapter
to help you recognize and correct problems with your test design.

You've learned a considerable amount about TDD so far. Your production
code is clean and well-tested, and your tests are clean and helpful. But what
about all the code that you or your test-driving teammates didn’t produce?
“It was like that when I got here!” You'll next learn a few techniques for dealing
with the challenge of legacy code.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.1

8.2

CHAPTER 8

Legacy Challenges

Setup

You now know how to craft well-designed code using TDD. But the reality for
most programmers is that you're not working on new code most of the time.
Instead, you're slogging through vast amounts of existing code that was not
built using TDD—legacy code. And most of that vastness exposes a terrifying
wasteland of difficult, poorly designed, hastily constructed code.

How do you begin to deal with this sea of legacy code? Can you still practice
TDD in such a codebase, or is TDD applicable only to pristine codebases? In
this chapter, you’ll learn some techniques that will help you begin to tackle
this serious and ever-present challenge.

You'll learn a small set of techniques and thoughts around safe refactoring
of code when you don’t have tests. You'll add tests to existing code to charac-
terize its behavior, which will allow you to begin test-driving in any changes
you need to make. You’'ll learn how to use linker stubbing to help you quickly
dispense with testing headaches that third-party libraries often create.
Finally, you'll learn about the Mikado Method, a technique for managing
large-scale code refactoring efforts.

We'll use CppUTest as our unit testing tool of choice as we work through the
examples in this chapter. The mocking framework built into CppUTest can
make it easier to deal with legacy testing challenges. You can continue to
follow along with Google Test/Google Mock, if you prefer, with relatively
straightforward adaptations to your unit test code.

Legacy Code

Legacy code challenges tend to induce the strong motivator of fear into even
the most senior developers. Consider having to specialize a small part of a

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.3

Chapter 8. Legacy Challenges * 196

longer, untested function. Imagine that getting your feature implemented is
a matter of introducing three lines worth of variant behavior in the midst of
thirty lines. As an experienced programmer, you know that the right design
would involve factoring common behavior to a common place. The template
method design pattern represents one acceptable solution.

(Another solution would involve introducing a conditional. But that’s often a
recipe for gradual decay, as functions become weighted down with flags and
nested blocks.)

Yet, also from the stance of experience, many programmers resist doing the
right thing, which would involve changing existing, working code. Perhaps
they’'ve experienced smackdowns in the past, chastised for breaking something
that had worked all along. “It ain’t broke—don’t fix it!” They instead take the
path of least resistance: copy, paste, and change. The end result is sixty lines
of code instead of less than thirty-five. Being driven by fear creates rampant
duplication in codebases.

The best way to enable doing the right thing is to have tests that provide fast
feedback. On most systems, you don’t have that luxury. Michael Feathers,
in Working Effectively with Legacy Code [Fea04], defines a legacy system as
one with insufficient tests.

Working on a legacy codebase demands a choice. Are you willing to let the
cost of maintenance steadily increase, or are you willing to start fixing the
problem? With an incremental approach, using some of the techniques out-
lined in this chapter, you’'ll find that it’s not an impossible problem to solve.
Most of the time, it’s probably worth the effort to put a stake in the ground
and demand no one allow the system to get worse. About the only time it’s
not worth it is on a closed system or on one that you will soon sunset.

Themes

We'll work through an example of incrementally improving a legacy codebase.
You'll learn a handful of specific techniques, each tailored to the specific
legacy challenge at hand. The approaches you'll learn are a subset of at least
a couple dozen such techniques found in Working Effectively with Legacy
Code [FeaO4] and elsewhere. You’'ll discover that the techniques are simple
to learn and that once you've learned a handful, it’s pretty easy to figure out
many of the rest.

Core themes for approaching legacy challenges include the following:

¢ Test-drive whenever you can. Test-drive code changes into either new
members or even new classes when possible.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Themes * 197

Don't decrease the test coverage. It’s very easy to introduce a small amount
of code and then dismiss it as “only a few simple lines.” Every line of new
code for which you don’t have a test results in lower coverage.

You'll have to change existing code to write tests! Legacy code doesn’t
easily accommodate tests in many circumstances, largely because of
dependencies on challenging collaborators. You'll need a way of breaking
these dependencies before you can write tests.

There are a number of small, constrained code changes that entail minimal
risk. You can manually make small and safe code transformations using
one of a number of techniques.

Everything you type represents risk. Even a single mistyped character
can introduce an insidious defect that can waste hours. Type as little as
possible, and think every time you press a key.

Stick to small, incremental changes. It works for TDD; it can also work
for legacy code. Taking larger steps will get you in trouble.

Do one thing at a time. When tackling legacy code, avoid combining steps
or goals. For example, don’t combine refactoring while at the same time
trying to write tests.

Accept that some incremental changes will make the code uglier. Re-
member, one thing at a time. You might require a few more hours to do
the “right” thing. Don’t wait—commit the working solution now, because
you might not end up having the full few hours you need.

And don’t be too concerned about offending some design sensibilities in
the meantime. You may eventually find the time to return to clean up the
code. You may not, but it’s still an improvement. You've taken steps in
the right direction, and you can prove that everything still works.

Accommodate incremental improvements to the periphery of your change.
Faced with a monstrous codebase, adding tests only when you touch
relevant code won’'t make a terribly large dent. More important is the
mentality that everything new going in gets tested.

With an always-test mentality in place, you can begin to take advantage of
the tests you add. With every test you make pass, take a look around the
area you just covered with tests. There’s almost always an opportunity for a
small, safe bit of refactoring. You'll also discover how much easier it is to
write a second test once you've written a first. You can accommodate such
little bits of improvement here and there without impacting your ability to
deliver, and you’ll begin to make a larger dent in the challenging codebase.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.4

Chapter 8. Legacy Challenges ® 198

The Legacy Application

Story: WAV Snippet Publisher
As a content reseller, | want the WAV Snippet Publisher to extract a short snippet from each WAV
file in a source directory and publish it as a new WAV file in a target directory.

The Waveform Audio (WAV) file standard derives from Microsoft and IBM and
is based upon their Resource Interchange File Format (RIFF) (http://en.wikipedia.org/
wiki/WAV). WAV files contain audio data encoded into a collection of samples,
often using the commonly accepted Pulse-Code Modulation (PCM) standard.
See http://en.wikipedia.org/wiki/Pulse-code_modulation. You can find a simplified version
of the WAV format at https://ccrma.stanford.edu/courses/422/projects/WaveFormat/.

The snippet publisher meets the current but growing needs of the customer,
though the implementation contains many limitations. For example, it doesn’t
handle the rare case where the length of the audio samples is odd. Nor does
it handle multiple-channel WAV files. It also does not support all platforms
because of little /big endian differences. Our customer has asked us to resolve
all of these limitations (leaving the rest to you for future incorporation).

Story: Add Support for Multiple Channels
Currently, the snippet publisher handles only single-channel (mono) WAV files properly. As a
content reseller, | want to ensure that stereo WAV snippets do not get chopped in half.

Ahh! Change is here already! Unfortunately, almost no unit tests exist for the
WAV Snippet Publisher, though that shouldn’t be surprising. (In preparing
for this chapter, I built the codebase without employing TDD. It seemed
quicker at first, but my lack of tests quickly chewed up more time than saved
as I fell into a couple of defect weed patches.)

The open() function represents the bulk of the WAV Snippet Publisher logic.
It sprawls across the next few pages.

wav/1/WavReader.cpp
void WavReader::open(const std::string& name, bool trace) {
rLog(channel, "opening %s", name.c _str());

ifstream file{name, ios::in | ios::binary};

if (!file.is open()) {
rLog(channel, "unable to read %s", name.c_str());
return;

}

ofstream out{dest + "/" + name, ios::out | ios::binary};

RiffHeader header;
file.read(reinterpret_cast<char*>(&header), sizeof(RiffHeader));

http://en.wikipedia.org/wiki/WAV
http://en.wikipedia.org/wiki/WAV
http://en.wikipedia.org/wiki/Pulse-code_modulation
https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
http://media.pragprog.com/titles/lotdd/code/wav/1/WavReader.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

The Legacy Application ® 199

if (toString(header.id, 4) !'= "RIFF") {
rLog(channel, "ERROR: %s is not a RIFF file",
name.c _str());

return;
}
if (toString(header.format, 4) != "WAVE") {
rLog(channel, "ERROR: %s is not a wav file: %s",
name.c_str(),
toString(header.format, 4).c _str());
return;
}

out.write(reinterpret_cast<char*>(&header), sizeof(RiffHeader));

FormatSubchunkHeader formatSubchunkHeader;
file.read(reinterpret_cast<char*>(&formatSubchunkHeader),
sizeof (FormatSubchunkHeader));

if (toString(formatSubchunkHeader.id, 4) !'= "fmt ") {
rLog(channel, "ERROR: %s expecting 'fmt' for subchunk header; got '%s'",
name.c str(),
toString(formatSubchunkHeader.id, 4).c str());
return;

}

out.write(reinterpret_cast<char*>(&formatSubchunkHeader),
sizeof (FormatSubchunkHeader));

FormatSubchunk formatSubchunk;
file.read(reinterpret_cast<char*>(&formatSubchunk), sizeof(FormatSubchunk));

out.write(reinterpret_cast<char*>(&formatSubchunk), sizeof(FormatSubchunk));

rLog(channel, "format tag: %u", formatSubchunk.formatTag); // show as hex?
rLog(channel, "samples per second: %u", formatSubchunk.samplesPerSecond);

rLog(channel, "channels: %u", formatSubchunk.channels);
rLog(channel, "bits per sample: %u", formatSubchunk.bitsPerSample);

auto bytes = formatSubchunkHeader.subchunkSize - sizeof(FormatSubchunk);

auto additionalBytes = new char[bytes];
file.read(additionalBytes, bytes);
out.write(additionalBytes, bytes);

FactOrData factOrData;
file.read(reinterpret_cast<char*>(&factOrData), sizeof(FactOrData));
out.write(reinterpret_cast<char*>(&factOrData), sizeof(FactOrData));

if (toString(factOrData.tag, 4) == "fact") {
FactChunk factChunk;
file.read(reinterpret_cast<char*>(&factChunk), sizeof(FactChunk));

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYYYYYYYYYYYYYYYYYYY

//

Chapter 8. Legacy Challenges ® 200

out.write(reinterpret_cast<char*>(&factChunk), sizeof(FactChunk));

file.read(reinterpret_cast<char*>(&factOrData), sizeof(FactOrData));
out.write(reinterpret_cast<char*>(&factOrData), sizeof(FactOrData));

rLog(channel, "samples per channel: S%u", factChunk.samplesPerChannel);

}

if (toString(factOrData.tag, 4) != "data") {
string tag{toString(factOrData.tag, 4)};
rLog(channel, "%s ERROR: unknown tag>%s<", name.c str(), tag.c str());
return;

}

DataChunk dataChunk;
file.read(reinterpret_cast<char*>(&dataChunk), sizeof(DataChunk));

rLog(channel, "riff header size = %u" , sizeof(RiffHeader));
rLog(channel, "subchunk header size = %u", sizeof(FormatSubchunkHeader));
rLog(channel, "subchunk size = %u", formatSubchunkHeader.subchunkSize);
rLog(channel, "data length = %u", dataChunk.length);

// TODO if odd there is a padding byte!
auto data = new char[dataChunk.length];
file.read(data, dataChunk.length);
file.close();

// all of it

out.write(data, dataChunk.length);
// TODO: multiple channels
uint32_t secondsDesired{10};
if (formatSubchunk.bitsPerSample == 0) formatSubchunk.bitsPerSample = 8;
uint32 t bytesPerSample{formatSubchunk.bitsPerSample / uint32 t{8}};
uint32_t samplesToWrite{secondsDesired * formatSubchunk.samplesPerSecond};
uint32 t totalSamples{dataChunk.length / bytesPerSample};

samplesToWrite = min(samplesToWrite, totalSamples);

uint32 t totalSeconds{totalSamples / formatSubchunk.samplesPerSecond};
rLog(channel, "total seconds %u ", totalSeconds);

dataChunk.length = samplesToWrite * bytesPerSample;
out.write(reinterpret_cast<char*>(&dataChunk), sizeof(DataChunk));

uint32 t startingSample{
totalSeconds >= 10 ? 10 * formatSubchunk.samplesPerSecond : 0};
rLog(channel, "writing %u samples", samplesToWrite);
for (auto sample = startingSample;
sample < startingSample + samplesToWrite;
sample++) {

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.5

YYVYY

A Test-Driven Mentality ® 201

auto byteOffsetForSample = sample * bytesPerSample;
for (uint32 t byte{0}; byte < bytesPerSample; byte++)
out.put(data[byteOffsetForSample + byte]);
}
rLog(channel, "completed writing %s", name.c_str());
descriptor ->add(dest , name,

totalSeconds, formatSubchunk.samplesPerSecond, formatSubchunk.channels);

out.close();

}

The open() function contains comments, to-dos, commented-out logic, ques-
tionable names, magic numbers, repetition, and a one-stop-shopping collection
of code to solve all problems. What’s not to like?

Well, we don’t like much in this code. The convoluted code provides ample
opportunities for us to mess up as we attempt to add support for multiple
channels. It would help to have tests in the areas we want to change.

A Test-Driven Mentality

Tests still come first in your approach to legacy code. You will need to write
tests to characterize existing behavior, even though these tests cover code
already written. You will also test-drive any new code you write.

You'll likely realize that writing tests after the fact (something I refer to as
Test-After Development [TAD]) requires considerably more effort than had you
created the code using TDD. The primary reason is that programmers don’t
structure their code to be easily tested if they’re not worried about testing it.
The second reason is that when test-driving, you should be continually fac-
toring toward smaller, more reusable elements that make the crafting of new
tests and code easier.

Testing the open() function looks like it will be very time-consuming. We'd have
to create or find one or more WAV files that we could test with. We’d need to
read the resulting output file and check all of its content. That’s a lot of detail
that we don’t have time for now.

Life can be simpler. You really only need tests around code you will change,
a baseline that tells you when you've broken existing behavior. You do not
need to test code leading up to that area of change, although you will need
to determine what dependent code might break as a result.

You also want to avoid tests that must interact directly with the filesystem
in order to keep your test suite fast and to reduce the headaches of managing
files. You can partially accomplish that by using in-memory streams where
possible instead of file-bound streams.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.6

Chapter 8. Legacy Challenges ® 202

Safe Refactoring to Support Testing

So that we can begin to add support for multiple channels, let’s figure out
where it might be useful to verify functionality in the open() function.

Near its end appears a number of calculations—total seconds, how many
samples to write, where to start, and so on. After all these calculations is a
for loop that appears to write samples to an output file. (This chunk of code
appears highlighted in the earlier listing of open().) We'll need to change a cal-
culation or two plus fix the loop in order to support multiple channels.

The most interesting piece of code is the loop. Let’s write tests around
that...but how? We’'d need to set up lots of information to get that far in the
open() function.

Instead, let’s isolate the loop code to its own member function and test it
directly.

Q.: You're going to change the code? Don’t you run the risk of breaking things?

A.: Yes. This is how we will add a small test increment that covers the code we
must change. Extracting a chunk of code into its method is one of the few code
transformations that we can do in a very safe manner.

Q.: It’s a bit of work to extract a function and put the prototype into the header.
Isn’t there an easier way?

A.: Method extract is the simplest approach we have. It would take hours to get
the prior part of open() tested.

Q.: Inow understand and buy into why it’s better to have testable code. But you’ll
have to expose the method as public, a choice that many of my fellow programmers
would find contemptible.

A.: If absolutely required, you can employ other techniques that result in less-open
code. For example, you can define the method as protected and then create a test
derivative that exposes it as public. It seems lilce a lot of extra effort—and mainte-
nance—for little gain. I prefer the simpler approach.

Remind your fellows that it’s better that we know the code worlks than worry about
the unlikely scenario of exposed code getting abused.

You might also appease them by writing a prudent comment that explains why the

function is exposed. Exposing a member might also highlight the design flaw that
it exhibits feature envy. In turn, that exposure might prod someone to fix the design
problem.

Our approach to extracting a function involves small, rote steps.

1. We type the call to the yet-to-be-extracted function where it belongs.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Safe Refactoring to Support Testing ® 203

wav/2/WavReader.cpp
uint32 t startingSample{

totalSeconds >= 10 ? 10 * formatSubchunk.samplesPerSecond : 0};
writeSamples(out, data, startingSample, samplesToWrite, bytesPerSample);

rLog(channel, "writing %u samples", samplesToWrite);
for (auto sample = startingSample;
sample < startingSample + samplesToWrite;
sample++) {
auto byteOffsetForSample = sample * bytesPerSample;
for (uint32 t byte{0}; byte < bytesPerSample; byte++)
out.put(data[byteOffsetForSample + bytel);
}
rLog(channel, "completed writing %s", name.c_str());
descriptor ->add(dest , name,
totalSeconds, formatSubchunk.samplesPerSecond, formatSubchunk.channels);

We add a corresponding function declaration before the open() function by
simply doing a copy/paste of the function call in the code. (We’ll move it
out of the header once we get it compiling.) We type the function’s return
type (void) and the braces. We keep it as a free function for now, which
will allow us to get the parameter types correct without having to replicate
that effort in the prototype.

wav/2/WavReader.cpp
void writeSamples(out, data, startingSample, samplesToWrite, bytesPerSample) {

}

We add type information to the signature for writeSamples(). We use the
compiler to let us know if the call to writeSamples() doesn’t match the signa-
ture, and we fix problems when the compiler points to them. Once we get
it right, we add the prototype to WavReader.h, and we scope the implemen-
tation of writeSamples() to the class (WavReader::).

wav/3/WavReader.cpp

void WavReader::writeSamples(ofstream& out, char* data,
uint32 t startingSample,
uint32 t samplesToWrite,
uint32 t bytesPerSample) {

}

wav/3/WavReader.h
public:
// ...
void writeSamples(std::ofstream& out, char* data,
uint32 t startingSample,
uint32 t samplesToWrite,
uint32 t bytesPerSample);

http://media.pragprog.com/titles/lotdd/code/wav/2/WavReader.cpp
http://media.pragprog.com/titles/lotdd/code/wav/2/WavReader.cpp
http://media.pragprog.com/titles/lotdd/code/wav/3/WavReader.cpp
http://media.pragprog.com/titles/lotdd/code/wav/3/WavReader.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 8. Legacy Challenges * 204

4. We copy the for loop into the body of writeSamples() and ensure it compiles.
It might not compile if, for example, we forgot to pass a necessary
parameter.

wav/4/WavReader.cpp
void WavReader: :writeSamples(ofstream& out, char* data,
uint32 t startingSample,
uint32 t samplesToWrite,
uint32 t bytesPerSample) {
rLog(channel, "writing %i samples", samplesToWrite);

for (auto sample = startingSample;
sample < startingSample + samplesToWrite;
sample++) {
auto byteOffsetForSample = sample * bytesPerSample;
for (uint32 t byte{0}; byte < bytesPerSample; byte++)
out.put(data[byteOffsetForSample + byte]);

}
We remove the for loop code from the open() member function.

wav/4/WavReader.cpp
uint32 t startingSample{
totalSeconds >= 10 ? 10 * formatSubchunk.samplesPerSecond : 0};

» writeSamples(out, data, startingSample, samplesToWrite, bytesPerSample);
rLog(channel, "completed writing %s", name.c_str());

descriptor ->add(dest , name,
totalSeconds, formatSubchunk.samplesPerSecond, formatSubchunk.channels);

We compile and run any tests we have. We've successfully, and with rea-
sonable safety, extracted a chunk of code to its own function. Extracting
writeSamples() has also increased the abstraction level of the open() function.

Sometimes you’ll encounter challenging compilation errors in your
attempts to extract a function. If you ever feel like you must change lines
of code to get your attempt to compile, you've likely extracted the wrong
chunk of code. Stop and re-think your approach. Either change the scope
of your extract or find a way to write a few more tests first.

Every paste from existing code introduces duplication. For that reason, many
test-drivers consider copy/paste an “evil” mechanism. When crafting new
code, you should maintain a mental stack of every paste operation and
remember to pop off that stack by factoring out any remaining duplication.

Yet with legacy code, copy/paste is often your benevolent friend. Minimizing
your actual typing, preferring instead to copy from existing structures,

http://media.pragprog.com/titles/lotdd/code/wav/4/WavReader.cpp
http://media.pragprog.com/titles/lotdd/code/wav/4/WavReader.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.7

Adding Tests to Characterize Existing Behavior ® 205

decreases your risk of making a dumb mistake when manipulating existing
code. The steps taken here (which represent one possible approach) to extract
the writeSamples() member minimize typing and maximize points at which the
compiler can help you catch mistakes.

We did not change any code within writeSamples(). That means our only risk
lies around calling the function properly. (If it had a nonvoid return, we’'d also
want to ensure the return value was handled appropriately.) If we didn’t intend
to change any code in writeSamples(), we wouldn’t worry about writing tests for
it. We’'d instead focus on writing tests around the passing of arguments to
writeSamples(). We'll give that a shot a bit later.

Adding Tests to Characterize Existing Behavior
We need to change code in writeSamples(). Let’s start with a couple tests!

wav/6/WavReaderTest.cpp

#include "CppUTest/TestHarness.h"
#include "WavReader.h"

#include <iostream>

#include <string>

#include <sstream>

using namespace std;

TEST GROUP(WavReader WriteSamples)
{
WavReader reader{"",""};
ostringstream out;

};

TEST (WavReader WriteSamples, WritesSingleSample) {
char data[] { "abcd" };
uint32 t bytesPerSample { 1 };
uint32 t startingSample { 0 };
uint32 t samplesToWrite { 1 };
reader.writeSamples(&out, data, startingSample, samplesToWrite, bytesPerSample);
CHECK EQUAL("a", out.str());
}

TEST (WavReader WriteSamples, WritesMultibyteSampleFromMiddle) {
char data[] { "0123456789ABCDEFG" };
uint32 t bytesPerSample { 2 };
uint32 t startingSample { 4 };
uint32 t samplesToWrite { 3 };

reader.writeSamples(&out, data, startingSample, samplesToWrite, bytesPerSample);
CHECK EQUAL("89ABCD", out.str());

http://media.pragprog.com/titles/lotdd/code/wav/6/WavReaderTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.8

Chapter 8. Legacy Challenges * 206

The direct tests against writeSamples() help us understand the looping behavior
in isolation. They’re not great, though. The test WritesMultibyteSampleFrom-
Middle requires careful reading and a little bit of math. How would you make
it more directly expressive?

Rather than slow down our tests by using actual files, we use fast, in-memory
string objects of type std::ostringstream. Doing so requires changing the
interface of writeSamples() to take std::ostream objects, the common type from
which both std::ofstream and std::ostringstream derive. More specifically, we
alter the interface to take a pointer to an std::ostream. Production code can
pass the address of a file stream; tests can pass the address of a string stream.
We change the dereferencing of the writeSamples() local variable out to use
pointer semantics.

wav/6/WavReader.cpp
writeSamples(&out, data, startingSample, samplesToWrite, bytesPerSample);

wav/6/WavReader.cpp
void WavReader::writeSamples(ostream* out, char* data,
uint32 t startingSample,
uint32 t samplesToWrite,
uint32 t bytesPerSample) {
rLog(channel, "writing %i samples", samplesToWrite);

for (auto sample = startingSample;
sample < startingSample + samplesToWrite;
sample++) {
auto byteOffsetForSample = sample * bytesPerSample;
for (uint32 t byte{0}; byte < bytesPerSample; byte++)
out->put(data[byteOffsetForSample + byte]);

}

Sidetracked by the Reality of Legacy Code

Our test suite fails! For each test, CppUTest compares memory at the start
of its execution with memory at its completion and fails if there’s a mismatch.
With a bit of probing, we discover the leaker culprit to be either the third-
party logging library, rlog, or our WavReader application’s use of rlog. Dealing
with the leak isn’t our primary goal. We need a way to move forward.

CppUTest allows us to turn off leak detection, but it’s a highly useful feature
that we want to keep. Further, even if we turned off leak detection, the logging
code—which appears throughout WavReader—spews messages onto the
console every time we run tests. It’s a nuisance. What might we do other than
grin and bear it? It's possible there’s a way to turn off logging without
changing the code, but we're running out of time and need to move forward.

http://media.pragprog.com/titles/lotdd/code/wav/6/WavReader.cpp
http://media.pragprog.com/titles/lotdd/code/wav/6/WavReader.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.9

Creating a Test Double for rlog * 207

Third-party libraries can create no end of headaches for testing. They might
be slow, they might require extensive configuration, and they might have
undesirable side effects. When you first start tackling a legacy codebase,
chances are you'll spend a lot of time up front dealing with similar challenges
arising from third-party libraries.

One possible solution is to dummy-out a third-party library via linker substi-
tution. For the WavReader application, we will create a library of stub functions
for each rlog function we use and link against that library when we build our
test executable.

Linker-substitution, or link-time substitution, sounds a lot harder than it is,
but it’s a fairly quick process to set up.

Creating a Test Double for rlog

We don’t have to stub everything that rlog defines, only the things our test
executable requires. We start by commenting out the line in the makefile that
links rlog into the test executable. Here’s our update to CMakeLists.txt (we're
using CMake):

wav/7/CMakeLists.txt
project(SnippetPublisher)
cmake minimum_required(VERSION 2.6)

include directories($ENV{BOOST ROOT}/ $ENV{RLOG HOME} $ENV{CPPUTEST HOME}/include)
link directories($ENV{RLOG HOME}/rlog/.libs $ENV{CPPUTEST HOME}/lib)
set(Boost USE STATIC LIBS ON)

add definitions(-std=c++0x)

set (CMAKE CXX FLAGS "${CMAXE CXX FLAGS} -DRLOG COMPONENT=debug -Wall")
set(sources WavReader.cpp WavDescriptor.cpp)

set(testSources WavReaderTest.cpp)

add_executable(utest testmain.cpp ${testSources} ${sources})

add executable(SnippetPublisher main.cpp ${sources})

find package(Boost $ENV{BOOST VERSION} COMPONENTS filesystem system)
target link libraries(utest ${Boost LIBRARIES})

target link libraries(utest CppUTest)

target link libraries(utest pthread)

target_link libraries(utest rt)

#target link libraries(utest rlog)

target link libraries(SnippetPublisher ${Boost LIBRARIES})
target link libraries(SnippetPublisher pthread)
target link libraries(SnippetPublisher rlog)

Now when we build, we receive numerous link errors.

http://media.pragprog.com/titles/lotdd/code/wav/7/CMakeLists.txt
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 8. Legacy Challenges ® 208

Linking CXX executable utest
CMakeFiles/utest.dir/WavReader.cpp.o: In function “WavReader: :WavReader (
std::string const&, std::string const&)':
WavReader.cpp: (.text+0xef): undefined reference to
“rlog::StdioNode: :StdioNode(int, int)'
WavReader.cpp: (.text+0x158): undefined reference to
“rlog: :GetComponentChannel(char const*, char const*, rlog::LogLevel)'
WavReader.cpp: (.text+0x17c): undefined reference to
“rlog: :GetComponentChannel(char const*, char const*, rlog::LogLevel)'
WavReader.cpp: (.text+0x18e): undefined reference to
“rlog::StdioNode: :subscribeTo(rlog: :RLogNode*) "'
WavReader.cpp: (.text+0x1led4): undefined reference to
“rlog: :PublishLoc::~PublishLoc()"

We need to supply stubs for each of those attempts to hook into rlog. Here is
one approach:

1. Copy over an rlog header file into a subdirectory, renaming it as a .cpp
file.

2. Edit the .cpp file, converting prototypes into stubs that do nothing other
than return a default value if required.

3. Compile and repeat the prior steps until no link errors exist.
Since StdioNode appears at the top of our link error list, we start there.

wav/8/rlog/StdioNode.cpp
#include <rlog/StdioNode.h>

class RLogNode;
class RLogData;

using namespace std;

namespace rlog {

StdioNode: :StdioNode(int fdOut, int flags)
: RLogNode() {}

StdioNode: :StdioNode(int fdOut, bool colorizeIfTTY)
: RLogNode(), fdOut(_fdout) { }

StdioNode: :~StdioNode() { }

void StdioNode::subscribeTo(RLogNode *node) { }

void StdioNode::publish(const RLogData &data) { }

}

That’s not too tough, but converting headers into implementation files can
get a bit tedious and tricky at times. (Maybe there’s a magic tool out there
that can do this for you!) Here are a few things (and not everything) to consider:

http://media.pragprog.com/titles/lotdd/code/wav/8/rlog/StdioNode.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Creating a Test Double for rlog * 209

¢ As the very first thing you do, #include the header from whence you created
the implementation file.

* You may need to wrap the implementations in a namespace.
e Remove virtual and static keywords.

e Remove public: and other access specifiers.

¢ Remove member variables and enums.

e Be careful about removing preprocessor defines and typedefs.

e Return the simplest possible type if the function specifies a return value

—for example, O, false, ", a null pointer, or an instance created using a

no-arg constructor.
e If you must return a const reference, create a global and return that.
e Don't forget to scope the function to the appropriate class.

* Don’t sweat the way it looks when done; the important thing is that it
compiles.

We add a makefile that builds our new stub library.

wav/8/rlog/CMakelLists.txt
project(rlogStub)
cmake minimum_ required(VERSION 2.6)

include_directories($ENV{RLOG_HOME})
add definitions(-std=c++0x)

set (CMAKE CXX FLAGS "${CMAXE CXX FLAGS} -DRLOG COMPONENT=debug -Wall")
set(sources StdioNode.cpp)

add library(rlogStub ${sources})

target link libraries(rlogStub pthread)

We update our test build to incorporate the stub library. The production app,
SnippetPublisher, continues to use the production rlog library.

wav/8/CMakelLists.txt
project(SnippetPublisher)
cmake minimum required(VERSION 2.6)

include directories($ENV{BOOST ROOT}/ $ENV{RLOG HOME} $ENV{CPPUTEST HOME}/include)
link directories($ENV{RLOG HOME}/rlog/.libs $ENV{CPPUTEST HOME}/lib)
set(Boost USE STATIC LIBS ON)

http://media.pragprog.com/titles/lotdd/code/wav/8/rlog/CMakeLists.txt
http://media.pragprog.com/titles/lotdd/code/wav/8/CMakeLists.txt
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 8. Legacy Challenges ® 210

» add subdirectory(rlog)
add definitions(-std=c++0x)

set (CMAKE CXX FLAGS "${CMAXE CXX FLAGS} -DRLOG COMPONENT=debug -Wall")
set(sources WavReader.cpp WavDescriptor.cpp)

set(testSources WavReaderTest.cpp)

add _executable(utest testmain.cpp ${testSources} ${sources})
add_executable(SnippetPublisher main.cpp ${sources})

find package(Boost $ENV{BOOST VERSION} COMPONENTS filesystem system)
target link libraries(utest ${Boost LIBRARIES})
target link libraries(utest CppUTest)
target link libraries(utest pthread)
» target link libraries(utest rlogStub)

target link libraries(SnippetPublisher ${Boost LIBRARIES})
target link libraries(SnippetPublisher pthread)
target link libraries(SnippetPublisher rlog)

An attempt to build with the StdioNode.h stub fails. We add stubs for RLogChannel.h,
RLogNode.h, and rlog.h, each an implementation of the actual rlog header file.
Here’s the implementation for RLogChannel.h, slightly more interesting because
of the need to supply return values:

wav/9/rlog/RLogChannel.cpp
#include "rlog/RLogChannel.h"
#include <string>

#include <iostream>

namespace rlog

{

RLogChannel: :RLogChannel(const std::string &name, LogLevel level){ }
RLogChannel: :~RLogChannel(){}

void RLogChannel: :publish(const RLogData &data){}

std::string nameReturn("");
const std::string &RLogChannel::name() const { return nameReturn; }

LogLevel RLogChannel::logLevel() const { return LoglLevel(); }
void RLogChannel::setLogLevel(LogLevel level) {}
RLogChannel *getComponent(RLogChannel *componentParent,

const char *component){ return 0; }

}

We work on creating one stub at a time, remembering to update our makefile
for each.

wav/9/rlog/CMakelLists.txt
set(sources rlog.cpp RLogChannel.cpp RLogNode.cpp StdioNode.cpp)

http://media.pragprog.com/titles/lotdd/code/wav/9/rlog/RLogChannel.cpp
http://media.pragprog.com/titles/lotdd/code/wav/9/rlog/CMakeLists.txt
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.10

Test-Driving Changes ® 211

We attempt a build with each new stub we put in place. After getting all four
stubs in place, we experience the exhilaration of link and test success! Yay.
Elapsed time: perhaps twenty minutes. Staving off continual future headaches
seems well worth the effort.

Test-Driving Changes

We can now test-drive our changes to writeData() to incorporate the number of
channels. The channel count represents the number of tracks (sound from
separate sources) to play simultaneously. For monaural (mono) output, the
channel count is one. For stereo, it is two. Playback of the WAV requires
iterating through all the samples in order. A given sample is comprised of a
series of subsamples, one per channel. Monaural representation for a four-
sample audio clip, where a sample is a single byte, might look like this:

AA BB CC DD

Suppose there is a second channel with the following sample sequence:

01 02 03 04

The resulting WAV stream should appear like this:

AA 01 BB 02 CC 063 DD 04

Here’s a test showing how increasing the channel requires more bytes in the
data stream:

wav/10/WavReaderTest.cpp

#include "CppUTest/TestHarness.h"
#include "WavReader.h"

#include <iostream>

#include <string>

#include <sstream>

using namespace std;

TEST GROUP(WavReader) {
b

TEST (WavReader WriteSamples, IncorporatesChannelCount) {
char data[] { "0123456789ABCDEFG" };
uint32_t bytesPerSample { 2 };
uint32 t startingSample { 0 };
uint32 t samplesToWrite { 2 };
uint32 t channels { 2 };
reader.writeSamples (
&out, data, startingSample, samplesToWrite, bytesPerSample, channels);
CHECK EQUAL("01234567", out.str());

http://media.pragprog.com/titles/lotdd/code/wav/10/WavReaderTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYVYVY

Yy

Chapter 8. Legacy Challenges ® 212

To avoid having to change a number of other tests right now, we can default
the channels parameter. As usual, our goal is to get tests passing and then
clean up.

wav/10/WavReader.h
void writeSamples(std::ostream* out, char* data,
uint32 t startingSample,
uint32 t samplesToWrite,
uint32 t bytesPerSample,
uint32 t channels=1);

We now implement the code that makes the new test pass.

wav/10/WavReader.cpp
void WavReader::writeSamples(ostream* out, char* data,
uint32 t startingSample,
uint32 t samplesToWrite,
uint32 t bytesPerSample,
uint32 t channels) {
rLog(channel, "writing %i samples", samplesToWrite);

for (auto sample = startingSample;
sample < startingSample + samplesToWrite;
sample++) {
auto byteOffsetForSample = sample * bytesPerSample * channels;

for (uint32 t channel{0}; channel < channels; channel++) {
auto byteOffsetForChannel =
byteOffsetForSample + (channel * bytesPerSample);
for (uint32 t byte{0}; byte < bytesPerSample; byte++)
out->put(data[byteOffsetForChannel + bytel);

}

There’s one more thing to correct. When we write the new ten-second WAV,
we update the data chunk’s length. The length is currently incorrect since it
does not factor in the number of channels. It’s a one-liner, but we’ll happily
extract it to a function we can test and correct. We follow the same pattern.
We write a test to characterize existing behavior, alter the test to specify new
behavior, and change the production code. Here are the resulting test,
extracted function, and client code in open() that calls the new function:

wav/11/WavReaderTest.cpp

TEST_GROUP (WavReader DatalLength) {
WavReader reader{"",""};

}i

TEST (WavReader DatalLength, IsProductOfChannels BytesPerSample and Samples) {
uint32 t bytesPerSample{ 2 };

http://media.pragprog.com/titles/lotdd/code/wav/10/WavReader.h
http://media.pragprog.com/titles/lotdd/code/wav/10/WavReader.cpp
http://media.pragprog.com/titles/lotdd/code/wav/11/WavReaderTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

A New Story ® 213

uint32_t samples { 5 };
uint32 t channels { 4 };

uint32 t length { reader.datalLength(bytesPerSample, samples, channels) };

CHECK EQUAL(2 * 5 * 4, length);
}

wav/11/WavReader.cpp
// ...
rLog(channel, "total seconds %u

, totalSeconds);

> dataChunk.length = datalLength(
> samplesToWrite,
> bytesPerSample,
> formatSubchunk.channels);

out.write(reinterpret_cast<char*>(&dataChunk), sizeof(DataChunk));
// ...

uint32 t WavReader::datalLength(
uint32 t samples,
uint32 t bytesPerSample,
uint32_t channels
) const {
return samples * bytesPerSample * channels;

}
8.11 A New Story

Story: Enhance the Descriptor

Background: In its penultimate step, the open() function sends a message to a WavDescriptor
object, whose job is to append a formatted data record to a descriptor file. The WAV publisher
user interface uses the descriptor file’s contents to display available WAVs.

The descriptor accepts the WAV filename, total seconds (before snipping), samples per second,
and number of channels.

Story: As a content reseller, | want the descriptors for WAV files to also include the new snippet
file length. Alter the descriptor object to accept the length.

Someone else will change the implementation of WavDescriptor to include
the snippet file length in each record (let’s hope they're using TDD!). Our job
will involve only making changes to WavReader.

Our effort to complete this task involves two things. First, calculate or obtain
the file size. Second, prove that we pass this value across to the WavDescriptor.

When adding new functionality, your best bet is to first seek to test-drive it
into a new method or even a new class. This ensures that code coverage does

http://media.pragprog.com/titles/lotdd/code/wav/11/WavReader.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.12

Chapter 8. Legacy Challenges ® 214

not decrease as your codebase grows. It also better helps you adhere to the
SRP and reap all the benefits of small functions and classes.

We need a function that returns a file’s size given its name. For our test-
driven new functionality, do this:

wav/12/FileUtilTest.cpp

// slow tests that must interact with the filesystem
TEST GROUP_BASE(FileUtil Size, FileUtilTests) {

}i

TEST(FileUtil Size, AnswersFileContentSize) {
string content("12345");
createTempFile(content);

size t expectedSize { content.length() + sizeof('\0') };
LONGS_EQUAL (expectedSize, (unsigned)util.size(TempFileName));
}

wav/12/FileUtil.h
class FileUtil {
public:
std::streamsize size(const std::string& name) {
std::ifstream stream{name, std::ios::in | std::ios::binary};
stream.seekg(0, std::ios::end);
return stream.tellg();
}
i

What stinks about this test? It’s not fast (see Section 4.3, Fast Tests, Slow
Tests, Filters, and Suites, on page 86).

You might end up with a small number of slow tests that you arrive at by
test-driving. Perhaps that’s OK, but strive to make their number very small—as
close to zero as possible. More importantly, designate such tests as slow and
ensure that you have a way to run fast, slow, or fast and slow suites.

A Brief Exploration in Seeking Faster Tests

Right now, we have exactly one slow test for the WAV Snippet Publisher
codebase. We'll strive to keep it that way. But if you need another file-based
utility, you’d want to ensure you don’'t add a second slow test. Once you allow
them, slow tests add up quickly.

One possible solution is to separate out the portion of the functionality that
deals only with the stream and test-drive it. For the size() function, we could
create an even smaller method.

http://media.pragprog.com/titles/lotdd/code/wav/12/FileUtilTest.cpp
http://media.pragprog.com/titles/lotdd/code/wav/12/FileUtil.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.13

Mondo Extracto ® 215

wav/12/StreamUtilTest.cpp
TEST(StreamUtil Size, AnswersNumberOfBytesWrittenToStream) {
istringstream readFrom{"abcdefg"};

CHECK EQUAL(7, StreamUtil::size(readFrom));
}

wav/12/StreamUtil.cpp

std::streamsize size(std::istream& stream) {
stream.seekg(0, std::ios::end);
return stream.tellg();

}

FileUtil's size() function would simply delegate work to StreamUtil’s size()
function, passing it the ifstream. We might consider the resulting FileUtil
function to be so small as to not break and consider not writing a unit test
for it.

We could also create a FileUtil function, execute(), whose sole job is to create
an ifstream and pass it to a function that operates on that stream. Client
code would pass a function pointer to execute().

wav/12/FileUtilTest.cpp
streamsize size = util.execute(TempFileName,
[&] (istream& s) { return StreamUtil::size(s); });

wav/12/FileUtil.h
std::streamsize execute(
const std::string& name,
std::function<std::streamsize (std::istream&)> func) {
std::ifstream stream{name, std::ios::in | std::ios::binary};
return func(stream);

}

The benefit is that we’d need only one test—for the execute() function—that
handled files. All other tests would be fast, stream-only tests.

Mondo Extracto

We need to figure out where within the open() function to call size(). Our call
could go near the end of open(), immediately before the code sends a message
to the descriptor object. But since size() re-opens a file, we need to ensure that
the new WAV file gets closed first.

Unfortunately, the structure of open() presents quite a challenge. Code all the
way up to the call to the descriptor is riddled with file reads and writes.
Writing a test able to execute the entire function remains fairly challenging.
(We could pass a real, vetted WAV file to open(), but that would net us a slow
and dependent test.)

http://media.pragprog.com/titles/lotdd/code/wav/12/StreamUtilTest.cpp
http://media.pragprog.com/titles/lotdd/code/wav/12/StreamUtil.cpp
http://media.pragprog.com/titles/lotdd/code/wav/12/FileUtilTest.cpp
http://media.pragprog.com/titles/lotdd/code/wav/12/FileUtil.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 8. Legacy Challenges ® 216

Instead, we refactor open() with the goal of deriving some functions that we
might stub or mock. After about a dozen minutes of generally safe function
extract operations, our code looks much healthier. They still contain ugly
spots, but our functions are getting close to being readily digestible.

wav/13/WavReader.cpp
void WavReader::open(const std::string& name, bool trace) {

}

rLog(channel, "opening %s", name.c_str());

ifstream file{name, ios::in | ios::binary};

if (!file.is open()) {
rLog(channel, "unable to read %s", name.c_str());
return;

}

ofstream out{dest + "/" + name, ios::out | ios::binary};

FormatSubchunk formatSubchunk;
FormatSubchunkHeader formatSubchunkHeader;
readAndWriteHeaders(name, file, out, formatSubchunk, formatSubchunkHeader);

DataChunk dataChunk;
read(file, dataChunk);

rLog(channel, "riff header size = %i" , sizeof(RiffHeader));
rLog(channel, "subchunk header size = %i", sizeof(FormatSubchunkHeader));
rLog(channel, "subchunk size = %i", formatSubchunkHeader.subchunkSize);
rLog(channel, "data length = %i", dataChunk.length);

auto data = readData(file, dataChunk.length); // leak!

writeSnippet(name, file, out, formatSubchunk, dataChunk, data);

void WavReader::read(istream& file, DataChunk& dataChunk) {

}

file.read(reinterpret_cast<char*>(&dataChunk), sizeof(DataChunk));

char* WavReader::readData(istream& file, int32 t length) {

}

auto data = new char[length];
file.read(data, length);
//file.close(); // istreams are RAII
return data;

void WavReader::readAndWriteHeaders(

const std::string& name,
istream& file,

ostream& out,

FormatSubchunk& formatSubchunk,

http://media.pragprog.com/titles/lotdd/code/wav/13/WavReader.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Mondo Extracto ® 217

FormatSubchunkHeader& formatSubchunkHeader) {
RiffHeader header;
file.read(reinterpret_cast<char*>(&header), sizeof(RiffHeader));
// ...
}

void WavReader: :writeSnippet(
const string& name, istream& file, ostream& out,
FormatSubchunk& formatSubchunk,
DataChunk& dataChunk,
char* data

) {
uint32_t secondsDesired{10};
if (formatSubchunk.bitsPerSample == 0) formatSubchunk.bitsPerSample = 8;
uint32 t bytesPerSample{formatSubchunk.bitsPerSample / uint32 t{8}};

uint32 t samplesToWrite{secondsDesired * formatSubchunk.samplesPerSecond};
uint32 t totalSamples{dataChunk.length / bytesPerSample};

samplesToWrite = min(samplesToWrite, totalSamples);
uint32 t totalSeconds{totalSamples / formatSubchunk.samplesPerSecond};
rLog(channel, "total seconds %u ", totalSeconds);

dataChunk.length = datalLength(

samplesToWrite,

bytesPerSample,

formatSubchunk.channels);
out.write(reinterpret_cast<char*>(&dataChunk), sizeof(DataChunk));

uint32 t startingSample{
totalSeconds >= 10 ? 10 * formatSubchunk.samplesPerSecond : 0};

writeSamples(&out, data, startingSample, samplesToWrite, bytesPerSample);
rLog(channel, "completed writing %s", name.c_str());

descriptor ->add(dest , name,
totalSeconds, formatSubchunk.samplesPerSecond, formatSubchunk.channels);

//out.close(); // ostreams are RAII
}

Since writeSnippet() now takes an input stream and an output stream, it no
longer depends upon the file system. Writing a test for it, and perhaps also
for read() and readData(), now seems reasonable. We’d want to refactor readAnd-
WriteHeaders() (not fully shown) into more manageable chunks before writing
tests, but doing so wouldn't take long.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.14

Chapter 8. Legacy Challenges ® 218

We even uncovered a likely memory leak. Breaking code into smaller functions
can make defects obvious.

As we refactored, we deleted the “to-do” comments and commented-out calls
to close the streams. We’'ll need to revisit our choice shortly, but it is not
necessary to explicitly close a file (std::ofstream supports RAII), and close() is
not part of the std::ostream interface. While our analysis is probably sufficient,
now is the time to run whatever other tests we have, manual or automated.

Are we ready yet to add code to support our file size story? A little more
refactoring might make it even simpler, but let’s see what we can do to test
writeSnippet() now that it’s a small, focused function. We'll write a few tests that
characterize its various behaviors.

Spying to Sense Using a Member Variable

We decide we want to first ensure that the code properly calculates totalSeconds,
a value sent to the descriptor. (We might not need to add this test if we’re not
going to make changes to writeSnippet(). The test exists here to demonstrate a
specific technique.)

wav/14/WavReaderTest.cpp

TEST GROUP(WavReader WriteSnippet) {
WavReader reader{"",""};
istringstream input{""};
FormatSubchunk formatSubchunk;
ostringstream output;
DataChunk dataChunk;
char* data;
uint32 t TwoBytesWorthOfBits{2 * 8};

void setup() override {
data = new char[4];

}

void teardown() override {
delete[] data;
}
}i
TEST (WavReader WriteSnippet, UpdatesTotalSeconds) {
dataChunk.length = 8;

formatSubchunk.bitsPerSample = TwoBytesWorthOfBits;
formatSubchunk.samplesPerSecond = 1;

reader.writeSnippet("any", input, output, formatSubchunk, dataChunk, data);

CHECK EQUAL(8 / 2 / 1, reader.totalSeconds);

http://media.pragprog.com/titles/lotdd/code/wav/14/WavReaderTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.15

Spying to Sense Using a Mock * 219

We initialize a fair number of things in the test. Since none of them is relevant
to the test’s expected result, we bury our initialization code in the WavReader
_WriteSnippet test group (fixture) definition. We also move the struct definitions
from WavReader.cpp into WavReader.h so that the test can access them (not shown).

Wait! How in the world are we verifying the value of totalSeconds, given that it
was defined locally to writeSnippet()? Simple: totalSeconds is now a public member
variable!

wav/14/WavReader.h
public:
// ...
uint32_t totalSeconds;

wav/14/WavReader.cpp
void WavReader: :writeSnippet(
const string& name, istream& file, ostream& out,
FormatSubchunk& formatSubchunk,
DataChunk& dataChunk,
char* data

) {
uint32 t secondsDesired{10};
if (formatSubchunk.bitsPerSample == 0) formatSubchunk.bitsPerSample = 8;
uint32 t bytesPerSample{formatSubchunk.bitsPerSample / uint32 t{8}};

uint32 t samplesToWrite{secondsDesired * formatSubchunk.samplesPerSecond};
uint32 t totalSamples{dataChunk.length / bytesPerSample};

samplesToWrite = min(samplesToWrite, totalSamples);
totalSeconds = totalSamples / formatSubchunk.samplesPerSecond;

rLog(channel, "total seconds %u ", totalSeconds);
// ...
}

Our test spies on the otherwise-hidden totalSeconds. Mother of all violations!
Chill. Wrestling with a legacy codebase under control sometimes requires
getting a little dirty. Remind yourself that it's dirtier still to make changes
and not know if you broke something.

Besides, we have a better way that will work for our case.

Spying to Sense Using a Mock

One of the goals of writeSnippet() is to send the total seconds to the descriptor.
In the prior section, we inspected this value by turning it into a member
variable. We can instead have the WavReader use a test double of the
descriptor that captures the total seconds sent to it.

http://media.pragprog.com/titles/lotdd/code/wav/14/WavReader.h
http://media.pragprog.com/titles/lotdd/code/wav/14/WavReader.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

vy

YYVYVYY

Yy

Chapter 8. Legacy Challenges ¢ 220

You learned about how to create test doubles using Google Mock in Test
Doubles. Since we're using CppUTest for our current example, we’ll use its
own mock tool, CppUMock. As with Google Mock, we define a derivative of
WavDescriptor that will spy on messages sent to its add() function.

wav/15/WavReaderTest.cpp
class MockWavDescriptor : public WavDescriptor {
public:
MockWavDescriptor(): WavDescriptor("") {}
void add(
const string&, const string&,
uint32_t totalSeconds,
uint32 t, uint32 t) override {
mock().actualCall("add")
.withParameter("totalSeconds", (int)totalSeconds);
}
b

The override to add() requires us to make it virtual in WavDescriptor.

wav/15/WavDescriptor.h

virtual void add(
const std::string& dir, const std::string& filename,
uint32_t totalSeconds, uint32 t samplesPerSecond,
uint32_t channels) {
// ...
WavDescriptorRecord rec;
cpy(rec.filename, filename.c str());
rec.seconds = totalSeconds;
rec.samplesPerSecond = samplesPerSecond;
rec.channels = channels;

outstr->write(reinterpret_cast<char*>(&rec), sizeof(WavDescriptorRecord));

}

The highlighted line in MockWavDescriptor tells a global CppUTest MockSup-
port object (retrieved by a call to mock()) to record an actual call to a function
named “add.” The MockSupport object also captures the value of a parameter
named “totalSeconds.” (I quote these names since you get to choose them
arbitrarily when you work with CppUMock. It’s a cheap form of reflection.)

We inject the test double into the WavReader by passing it as a third argument
to its constructor.

wav/15/WavReaderTest.cpp
TEST _GROUP (WavReader WriteSnippet) {
shared ptr<MockWavDescriptor> descriptor{new MockWavDescriptor};
WavReader reader{"", "", descriptor};
istringstream input{""};
FormatSubchunk formatSubchunk;

http://media.pragprog.com/titles/lotdd/code/wav/15/WavReaderTest.cpp
http://media.pragprog.com/titles/lotdd/code/wav/15/WavDescriptor.h
http://media.pragprog.com/titles/lotdd/code/wav/15/WavReaderTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Spying to Sense Using a Mock ® 221

ostringstream output;
DataChunk dataChunk;
char* data;
uint32_t TwoBytesWorthOfBits{2 * 8};
void setup() override {
data = new char[4];

}

void teardown() override {
mock().clear();
delete[] data;

}

}i

In the test itself, we tell the MockSupport object to expect that a function
with name add gets called. We tell it to expect that the call is made with a
specific value for its parameter named totalSeconds. This arrangement of the
test is known as setting an expectation. Once the actual call to writeSnippet()
gets made, the Assert portion of the test verifies that all expectations added
to the MockSupport object were met.

wav/15/WavReaderTest.cpp

TEST (WavReader WriteSnippet, UpdatesTotalSeconds) {
dataChunk.length = 8;
formatSubchunk.bitsPerSample = TwoBytesWorthOfBits;
formatSubchunk.samplesPerSecond = 1;
mock() .expectOneCall("add").withParameter("totalSeconds", 8 / 2 / 1);
reader.writeSnippet("any", input, output, formatSubchunk, dataChunk, data);
mock() .checkExpectations();

}

We correspondingly change the descriptor pointer member to be a shared
pointer. Using a shared pointer allows both the test and the production code
to properly manage creating and deleting the descriptor object. We also choose
to default the descriptor argument to be a null pointer in order to minimize
the impact to existing tests.

wav/15/WavReader.h
class WavReader {

public:
WavReader (
const std::string& source,
const std::string& dest,
std::shared ptr<WavDescriptor> descriptor=0);
/] ..
private:
/] ..

std::shared ptr<WavDescriptor> descriptor ;

};

http://media.pragprog.com/titles/lotdd/code/wav/15/WavReaderTest.cpp
http://media.pragprog.com/titles/lotdd/code/wav/15/WavReader.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYY

Chapter 8. Legacy Challenges ¢ 222

wav/15/WavReader.cpp
WavReader: :WavReader (
const std::string& source,
const std::string& dest,
shared ptr<WavDescriptor> descriptor)
1 source_ (source)
, dest (dest)
, descriptor (descriptor) {
if (!descriptor)
descriptor = make shared<WavDescriptor>(dest);

channel = DEF CHANNEL("info/wav", Log Debug);
log.subscribeTo((RLogNode*)RLOG CHANNEL("info/wav"));

rLog(channel, "reading from %s writing to %s", source.c str(), dest.c str());

}

WavReader: :~WavReader() {
descriptor .reset();
delete channel;

}

We don’t have to change a lick of code in the writeSnippet() function that we're
testing! Code in writeSnippet() blissfully continues to call the add() function on
the descriptor without knowing whether the descriptor is a production
WavDescriptor instance or a test double.

We can finally complete the story by test-driving that writeSnippet() obtains and
passes on the file size. In fact, we choose to co-opt the test UpdatesTotalSec-
onds and update it to verify both arguments. We create a mock for FileUtil
in order to support answering a stub value given a request for a file size. We
inject the FileUtil mock instance of FileUtil using a setter function instead of
the constructor.

wav/16/WavReaderTest.cpp
class MockWavDescriptor : public WavDescriptor {
public:
MockWavDescriptor(): WavDescriptor("") {}
void add(
const string&, const stringé&,
uint32_t totalSeconds,
uint32 t, uint32 t,
uint32 t fileSize) override {
mock().actualCall("add")
.withParameter("totalSeconds", (int)totalSeconds)
.withParameter("fileSize", (int)fileSize);

http://media.pragprog.com/titles/lotdd/code/wav/15/WavReader.cpp
http://media.pragprog.com/titles/lotdd/code/wav/16/WavReaderTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYVYVYYY

Spying to Sense Using a Mock * 223

class MockFileUtil: public FileUtil {
public:
streamsize size(const string& name) override {
return mock().actualCall("size").returnValue().getIntValue();
}
b

TEST GROUP(WavReader WriteSnippet) {
shared ptr<MockWavDescriptor> descriptor{new MockWavDescriptor};
WavReader reader{"", "", descriptor};

shared ptr<MockFileUtil> fileUtil{make shared<MockFileUtil>()};

istringstream input{""};
FormatSubchunk formatSubchunk;
ostringstream output;

DataChunk dataChunk;

char* data;

uint32_t TwoBytesWorthOfBits{2 * 8};

const int ArbitraryFileSize{5};

void setup() override {
data = new char[4];
reader.useFileUtil(fileUtil);
}

void teardown() override {
mock().clear();
delete[] data;
}
b

TEST (WavReader WriteSnippet, SendsFilelLengthAndTotalSecondsToDescriptor) {
dataChunk.length = 8;
formatSubchunk.bitsPerSample = TwoBytesWorthOfBits;
formatSubchunk.samplesPerSecond = 1;

mock() .expectOneCall("size").andReturnValue(ArbitraryFileSize);

mock() .expectOneCall("add")
.withParameter("totalSeconds", 8 / 2 / 1)

.withParameter("fileSize", ArbitraryFileSize);
reader.writeSnippet("any", input, output, formatSubchunk, dataChunk, data);

mock () .checkExpectations();

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.16

8.17

Chapter 8. Legacy Challenges ® 224

wav/16/WavReader.cpp
void WavReader: :writeSnippet(
const string& name, istream& file, ostream& out,
FormatSubchunk& formatSubchunk,
DataChunk& dataChunk,
char* data
) {
// ...
writeSamples(&out, data, startingSample, samplesToWrite, bytesPerSample);

rLog(channel, "completed writing %s", name.c_str());
auto fileSize = fileUtil ->size(name);

descriptor ->add(dest , name,

totalSeconds, formatSubchunk.samplesPerSecond, formatSubchunk.channels,

fileSize);

//out.close(); // ostreams are RAII

}

Alternate Injection Techniques

So far you've seen a few creative techniques to support the ability to test
otherwise-difficult-to-reach code. We used constructor injection, setter
injection, and a member variable spy. The techniques you learned about in
Test Doubles, such as Override Factory Method or Introduce via Template
Parameter, can apply here. If absolutely necessary, you can look at even more
creative approaches, such as using the preprocessor to redefine bits of code.

Avoid falling into the hammer-nail trap of sticking to one dependency-breaking
technique. Working Effectively with Legacy Code [Fea04] introduces a couple
dozen useful patterns. Your job is to familiarize yourself with all of them so
that you can choose the most appropriate to your situation.

Large-Scale Change with the Mikado Method

From time to time, you’ll need to make a large-scale change to the codebase.
Perhaps the code passes a few discrete variables all over the place and you
want to aggregate them into a struct. Or you want to restructure a large class
used by many clients. Making these changes might require a few days or
weeks of work. You could slog ahead with your changes, but life isn’'t going
to be easy for those few days or weeks.

As you begin to make a sweeping change, you typically uncover more places
and things that need to change. You may find that the uncovered changes

http://media.pragprog.com/titles/lotdd/code/wav/16/WavReader.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.18

An Overview of the Mikado Method * 225

themselves lead to tangential goals that you must first accomplish. A few
days grows into a few weeks or more.

You might even run out of time. The business might bump up the priority of
another task, forcing you to abandon your trek toward an improved codebase
for the time being. If you were working on the mainline (trunk), you've possibly
left the code in a worse state by leaving around an incomplete solution. Worse,
even with all the effort to date, you might still not have a firm grasp on how
far you got and how much work is outstanding. Meanwhile, you've possibly
confused and frustrated the rest of your team as your half-reared solution
impinges on the code they’re changing. And even if you do eventually return
to your refactoring initiative, chances are you’ll spend ample time coming up
to speed on determining where you were and what work remains outstanding.

If you first make your broad changes on a branch, you find that the merge-
hell span increases the longer you take to finish. Even incremental merges
into your branch may start frustrating you as other developers (with no
apparent concern for your health) change the very things you are altering.
“Can you please just wait until I'm done?” No.

The Mikado Method, devised by Daniel Brolund and Ola Ellnestam, provides
a disciplined approach. You can read extensively about the technique in The
Mikado Method [EB14]. The remainder of this chapter will briefly overview the
process and take you through a short exercise of applying the technique.

An Overview of the Mikado Method

The complete process follows an initially daunting nine-step cycle. Once you've
worked your way through the cycle a few times, however, it won’t be far from
second nature. You'll ingrain it even faster than the TDD cycle.

1. Draw the Mikado Goal, an end state you want to reach.
Implement the goal in a naive manner.

Find any errors.

Derive immediate solutions to the errors.

Draw the immediate solutions as new prerequisites.
Revert code to its initial state if there were errors.
Repeat steps 2 through 6 for each immediate solution.

Check in code if there were no errors; mark the prerequisite goal complete.

© ©® N o g & W b

Is the Mikado Goal met? If so, you are done!

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.19

Chapter 8. Legacy Challenges ® 226

Most of the days or weeks you end up spending on a large refactoring initiative
isn’t spent on the actual code changes themselves. The size of each change
is usually small (although there might be a large volume of changes). The
time is instead spent on the requisite analysis and mental probing that you
undertake. “Where are all the clients that call this function? If I change them,
what other clients are impacted? What does this code do exactly? How am I
going to prove that this still works?*

With the Mikado Method, you separate the analysis from time spent applying
code changes based on that analysis. You reduce the code changes to a simple
change graph, or Mikado graph, a script of sorts. The graph depicts a primary
goal—the Mikado Goal—and a set additional goals on which the primary goal
depends. You repeat, often, attempts to apply portions of the change graph
to the codebase. The repetition teaches you to make the correct code changes
with high confidence and speed.

Building the Mikado graph leaves you with visual summary of the tasks that
you must accomplish. You can optionally farm out pieces to your teammates
to expedite completing the Mikado Goal. The graph provides a focal point for
cross-team communication and coordination.

Moving a Method via Mikado

We could consider a WAV snippet, or possibly a WAV snippet writer, as an
abstraction of its own. The name of our primary class, WavReader, already
suggests that anything to do with writing snippets is an inappropriate
responsibility. Further, we are making extensive changes to the snippet logic
and want to isolate the changes to a class with smaller scope.

As a short-term Mikado Goal, we want to extract the writeSnippet() function into
its own class, Snippet. Once we complete the immediate goal, we plan to clean
the Snippet code considerably. One goal at a time, however.

Given the space constraints of a book, this is a smaller example, but it’s no
less real than your regular refactoring challenges. It's also surprising how
many discrete steps we’ll work through, even in a task this small. The Mikado
Method will prevent us from dropping the ball (or missing it entirely) while
juggling all those steps.

Following the first step of the Mikado Method, we represent our end goal as
a couple concentric ellipses. We prefer a large whiteboard as our tool. We
want everyone to see the Mikado graph, so it will likely require a lot of space,
and we'll be building it out incrementally, making changes as we go.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Moving a Method via Mikado ® 227

extract snippet code
from WavReader

Per the second Mikado step, we run straight to the goal line in an extremely
naive manner. We move (cut and paste) the writeSnippet() function across to a
new file, Snippet.h, where we wrap it in a class definition.

wav/17/Snippet.h
#ifndef Snippet h
#define Snippet h

class Snippet {
public:
void writeSnippet(
const string& name, istream& file, ostream& out,
FormatSubchunk& formatSubchunk,
DataChunk& dataChunk,
char* data
) {
// ...
uint32 t secondsDesired{10};
if (formatSubchunk.bitsPerSample == 0) formatSubchunk.bitsPerSample = 8;
uint32_t bytesPerSample{formatSubchunk.bitsPerSample / uint32 t{8}};

uint32 t samplesToWrite{secondsDesired * formatSubchunk.samplesPerSecond};
uint32 t totalSamples{dataChunk.length / bytesPerSample};

samplesToWrite = min(samplesToWrite, totalSamples);
uint32_t totalSeconds { totalSamples / formatSubchunk.samplesPerSecond };

rLog(channel, "total seconds %i ", totalSeconds);

dataChunk.length = datalLength(

samplesToWrite,

bytesPerSample,

formatSubchunk.channels);
out.write(reinterpret_cast<char*>(&dataChunk), sizeof(DataChunk));

uint32 t startingSample{
totalSeconds >= 10 ? 10 * formatSubchunk.samplesPerSecond : 0};

writeSamples(&out, data, startingSample, samplesToWrite, bytesPerSample);
rLog(channel, "completed writing %s", name.c_str());

auto fileSize = fileUtil ->size(name);

http://media.pragprog.com/titles/lotdd/code/wav/17/Snippet.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

vy

Chapter 8. Legacy Challenges ® 228

descriptor ->add(dest , name,

totalSeconds, formatSubchunk.samplesPerSecond, formatSubchunk.channels,

fileSize);
//out.close(); // ostreams are RAII
}
}
#endif

From WavReader, we create a Snippet object and then invoke its writeSnippet()
member function.

wav/17/WavReader.cpp
#include "Snippet.h"
// ..

void WavReader::open(const std::string& name, bool trace) {
/] ...
auto data = readData(file, dataChunk.length); // leak!
Snippet snippet;
snippet.writeSnippet(name, file, out, formatSubchunk, dataChunk, data);

}

We compile (Mikado step 3: find any errors). A quick sift through the many
compile errors suggests they are because of missing definitions in Snippet.h,
which in turn prevent the call to writeSnippet() from compiling.

We decide that there are two prerequisites to accomplishing our Mikado Goal
(step 4: devise immediate solutions to the errors):

1. Get a new Snippet class in place by copying code.

2. Change WavReader to use that Snippet object (the code change we already
tried).

We reflect our refinement to the plan as prerequisites in our Mikado graph
(step 5: add immediate solutions as new prerequisites).

extract snippet code

to new class
invoke snippet code create new Snippet
from WavReader class by copying code

We'll return later to invoke snippet code from WavReader. For now let’s focus
on creating Snippet, an independent class that we can incrementally grow.

Now for the fun part, Mikado step 6. We revert our changes, since we had
errors. Yup, we discard the code. We've captured the result of our analysis

http://media.pragprog.com/titles/lotdd/code/wav/17/WavReader.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Moving a Method via Mikado ® 229

and attempt in a graph, and it didn’t take us long to make the actual changes
once we knew what to do. (We’ll see how this plays out later.)

If you're using a good source repository tool like git, step 6 can be as simple
as this:

git reset --hard && git clean -f

This is of course potentially data-destroying. <Insert standard legal disclaimer
here.>

We move on. Our goal is to successively work our way out toward leaf nodes
on the graph—goals that we can complete without requiring prerequisite
actions—repeating the preceding Mikado steps for each node. We turn our
focus to seeing whether create new Snippet class by copying code is a leaf.
Our first naive attempt is essentially the same code we just tried:
copy writeSnippet() to Snippet.h, wrapping it in a class definition and removing
WavReader:: from the declaration. We get the compiler to recognize Snippet.h by
adding an #include statement to WavReader.

Choosing a naive goal that is likely to fail can be off-putting to some folks.
However, it keeps us from endless up-front analysis without any concrete
feedback. It also tends to promote building smaller substeps in the Mikado
graph.

Again, we receive compiler errors about unrecognized std types, but this time
the compiler output is not conflated with problems in WavReader. To expedite
getting to the Mikado Goal, we decide to add a using directive to solve the
problem. Yes, this is “bad.” We make a note to clean up the code once we
complete the Mikado Goal. (We could add the cleanup as a node on the
Mikado graph, but we’ll keep this example simple for now.)

Our resolution to the failure becomes a new Mikado Goal.

extract snippet code

to new class
create new Snippet
class by copying code

invoke snippet code
from WavReader
using namespace std;

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 8. Legacy Challenges * 230

We're being brief on the graph, which suits our needs, though it might not
suit yours. Our goal encompasses including the namespace declaration as
well as Snippet.h and a class definition.

You might be wondering about the granularity of each step in the Mikado
Method. Should you detail every code operation? The answer depends on the
size of your challenge, whether you hope to enlist others, and what is
implicitly understood by those involved. For most undertakings, you can
summarize detailed steps and presume that you’ll remember the required
specifics or that your teammates will know what to do. If you want someone
else to be able to implement the change by reading your graph, you might
want to include more detail.

Our graph represents a fairly low-level goal. In the context of a more typically
larger Mikado Goal, we might represent our entire goal (“extract snippet code
to new class”) as but a single node.

We revert once again because of failures that including a using directive should
fix. You may still find the notion of reverting code still a bit disturbing, but
remember that it’s helping you build a very incremental and well-documented
road map to a solution.

Reverting will become fairly natural soon. The time it takes you to re-apply
code changes will diminish dramatically. Occasionally you’ll attempt a naive
solution that ends up being a complete dead end. Your comfort level with
reverting and starting over will make this a stress-free event.

We now start at the “using namespace std;” goal and attempt to resolve it.
We add an #include statement to WavReader. We then add Snippet.h, toss a class
shell into it, and add the using directive.

wav/18/Snippet.h
#ifndef Snippet h
#define Snippet h

using namespace std;

class Snippet {
public:
}i

#endif

That works! Our tests all pass. We have completed the “using namespace
std;” goal and could conceivably add it to the codebase without harming
anything. It’s up to us to decide whether to commit at this point. Since we're

http://media.pragprog.com/titles/lotdd/code/wav/18/Snippet.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Moving a Method via Mikado ® 231

using a powerful source versioning tool, we will commit as often as is safe,
never mind how small our change is. (Using git, you can squash a bunch of
commits into one if having too many creates headaches.)

extract snippet code

to new class

invoke snippet code create new Snippet

from WavReader class by copying code
using namespace std;

#include Snippet.h

We check the goal off on the Mikado graph. Also, we choose to document
adding an #include statement to WavReader on the graph as a completed goal.

We make another attempt to implement the goal “create new Snippet class
by copying code.” Our errors, smaller now, tell us that several members (both
functions and variables) are undefined. We take a look at the functions,
datalength() and writeSamples(), and note that they don’t depend upon any member
variables. Copying across these functions as the next prerequisite goal makes

the most sense.
extract snippet code
to new class

invoke snippet code
from WavReader

create new Snippet

class by copying code
copy across dataLength
and writeSamples

using namespace std;

e

#include Snippet.h

Reverting again and copying across the functions...oops...fails. It turns out
there was a member variable, channels. (Not only is it missing the trailing
underscore that helps us recognize member variables, but the code also reuses
the variable for a nested loop. Ugh. We add this to our “fix later” list.)

We revert and shrink our current goal to copying only datalength().

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYYYVYYY

YYYYYYYVYY

YYVYVYY

Chapter 8. Legacy Challenges ® 232

wav/19/Snippet.h
class Snippet {
public:
uint32_t datalLength(
uint32 t samples,
uint32 t bytesPerSample,
uint32 t channels
) const {
return samples * bytesPerSample * channels;

}i
We commit the code and update the graph.

extract snippet code
to new class

create new Snippet
class by copying code

invoke snippet code
from WavReader

copy across datalLength

—
#include Snippet.h

using namespace std;

Next, we try copying writeSnippets() and now also writeSamples(). We fail again.
The error is undefined member variables. The resolution is to add constructor
and member variables to Snippet.h. Can we make the change and commit? You
bet! The end result is a checked-off prerequisite goal.

wav/20/Snippet.h
class Snippet {
public:

Snippet(shared ptr<FileUtil> fileUtil,
shared ptr<WavDescriptor> descriptor,
const std::string& dest,
rlog: :RLogChannel* channel)

: fileUtil (fileUtil)
, descriptor (descriptor)
, dest (dest)
, channel (channel) { }
// ...
private:

shared ptr<FileUtil> fileUtil ;

shared ptr<WavDescriptor> descriptor_;

const string dest ;

rlog: :RLogChannel* channel ;

http://media.pragprog.com/titles/lotdd/code/wav/19/Snippet.h
http://media.pragprog.com/titles/lotdd/code/wav/20/Snippet.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Moving a Method via Mikado ® 233

extract snippet code
to new class

create new Snippet
class by copying code

invoke snippet code
from WavReader

copy across datalLength

add ctor & member
vars to Snippet

—
#include Snippet.h

using namespace std;

And, yay! After reverting, we're able to successfully copy across writeSnippets()
and writeSamples() and then commit. We're also able to check off the final out-
standing prerequisite step: “invoke snippet code from WavReader.” (The
phrasing snippet.writeSnippet is awkward, sure, but we can rename the function
once we complete the Mikado Goal.)

extract snippet code
to new class

create new Snippet
class by copying code

invoke snippet code
from Wavfy

—
#include Snippet.h

copy across dataLength

add ctor & member
vars to Snippet

using namespace std;

Our code requires a couple small, reasonably safe manual tweaks. We rename
the member variable channel to channel_. We also default the channels argument
on writeSamples() to 1, replicating its definition from WavReaderh. Despite being
small, these changes still contain a small element of risk that we accept (and
use to prod ourselves to run a few slower tests).

wav/21/Snippet.h
class Snippet {
public:
// ...
void writeSnippet(
const string& name, istream& file, ostream& out,
FormatSubchunk& formatSubchunk,
DataChunk& dataChunk,
char* data

) {

http://media.pragprog.com/titles/lotdd/code/wav/21/Snippet.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

vy

Chapter 8. Legacy Challenges ® 234

uint32_t secondsDesired{10};
if (formatSubchunk.bitsPerSample == 0) formatSubchunk.bitsPerSample = 8;
uint32 t bytesPerSample{formatSubchunk.bitsPerSample / uint32 t{8}};

uint32 t samplesToWrite{secondsDesired * formatSubchunk.samplesPerSecond};
uint32 t totalSamples{dataChunk.length / bytesPerSample};

samplesToWrite = min(samplesToWrite, totalSamples);
uint32 t totalSeconds { totalSamples / formatSubchunk.samplesPerSecond };
rLog(channel , "total seconds %i ", totalSeconds);

dataChunk.length = datalLength(

samplesToWrite,

bytesPerSample,

formatSubchunk.channels);
out.write(reinterpret_cast<char*>(&dataChunk), sizeof(DataChunk));

uint32 t startingSample{
totalSeconds >= 10 ? 10 * formatSubchunk.samplesPerSecond : 0};

writeSamples(&out, data, startingSample, samplesToWrite, bytesPerSample);
rLog(channel , "completed writing %s", name.c_str());
auto fileSize = fileUtil ->size(name);

descriptor ->add(dest , name,
totalSeconds, formatSubchunk.samplesPerSecond, formatSubchunk.channels,
fileSize);

//out.close(); // ostreams are RAII
}
void writeSamples(ostream* out, char* data,
uint32 t startingSample,
uint32 t samplesToWrite,
uint32_ t bytesPerSample,
uint32 t channels=1) {

rLog(channel , "writing %i samples", samplesToWrite);
// ...
}
b
wav/21/WavReader.cpp
void WavReader::open(const std::string& name, bool trace) {
// ..

auto data = readData(file, dataChunk.length); // leak!

writeSnippet(name, file, out, formatSubchunk, dataChunk, data);

http://media.pragprog.com/titles/lotdd/code/wav/21/WavReader.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Moving a Method via Mikado ® 235

Are we done? Not quite. We need to delete the three snippet functions from
WavReader. That’s a step not yet represented on our Mikado graph. We can
add it as a direct prerequisite of the primary goal (“extract snippet code to
new class”).

remove functions
from WavReader

extract snippet code
to new class

create new Snippet
class by copying code

invoke snippet code
from Wavieady
copy across dataLength

__

#include Snippet.h

add ctor & member
vars to Snippet

using namespace std;

Inserting a new prerequisite without a failure isn’t wrong, per se, but it's
similar to writing a test that automatically passes. Earlier we chose to copy
across functions to Snippet. Perhaps we should have forced the issue and
insisted that moving the methods was a more direct goal.

No matter, we choose to move forward this time. Our attempt to remove the
functions from WavReader fails—this time because of the tests. We add a
prerequisite goal, fix the tests, check off the prerequisite, successfully delete
the functions from WavReader, and we are done! (We could create a few pre-
requisite steps for fix the tests, but no doubt you get the picture by now.)

You can find the final code in the distribution for the book. But it’'s always
important to see that last check mark applied to the Mikado Goal on the
graph! (See Figure 1, The Mikado Goal with the Last Checkmark, on page 236.)

From a design stance, we are in a happier place. WavReader worries primar-
ily about reading WAV files, and Snippet worries primarily about writing out
snippets from WAV file data. Previously, we had a mild concern about
exposing the otherwise-private functions (such as writeSnippet()). They now
appear as part of the public interface for Snippet, and our concern diminishes.
There’s more tweaking we could do, of course, but that’s always the case. It's
good enough for now, an incremental improvement, and we move on.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 8. Legacy Challenges * 236

fix the tests

remove functions

. . from WavReader
extract snippet code
to new class

create new Snippet
class by copying code

invoke snippet code
from Wavfy copy across dataLength
and writeSamples
add ctor & member

T T vars to Snippet
#include Snippet.h
using namespace std;

Figure 1—The Mikado Goal with the Last Checkmark

8.20 More Thoughts on the Mikado Method

Even in a small refactoring, as in the previous example, it’s easy to get lost
and to forget things. Building the Mikado graph helps you track where you've
been and where you still need to go.

Working backward is an important part of the Mikado Method. The opposite,
typical approach involves taking the code as it is and attempting to refactor
toward a somewhat-vague end goal. You have a rough vision of what the
solution should look like when you get there.

The forward approach can get you where you want to go, but its haphazard
approach creates some problems. It's easy to make a number of code changes
that lead nowhere. You resist starting over, because that will require you to
decipher all the steps you've made so far. More often than not, you choose to
slog forward, potentially leaving some of the less-than-ideal code changes in
place.

As mentioned earlier, sometimes you get only halfway to the end goal and are
forced to abandon partial solutions. Incomplete refactoring attempts can make
the codebase quite confusing.

Where the Mikado Method shines is with a larger refactoring that might take
several days or more to accomplish. Since most of that time is exploration
and analysis time, you can distill the actual work to a simple script represent-
ed by the Mikado graph. Further, the act of repeatedly attempting solutions

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

8.21

Is It Worth It? 237

and reverting when there’s a problem means that you will have streamlined
the process of reapplying steps in a solution. (You might even keep little
snippets of code handy as you build the graph.)

With a complete, well-practiced Mikado graph, you might be able to distill a
couple weeks of exploration and analysis into a couple-hour script. You can
subsequently apply the script during off-hours in order to effect broad,
sweeping changes across your system. You tell your teammates to ensure
they’'ve integrated all code before leaving for the day, you apply the script,
and worst case you revert it if there are problems. Your team comes in the
next morning and pulls your large-scale change. Your work creates minimal
impact for them, and vice versa.

You've experienced the core of the Mikado Method. However, I highly recom-
mend exploring the technique in further detail. The Mikado Method book
(Behead Your Legacy Beast: Refactor and Restructure Relentlessly with the
Mikado Method [BE12]) will supply you with everything you’ll want to know.
It also provides an excellent summary of principles for dealing with legacy
systems.

Is It Worth It?

After working your way through the legacy code examples in this chapter,
you might be thinking, “Gee, this is a lot of work. Why bother?”

You already know the cost of not bothering. Your system no doubt reminds
you daily of the increasing pain caused by slow and sure degradation. Builds
take longer, analysis time takes longer, tests take longer to run, and mainte-
nance takes longer.

Using legacy code management techniques, including the ones overviewed in
this chapter, you can turn a system around as long as you have the support
and dedication of your entire team. Initial efforts will make only tiny dents
in your codebase. But if everyone has the goal of making incremental
improvement as they do their “real” work, you’ll start to see dramatic payoff
in the areas of change. (How long? That depends on your system size, rate of
change, difficulty of the code, willingness of the team, and so on.)

Your team must make a choice: either dispense with legacy system salvaging
techniques and let the codebase continue to degrade (it will) or put a stake
in the ground and decide to change direction for the better. If you choose the
latter, help your team derive some ground rules that cover expectations around
every bit of code checked in.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 8. Legacy Challenges ® 238

8.22 Teardown

Daunting legacy code challenges can scare away the best developers. In this
chapter, you've learned that, yet again, an incremental approach works well
for tackling the problem. With a modicum of investment around safe code
restructuring, you can keep moving forward. You don’t need to test everything,
just the stuff you need to change!

You've also learned how to make broad, sweeping changes across your system
with minimal stress by using the Mikado Method.

In the next chapter, you'll learn how to use TDD to help tackle one of the
bigger challenges in software development: how to craft a robust, multithread-
ed application.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

9.1

9.2

CHAPTER 9

TDD and Threading

Setup

The challenge of crafting a solid multithreaded application can eat up hours
or days of your time as you struggle to decipher race conditions and deadlocks.
Can you test-drive such an application?

Of course, but writing tests that cope with multiple threads isn’'t easy. The
tests themselves must sometimes spawn additional threads and thus can
add their own layer of concurrency complexity to the mix.

Core Concepts for Test-Driving Threads

In this chapter, you’ll work through an example that demonstrates a few core
concepts around test-driving threads.

Separate threading logic from application logic. The best object-oriented design
is one that separates concerns as much as possible. Your design for a multi-
threaded application should be no different. Threading is one concern, and
your application logic is another. Keep them separate as much as possible
and minimize their intermingling. Once again, small methods and classes are
a best friend here (see Benefits of Small Methods, on page 156).

Sleep is bad, m’kay? Pausing execution in a thread via sleep_for(), in order to
walit for a condition to be met, is a poor solution for many reasons. Test runs
will be slow and failures sporadic. Often the reaction to a failing “sleeper” test
is to increase the wait time, which will increase the average test execution
time and, worse, hide any real problems longer.

Throttle down to single-threaded for application-specific tests. Your application
code must first work in a single-threaded environment before you introduce
threads. Once the threads are in place, you'll still need to demonstrate that
the application code performs correctly.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

9.3

Chapter 9. TDD and Threading ® 240

Providing a way to eliminate concurrency concerns for the application-specific
unit tests will help you keep your sanity. In a sense, testing multithreaded
code moves you into the realm of integration testing. To override threading
control, you can either design hooks into your application or introduce test
doubles.

Demonstrate concurrency issues before introducing concurrency controls.
Throwing concurrency controls (locks and waits) everywhere can severely
degrade your application’s performance and might not even solve any real
concurrency problems. The core theme of the following example involves first
writing a test that demonstrates a potential concurrency problem and then
exacerbating it to the point where the test fails every time. Demonstrating
failure first allows you to remain test-driven. You add only the concurrency
control that makes the test pass.

The challenge of test-driving threads still requires careful thought and analysis
around how the threads can interleave. Following the previous concepts may
minimize the troubles you face and should result in a cleaner solution.

The GeoServer

The GeoServer provides support for client applications seeking to track the
geographic location of large numbers of users (don’t worry, it’s not for sale to
your government, and I'll divulge your location only with your permission).
Clients will typically be map-centric phone applications. We’ll concentrate
only on building parts of the server, so use your imagination as to what the
client might look like.

A client registers with the server to begin tracking the location of its user.
The client transmits location updates to the server from time to time.

Here’s the current code for the GeoServer (including the header file for the
Location class):

c9/1/GeoServerTest.cpp

#include "CppUTest/TestHarness.h"
#include "CppUTestExtensions.h"
#include "GeoServer.h"

using namespace std;

TEST GROUP(AGeoServer) {
GeoServer server;

const string aUser{"auser"};
const double LocationTolerance{0.005};
I

http://media.pragprog.com/titles/lotdd/code/c9/1/GeoServerTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

The GeoServer ® 241

TEST(AGeoServer, TracksAUser) {
server.track(aUser);

CHECK TRUE(server.isTracking(aUser));
}

TEST (AGeoServer, IsNotTrackingAUserNotTracked) {
CHECK FALSE(server.isTracking(aUser));
}

TEST (AGeoServer, TracksMultipleUsers) {
server.track(aUser);
server.track("anotheruser");

CHECK FALSE(server.isTracking("thirduser"));
CHECK TRUE(server.isTracking(aUser));
CHECK TRUE(server.isTracking("anotheruser"));

}

TEST (AGeoServer, IsTrackingAnswersFalseWhenUserNoLongerTracked) {
server.track(aUser);
server.stopTracking(aUser);

CHECK FALSE(server.isTracking(aUser));

TEST (AGeoServer, UpdatesLocationOfUser) {
server.track(aUser);
server.updatelLocation(aUser, Location{38, -104});

auto location = server.locationOf(aUser);
DOUBLES EQUAL(38, location.latitude(), LocationTolerance);
DOUBLES EQUAL(-104, location.longitude(), LocationTolerance);

TEST (AGeoServer, AnswersUnknownLocationForUserNotTracked) {
CHECK TRUE(server.locationOf("anAbUser").isUnknown());
}

TEST(AGeoServer, AnswersUnknownLocationForTrackedUserWithNoLocationUpdate) {
server.track(aUser);
CHECK TRUE(server.locationOf(aUser).isUnknown());

}

TEST (AGeoServer, AnswersUnknownLocationForUserNoLongerTracked) {
server.track(aUser);
server.updateLocation(aUser, Location(40, 100));
server.stopTracking(aUser);
CHECK TRUE(server.locationOf(aUser).isUnknown());

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 9. TDD and Threading ® 242

c9/1/GeoServer.h
#ifndef GeoServer h
#define GeoServer h

#include <string>
#include <unordered map>

#include "Location.h"

class GeoServer {
public:
void track(const std::string& user);
void stopTracking(const std::string& user);
void updatelLocation(const std::string& user, const Location& location);

bool isTracking(const std::string& user) const;
Location locationOf(const std::string& user) const;

private:
std::unordered map<std::string, Location> locations_;

std::unordered map<std::string, Location>::const iterator
find(const std::string& user) const;

b
#endif

c9/1/GeoServer.cpp

#include "GeoServer.h"

#include "Location.h"

using namespace std;

void GeoServer::track(const string& user) {
locations [user] = Location();

void GeoServer::stopTracking(const string& user) {
locations .erase(user);

bool GeoServer::isTracking(const string& user) const {
return find(user) != locations .end();

void GeoServer::updatelLocation(const string& user, const Location& location) {
locations [user] = location;

}

Location GeoServer::locationOf(const string& user) const {
if (!isTracking(user)) return Location{}; // TODO performance cost?
return find(user)->second;

http://media.pragprog.com/titles/lotdd/code/c9/1/GeoServer.h
http://media.pragprog.com/titles/lotdd/code/c9/1/GeoServer.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

The GeoServer ® 243

std::unordered map<std::string, Location>::const iterator
GeoServer::find(const std::string& user) const {
return locations .find(user);

}

c9/1/Location.h
#ifndef Location h
#define Location_h

#include <limits>
#include <cmath>
#include <ostream>

const double Pi{ 4.0 * atan(1.0) };

const double ToRadiansConversionFactor{ Pi / 180 };
const double RadiusOfEarthInMeters{ 6372000 };
const double MetersPerDegreeAtEquator{ 111111 };

const double North{ 0 };

const double West{ 90 };

const double South{ 180 };
const double East{ 270 };
const double CloseMeters{ 3 };

class Location {
public:
Location();
Location(double latitude, double longitude);

inline double toRadians(double degrees) const {
return degrees * ToRadiansConversionFactor;

}

inline double toCoordinate(double radians) const {
return radians * (180 / Pi);

}

inline double latitudeAsRadians() const {
return toRadians(latitude);

}

inline double longitudeAsRadians() const {
return toRadians(longitude);

}

double latitude() const;
double longitude() const;

bool operator==(const Location& that);
bool operator!=(const Location& that);

http://media.pragprog.com/titles/lotdd/code/c9/1/Location.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 9. TDD and Threading ® 244

Location go(double meters, double bearing) const;
double distanceInMeters(const Location& there) const;
bool isUnknown() const;

bool isVeryCloseTo(const Location& there) const;

private:
double latitude ;
double longitude ;

double haversineDistance(Location there) const;
};

std::ostream& operator<<(std::ostream& output, const Location& location);
#endif

You can refer to the source distribution for other source files not listed here.
Hmmm...a comment in GeoServer.cpp! Someone is worried about the potential
performance cost of looking up into the locations_ map twice. We’ll worry about
that later (see Section 10.2, TDD and Performance, on page 269).

With the simple stuff out of the way, let's build something meaty into the
GeoServer.

Story: Retrieve Nearby Users

As a client user, | want to frequently request a list of all other users (along with their geographic
coordinates) whose current position lies within a rectangular map area so that | can represent
their positions on a map.

We build an implementation into GeoServer.

c9/2/GeoServerTest.cpp
TEST_GROUP (AGeoServer UsersInBox) {
GeoServer server;

const double TenMeters { 10 };
const double Width { 2000 + TenMeters };
const double Height { 4000 + TenMeters};
const string aUser { "auser" };
const string bUser { "buser" };
const string cUser { "cuser" };

Location aUserLocation { 38, -103 };

void setup() override {
server.track(aUser);
server.track(bUser);
server.track(cUser);
server.updatelLocation(aUser, aUserLocation);

http://media.pragprog.com/titles/lotdd/code/c9/2/GeoServerTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

The GeoServer ® 245

vector<string> UserNames(const vector<User>& users) {
return Collect<User,string>(users, [](User each) { return each.name(); });
}
+

TEST (AGeoServer UsersInBox, AnswersUsersInSpecifiedRange) {
server.updatelLocation(
bUser, Location{aUserLocation.go(Width / 2 - TenMeters, East)});

auto users = server.usersInBox(aUser, Width, Height);

CHECK EQUAL(vector<string> { bUser }, UserNames(users));
}

TEST (AGeoServer UsersInBox, AnswersOnlyUsersWithinSpecifiedRange) {
server.updateLocation(
bUser, Location{aUserLocation.go(Width / 2 + TenMeters, East)});

server.updatelLocation(
cUser, Location{aUserLocation.go(Width / 2 - TenMeters, East)});

auto users = server.usersInBox(aUser, Width, Height);

CHECK EQUAL(vector<string> { cUser }, UserNames(users));
}

c9/2/GeoServer.cpp
bool GeoServer::isDifferentUserInBounds (
const pair<string, Location>& each,
const string& user,
const Area& box) const {
if (each.first == user) return false;
return box.inBounds(each.second);

vector<User> GeoServer::usersInBox(
const string& user, double widthInMeters, double heightInMeters) const {
auto location = locations .find(user)->second;
Area box { location, widthInMeters, heightInMeters };

vector<User> users;
for (auto& each: locations)
if (isDifferentUserInBounds(each, user, box))
users.push_back(User{each.first, each.second});
return users;

}

An Area is a rectangle centered around a Location. It can answer whether it
contains a(nother) location. Here’s the header file for Area:

http://media.pragprog.com/titles/lotdd/code/c9/2/GeoServer.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 9. TDD and Threading ® 246

c9/2/Area.h
#ifndef Area h
#define Area h

#include "Location.h"

class Area {
public:
Area(const Location& location, double width, double height);
Location upperLeft() const;
Location upperRight() const;
Location lowerRight() const;
Location lowerLeft() const;
bool inBounds(const Location&) const;

private:
double left_;
double right ;
double top ;
double bottom ;
}i

#endif

A User is a container holding the user’s name and a location object.

c9/2/User.h

#ifndef User_h
#define User_h
#include "Location.h"

class User {
public:
User(const std::string& name, Location location)
: name_(name), location (location) {}
std::string name() { return name ; }
Location location() { return location ; }

private:
std::string name_;
Location location ;
b
#endif

Performance Requirements

We have a performance challenge. Our product owner indicates that we expect
a large volume of users. The initial release should support tracking 50,000
users simultaneously.

We write a test that emulates scaling up to large numbers of users.

http://media.pragprog.com/titles/lotdd/code/c9/2/Area.h
http://media.pragprog.com/titles/lotdd/code/c9/2/User.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Performance Requirements ¢ 247

c9/3/GeoServerTest.cpp
TEST (AGeoServer UsersInBox, HandlesLargeNumbersOfUsers) {
Location anotherLocation{aUserLocation.go(10, West)};
const unsigned int lots {500000};
for (unsigned int i{0}; i < lots; i++) {
string user{"user" + to_string(i)};
server.track(user);
server.updatelLocation(user, anotherLocation);

}

auto users = server.usersInBox(aUser, Width, Height);
CHECK EQUAL(lots, users.size());
}

When we run our tests, we notice a pause while CppUTest executes Han-
dlesLargeNumbersOfUsers, perhaps a second and a half. While that doesn’t
seem long, that’s one test. In a system where you’ll eventually have thousands
of tests, a measly few dozen slow tests will dissuade you from running them
as frequently as you must. We don’t want to run the slow HandlesLargeNum-
bersOfUsers test as part of our fast test suite. Still, we will likely want to run
it in the future. When we’re done mucking with it, our best bet will be to move
HandlesLargeNumbersOfUsers to a different test executable that runs slow
tests.

Our code certainly seems slow, but are we certain it’s too slow? We rerun our
tests using the -v option of CppUTest.

build/utest -v
Output from the test run confirms that our new test is the culprit.

TEST(ALocation, ProvidesPrintableRepresentation) - 0 ms

TEST (ALocation, IsNotVeryCloseToAnotherWhenNotSmallDistanceApart) - 0 ms
TEST(ALocation, IsVeryCloseToAnotherWhenSmallDistanceApart) - @ ms
TEST(ALocation, CanBeAPole) - 0 ms

TEST (ALocation, AnswersNewLocationGivenDistanceAndBearingVerifiedByHaversine) - 0 ms
TEST(ALocation, AnswersNewLocationGivenDistanceAndBearing) - 0 ms
TEST(ALocation, IsNotEqualToAnotherWhenLatAndLongMatch) - 0 ms
TEST(ALocation, IsNotEqualToAnotherWhenLongDiffers) - 0 ms
TEST(ALocation, IsNotEqualToAnotherWhenLatDiffers) - 0 ms

TEST (ALocation, AnswersDistanceFromAnotherInMeters) - 0 ms
TEST(ALocation, IsUnknownWhenLatitudeAndLongitudeNotProvided) - 0 ms
TEST (ALocation, IsNotUnknownWhenLatitudeAndLongitudeProvided) - 0 ms
TEST(ALocation, AnswersLatitudeAndLongitude) - 0 ms

TEST (AGeoServer_UsersInBox, HandlesLargeNumbersOfUsers) - 1689 ms

TEST (AGeoServer UsersInBox, AnswersOnlyUsersWithinSpecifiedRange) - 0 ms
... (results of other tests omitted)

0K (39 tests, 39 ran, 49 checks, 0 ignored, 0 filtered out, 1798 ms)

http://media.pragprog.com/titles/lotdd/code/c9/3/GeoServerTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 9. TDD and Threading ® 248

Still, we don’t know that the actual call to usersinBox() is a problem. Perhaps
the Arrange portion of the test that tracks and updates the location for half
a million users is the problem. We need a more granular measurement.

As a temporary probe, we declare an instance of an RAII timer in the test
HandlesLargeNumbersOfUsers. Refer to Section 10.2, TDD and Performance,
on page 269 for further information about the home-grown TestTimer class.

c9/4/GeoServerTest.cpp
TEST(AGeoServer UsersInBox, HandlesLargeNumbersOfUsers) {
Location anotherLocation{aUserLocation.go(10, West)};
const unsigned int lots {500000};
for (unsigned int i{0}; i < lots; i++) {
string user{"user" + to string(i)};
server.track(user);
server.updatelLocation(user, anotherLocation);

}

TestTimer timer;
auto users = server.usersInBox(aUser, Width, Height);

CHECK EQUAL(lots, users.size());
}

Our probe tells us that the call to usersinBox() takes a bit longer than 200ms
on average (we run the tests a few times just to make sure).

HandlesLargeNumbersOfUsers elapsed time = 219.971ms

0K (39 tests, 39 ran, 49 checks, 0 ignored, 0 filtered out, 1823 ms)

We remind ourselves that this information is relative and could change
dramatically when run on a different machine. But it’s enough to suggest
there could be a problem.

While 200ms isn’t nearly as bad as a second and a half, our product owner
is unhappy with the results. We get together with her and discuss options.
Together, we derive a new story that should support our need to scale.

Story: Retrieving Nearby Users Is an Asynchronous Request

As a client user, | expect the “retrieve nearby users” request to respond almost immediately.
| want to receive each element from the list of nearby users asynchronously so that | can display
each on the map as | receive it.

You might have learned that stories shouldn’t be technical. That guideline
exists to prevent the creation of stories that do not provide verifiable value to
the business. Tasks such as “creating the database tables” or “upgrading
compiler version” might be essential, but you should execute them only in

http://media.pragprog.com/titles/lotdd/code/c9/4/GeoServerTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

9.5

Designing an Asynchronous Solution ¢ 249

the context of a business need. Our story necessarily discusses a solution in
technical terms, but it does represent a feature that delivers demonstrable
and verifiable business value.

Designing an Asynchronous Solution

Test-driving your code will result in a design that usually differs from what
you initially conceived. That's not an excuse to abandon up-front design
completely, however. You usually want to start with a road map that provides
a reasonable direction.

Just don't invest much time adding detail to the road map, because you'll no
doubt need to take a few detours as you travel the road ahead. The sections
of the road map that detail the road ultimately not traveled represent a waste
of your time.

A GeoServer client wants a simple interface—pass the server a user, a width,
and a height, and receive a list of users in response. To support an asyn-
chronous experience, however, the client will need to pass a callback function
that handles receiving each in-bounds user.

We want to isolate the client from any details of threading. Here’s our proposed
design:

¢ For each incoming request, create a work item and add it to a single work
queue. The work item contains all the information needed to determine
whether a user lies within an area.

e From the GeoServer, start one or more worker threads. When not process-
ing work, each thread waits for an item to become available in the work
queue. Once a thread pulls a work item, it tells it to execute.

We could code all of the logic in the GeoServer class directly, but we won't.
Conflating threading and application logic can lead to long, ugly debugging
sessions when there’s a problem. And there’s almost always a problem.

Instead, we will separate the three concerns implied into three classes.
e Work, which represents a work item to be queued and executed
e ThreadPool, which creates worker threads to handle the work queue

¢ GeoServer, which creates a Work object and sends it to the ThreadPool
for execution

The Work class is probably the simplest place to start.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 9. TDD and Threading ® 250

c9/5/WorkTest.cpp

#include "CppUTest/TestHarness.h"
#include "Work.h"

#include <functional>

#include <vector>

#include <sstream>

using namespace std;

TEST_GROUP (AWorkObject) {

};
TEST (AWorkObject, DefaultsFunctionToNullObject) {
Work work;
try {
work.execute();
}
catch(...) {

FAIL("unable to execute function");
}
}

TEST(AWorkObject, DefaultsFunctionToNullObjectWhenConstructedWithId) {
Work work(1);

try {
work.execute();

}

catch(...) {

FAIL("unable to execute function");
}
}

TEST (AWorkObject, CanBeConstructedwWithAnId) {
Work work(1l);
LONGS EQUAL(1, work.id());

}

TEST (AWorkObject, DefaultsIdTo0) {
Work work;
LONGS EQUAL(0, work.id());
}
TEST (AWorkObject, DefaultsIdTo@WhenFunctionSpecified) {
Work work{[1{}};
LONGS EQUAL(0, work.id());
}

TEST(AWorkObject, CanBeConstructedWithAFunctionAndId) {
Work work{[1{}, 1};
LONGS EQUAL(1, work.id());

http://media.pragprog.com/titles/lotdd/code/c9/5/WorkTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Designing an Asynchronous Solution ¢ 251

TEST(AWorkObject, ExecutesFunctionStored) {
bool wasExecuted{false};
auto executeFunction = [&] () { wasExecuted = true; };
Work work(executeFunction);
work.execute();
CHECK TRUE (wasExecuted);

TEST(AWorkObject, CanExecuteOnDataCapturedWithFunction) {
vector<string> data{"a", "b"};
string result;
auto callbackFunction = [&](string s) {
result.append(s);
I
auto executeFunction = [&]() {
stringstream s;
s << data[0] << data[l];
callbackFunction(s.str());
b
Work work(executeFunction);
work.execute();
CHECK _EQUAL("ab", result);
}

c9/5/Work.h

#ifndef Work_h
#define Work h
#include <functional>

class Work {
public:
static const int DefaultId{0};
Work(int id=DefaultId)
: id {id}
, executeFunction {[I{}} {}
Work(std::function<void()> executeFunction, int id=DefaultId)
: id {id}
, executeFunction {executeFunction}
{}
void execute() {
executeFunction ();

}
int id() const {
return id ;
}
private:
int id ;

std::function<void()> executeFunction_;
b
#endif

http://media.pragprog.com/titles/lotdd/code/c9/5/Work.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

9.6

Chapter 9. TDD and Threading ® 252

The Work test CanExecuteOnDataCapturedWithFunction merely shows how
lambdas work and is technically not necessary. It passes immediately. The
test serves to reinforce our still-growing knowledge of how to use lambdas
and demonstrates how client code can take advantage of a Work object. The
function stored in executeFunction captures the locally defined data vector and
subsequently demonstrates execution on that data. (The capture specification
of [&] tells C++ to capture any referenced variable by reference.) The function
also captures the locally defined callbackFunction, to which it then sends the
result of concatenating elements from the data vector.

We'll eventually delete the CanExecuteOnDataCapturedWithFunction test.
When we get to the point of creating a Work object from the GeoServer code,
it will provide us with an example of what we’ll want to do.

Still Simply Test-Driving

We move on to designing the ThreadPool class. Before we introduce threads,
we test-drive some building blocks for handling requests.

c9/5/ThreadPoolTest.cpp
#include "CppUTest/TestHarness.h"
#include "ThreadPool.h"

using namespace std;

TEST _GROUP (AThreadPool) {
ThreadPool pool;
b

TEST(AThreadPool, HasNoWorkOnCreation) {
CHECK_FALSE(pool.hasWork());
}

TEST(AThreadPool, HasWorkAfterAdd) {
pool.add(Work{});
CHECK TRUE (pool.hasWork());

}

TEST(AThreadPool, AnswersWorkAddedOnPull) {
pool.add(Work{1});
auto work = pool.pullWork();

LONGS_EQUAL(1, work.id());
}

TEST(AThreadPool, PullsElementsInFIFOOrder) {
pool.add(Work{1});
pool.add(Work{2});

http://media.pragprog.com/titles/lotdd/code/c9/5/ThreadPoolTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Still Simply Test-Driving ® 253

auto work = pool.pullWork();

LONGS EQUAL(1, work.id());
}

TEST(AThreadPool, HasNoWorkAfterLastElementRemoved) {
pool.add(Work{});
pool.pullWork();
CHECK FALSE(pool.hasWork());

}

TEST(AThreadPool, HasWorkAfterWorkRemovedButWorkRemains) {
pool.add(Work{});
pool.add(Work{});
pool.pullWork();
CHECK_TRUE (pool.hasWork());
}

c9/5/ThreadPool.h
#ifndef ThreadPool h
#define ThreadPool h

#include <string>
#include <deque>
#include "Work.h"

class ThreadPool {
public:
bool hasWork() {
return !workQueue .empty();

}

void add(Work work) {
workQueue .push front(work);

}

Work pullWork() {
auto work = workQueue .back();
workQueue .pop_back();
return work;

}

private:

std: :deque<Work> workQueue ;
i
#endif
The test AnswersWorkAddedOnPull must verify that work pulled matches the
same work added. We might have compared addresses, but we decide to make
our tests easier by supporting an ID for Work objects.

http://media.pragprog.com/titles/lotdd/code/c9/5/ThreadPool.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

9.7

Chapter 9. TDD and Threading ® 254

c9/5/Work.h

#ifndef Work h
#define Work h
#include <functional>

class Work {
public:
static const int DefaultId{0};
Work(int id=DefaultId)
: id {id}
, executeFunction {[I{}} {}
Work(std::function<void()> executeFunction, int id=DefaultId)
: id {id}
, executeFunction {executeFunction}
{}
void execute() {
executeFunction ();

}
int id() const {
return id ;

}
private:

int id ;

std::function<void()> executeFunction_;
b
#endif
Ready for a Thready!

(Note: CppUTest’'s memory leak detector is not currently thread-safe. You will
want to turn it off for this exercise only; see http://www.cpputest.org/node/25 for
further information. Turning off memory leak detection will cause problems
when coding the exercise in Legacy Challenges.)

We want ThreadPool to handle pulling and executing work on its own. We’ll
need a thread. We create a test that shows how we want to send a Work object
to the ThreadPool’'s add() function and let the pool execute the work
asynchronously.

c9/6/ThreadPoolTest.cpp
TEST(AThreadPool, PullsWorkInAThread) {
pool.start();
condition variable wasExecuted;
bool wasWorked{0};
Work work{[&] {
unique lock<mutex> lock(m);
wasWorked = true;
wasExecuted.notify all();
I3

http://media.pragprog.com/titles/lotdd/code/c9/5/Work.h
http://www.cpputest.org/node/25
http://media.pragprog.com/titles/lotdd/code/c9/6/ThreadPoolTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Yy

>
>
>
>

YYYVvY

Ready for a Thready! * 255

pool.add(work) ;

unique lock<mutex> lock(m);
CHECK_TRUE (wasExecuted.wait_for(lock, chrono::milliseconds(100),
[&] { return wasWorked; }));
}

Our asynchronous approach means that add() can return control to the test
before the work finishes executing. We need a way to verify that the work
actually gets executed. We use a wait/notify scheme. After creating a
ThreadPool instance, the test defines a condition variable named wasExecuted.
We use this semaphore to prevent the test from completing too quickly.

We create a work item with a function callback that sets a flag and notifies
any threads waiting on the wasExecuted condition. Our expectation is that this
work item will get executed by the ThreadPool’s worker thread. After the test
calls pool.add(work), it creates a mutex lock and then waits until the flag is set.
The test fails if the condition variable isn’t cleared in a timely fashion.

We add a start() function to our ThreadPool class, deciding that clients must
indicate when the ThreadPool should start its worker threads. Since threads
don’t start automatically on instantiation of the ThreadPool, the application-
specific ThreadPool tests we wrote earlier need not worry about any threading
concerns. The start() function kicks off a worker thread, which is joined in the
destructor if initialized.

The worker() function waits for work and then pulls and executes it.

c9/6/ThreadPool.h

#include <string>
#include <deque>
#include <thread>
#include <memory>

#include "Work.h"

class ThreadPool {
public:
virtual ~ThreadPool() {
if (workThread)
workThread ->join();

}

void start() {
workThread = std::make shared<std::thread>(&ThreadPool::worker, this);
}
// ...
private:

http://media.pragprog.com/titles/lotdd/code/c9/6/ThreadPool.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYVYVY

A\

9.8

Chapter 9. TDD and Threading ® 256

void worker() {
while ('hasWork())

pullWork() .execute();
}

std: :deque<Work> workQueue_;
std::shared ptr<std::thread> workThread ;
}i

On first execution of the test, we receive an error message.

..terminate called after throwing an instance of 'std::system error'
what(): Operation not permitted

A quick web search and a Stackoverflow.com page hit later, we eliminate this
error by changing CMakeLists.txt to link in pthread.

c9/6/CMakelLists.txt

...

target link libraries(utest CppUTest)
target link libraries(utest pthread)

Our test runs successfully...sometimes. We need only glance at our deliber-
ately simplistic implementation to know it’'s a problem. Were you to create a
command-line script that repeatedly runs the tests, you would find that our
new threaded test crashes every once in a while with a segmentation fault.
We'll investigate another approach: forcing failure directly from the test itself.

Exposing Concurrency Issues

We want to demonstrate that the worker thread can pull and execute multiple
work items from the queue.

c9/7/ThreadPoolTest.cpp
TEST(AThreadPool, ExecutesAllWork) {
pool.start();
unsigned int count{0};
unsigned int NumberOfWorkItems{3};
condition_variable wasExecuted;
Work work{[&] {
std::unique lock<std::mutex> lock(m);
++count;
wasExecuted.notify all();
1
for (unsigned int i{0}; i < NumberOfWorkItems; i++)
pool.add(work);
unique lock<mutex> lock(m);
CHECK TRUE(wasExecuted.wait for(lock, chrono::milliseconds(100),
[&] { return count == NumberOfWorkItems; }));

http://media.pragprog.com/titles/lotdd/code/c9/6/CMakeLists.txt
http://media.pragprog.com/titles/lotdd/code/c9/7/ThreadPoolTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YVYY

Exposing Concurrency Issues ® 257

Our implementation introduces a while loop and a boolean flag that tells the
loop to stop when the ThreadPool instance destructs.

c9/7/ThreadPool.h
#include <string>
#include <deque>
#include <thread>
#include <memory>
#include <atomic>
#include "Work.h"
class ThreadPool {
public:
virtual ~ThreadPool() {
done = true;
if (workThread)
workThread ->join();
}
// ...
private:
void worker() {
while (!done) {
while (!'hasWork())

pullWork() .execute();
}
}
std::atomic<bool> done {false};
std: :deque<Work> workQueue_;
std::shared ptr<std::thread> workThread ;

+

Unfortunately...no, fortunately, our lame implementation hangs the test run
every time. Consistent failure when dealing with threads is a great step toward
a solution. A bit of analysis suggests that once the test completes, the
ThreadPool destructor sets the done_ flag to true and then attempts to join the
thread. The thread can’t complete because it’'s stuck in the while loop that
waits for work to be available.

We add a conditional to our wait-for-work loop and also break out of the loop
if the done_ flag turns on.

c9/8/ThreadPool.h
void worker() {
while (!done) {
while (!done_ && !hasWork())
if (done) break;
pullWork() .execute();

http://media.pragprog.com/titles/lotdd/code/c9/7/ThreadPool.h
http://media.pragprog.com/titles/lotdd/code/c9/8/ThreadPool.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 9. TDD and Threading ® 258

Our tests no longer hang and pass on their first run. Once again, however,
they fail intermittently. We need to hit things harder from the test so that it
fails every time. A quick attempt at bumping up the number of work items
added to the loop doesn’t appear to make much difference. Our test needs to
add work items from multiple threads created by the test itself.

Let’s refactor first. We clean up the two tests that add work to the pool.

c9/9/ThreadPoolTest.cpp

TEST GROUP(AThreadPool AddRequest) {
mutex m;
ThreadPool pool;
condition variable wasExecuted;
unsigned int count{0};
void setup() override {

pool.start();

}

void incrementCountAndNotify() {
std::unique lock<std::mutex> lock(m);
++count;
wasExecuted.notify all();

}

void waitForCountAndFailOnTimeout (
unsigned int expectedCount,
const milliseconds& time=milliseconds(100)) {
unique lock<mutex> lock(m);
CHECK TRUE (wasExecuted.wait for(lock, time,
[&] { return expectedCount == count; }));
}
};

TEST (AThreadPool AddRequest, PullsWorkInAThread) {
Work work{[&] { incrementCountAndNotify(); }};
unsigned int NumberOfWorkItems{l};

pool.add(work);
waitForCountAndFailOnTimeout (NumberOfWorkItems);
}

TEST(AThreadPool AddRequest, ExecutesAllWork) {
Work work{[&] { incrementCountAndNotify(); }};
unsigned int NumberOfWorkItems{3};

for (unsigned int i{0}; i < NumberOfWorkItems; i++)
pool.add(work) ;

waitForCountAndFailOnTimeout (NumberOfWorkItems);

http://media.pragprog.com/titles/lotdd/code/c9/9/ThreadPoolTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

A\

YYVYVYY

2.9

YYVYY

Creating Client Threads in the Test ® 259

In the ThreadPool class, we extract code from the destructor to a separate

method with an intention-revealing name.

c9/9/ThreadPool.h
virtual ~ThreadPool() {

stop();
}
void stop() {
done = true;
if (workThread)
workThread ->join();
}

Creating Client Threads in the Test

Our hypothesis this time is that the spurious failures are caused by data
contention around the work queue. The main thread adds to the work queue,
the pullWork() function removes from the queue, and the worker often asks

whether there’s work available in the queue.

Our tests aren’t simply failing; they are generating segmentation faults.
Concurrent modification of the work queue is the likely suspect. As an attempt
at remediation, we first write a test that consistently generates the same

failure.

c9/10/ThreadPoolTest.cpp

TEST GROUP(AThreadPool AddRequest) {
mutex m;
ThreadPool pool;
condition_variable wasExecuted;
unsigned int count{0};

vector<shared ptr<thread>> threads;

void setup() override {
pool.start();
}

void teardown() override {
for (auto& t: threads) t->join();
}
// ...
};
// ...

TEST(AThreadPool AddRequest, HoldsUpUnderClientStress) {
Work work{[&] { incrementCountAndNotify(); }};

unsigned int NumberOfWorkItems{10};
unsigned int NumberOfThreads{10};

http://media.pragprog.com/titles/lotdd/code/c9/9/ThreadPool.h
http://media.pragprog.com/titles/lotdd/code/c9/10/ThreadPoolTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 9. TDD and Threading ® 260

for (unsigned int i{0}; i < NumberOfThreads; i++)
threads.push_back(
make shared<thread>([&] {
for (unsigned int j{0}; j < NumberOfWorkItems; j++)
pool.add(work);

)
waitForCountAndFailOnTimeout (NumberOfThreads * NumberOfWorkItems);

}

Our test creates an arbitrary number of work request threads via a for loop.
It stores each thread in a vector so that the test can properly join to each
upon completion. You can find this cleanup code in the test group’s teardown()
function.

With NumberOfThreads and NumberOfWorkltems set to one each, we see the same
intermittent failure. We experiment with a few combinations until we discover
that ten threads sending ten requests each consistently generates a seg fault.
Yay!

We add lock guards to each of hasWork(), add(), and pullWork(). These guards use
a mutex object (lockObject) to prevent concurrent access to code in the scope
following the lock guard.

c9/11/ThreadPool.h
#include <string>
#include <deque>
#include <thread>
#include <memory>
#include <atomic>
#include <mutex>

#include "Work.h"

class ThreadPool {
public:
// ...
bool hasWork() {
std::lock guard<std::mutex> block(mutex);
return !workQueue .empty();

}

void add(Work work) {
std::lock guard<std::mutex> block(mutex);
workQueue .push_ front(work);

}

Work pullWork() {
std::lock guard<std::mutex> block(mutex);

http://media.pragprog.com/titles/lotdd/code/c9/11/ThreadPool.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

9.10

Creating Multiple Threads in the ThreadPool * 261

auto work = workQueue .back();
workQueue .pop back();
return work;
}
// ...
std::atomic<bool> done {false};
std: :deque<Work> workQueue_;
std::shared ptr<std::thread> workThread ;
std::mutex mutex ;

}

The tests pass with no problems. We bump the number of threads up to 200,
and things still look good.

Creating Multiple Threads in the ThreadPool

Is that it? Can we ever know whether we’ve addressed all concurrency holes?
To find the remaining problems, one analysis tactic is to think about any
“gaps” we have—where we make an assumption about a fact that might no
longer be true because of the actions of other obstreperous threads.

The worker() function seems to remain the only code with any such potential.
In worker(), we loop until there is work; each time through the loop establishes
and immediately releases a lock within hasWork(). Once there is work, the loop
exits, and control falls through to the statement pullWork().execute(). What if,
during this short span, another thread has grabbed work?

Our ThreadPool currently manages only a single thread, meaning that the
worker() function pulls and executes work one by one, with no such chance for
a concurrency problem. Let’s get our ThreadPool class to live up to its name
and provide support for a pool of threads, not just one.

c9/12/ThreadPoolTest.cpp
TEST(AThreadPoolWithMultipleThreads, DispatchesWorkToMultipleThreads) {
unsigned int numberOfThreads{2};
pool.start(numberOfThreads);
Work work{[&] {
addThreadIfUnique(this thread::get id());
incrementCountAndNotify();
I3 ¥
unsigned int NumberOfWorkItems{500};

for (unsigned int i{0}; i < NumberOfWorkItems; i++)
pool.add(work) ;

waitForCountAndFailOnTimeout (NumberOfWorkItems);
LONGS_EQUAL (numberOfThreads, numberOfThreadsProcessed());

http://media.pragprog.com/titles/lotdd/code/c9/12/ThreadPoolTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

\

YYVYY

Chapter 9. TDD and Threading ® 262

The test DispatchesWorkToMultipleThreads demonstrates that client code
can now start a specified number of threads. To verify that the ThreadPool
indeed processes work in separate threads, we first update our work callback
to add a thread if its ID is unique. Our assertion compares the thread count
specified to the number of unique threads processed.

(Unfortunately, this test has the potential to fail on the rare occasion that
one of the threads processes all of the work items. The exercise of eliminating
this potential for sporadic failure is left to the reader.)

Changing ThreadPool to support spawning a specified number of threads
requires little more than managing a vector of thread objects.

c9/12/ThreadPool.h
#include <string>
#include <deque>
#include <thread>
#include <memory>
#include <atomic>
#include <mutex>
#include <vector>

#include "Work.h"

class ThreadPool {

public:
/] ...
void stop() {
done = true;

for (auto& thread: threads) thread.join();
}

void start(unsigned int numberOfThreads=1) {
for (unsigned int i{Ou}; i < numberOfThreads; i++)
threads .push back(std::thread(&ThreadPool: :worker, this));
}
// ...
private:
// ...
std::atomic<bool> done {false};
std: :deque<Work> workQueue ;
std::shared ptr<std::thread> workThread ;
std::mutex mutex ;
std::vector<std::thread> threads ;
}s

Our test fails consistently. Given our suspicion around the worker() function,
we add a line of code to handle the case where work is no longer available (in
other words, where another thread picked it up).

http://media.pragprog.com/titles/lotdd/code/c9/12/ThreadPool.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

9.11

YYVYVY

Back to the GeoServer ® 263

c9/12/ThreadPool.h
Work pullWork() {
std::lock guard<std::mutex> block(mutex);

if (workQueue .empty()) return Work{};

auto work = workQueue .back();
workQueue .pop back();
return work;

}

Tests pass again, so things are looking up. We know that our fix directly
addressed the concurrency issue at hand.

The reactionary response to concurrency challenges is to throw synchroniza-
tion at the problem. The end result can be much slower than it needs to be.
In contrast, a test-driven approach helps ensure that you synchronize only
elements that need it.

Back to the GeoServer

Now that we've designed and implemented a ThreadPool, let’s take advantage
of it. The first step is to change usersinBox() to take a listener, or callback, as
an argument. We update its code to return User objects to the client via the
callback so that they can be asynchronously gathered.

The listener implementation in our test simply tracks users passed to its
updated() callback.

c9/13/GeoServerTest.cpp
TEST(AGeoServer UsersInBox, AnswersUsersInSpecifiedRange) {
class GeoServerUserTrackingListener: public GeoServerListener {
public:
void updated(const User& user) { Users.push back(user); }
vector<User> Users;
} trackingListener;

server.updatelLocation(
bUser, Location{aUserLocation.go(Width / 2 - TenMeters, East)});

server.usersInBox(aUser, Width, Height, &trackinglListener);

CHECK EQUAL(vector<string> { bUser }, UserNames(trackingListener.Users));
}

c9/13/GeoServer.h
class GeoServerListener {
public:
virtual void updated(const User& user)=0;

};

http://media.pragprog.com/titles/lotdd/code/c9/12/ThreadPool.h
http://media.pragprog.com/titles/lotdd/code/c9/13/GeoServerTest.cpp
http://media.pragprog.com/titles/lotdd/code/c9/13/GeoServer.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

vy

Chapter 9. TDD and Threading ® 264

class GeoServer {
public:
// ...
std::vector<User> usersInBox(
const std::string& user, double widthInMeters, double heightInMeters,
GeoServerListener* listener=nullptr) const;
// ...
+

c9/13/GeoServer.cpp
vector<User> GeoServer::usersInBox(
const string& user, double widthInMeters, double heightInMeters,
GeoServerListener* listener) const {
auto location = locations .find(user)->second;
Area box { location, widthInMeters, heightInMeters };

vector<User> users;
for (auto& each: locations)
if (isDifferentUserInBounds(each, user, box)) {
users.push_back(User{each.first, each.second});
if (listener)
listener->updated(User{each.first, each.second});

}

return users;

}

As always, we seek incremental change, leaving in place the logic that
directly returns a vector of users. This allows us to prove our idea before
wasting a lot of time applying a similar implementation to other tests.

We update AnswersOnlyUsersWithinSpecifiedRange, as well as the slow,
ignored test HandlesLargeNumbersOfUsers. We factor the common declaration
of the GeoServerUserTrackingListener class into the test group. We remove
any code that supports the old interest of returning the vector of users
directly. Finally, we change usersinBox() to assume the existence of a valid
GeoServerListener pointer. Refer to code/c9/14 in the source distribution for
the cleaned-up code.

The GeoServer tests AnswersUsersInSpecifiedRange and AnswersOnlyUser-
sWithinSpecifiedRange must still work. But if we use a ThreadPool, we’ll need
to introduce waits in our tests, like the ones we coded in ThreadPoolTest.
Instead, we choose to introduce a test double that reduces the ThreadPool to
a single-threaded implementation of the add() function.

c9/15/GeoServerTest.cpp
TEST_GROUP (AGeoServer UsersInBox) {
GeoServer server;
// ...
class SingleThreadedPool: public ThreadPool {

http://media.pragprog.com/titles/lotdd/code/c9/13/GeoServer.cpp
http://media.pragprog.com/titles/lotdd/code/c9/15/GeoServerTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

\AAA

Back to the GeoServer ® 265

public:
virtual void add(Work work) override { work.execute(); }
}
shared ptr<ThreadPool> pool;
void setup() override {
pool = make shared<SingleThreadedPool>();
server.useThreadPool(pool);
// ...

// ...
}
TEST (AGeoServer UsersInBox, AnswersUsersInSpecifiedRange) {

pool->start(0);

server.updatelLocation(

bUser, Location{aUserLocation.go(Width / 2 - TenMeters, East)});

server.usersInBox(aUser, Width, Height, &trackinglListener);

CHECK _EQUAL (vector<string> { bUser }, UserNames(trackingListener.Users));
}

We make ThreadPool’s add() function virtual in order to allow the override.

Our test explicitly shows the code to start the pool, since it portrays a design
choice—that it’s the client’s responsibility to start the pool. (This important
piece of protocol is best described in a discrete test that you get to write.)

c9/15/GeoServer.h

class GeoServer {

public:
// ...
void useThreadPool(std::shared ptr<ThreadPool> pool);
// ...

}s

c9/15/GeoServer.cpp
void GeoServer::usersInBox(
const string& user, double widthInMeters, double heightInMeters,
GeoServerListener* listener) const {
auto location = locations .find(user)->second;
Area box { location, widthInMeters, heightInMeters };
for (auto& each: locations) {
Work work{[&] {
if (isDifferentUserInBounds(each, user, box))
listener->updated(User{each.first, each.second});
I3
pool ->add(work);

}

void GeoServer::useThreadPool(std::shared ptr<ThreadPool> pool) {
pool = pool;
}

http://media.pragprog.com/titles/lotdd/code/c9/15/GeoServer.h
http://media.pragprog.com/titles/lotdd/code/c9/15/GeoServer.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 9. TDD and Threading ® 266

Do we need to write a test that interacts with a multithreaded pool? For pur-
poses of test-driving or plain ol’ unit testing, no! We've demonstrated that a
ThreadPool can take on work and dispatch it to different threads. We've
demonstrated that the GeoServer logic to determine the users within a rect-
angle works correctly. And we've demonstrated that the GeoServer logic sends
the work to the ThreadPool.

Any further test would be of another sort, and thus we write it only if we need
it. Since our interest in using threading was to determine whether we could
get immediate response from usersinBox() and have locations returned asyn-
chronously, we do want a test.

We add a new test, similar to HandlesLargeNumbersOfUsers, but one that
kicks off usersinBox() in a separate thread and uses the main thread to wait for
all callbacks. We’ll want this test in our slow suite.

c9/17/GeoServerTest.cpp
TEST GROUP_BASE (AGeoServer ScaleTests, GeoServerUsersInBoxTests) {
class GeoServerCountinglListener: public GeoServerListener {
public:
void updated(const User& user) override {
unique_lock<std::mutex> lock(mutex_);
Count++;
wasExecuted .notify all();

}

void waitForCountAndFailOnTimeout (unsigned int expectedCount,
const milliseconds& time=milliseconds(10000)) {
unique lock<mutex> lock(mutex);
CHECK TRUE(wasExecuted .wait for(lock, time, [&]
{ return expectedCount == Count; 1}));
}
condition_variable wasExecuted_;
unsigned int Count{0};
mutex mutex ;
¥
GeoServerCountingListener countinglListener;
shared ptr<thread> t;

void setup() override {
pool = make shared<ThreadPool>();
GeoServerUsersInBoxTests::setup();

}

void teardown() override {
t->join();
}
+

http://media.pragprog.com/titles/lotdd/code/c9/17/GeoServerTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

9.12

Teardown ® 267

TEST (AGeoServer_ScaleTests, HandlesLargeNumbersOfUsers) {
pool->start(4);
const unsigned int lots{5000};
addUsersAt(lots, Location{aUserLocation.go(TenMeters, West)});

t = make shared<thread>(
[&] { server.usersInBox(aUser, Width, Height, &countinglListener); });

countingListener.waitForCountAndFailOnTimeout(lots);

}

(Given that there’s a lot of common setup between the prior tests for usersinBox(),
the test code you see here is representative of a heavily refactored solution.
There’s also considerable duplication between the wait/notify concepts
implemented in GeoServerCountingListener and those used in ThreadPoolTest
code. We’d want to refactor into a construct usable by any thread-oriented
test.)

Teardown

Building multithreaded code is perhaps the most difficult task in software
development. Few of us regularly write code that must support concurrency,
which makes it that much harder. Using TDD, your approach to multithreaded
code moves in the direction of scientific method and away from mystic art.
Instead of hoping that your reasoning around concurrent execution is correct
and instead of throwing locks and synchronization at any problems, you use
TDD as a tool to validate or disprove your hypotheses about where the con-
currency issues truly lie.

We've covered all the major topics in test-driven development. You've learned
how to test-drive, you've learned how to test after when necessary, and you've
learned how to tackle the specific problem of multithreading. Next up, you'll
delve into a number of odds-and-ends topics about TDD.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

10.1

10.2

cHAPTER 10

Additional TDD Concepts and Discussions

Setup

Not everything always fits into a neat little package. In prior chapters, you
learned the core of TDD: the TDD cycle, basic TDD concepts, construction
guidelines, how to create and use test doubles, design considerations, how
to code quality tests, and how to tackle legacy challenges. You also learned
how to test-drive multithreaded code. From the coding stance, that’s pretty
much it...except for a few odds and ends.

In this chapter, you'll learn about the things that didn’t fit elsewhere,
including the following:

e TDD and performance: This is a bit of soothing around performance con-
cerns to help you sleep at night when practicing TDD.

¢ Integration and acceptance tests: What other kinds of tests do you need,
and how do they differ from unit tests?

¢ The Transformation Priority Premise (TPP): This is a formalized approach
for determining what you should code as the next test.

¢ Triangulation: This is a technique to drive generalizations into code (covered
as part of the TPP section, though a topic in its own right).

e Writing assertions first: This is an alternate approach to crafting a test.

TDD and Performance

Acceptable performance is an important requirement in any system. It’s also
likely that many of you are programming in C++ expressly because of its
potential for high performance. Throughout the book I've dismissed concerns
about performance and directed you to read this section, but that’s not
because performance isn’t important. It is.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 10. Additional TDD Concepts and Discussions ® 270

Most of what falls under the umbrella of performance testing is neither TDD
nor unit testing. This section presents a test-focused strategy for performance
optimization and then discusses how unit-level testing can help you execute
that strategy. It also discusses how design and performance relate, emphasiz-
ing that you should seek optimal design before you attempt to address
performance concerns.

Performance considerations are generally nonfunctional requirements. The
system needs to respond within half a second to user interaction under a
load of up to 10,000 concurrent users. The system needs to process a batch
within a four-hour overnight window. And so on. These are integration-level
concerns (see Section 10.3, Unit Tests, Integration Tests, and Acceptance Tests,
on page 278) that require an integrated and deployed system. You can’t test
these concerns with tests that focus on isolated pieces of logic.

From a (unit-level) test-driven standpoint, you will almost never have the
knowledge up front to be able to say, for example, “This function must respond
in five microseconds or less.” Determining that need would require that you
know how the performance characteristics of the function relate to an
end-to-end behavioral need. Even if you could derive a specific micro-level
performance specification, you'd find it difficult to determine a consistent
measurement that would support all your platforms (development, integration,
production, and so on) equally well, given variant machine characteristics.

A Performance Optimization Test Strategy

The general strategy for performance optimization is as follows:

e Using a test framework, build and execute driver code that baselines the
existing performance of your system for the underperforming case.

e Ensure you have tests that demonstrate the proper behavior of the feature
functionality—it’s fairly easy to break things when optimizing a system.

e Change the driver code into a test that specifies the current performance
baseline. This baseline test should fail if an attempted optimization
degrades performance.

e Add a second goal test to execute the same functionality that passes only
if the desired new performance is met. (This might be a second assertion
in the baseline test.)

¢ Determine the performance bottleneck.

¢ Attempt to optimize code in the area of the bottleneck. You should be able
to discern whether an algorithmic-level optimization is possible. (For

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

TDD and Performance ® 271

example, replace an O(n?) algorithm with one that’s O(n log n)). If so, start
there. Otherwise, start with optimizations that retain high-quality design
and expressiveness. Often, suboptimal use of C++ can be a culprit (for
example, how you pass arguments, use assignment, construct new objects,
and make misguided attempts to do better than STL containers and/or
Boost).

e Ensure your unit and acceptance tests still pass.

¢ Run the baseline test; if it fails (in other words, if the new performance
is worse), discard the modifications and try again.

e Run the goal test; if it passes, ship it!

e Otherwise, you might be able to solve the performance challenge by
identifying the next-biggest bottleneck, attempting to improve its perfor-
mance, and so on. However, it's also possible that your optimization
attempt was an inappropriate choice. Preferably, take note of the relative
amount of improved performance, and shelve the code changes. Seek
another optimization and repeat, checking each time to determine whether
the optimizations will add up to the performance goal.

If you do incrementally incorporate an optimization, ensure you update
the criteria in the baseline test.

Here are some extremely important themes as you attempt to optimize:

¢ Run the performance tests on a machine with the same characteristics
as the production target. Results from tests run elsewhere may not
accurately depict the impact of optimizations in production, making such
optimizations potentially a waste of time or worse.

e Don’t assume anything. Your notions as to what should be optimized are
often wrong. Always measure before and after.

¢ Get the design right first, and only then introduce optimizations. Introduce
optimizations that sacrifice on maintainable design and readability only
if you absolutely must. Get the design right first!

Relative Unit-Level Performance Tests

Unit-level performance tests can help you along the way, but you can’t use
them to determine whether you've met the performance goal. Instead, you’ll
use them as tools to help you probe at pieces of the puzzle.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 10. Additional TDD Concepts and Discussions ® 272

In this section, you’ll learn a simple technique for obtaining the average exe-
cution time of a tested function. The time will only have meaning as it relates
to optimization attempts against that same function.

In the rare case where you are able to define a unit-level need up front, you
can test-drive that need using the Relative Unit-Level Performance Tests
(RUPTS, I'll call them). Otherwise, you'll be in the realm of Test-After Develop-
ment (TAD).

The steps for a RUPT are much as you would expect.

1.

Create a loop that executes the behavior you want to time repeatedly,
perhaps 50,000 times. Looping through should eliminate any aberrations
due to startup overhead or clock cycles. You'll want to make sure the
compiler does not optimize away any of the behavior you want to time.

Just prior to the loop, capture the current time in a variable called start.

Just after the code that executes the behavior, capture the current time
in stop. Your relative measurement is the elapsed time of stop - start.

Run the RUPT and note the elapsed time. Seek an elapsed time of a few
seconds, and alter the number of loop iterations if needed.

Increase the number of iterations by an order of magnitude. Run the test
and ensure that the elapsed time similarly increases. If not, your RUPT
cannot accurately characterize your optimization attempt. Determine the
reason and fix it.

Run the RUPT a few more times. If the elapsed times vary wildly, you do
not have a valid RUPT. Determine the reason and fix it. Otherwise, note
the average.

Attempt to optimize the code.
Run the RUPT several times and note the average.

If the improvement was considerable, run your performance and goal
baselines. Otherwise, discard the change.

The RUPTs are probes that you should discard or relegate to a slush pile of
meaningless code that you might plunder later. By no means should they
appear in your production unit test suite.

Seeking to Optimize GeoServer Code

Let’s work through a short example of creating a RUPT.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

TDD and Performance ® 273

c9/24/GeoServerTest.cpp
TEST (AGeoServer Performance, LocationOf) {
const unsigned int lots{50000};
addUsersAt(lots, Location{aUserLocation.go(TenMeters, West)});

TestTimer t;
for (unsigned int i{0}; i < lots; i++)
server.locationOf (userName(i));

}

The TestTimer class is a simple class that spits out a performance measurement
on the console once it goes out of scope. Refer to the following section (The
TestTimer Class, on page 275) for its implementation.

Here’s the code we're testing. Both locationOf() and isTracking() execute a find call.
Is this an unacceptable performance sink?

c9/24/GeoServer.cpp

bool GeoServer::isTracking(const string& user) const {
return find(user) != locations .end();

}

Location GeoServer::locationOf(const string& user) const {
if (!'isTracking(user)) return Location{}; // TODO performance cost?

return find(user)->second;

}

We set the number of iterations to 50,000 and run the test a few times. We
note an average time (50ms on my machine).

We bump the number of iterations up to 500,000 and run the tests another
few times, again noting the average. We expect to see the average correspond-
ingly increase roughly by an order of magnitude, and it does. The average of
three runs clocks in at 574ms. If it hadn’t increased, we would have needed
to figure out how to prevent the C++ compiler from cleverly optimizing the
operations executed in the loop. (Under gcc, you can add an assembler
instruction: asm("");.)

We change the code to eliminate the second call to the find() function.

c9/25/GeoServer.cpp
Location GeoServer::locationOf(const string& user) const {
// optimized
auto it = find(user);
if (it == locations .end()) return Location{};
return it->second;

http://media.pragprog.com/titles/lotdd/code/c9/24/GeoServerTest.cpp
http://media.pragprog.com/titles/lotdd/code/c9/24/GeoServer.cpp
http://media.pragprog.com/titles/lotdd/code/c9/25/GeoServer.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 10. Additional TDD Concepts and Discussions ® 274

Yes, a comment is prudent (you might provide a bit more explanation, though).
Programmers in a good TDD shop should always be seeking to improve the
quality of the code. Without a comment to indicate why you coded it that way,
a good programmer is likely to clean up a messier, performance-optimized
chunk of code. And since you don’t typically run performance-related accep-
tance tests continually, it may be difficult to discern the code change that
caused a goal performance test to fail.

We rerun the performance tests and note a new average of 488ms, which is
86ms faster than before. The math says that introducing the redundant call
to find() incurs a cost of almost 18 percent performance degradation per
request. It sounds substantial and may well be, but remember that we're
running half a million requests. Per request, we're talking 0.17 microseconds
difference.

These are facts about the changes in behavior from a performance perspective.
While they provide only relative, isolated meaning value, they’re not supposi-
tions. We know that our attempt at code optimization was successful—that
it improved the execution time of this small unit of code. That’s more than
we knew before. It’s also more than most developers know after they attempt
to optimize a solution.

The question becomes, is it useful? At this point, we would run our baseline
and goal performance tests and determine whether the optimization is neces-
sary. If not, it serves only to make the code more difficult, and we happily
discard it.

The cost of retaining the optimization appears minimal. The locationOf() function
increases by only a line of code, to three simple lines. Many useful optimiza-
tions create code that’s considerably harder to decipher and maintain.

Yet there’s another potential optimization route that would be easy to apply,
given that we have a clean design. In a GeoServer that tracks tens or hundreds
of thousands of users, a user cache might make a lot more sense. During any
given time period, the server will likely be asked the locations of a much
smaller subset of users, and many requests will duplicate a prior request.
Currently, the lookups into the location_ map all funnel through the accessor
function find(). We could change the code in find() to use a cache. Client code
would retain its current, expressive design. In contrast, introducing a cache
in a class where code always directly accesses member variables can represent
a prolonged effort.

A clean design helps with performance optimization in a couple ways. First,
it’s easier to pinpoint performance problems using a profiler when you have

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

TDD and Performance ® 275

small functions. Second, small classes and functions increase your potential
to consider creative optimizations. They also increase the ease of making the
changes once you've identified the problem. In contrast, imagine a 500-line
function that hides a performance bottleneck. It will take you longer both to
determine the problem and to resolve it. (And a 500-line function will almost
never have sufficient tests to give you the confidence to make appropriate
optimization changes.)

The TestTimer Class

The TestTimer class is a hastily coded, simple tool that you can place at any
appropriate point in your test. It prints the elapsed time when it goes out of
scope, as well as explanatory text passed to the constructor. Using the no-arg
constructor results in the name of the current test being printed.

c9/25/TestTimer.h
#ifndef TestTimer_h
#define TestTimer h

#include <string>
#include <chrono>

struct TestTimer {
TestTimer();
TestTimer(const std::string& text);
virtual ~TestTimer();

std::chrono::time_point<std::chrono::system_ clock> Start;
std::chrono::time point<std::chrono::system clock> Stop;
std::chrono::microseconds Elapsed;
std::string Text;

}i

#endif

c9/25/TestTimer.cpp

#include "TestTimer.h"
#include "CppUTest/Utest.h"
#include <iostream>

using namespace std;

TestTimer::TestTimer()
: TestTimer(UtestShell::getCurrent()->getName().asCharString()) {
}

TestTimer: :TestTimer(const string& text)
: Start{chrono::system clock::now()}
, Text{text} {}

http://media.pragprog.com/titles/lotdd/code/c9/25/TestTimer.h
http://media.pragprog.com/titles/lotdd/code/c9/25/TestTimer.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

>

Chapter 10. Additional TDD Concepts and Discussions ® 276

TestTimer::~TestTimer() {
Stop = chrono::system clock::now();
Elapsed = chrono::duration cast<chrono::microseconds>(Stop - Start);
cout << endl <<
Text << " elapsed time = " << Elapsed.count() * 0.001 << "ms" << endl;

}

You can and should enhance the timer class to suit your needs. You might
want to make it thread-safe (it is not). You might prefer using a different
platform-specific timing API, or your system might provide a separate imple-
mentation for C++11’s high-resolution clock. You might be able to measure
using a smaller duration (nanoseconds!), or perhaps you need to use larger
durations. Or you might choose to simply insert the three or four lines required
directly into your tests, though that seems like unnecessary effort.

Performance and Small Functions

C++ programmers burn billions of anxiety calories annually over the perfor-
mance cost of a member function call. For that reason, many programmers
resist the notion of creating small functions and classes. “I don’t want to
extract that code into a separate function; it might represent a performance
problem.” Yet compilers today are very smart beasts, able to optimize code
in many cases better than you ever could by hand.

Rather than base your resistance to small functions on old wives’ tales,
consider real data.

c9/26/GeoServer.cpp
Location GeoServer::locationOf(const string& user) const {
// optimized
auto it = locations .find(user);
if (it == locations .end()) return Location{};
return it->second;

}

Before manually inlining the find() function, the average execution time was
488ms. After inlining, the average execution time was 476ms, a statistically
insignificant difference across a half-million executions.

Was the find() function inlined by the compiler in the first place? If we force
the issue and tell gcc to not inline the function, as follows, there is no sub-
stantial difference in execution time (474ms):

c9/27/GeoServer.h

std::unordered map<std::string, Location>::const iterator
find(const std::string& user)
const
__attribute ((noinline));

http://media.pragprog.com/titles/lotdd/code/c9/26/GeoServer.cpp
http://media.pragprog.com/titles/lotdd/code/c9/27/GeoServer.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

TDD and Performance ® 277

One other interesting aspect of small functions is that C++ compilers are more
likely able to inline them in the first place. With larger functions, you actually
decrease the compiler’s chances to optimize code.

The reality is that not extracting code to smaller methods represents poor
design, and it does virtually nothing to improve the performance of your
application. Performance experts already know this.

And don’t trust me, I could well be an old wife. Trust your own measurements.

Recommendations

Many thoughts on performance optimization are based on folklore and the
experience of others. Don’t trust the experiences of others. Then again, since
most everyone is saying the same thing, it’s probably worth listening to what
all consistently say. And I'll add my experiences to the mix.

My Experiences with Optimization

As a programmer, I've been involved in a number of optimization attempts. As a consultant, I've
worked with several programmers for whom optimization was their primary job (one on a system
needing to consistently process 20,000+ transactions per second). In both realms, I've experienced
and witnessed successes that stemmed from a disciplined approach similar to the previous
recommendations. I've also seen a spectacular failure as one company hired high-priced consul-
tants to desperately attempt to fix a live, production-scaling challenge by stabbing haphazardly
at optimization attempts.

A few key elements appear to provide the best defense against performance challenges.

« A solid architecture, where the word architecture means the layout of all those things that
will be very difficult to change once the system is in place. Specifically, where are the com-
munication points between components (distributed across clients and servers), and how
does the architecture support scaling without requiring code changes (in other words, by
beefing up hardware)?

A solid but flexible design with clean code, complete with tests that provide the flexibility
to make confident, dramatic changes when needed.

Performance goal tests from day one that specify future scaling expectations. If you expect
to deploy your application initially to a dozen users and then ultimately to a hundred, you
want to know as soon as possible when new code puts the scaling target at risk.

As far as code-level optimization goes, | have yet to see evidence, or hear it from a performance
expert, that refutes the classic advice of getting the design right before attempting optimization
and then optimizing only if absolutely necessary.

I've witnessed many wrong-headed optimization attempts. In some cases, they were based on
misguided or downright false folklore (sometimes even based on another language!). In other
cases, the performance recommendations were once true, but later compiler and runtime
improvements rendered them obsolete.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 10. Additional TDD Concepts and Discussions ® 278

Some code-level optimizations do fall in the category of “free." For example, passing by reference
in C++ is usually more efficient than passing by value, and it costs nothing in expressiveness.
Where such optimizations do not degrade readability or ease of maintenance, go for ‘'em. Other-
wise, save the optimization attempts for later, much later.

10.3 Unit Tests, Integration Tests, and Acceptance Tests

TDD is a programmer practice to help you incrementally drive the design of
code. You've learned how to use it to verify small bits of C++ logic by writing
unit tests, which in turn allows you to continually shape the design of the
code at will.

For the purposes of this book, unit means a small piece of isolated logic that
affects some systematic behavior. The word isolated in the definition suggests
you can execute the logic independently. This requires decoupling the logic
from dependencies on things such as service calls, APIs, databases, and the
file system. (Technically, independent code should also be decoupled from
any other code, but a pragmatic approach suggests that it’s not necessary
for all code to be purely isolated.) As emphasized elsewhere in this book (for
example, Section 4.3, Fast Tests, Slow Tests, Filters, and Suites, on page 86),
the important aspect of unit tests for purposes of doing TDD is that they're
darn fast.

By definition, unit tests are inadequate. Since they verify small isolated pieces
of code, they can’t demonstrate the correctness of an end-to-end deployed-
and-configured solution. In addition to unit tests, your system requires tests
that will provide high confidence that you are shipping a high-quality product.
Depending on the shop, these tests include what might be called system tests,
customer tests, acceptance tests, load tests, performance test, usability tests,
functional tests, and scalability tests, to name a few (some of these are more
or less the same thing). All of these tests verify against an integrated software
product and are thus integration tests.

Who defines the integration tests varies depending on the circumstance.
Typically, they are defined by people in one or more of three roles: tester,
programmer, and customer.

Per the Agile community, customer tests are any tests defined to demonstrate
that the software meets business needs. In an Agile process, these tests are
defined before development in order to provide a specification of sorts to the
development team—a close analog to the TDD process. Agile proponents will
often refer to customer tests defined up front as acceptance tests (ATs). If the
development team builds software that gets all the test to pass, the customer
agrees to accept the delivery of the software.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Unit Tests, Integration Tests, and Acceptance Tests ® 279

How Do TDD and Acceptance Testing Relate?

Driving the development of a system by defining ATs up front is quite similar
to driving the development of bits of logic using TDD. In fact, many teams
employing the use of ATs in this manner refer to the process as Acceptance
Test-Driven Development (ATDD).

You can read volumes about how acceptance tests might fit into your devel-
opment process, what kind of tools are used, what the tests should look like,
and so on. If you understand TDD, though, you already have most of the
mentality needed to understand what ATDD is all about and how to succeed
in its practice.

The important distinction between TDD and ATDD is who defines the tests
(and therefore who consumes the tests). With TDD, programmers are
responsible for defining unit tests in a programmatic language. As such,
there’s no expectation that anyone but programmers will read or otherwise
consume the unit tests. (That doesn’t mean you can slouch on their readabil-
ity, however!)

With ATDD, customers (which might include people like product owners or
business analysts) are responsible for defining ATs based on business needs.
They rarely do this in a vacuum. Insights and information from everyone else
on the team, including testers and programmers, are required to build robust
acceptance tests. Everyone consumes tests created using ATDD.

You will find a number of books on ATDD, including Specification by Example
[Adz11] and ATDD By Example [Gdl2]. When searching, you may also find
relevant information using the search phrase specification by example.

Programmer-Defined Integration Tests

As a programmer, you always have the option to create programmer-facing
integration tests. A few well-chosen integration tests can be invaluable, and
your shop might even require them. You might include tests that exercise
your data access layer directly to get more immediate information and more
direct failure messages about discrepancies between the code and the data
store’s definition. Or, you might use a series of smoke tests to quickly deter-
mine whether a deployment isn’t configured properly.

However, integration tests are difficult to maintain. Since they deal with
software deployed to a configured environment that must interact with the
wild world of external services and data stores, integration tests are brittle.
Keeping the tests up-to-date and running across all your deployment environ-
ments is a sizable challenge.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 10. Additional TDD Concepts and Discussions ® 280

You're best off if you code only as many integration tests as you absolutely
need, and no more. As a strategy, either seek to position an integration test
as a customer test (that your customer is willing to take on) or remove its
dependencies and use it as a unit test that demonstrates code-level logic.

If your team has already produced a number of tests using a unit testing tool
like Google Test, you may find that many of them are really integration tests
pretending to be unit tests. These tests attempt to verify bits of code logic but
have many unfortunate dependencies that relegate them to the realm of slow
and brittle integration tests.

Find the time to triage your integration tests. For each, determine one of the
following four actions:

¢ Clean up the integration test and sell it to the business as an AT.
e Convert it to a fast unit test by removing its dependencies.

¢ Retain it as a rare nonacceptance integration test.

* Delete it.

Immediately remove any remaining integration tests from the fast unit test
suite.

Overlap Between TDD and ATDD

One of the bigger sources of anxiety for a team practicing both ATDD and
TDD is that some of the tests will inevitably appear to overlap, particularly if
everything gets properly test-driven. Most acceptance tests usually represent
functional interests and will demonstrate how the system works from the
perspective of an actor interacting with the system. When doing TDD, you’ll
test-drive this user interface layer also. Is this duplicate effort?

Indeed, the tests at the interface layer will appear similar. However, remember
that the audiences and goals for each set of tests are different. No one else
will ever read your programmer tests. The acceptance tests, in contrast, are
designed to be read by anyone.

The tests that a customer defines will provide broad coverage against a piece of
end-to-end functionality. Since they will typically run quite slowly, such tests
cannot hope to have high levels of coverage against the countless possible combi-
nations and permutations. You can code TDD-produced unit tests, however, to
rapidly slam through a much larger number of combinations and permutations.

From a design stance, the amount of overlap should be low. In a well-designed
system, the interface layer is thin and largely a delegator to business domain
classes (and there should be many more non-interface-layer classes than

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

10.4

The Transformation Priority Premise ® 281

interface-layer classes). Thus, most of your unit tests against the interface
layer need to simply prove that work was delegated appropriately.

From a pure testing standpoint, the benefit of having both unit tests and
acceptance tests provides you with an extra layer of protection. Inevitably,
your unit tests will miss covering an important scenario. Having a layer of
tests above unit level that are defined by a different set of brains will provide
you with an invaluable safety net. You'll write some tests to represent scenarios
the business didn’t think about, and vice versa. (But don’t forget that nets
are comprised of lots of gaping holes.)

Defects represent an incorrect or missing unit test. You correct defects by
following a test-driven approach. First write a test that demonstrates the
existence of the defect by failing. Then write the code that gets the unit test
(and any corresponding acceptance tests) to pass.

The Transformation Priority Premise

Throughout the book, I've suggested that the next test you write is the one
that grows your system by the smallest increment. If you strictly adhere to
the TDD cycle, seeking to always demonstrate test failure before you move
on, you will learn what it means to take too large a step. (See Section 3.5,
Getting Green on Red, on page 60.) Following the last rule of simple
design—minimize the total number of classes and methods (see Section 6.2,
Simple Design, on page 141)—will also help by teaching you to avoid overde-
signing your system and putting more code in place than need be. The third
rule of TDD (Section 3.4, The Three Rules of TDD, on page 59) also tells you
to put no more code in place than necessary to pass your tests.

Small steps are important, because larger steps will waste more time as your
system grows. Create an overblown solution that far exceeds what a test
demands, and you’ll likely need to overhaul a good chunk of code a few tests
down the road.

Success with TDD requires the ability to grow a system by small increments.
You will shorten your path to mastery by having the will to back up and try
a different route when necessary. (You'll need a good version control tool to
support changing course.)

Another tool for determining your next test is Robert C. Martin’s Transforma-
tion Priority Premise (TPP), which proposes a priority list of transformations.
Each transformation represents an alteration of code from specific to slightly
more generic. Using the TPP, you choose a test that drives the highest-prior-
ity transformation against your existing code. The premise is that following

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 10. Additional TDD Concepts and Discussions ® 282

the TPP allows you to grow your system using the smallest possible incre-
ments. Use the TPP, and you’ll avoid the test-driven weeds.

You can find the original list of priorities at http://web.archive.org/web/20130113152824/
http://cleancoder.posterous.com/the-transformation-priority-premise. The priority list isn’t
foolproof; it's a premise, after all. Other subsequent blog posts have proposed
slightly tweaked priority lists.

Meet the Transforms

The TPP likely sounds a bit complex to you. Working through an example is
worth 1,024 words. We'll step through the Soundex example from Test-Driven
Development: A First Example using the transform priority list (TPL) in its
original posting order.

({}—nil) Replace no code with code that employs nil.

(nil-=constant) Replace nil with a constant.

(constant—constant+) Replace a simple constant with a more complex
constant.

(constant—scalar) Replace a constant with a variable or argument.

(statement—statements) Add unconditional statements.

(unconditional—if) Split the execution path.
(scalar—array) Replace a variable/argument with an array.
(array—container) Replace an array with a more complex container.

(statement—recursion) Replace a statement with a recursive call.
(if~while) Replace a conditional with a loop.
(expression—function) Replace an expression with a function.

(variable—assignment) Replace the value of a variable.

(Source: http://en.wikipedia.org/wiki/Transformation Priority Premise.)

Given that we've already worked through Soundex, we’ll focus our discussion
on the code transformations and leave other chatter about the code to a
minimum. Our first test differs slightly; we’ll handle padding the zeros
immediately.

tpp/1/SoundexTest.cpp

TEST (SoundexEncoding, AppendsZerosToWordForOnelLetterWord) {

Soundex soundex;
auto encoded = soundex.encode("A");

CHECK_EQUAL ("A000", encoded);

http://web.archive.org/web/20130113152824/http://cleancoder.posterous.com/the-transformation-priority-premise
http://web.archive.org/web/20130113152824/http://cleancoder.posterous.com/the-transformation-priority-premise
http://en.wikipedia.org/wiki/Transformation_Priority_Premise
http://media.pragprog.com/titles/lotdd/code/tpp/1/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

The Transformation Priority Premise 283

The failure to compile the test represents our first need for a transformation
—from no code into code returning nil, the simplest possible transformation,
topmost on the TPL. Passing the compile “test” requires an implementation
for encode() that returns a nil value...but leaves us with a failing unit test.

tpp/1/Soundex.h
class Soundex {
public:
std::string encode(const std::string& word) const {
return nullptr;
}
b

We fix the failing unit test by transforming nil into a constant, the second
transform on the list.

tpp/2/Soundex.h
class Soundex {
public:
std::string encode(const std::string& word) const {
return "AQ0O0";

}
}

Triangulation

The last time we built Soundex, we drove out the hard-coded constant "A" as
part of the refactoring step. We introduced a variable in order to eliminate
the duplication of the string literal from test to production code. We also
decided that eliminating the specific hard-coded value in production code
would make it consistent with the general goal stated by the test name
(RetainsSoleLetterOfOneLetterWord). In doing so, we were following the spirit
of the TPP: to incrementally generalize the code. Each transform on the TPL
represents a move from specific to slightly more generic.

This time around, we will drive out the hard-coding by using a technique
known as triangulation, first described in Test Driven Development: By Example
[Bec02]. Triangulation involves approaching the same behavior from a different
angle, by adding a second test case.

tpp/3/SoundexTest.cpp

TEST(SoundexEncoding, AppendsZerosToWordForOneLetterWord) {
CHECK EQUAL("AO0O", soundex.encode("A"));
CHECK EQUAL("BOOO", soundex.encode("B"));

}

We could make the failing test pass by introducing an if statement: if the first
letter of the word is A, return "A100"; otherwise, return "B100". Introducing that

http://media.pragprog.com/titles/lotdd/code/tpp/1/Soundex.h
http://media.pragprog.com/titles/lotdd/code/tpp/2/Soundex.h
http://media.pragprog.com/titles/lotdd/code/tpp/3/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 10. Additional TDD Concepts and Discussions ® 284

code would represent the transform (unconditional—if). We choose the higher-
priority transform (constant—scalar).

tpp/3/Soundex.h
class Soundex {
public:
std::string encode(const std::string& word) const {
return word + "000";
}
}

Scanning the Test List

Where next? We want to grow the code using the highest-priority transforma-
tion possible. Let’s take a look at the list of remaining tests:

PadsWithZerosToEnsureThreeDigits
ReplacesConsonantsWithAppropriateDigits
ReplacesMultipleConsonantsWithDigits
LimitsLengthToFourCharacters
IgnoresVowellLikeletters

IgnoresNonAlphabetics

CombinesDuplicateEncodings

UppercasesFirstLetter
IgnoresCaseWhenEncodingConsonants
CombinesDuplicateCodesWhen2ndLetterDuplicateslst
DoesNotCombineDuplicateEncodingsSeparatedByVowels

We currently have an unconditional statement consisting of an expression
using a constant and a scalar. That shrinks the relevant portion of the TPL
a bit, since we need not worry about transforms from {}, nil, array, and if.

Any code requiring the ability to take a substring, string length, or even
uppercase a letter would require introducing a function call (perhaps;
approaches not requiring functions might work if we're creative in our
thinking). For now we’ll avoid tests that seem to require these functions and
seek instead something of higher priority.

It looks as if most tests that don’t require a function call are likely to require
a conditional. Hard-coding specific constants only gets us so far before we
require code that can make a decision. Let’s tackle a bit of encoding.

tpp/4/SoundexTest.cpp

TEST (SoundexEncoding, ReplacesConsonantsWithAppropriateDigits) {
CHECK _EQUAL("A100", soundex.encode("Ab"));

}

We generalize our code using the (unconditional—if) transformation.

http://media.pragprog.com/titles/lotdd/code/tpp/3/Soundex.h
http://media.pragprog.com/titles/lotdd/code/tpp/4/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYYVYYYY

YVYY vy

YYVYY

YYVYVYY

The Transformation Priority Premise ® 285

tpp/4/Soundex.h
class Soundex {
public:

}

std::string encode(const std::string& word) const {
std::string code("");
code += word[0];
if (word[1])

code += "100";
else
code += "0QOO";

return code;

When using the TPP, relax a little and avoid prematurely tightening up the

code. You must still eliminate duplication and retain expressiveness, but

leave simple if statements and while loops alone for a while. You may find that

avoiding more complex forms (ternary operators and for loops, for example)
makes it easier to spot better opportunities for good refactoring.

Our solution is a bit rote, which is not a problem. It’'s not very clear and
exhibits a bit of duplication. That’s a problem. We refactor.

tpp/5/Soundex.h
class Soundex {
public:

+

std::string encode(const std::string& word) const {
std::string code("");
code += head(word) + encodeTail(word);
return zeroPad(code);

}

char head(const std::string& word) const {
return word[0];

}

std::string encodeTail(const std::string& word) const {
if (word[1] == @) return "*;
return "1";

}

std::string zeroPad(const std::string& code) const {
if (code[l] != 0)
return code + "00";
return code + "000";

The code in zeroPad() still kind of stinks, doesn’t it? We make a second refac-
toring pass.

http://media.pragprog.com/titles/lotdd/code/tpp/4/Soundex.h
http://media.pragprog.com/titles/lotdd/code/tpp/5/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

\AAA/

YYVYY

Yy

Chapter 10. Additional TDD Concepts and Discussions ® 286

tpp/6/Soundex.h
std::string zeroPad(const std::string& code) const {
return code + (hasEncodedCharacters(code) ? "00" : "000");
}
bool hasEncodedCharacters(const std::string& code) const {
return code[1l] != 0;
}

What did I just say about fancy constructs like the ternary operator? It seemed
to make sense here for eliminating a bit of code duplication. If it causes us
any headaches, we’ll back up and eliminate it.

We add a second assert to drive in encoding for a second consonant. In terms
of an implementation, we could introduce a second if statement, but that
would only introduce a duplicative construct and not generalize the code. We
seek the next highest transform that applies: (scalar—array).

tpp/7/SoundexTest.cpp

TEST(SoundexEncoding, ReplacesConsonantsWithAppropriateDigits) {
CHECK EQUAL("A100", soundex.encode("Ab"));
CHECK EQUAL("A200", soundex.encode("Ac"));

}
tpp/7/Soundex.h
class Soundex {
public:
Soundex () {
codes ['b'] = "1";
codes ['c'] = "2";
}
/] ...
std::string encodeTail(const std::string& word) const {
if (word[1l] == 0) return "";
return codes [static_cast<size t>(word[1])];
}
/] ..
private:
std::string codes [128];
+

We complete the consonant list and do a little bit of refactoring for expressive-
ness.

tpp/8/Soundex.h
class Soundex {
public:
Soundex () {
initializeCodeMap();

}

http://media.pragprog.com/titles/lotdd/code/tpp/6/Soundex.h
http://media.pragprog.com/titles/lotdd/code/tpp/7/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/tpp/7/Soundex.h
http://media.pragprog.com/titles/lotdd/code/tpp/8/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YVYY

The Transformation Priority Premise ¢ 287

void initializeCodeMap() {

codes ['b'] = codes ['f'] = codes ['p'] = codes_ ['v'] = "1";
codes ['c'] = codes ['g'] = codes ['j'] = codes_ ['k'] =
codes ['q'] = codes ['s'] = codes ['x'] = codes ['z'] = "2";
codes ['d'] = codes ['t'] = "3";
codes ['l'] = "4";
codes ['m'] = codes ['n'] = "5";
codes ['r'] = "6";
}
/] ...

std::string encodeTail(const std::string& word) const {
if (word[1] == 0) return "";
return codeFor(word[1]);

}

std::string codeFor(char c) const {
return codes [static_cast<size t>(c)];

}

/] ...
¥
We scan the list of remaining tests again. Most still appear to require intro-
ducing a function call. Higher than a function call in priority, though, are
two transformations that support looping, one via a while loop and the other
via recursion. One test—ReplacesMultipleConsonantsWithDigits—appears to
demand a looping solution.

Later versions of the TPL contain some priority variations. We're using the
original version, which promotes transformations to a recursive solution over
transformations to looping solutions. The emphasis has been a topic of debate.
In a functional language, such as Erlang or Clojure, you want a recursive
solution. In C++, the choice is up to you. You may want to compare the per-
formance of a recursive solution to its iterative counterpart.

We'll stick with the original TPL ordering and find out where that takes us.

Growing out the code with the TPP has resulted in a solution where each step
of the way so far has been a small, incremental change. We haven’t required
any major overhauls to existing code. Introducing a recursive solution is no
different.

tpp/9/SoundexTest.cpp

TEST(SoundexEncoding, ReplacesMultipleConsonantsWithDigits) {
CHECK EQUAL("A234", soundex.encode("Acdl"));

}

http://media.pragprog.com/titles/lotdd/code/tpp/9/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Yy

Yy

YVYY

Chapter 10. Additional TDD Concepts and Discussions ® 288

tpp/9/Soundex.h
std::string encode(const std::string& word) const {
std::string code("");
code += head(word);
encodeTail(word, code);
return zeroPad(code);

}

// ..

void encodeTail(const std::string& word, std::string& code) const {
if (word[1] == 0) return;

code += codeFor(word[1]);
encodeTail(tail(word), code);

}
std::string tail(const std::string& word) const {
return word.substr(1);

}

There are a couple problems. First, it doesn’t work. We need to adjust the
number of zeros that get padded to the encoding. Second, hey! That’s a
function call to substr(), and we chose an increment that introduced recursion
because it was higher than one requiring a function call.

The TPP, a premise and work in progress, isn’t a panacea that will solve all
your coding challenges. It's also not a hard set of rules. The goal of the TPL
is to help you seek the next smallest increment. In our case, the recursive
solution demonstrated itself to be a good incremental step, and that’s what's
important. That we had to introduce a function call to implement the solution
seems an acceptable bending of the priority rules. (Recursive solutions dealing
with collections—a string is but a collection of characters—typically require
a function that extracts the tail of the collection. It’s often the best approach.)

Fixing the padding problem can be done in a few ways. One is to initialize
either a counter or a string representing the zeros to be padded and then
decrement it each time an encoded character gets appended in encodeTail().
However, that requires an assignment statement, which is lower on the prior-
ity list. Simpler, and higher on the TPL, is to update the zeroPad() function to
take into account the length of the code.

tpp/10/Soundex.h
const static size t MaxCodelLength{4};
std::string zeroPad(const std::string& code) const {
return code + std::string(MaxCodeLength - code.length(), '0');
}

We realize that encodeTail() can be “backed up” to operate on the first (Oth)
element of the word if we call it with the tail of the word (instead of with the

http://media.pragprog.com/titles/lotdd/code/tpp/9/Soundex.h
http://media.pragprog.com/titles/lotdd/code/tpp/10/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

The Transformation Priority Premise ® 289

complete word). We make the change, which allows us to make a small
additional refactoring to increase the expressiveness of the code.

tpp/11/Soundex.h

std::string encode(const std::string& word) const {
std::string code(1l, head(word));
encode(tail(word), code);
return zeroPad(code);

}
void encode(const std::string& word, std::string& code) const {
if (word.empty()) return;
code += codeFor(head(word));
encode(tail(word), code);
}
const static size t MaxCodelLength{4};
std::string zeroPad(const std::string& code) const {
return code + std::string(MaxCodeLength - code.length(), '0');
}

We love having the tests to allow us to make sure our change works!

Our core algorithm is tight and clear. As with the last time we built Soundex,
the encode() function clearly states the policy for encoding a word. Let’s see
whether we can knock out the rest of the tests. We choose IgnoresVowelLikeLet-
ters. It seems like it would require introduction of only an if statement.

tpp/12/SoundexTest.cpp
TEST (SoundexEncoding, IgnoresVowellLikelLetters) {

CHECK EQUAL("B234", soundex.encode("BAaEeIiOoUuHhYycdl"));
}

The test passes with no code changes! As always, we want to think about why
(see Section 3.5, Getting Green on Red, on page 60), but it’s of less concern
now. If we're strictly adhering to the TPP, the premise is that it’s guiding us
to incorporate the smallest possible increments. Tests that pass prematurely
are thus unlikely to represent building too much code.

The test passes because the codes_lookup array returns null for any elements
not contained. Appending null results in no change to the code. Moving on,
we discover that IgnoresNonAlphabetics passes for the same reason.

We introduce CombinesDuplicateEncodings.

tpp/13/SoundexTest.cpp

TEST (SoundexEncoding, CombinesDuplicateEncodings) {
CHECK EQUAL (soundex.codeFor('f'), soundex.codeFor('b'));
CHECK EQUAL (soundex.codeFor('g'), soundex.codeFor('c'));
CHECK EQUAL (soundex.codeFor('t"'), soundex.codeFor('d'));
CHECK EQUAL("A123", soundex.encode("Abfcgdt"));

http://media.pragprog.com/titles/lotdd/code/tpp/11/Soundex.h
http://media.pragprog.com/titles/lotdd/code/tpp/12/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/tpp/13/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YVvYy

\

YYVYY

Chapter 10. Additional TDD Concepts and Discussions ® 290

Our test run dies with an std::length_error. A quick look at the backtrace
(using gdb under Linux) indicates that the problem is in the zeroPad() function.
If the code ends up being more than three characters, zeroPad() attempts to
construct a string with a negative number of '0' characters.

Does that mean we should switch our focus to LimitsLengthToFourCharacters?
The TPP suggests no, since it requires introducing a length() function call, while
CombinesDuplicateEncodings should require only a conditional statement.
However, the exception means we are not seeing a direct failure of our test,
since the code can’t run to completion. We decide to seek a failing test first
and make a note to return and try the alternate route if we get into trouble.
We disable the test and tackle LimitsLengthToFourCharacters instead.

tpp/14/SoundexTest.cpp

TEST (SoundexEncoding, LimitsLengthToFourCharacters) {
CHECK EQUAL (4u, soundex.encode("Dcdlb").length());

}

A small change incorporating (expression— functiorn) passes the test.

tpp/14/Soundex.h
void encode(const std::string& word, std::string& code) const {
if (word.empty() || isFull(code)) return;

code += codeFor (head(word));
encode(tail(word), code);

}

bool isFull(std::string& code) const {
return code.length() == MaxCodelLength;

}

We reintroduce CombinesDuplicateEncodings. It runs cleanly and fails as ex-
pected. A solution involves passing the head of the word to the recursive encode()
function as a basis for comparison to the current digit to be added. We try it with
a name hastily chosen to avoid conflict with the head() function name.

tpp/15/Soundex.h
std::string encode(const std::string& word) const {
std::string code(1l, head(word));
encode(tail(word), code, head(word));
return zeroPad(code);
}
void encode(const std::string& word, std::string& code,
char H) const {
if (word.empty() || isFull(code)) return;
std::string digit = codeFor(head(word));
if (digit != codeFor(H))
code += codeFor(head(word));
encode(tail(word), code, head(word));

http://media.pragprog.com/titles/lotdd/code/tpp/14/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/tpp/14/Soundex.h
http://media.pragprog.com/titles/lotdd/code/tpp/15/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

The Transformation Priority Premise ® 291

Our solution demands refactoring. Since we use both head and tail parts of
the word to be encoded in encode(), we simplify its signature by passing in the
entire word. We also choose a nonconflicting name and add a helper function
to clarify what’s going on. (Every line in encode() changed, so none of its lines
is highlighted, nor is the new function isSameEncodingAsLast().)

tpp/16/Soundex.h

std::string encode(const std::string& word) const {
std::string code(1, head(word));
encode(word, code);
return zeroPad(code);

}

void encode(const std::string& word, std::string& code) const {
auto tailToEncode = tail(word);
if (tailToEncode.empty() || isFull(code)) return;

auto digit = codeFor(head(tailToEncode));

if (isSameEncodingAslLast(digit, word))
code += digit;

encode(tailToEncode, code);

}

bool isSameEncodingAsLast (
const std::string& digit,
const std::string& word) const {
return digit != codeFor(head(word));

}

A similar test, CombinesDuplicateCodesWhen2ndLetterDuplicates1st, should
require roughly the same transformation. (We specify the assertion’s expected
value as starting with a lowercase letter, since we haven’t yet tackled the
concern of uppercasing the first letter in a Soundex encoding.)

tpp/17/SoundexTest.cpp

TEST (SoundexEncoding, CombinesDuplicateCodesWhen2ndLetterDuplicateslst) {
CHECK EQUAL("b230", soundex.encode("bbcd"));

}

The test passes because we already pass the entire encoding to the recursive
encode() function. Another similar test passes, too.

tpp/18/SoundexTest.cpp

TEST (SoundexEncoding, DoesNotCombineDuplicateEncodingsSeparatedByVowels) {
CHECK EQUAL("J110", soundex.encode("Jbob"));

}

We're a little nervous about all these tests passing, so we think of another
scenario to allay our concerns. It passes. Sheesh.

http://media.pragprog.com/titles/lotdd/code/tpp/16/Soundex.h
http://media.pragprog.com/titles/lotdd/code/tpp/17/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/tpp/18/SoundexTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 10. Additional TDD Concepts and Discussions ® 292

tpp/18/SoundexTest.cpp

TEST(SoundexEncoding, CombinesMultipleDuplicateEncodings) {
CHECK EQUAL("J100", soundex.encode("Jbbb"));

}

(There is one more possible alternate scenario, based on the fact that H and
W might be treated differently, depending upon who you talk to. Since we
ignored this potential difference last time we built Soundex, we’ll keep things
simple and ignore it again.)

We tackle uppercasing the first letter, which also requires we update the
expectation in CombinesDuplicateCodesWhen2ndLetterDuplicates1st.

tpp/19/SoundexTest.cpp

TEST(SoundexEncoding, CombinesDuplicateCodesWhen2ndLetterDuplicateslst) {
CHECK EQUAL("B230", soundex.encode("bbcd"));

}

TEST(SoundexEncoding, UppercasesFirstLetter) {
CHECK EQUAL("A", soundex.encode("abcd").substr(0, 1));
}

The transformation, though simple, involves a function call. (We could code
the logic of ::toupper() ourselves, but I don’t think that’s what the TPP wants
us to do.) You've seen our implementation of upper(), so it’s not shown here.

tpp/19/Soundex.h

std::string encode(const std::string& word) const {
std::string code(1l, toupper(head(word)));
encode(word, code);
return zeroPad(code);

}

Hmm. The last test prods a thought. What if the first letter is already upper-
cased in the input and the second letter is the same but in lowercase?

tpp/20/SoundexTest.cpp

TEST (SoundexEncoding, IgnoresCaseWhenEncodingConsonants) {
CHECK_EQUAL (soundex.encode("BCDL"), soundex.encode("bcdl"));

}

Aha! Failure, and a quick resolution.

tpp/20/Soundex.h
std::string codeFor(char c) const {
return codes [static_cast<size t>(lower(c))];

}

Are we done? We didn’t add PadsWithZerosToEnsureThreeDigits. It does pass
immediately, but we choose to add it for documentation purposes.

http://media.pragprog.com/titles/lotdd/code/tpp/18/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/tpp/19/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/tpp/19/Soundex.h
http://media.pragprog.com/titles/lotdd/code/tpp/20/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/tpp/20/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

The Transformation Priority Premise ® 293

tpp/21/SoundexTest.cpp

TEST(ASoundexEncoding, PadsWithZerosToEnsureThreeDigits) {
CHECK EQUAL("IO00", soundex.encode("I"));

}

The second time around is always a bit easier, but our success this time is
due more to using the TPP than with our knowledge of the problem. We made
a few judgment calls along the way and might not have even followed the TPP
to the letter, but our end result speaks for itself.

Here’s the core algorithm from our TPP-test-driven solution:

tpp/21/Soundex.h

std::string encode(const std::string& word) const {
std::string code(1l, toupper(head(word)));
encode(word, code);
return zeroPad(code);

}

void encode(const std::string& word, std::string& code) const {
auto tailToEncode = tail(word);
if (tailToEncode.empty() || isFull(code)) return;

auto digit = codeFor(head(tailToEncode));
if (isSameEncodingAsLast(digit, word))
code += digit;

encode(tailToEncode, code);

}
And here’s the core algorithm from our non-TPP-test-driven solution:

c2/40/Soundex.h
std::string encode(const std::string& word) const {
return stringutil::zeroPad(
stringutil::upperFront(stringutil::head(word)) +
stringutil::tail(encodedDigits(word)),
MaxCodeLength);
}

std::string encodedDigits(const std::string& word) const {
std::string encoding;
encodeHead (encoding, word);
encodeTail(encoding, word);
return encoding;

}

void encodeHead(std::string& encoding, const std::string& word) const {
encoding += encodedDigit(word.front());

}

http://media.pragprog.com/titles/lotdd/code/tpp/21/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/tpp/21/Soundex.h
http://media.pragprog.com/titles/lotdd/code/c2/40/Soundex.h
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

10.5

Chapter 10. Additional TDD Concepts and Discussions ® 294

void encodeTail(std::string& encoding, const std::string& word) const {
for (auto i = lu; i < word.length(); i++)
if (!isComplete(encoding))
encodeletter(encoding, word[i], word[i - 1]);

}
void encodelLetter(std::string& encoding, char letter, char lastLetter) const {
auto digit = encodedDigit(letter);
if (digit != NotADigit &&
(digit !'= lastDigit(encoding) || charutil::isVowel(lastLetter)))
encoding += digit;

}

I know which version I'd like to maintain. Not only did the TPP generate the
simpler algorithm, it required less effort along the way.

The Transformation Priority Premise remains a premise, albeit a darn good
one. The more I apply it, the happier I am with the outcome. But it's an
advanced topic, one that is likely more palatable given a solid basis of
understanding of how TDD plays out without it.

The TPP also demands a bit more up-front thought for each pass through the
TDD cycle. You must think about a few things.

e What implementation of the current test has a higher priority? Are there
more-creative approaches that you could dream up?

e Does another test have a higher priority than the one that seems to be
begging to go next?

e Just what are the other tests in the mix? Maintaining a test list (Test
Lists, on page 17) becomes almost essential to employing the TPP.

TDD without the disciplined add-on of the TPP works well enough, as you've
seen throughout this book. But adopt the TPP, and you’ll do more than sur-
vive—you’ll thrive.

Writing Assertions First

As you interact more with other TDD practitioners, you'll find there seem to
be as many ways to approach TDD as there are practitioners. Consider
yourself fortunate if you manage to avoid vociferous debates about the One
True Way. For example, you'll find developers who heavily promote One Assert
per Test and others who think it’s an overblown goal. You'll find practitioners
who insist that the test’s name be in an exact format and many others who
don’t worry about the name at all.

Is there a right or a wrong? Most of the time, you’ll find proponents on both
sides of each argument offering solid rationale behind their preference.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Writing Assertions First ® 295

Throughout this book, you'll have noted my style, and no doubt there are
things you find more appealing than others. My recommendation is to try the
things you find alien or disagree with before dismissing them out of hand.
You just might uncover a pleasant surprise. I long ago balked at One Assert
per Test (see Section 7.3, One Assert per Test, on page 178) and now find value
99 percent of the time in adhering to it.

Ultimately, beyond following the TDD cycle and producing high-quality code,
everything else is a matter of style and preference. Remember, however, that
it’s your duty as a professional to seek better ways of doing things. Regardless
of how you feel about my style or yours, I hope we don’t find each other
working the same way two years from now.

Assert-Act-Arrange?

The order of steps in TDD’s red-green-refactor cycle isn’t negotiable, but the
order in which you code individual statements within a test is. Many develop-
ers work top-down. They start by coding the Arrange portion of the test, move
on to the Act statement, and finally Assert the results. There’s nothing wrong
with that approach (it happens to be the way I usually work), but a potentially
better approach is to write the assertion first.

By now, you're used to designing test code against yet-to-be-written production
code. The notion of writing an assert against nonexistent test code shouldn’t
be too shocking. But why would you want to?

Writing the assertion first makes you think about the goal of the behavior
you're adding. It further forces you to describe what it means for the goal to
have been achieved. If this is a struggle, perhaps you don’t have enough
information yet to continue writing the test.

More importantly, writing assertions first will grow your use of programming
by intention, which should result in clearer tests. Your assertions will be
declarations of intent. In contrast, if you've already written Arrange and Act,
your assertion is more likely to be an implementation-specific detail.

Examples First, or Second at Least

Let’s run through a quick example. We need a test for the GeoServer that
returns an empty location when a user is no longer tracked.

c9/18/GeoServerTest.cpp

TEST (AGeoServer, AnswersUnknownLocationWhenUserNoLongerTracked) {
CHECK TRUE(locationIsUnknown(aUser));

}

http://media.pragprog.com/titles/lotdd/code/c9/18/GeoServerTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYY

YYVYVYY

Chapter 10. Additional TDD Concepts and Discussions ® 296

We know what the outcome need be, so we express it, though we don't yet
know how to implement the code that will verify that outcome. In the test
group, we define a function that supplies default, failing behavior.

c9/18/GeoServerTest.cpp
TEST _GROUP (AGeoServer) {
// ...
bool locationIsUnknown(const string& user) {
return false;
}
}

After verifying that the test fails, we move on to defining the action.

c9/19/GeoServerTest.cpp
TEST (AGeoServer, AnswersUnknownLocationWhenUserNoLongerTracked) {
server.stopTracking(aUser);

CHECK TRUE(locationIsUnknown(aUser));
}

Letting the name of our test be our guide, we provide an arrangement.

c9/20/GeoServerTest.cpp
TEST (AGeoServer, AnswersUnknownLocationWhenUserNoLongerTracked) {
server.track(aUser);

server.stopTracking(aUser);

CHECK TRUE(locationIsUnknown(aUser));
}

And finally, letting failure be our guide, we provide an implementation for the
intention-revealing function locationlsUnknown().

c9/20/GeoServerTest.cpp
TEST_GROUP (AGeoServer) {
// ...

bool locationIsUnknown(const string& user) {
auto location = server.locationOf (user);

return location.latitude() == numeric_limits<double>::infinity();

+

“Well, that’s ugly,” says someone on our team. We add the capability to ask
whether a location is the “unknown” location to the Location class itself and
change the implementation of locationlsUnknown().

http://media.pragprog.com/titles/lotdd/code/c9/18/GeoServerTest.cpp
http://media.pragprog.com/titles/lotdd/code/c9/19/GeoServerTest.cpp
http://media.pragprog.com/titles/lotdd/code/c9/20/GeoServerTest.cpp
http://media.pragprog.com/titles/lotdd/code/c9/20/GeoServerTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

YYYVvY

Writing Assertions First ® 297

c9/21/GeoServerTest.cpp
TEST _GROUP (AGeoServer) {

// ...

bool locationIsUnknown(const string& user) {

return server.locationOf(user).isUnknown();

}
}
We immediately recognize that the helper no longer pulls its weight, so we
eliminate it entirely.

c9/22/GeoServerTest.cpp
TEST (AGeoServer, AnswersUnknownLocationWhenUserNoLongerTracked) {
server.track(aUser);

server.stopTracking(aUser);

CHECK TRUE(server.locationOf(aUser).isUnknown());
}

Oh! What was the point? Perhaps we could have designed the Location class
that way from the get-go and written the single-line assertion immediately.

Maybe, maybe not. What’s important is that the assertion ends up being a
simple declaration, not how it got that way. Often you’ll require a few dense,
detailed code statements to verify a test. Even if you didn’t start by declaring
an intent for your assertion, you’ll want to ensure you extract those few dense
lines to an explanatory helper function.

Assertions requiring more than a single-line declaration create additional
work for the test reader.

c9/23/GeoServerTest.cpp
TEST (AGeoServer, AnswersUnknownLocationWhenUserNoLongerTracked) {
server.track(aUser);

server.stopTracking(aUser);

// slow reading. Fix this.

auto location = server.locationOf(aUser);

CHECK _EQUAL (numeric limits<double>::infinity(), location.latitude());
}

Not only does the reader need to step through two lines of assertion, they
need to determine the dependency between them (the expected argument
portion of the CHECK statement references the location returned by the prior
line). The reader must also mentally piece these two lines together into a
single concept (that the location for the user is unknown).

http://media.pragprog.com/titles/lotdd/code/c9/21/GeoServerTest.cpp
http://media.pragprog.com/titles/lotdd/code/c9/22/GeoServerTest.cpp
http://media.pragprog.com/titles/lotdd/code/c9/23/GeoServerTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 10. Additional TDD Concepts and Discussions ® 298

10.6 Teardown

You learned about a few loose-end TDD topics in this chapter. As far as TDD
is concerned, that’s it!

No, just kidding, that’s not it. This book provides enough for you to start
digging deep into TDD practice, but a wealth of TDD discoveries awaits you.
Test-drivers around the world are experimenting with the TPP and seeing how
far they can go with it. Behavior-driven developers everywhere (Google BDD)
are seeking to further bridge the gap between the business and development
teams. Acceptance test-drivers are trying to better understand the boundaries
between TDD and ATDD.

The nuts and bolts of TDD are easy in contrast to the real challenge: how do
you succeed with TDD in a software development team? Once you're test-
infected, you’ll want other developers to understand your enthusiasm. And
you’ll want to improve your practice of the craft. In the next chapter, you'll
learn some strategies and tactics for growing and sustaining TDD.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

CHAPTER 11

Growing and Sustaining TDD

11.1 Setup

You've learned the who, what, how, why, and when of TDD. If you continue
to practice TDD regularly to the point where you're convinced of its benefits,
you’ll someday become test-infected'—you’ll insist on using it as your primary
programming tool. You'll quickly realize, however, that not everyone feels that
way. Even if you're part of a team that’s supposed to be test-driving your
code, you'll find varying levels of adherence and support. You'll also encounter
resistance and apathy, often based on lack of information. And even if your
team is able to surmount the initial hurdle of getting everyone on board, you’'ll
find it a challenge to keep things from degrading over time—much like your
codebase. Sustaining TDD is not easy.

This chapter provides you with an assortment of ideas to help you sustain
your ability to practice TDD. You’ll learn about the following:

e How to respond to inquiries about and challenges to TDD

e Overviews of studies demonstrating benefits attained by using TDD
e How to avoid the “bad test death spiral”

e How to employ pair programming to sustain and review TDD efforts
e How to use katas and dojos to better your practice of TDD

e How to avoid abuse of code coverage metrics

e How continuous integration is an essential foundation for TDD

¢ Questions to help you derive standards for TDD practice

e Where to go for more information about community TDD practice

1. See “Test Infected: Programmers Love Writing Tests,” http://junit.sourceforge.net/doc/testinfected/
testing.htm.

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 11. Growing and Sustaining TDD * 300

11.2 Explaining TDD to Nontechies

You may be test-infected, but your enthusiasm won’t be enough to win over
converts, particularly those who aren’t programmers by trade. This section
provides you with two tools to support your conversations with noninfected
people. First, a fabricated conversation will prepare you for typical questions
by providing some brief but strong elevator-pitch answers. Second, a list of
studies on the effectiveness of TDD will provide you with ammunition to help
convince those who need research before they’re willing to listen.

TD what?
Q.: What's TDD?

A.: It's a software development technique used by programmers to incrementally
design their system.

Q.: What does it look lile?

A.: Programmers break their work down into small chunks, or units. For each
small chunlk, they write a small test that provides an example of how that code
should behave. They then write a small chunk of code that makes the test pass.
Once they get the test passing, they malce sure they clean up any design or coding
deficiencies that they just introduced in the small chunk of code.

Q.: So they're just writing unit tests?

A.: They are using a unit test framework to help specify how every small bit of
added code should behave. So yes, they're writing unit tests, but the tests also
double as documentation on what the system does.

Q.: So they’re just writing unit tests.

A.: They are using unit tests as a way of incrementally designing the system. The
tests get written first.

Q.: I'mnot seeing how this is any different from unit testing. So what if you write
the tests first?

A.: You get different results. Writing tests after doesn’t change anything. They
might help the programmer find a few problems, but unit testing alone don’t other-
wise compel programmers to change the design and quality of the codebase.

Q.: But TDD does change the design and quality?

A.: A few studies (see Research on TDD, on page 303) demonstrate that there are
fewer defects when applying TDD. Further, doing TDD allows programmers to
continually change the code and design for the better.

Q.: How does TDD allow programmers to change the code any more than they did
before?

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Explaining TDD to Nontechies ® 301

A.: Every small chunk of code a programmer adds to the system comes into exis-
tence only once a test exists to demonstrate its behavior. That means all of the code
in the system gets tested. Having tests for everything means that a programmer
can male constant small changes as needed to keep the code clean. Without suffi-
cient tests, the old adage of “If it ain’t broke, don’t fix it” is reality.

Q.: So what? Can’t we save time by not worrying about how clean the code is?

A.: Some studies show that 80 percent of software efforts are expended on
maintaining (not fixing) the software.” In a codebase growing to a large size over
time, things that might have taken a couple hours to accomplish can bloat to taking
several days. Even a simple question—“What does the software do in this
case?”—can require a several-hour foray into a complex codebase on the part of
the programmer.

@Q.: Doesn’t that say something about the quality of programmers? Can'’t they just
write clean code in the first place?

A.: Think of programming like writing. Even good writers continually reworlk their
sentences and paragraphs to improve understanding. And they still get presented
with numerous problems by editors who review their worlk. It’s enough of a challenge
to write code that simply provides expected behaviors, so step 1 is to put the correct
code in place. Step 2 is to improve the code by maling sure it’s part of a maintainable
design.

@Q.: I'm still not understanding why you couldn’t achieve the same results with
Jjust writing a _few unit tests after the code gets completed.

A.: For human reasons, it doesn’t happen. First, once most programmers write
the code, they think they’re done with the “real” work. They have high confidence
in their capability to write the correct code and are often satisfied by a simple
manual test or two. So, they have little interest in writing additional unit tests to
prove what they already know. They also feel they crafted the code well enough
and less frequently take advantage of the tests to clean up their code. Programmers,
in general, do as little as needed to get past what they view as management man-
dates. Second, time schedule pressures often dominate. Anything done after the
Jact—after the code gets built—gets short shrift.

@.: Shouldn’t we allow programmers to use their own professional judgment about
what code should be tested? Isn’t some code so simple that it doesn’t really need
that level of testing? Aren’t they wasting time by this rigid insistence on testing
everything?

A.: Most systems don’t really have all that much code that’s so simple it can’t
brealk, so there’s not much testing effort to be saved here. I'm also no longer
surprised by how many defects programmers uncover in areas of the system that
look innocuous and perfect. Defects are very costly in many ways, and having

http://en.wikipedia.org/wiki/Software_maintenance

http://en.wikipedia.org/wiki/Software_maintenance
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 11. Growing and Sustaining TDD * 302

fewer by virtue of practicing TDD provides great savings. You'll also waste far less
time on the seemingly simple challenge of figuring out how the existing system
behaves.

Every programmer who’s gone back and tried to write unit tests against a large,
existing codebase reports that it’s very difficult. The primary reason is that the
codebase wasn'’t structured with testing in mind, and as a result it’'s much harder
to hook tests into the system. The typical programmer punts when faced with such
challenges.

@Q.: TI've heard some programmers say that you really only need 70 percent of your
system unit-tested and that you can cover the rest with functional tests.

A.: Are you comfortable with 30 percent of your system not being covered with
tests that provide fast feedback? If there are defects in that near-third of your sys-
tem, you'll find out about them much later. If you need to rework that portion of the
system to accommodate new features, it will be a considerably slower effort. You'll
either need to add unit tests (which is harder with existing code) or use slower
functional tests to malee sure you don'’t break things.

Q.: Having fast tests for all logic makes sense. But don’t you end up with a lot
more code, in the form of tests, that you have to maintain?

A.: No. Most systems are probably double the size they need to be, if not more.
Part of that is a by-product of the inability to safely remove redundant chunks of
code as programmers add them. Anecdotal evidence suggests that yes, the amount
of unit testing code might be equivalent, or even a little larger than, a production
codebase. But a codebase created entirely by following TDD will likely be half the
size. So, it comes out in the wash, plus you get all of the other side benefits of TDD.

Q.: T've heard that TDD doesn’t really catch a lot of bugs. Doesn’t this suggest that
it’s all a waste of time?

A.: TDD prevents you from integrating defects into the system in the first place.
You always write a test, you always get it to pass, and if it doesn’t pass, you fix it
before committing the code. It seems lilce a better approach than checking in code
and finding out only much later that it doesn’t worlk or breaks something else.

Q.: You're making TDD sound like it’s a silver bullet.

A.: TDD is a great tool, but it is only one tool in what needs to be a good-sized
toolbox. TDD is insufficient. Proving that small units of code work in isolation doesn’t
prove that you can string them together in order to produce a desired functional
need. You need also acceptance tests, which might also include performance tests,
load tests, other forms of integration tests, and perhaps some level of exploratory
testing.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Research on TDD

Explaining TDD to Nontechies ® 303

There have been a number of research studies on the effectiveness and cost
of TDD. The following table summarizes results from George Dinwiddie’s wiki
page at StudiesOfTestDrivenDevelopment:*

Author/Year

Nagappan, N. et al,
2008

Braithwaite, K., 2008*

Sanchez, J.C., et. al.,

2007

Bhat, T., 2006

Siniaalto, M. 2006

Erdogmus, H. 2005

George, B. et al., 2003

Key Findings

TDD reduced defect density 40 percent to 90 percent, at a
cost of a 15 percent to 35 percent increase in initial develop-
ment time.

This suggests there is an inverse relationship between TDD
and code complexity.

TDD produced defect density below industry standards. TDD
may decrease the degree to which code complexity increases
as software ages.

There was a significant increase in the quality of code pro-
duced using TDD, with an initial cost increase of at least 15
percent.

TDD generated substantial productivity improvements in
some cases and decreased productivity (but improved quality)
in two of thirteen cases.

Students who wrote more tests tended to be more productive.
Minimum quality increases linearly with the number of
programmer tests.

TDD developers produce higher-quality code (passing 18
percent more functional tests) and take 16 percent more
time for development. Programmers who write tests after
produced insufficient tests.

One study alone might not be very convincing, but a half dozen showing
similar results makes a strong case for these two claims:

e TDD results in higher-quality code.
e TDD increases the initial cost of development.

What's missing are studies based on the following hypotheses:

e TDD decreases long-term costs.
e The tests created by TDD reduce the time required to answer questions
about system behavior.

3. http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment

4. “Measuring the Effective of TDD on Design,” http://s3-eu-west-1.amazonaws.com/presentations2012/

5 presentation.pdf

http://biblio.gdinwiddie.com/biblio/StudiesOfTestDrivenDevelopment
http://s3-eu-west-1.amazonaws.com/presentations2012/5_presentation.pdf
http://s3-eu-west-1.amazonaws.com/presentations2012/5_presentation.pdf
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

11.3

Chapter 11. Growing and Sustaining TDD * 304

Most folks who continue to practice TDD don’t do so based on the results of
studies. They do so instead because they have found remarkable personal
benefit in the practice, and most will tell you stories about how TDD has made
a difference in their development careers.

The Bad Test Death Spiral, aka the SCUMmy Cycle

Sometimes teams embark on TDD and experience some good results for a
while. Then things start sliding toward oblivion, speeding up quickly and
ultimately ending up with the decision to abandon TDD. What causes this
“bad test death spiral,” and how do you prevent it?

The problem isn’t unique to TDD. There’s also the “bad agile death spiral” in
which the short iterations of pseudo-Agile appear to produce good results for
a while. A year or eighteen months in, however, the team is flabbergasted at
the mess on their hands. The net result is that Agile gets abandoned and
blamed for the waste.

Ben Rady and Rod Coffin described the SCUMmy cycle in their Agile2009
conference presentation, “Continuous Testing Evolved.”® Their acronym SCUM
describes the kinds of bad tests that generate the degradation: Slow, Confus-
ing, Unreliable, Missing. Here’s one possible path along the downward spiral
(I've seen this path firsthand a few times in shops):

1. The team writes mostly integration-style tests. These tests tightly couple
to volatile or slow dependencies, such as the database or other external
APIs. While this results in slower tests, initially it doesn’t add up to much
real pain, because the team is still able to run a few hundred tests in a
minute or two. (Think “frog in slowly boiling water.”)

2. The growing body of tests begins to pass the pain threshold. Now there are
enough tests to take several minutes to run.

3. Developers run the test suite less frequently or run subsets of the tests.
The team also discovers that the tests are more difficult. They are typically
longer, with more required setup, and thus require increased effort to
understand and analyze when there’s a problem. Other problems creep
in, with tests failing intermittently because of volatile conditions outside
the control of the unit tests. Developers begin to discover that the tests
are often false alarms, indicating a problem not with the production system
but instead with the test design.

5. http://agile2009.agilealliance.org/files/session_pdfs/ContinuousTestingEvolved.pdf

http://agile2009.agilealliance.org/files/session_pdfs/ContinuousTestingEvolved.pdf
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

The Bad Test Death Spiral, aka the SCUMmy Cycle * 305

4. Developers delete tests. The knee-jerk reaction to difficult tests is to start

disabling or even deleting them. Developers find that deleting is much
easier than spending an hour fixing a poorly designed test.

Defects begin to increase. The tests that remain likely don’t cover enough
detailed bits of logic and now offer only little value in preventing defects.
(They never offered much in the way of documentation value either.)

The team, or management, questions the value of TDD. The team tries to
plod on, but it’s fairly obvious that the investment was a waste.

The team abandons TDD. Management makes a note of the highly visible
fiasco.

What's a team to do? If the path to TDD is doomed, why even start?

Ideally, you've learned in this book that TDD requires you to constrain the

scope of each test so that it tests a small piece of isolated logic. Systems built

in this manner are unlikely to experience the bad test death spiral. Still, a
quality system doesn’t magically emerge from doing TDD. You and your team
must actively seek to squash poor design in both the tests and the code. Doing
that also requires the team to understand what good tests and code look like.

The following progression counters each step in the spiral. If you're actively

monitoring what's going on, chances are you can prevent the spiral from
progressing further downward.

1.

The team writes mostly integration-style tests. Learn how to write unit
tests. Reread this book, attend training, hire a coach, hold dojos, review
more, read more, and so on. You'll also want to increase your knowledge
of good design and code constructs.

The growing body of tests begins to pass the pain threshold. Split into slow
and fast suites. Establish what it means for a test to be fast (bms or less
on a dev machine?). Require the team to acknowledge when they are
adding another test to the slow suite. Learn what it takes to restructure
a test (and the corresponding code) so that it’s fast. Establish a habit of
incrementally but regularly trying to transform a slow test into a fast test.

Developers run the test suite less frequently or run subsets of the tests.
Fail the fast suite execution when a test exceeds the slow threshold.
(I succeeded in modifying Google Test to this end for a recent customer.)
This reinforces the importance of fast tests to the development team.

Developers delete tests. Monitor coverage. While establishing a coverage
metric goal is of questionable value (see Section 11.6, Using the Code

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

11.4

Chapter 11. Growing and Sustaining TDD * 306

Coverage Metric Effectively, on page 313), you do want to prefer increasing
or at least stable coverage numbers. Unfortunately, replacing a bad test
with equivalent coverage by good unit tests can require a bit of effort. But
until the proper habits are in place, you're better off incrementally taking
the time to do the right thing than giving up.

5. Defects begin to increase. Always write a test first in response to a defect.
Defects are opportunities to recognize the deficiencies in TDD practice.
For each defect, insist that an appropriate failing unit test gets written
before the problem is fixed.

6. The team, or management, questions the value of TDD. Commit to quality.
Insist that the practices of TDD, as well as other practices such as
acceptance testing, refactoring, and pairing, are primarily about delivering
quality software in the long haul and are not just about minimizing defects.
Ensure that it’s clear how and why these practices relate to quality, and
ensure that the team employs the practices in a way that helps realize
the goal of quality. Lack of concern over quality will devastate your sys-
tem—the “bad quality death spiral” is even more unforgiving.

7. The team abandons TDD. Don’t wait ’til it’s too late! Management rarely
tolerates second attempts at what they think is the same path to failure.

As with anything, you can practice TDD inappropriately and fail. But it’s
possible to succeed and to succeed wildly; otherwise, I wouldn’t have bothered
writing this book. Blaming the technique for insistence on doing it poorly isn’t
cool.

Pair Programming

The tests and code you write represent costly investments. In an ideal world,
you would assume that all developers have the training needed, and more
importantly the desire, to effectively write quality code. Yet a glance at just
about any existing system suggests otherwise.

In this book, I've tried to make the case that most systems are a mess because
programmers don’t have a mechanism (such as TDD) to actively ensure the
code doesn’t degrade. But other reasons abound.

e Lack of education: Too many developers don’t understand core design
principles and constructs for coding well. Some think they already know
enough and aren’t willing to accept that there’s more to learn.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Pair Programming ¢ 307

Lack of concern: Too many developers don’t care that they are producing
difficult code. Or they justify it because the system is already rife with
bad code.

Time pressure: How many times have you heard “Just ship it—we don’t
have time to worry about quality?”

Lack of review: All it takes is one rogue developer to inflict serious damage
on a codebase. Sometimes this developer comes in the form of a high-
priced, short-term consultant. And sometimes the creator of the crummy
code disappears before you uncover it, leaving you with an incoherent,
unmaintainable mess.

Lack of collaboration: In a team of more than one developer or in a
codebase of any reasonable size, styles and quality quickly diverge.
Understanding code written by another developer can be difficult without
their explanation, and other developers may code solutions to problems
that are already solved. Individuals may produce less-than-optimal solu-
tions when they don’t seek the wisdom of others.

The Rules of Pairing

The technique of pair programming purports to help by providing an active
mechanism for continual review, collaboration, and peer pressure. Here’s a
summary of how pair programming works:

Two programmers actively co-develop a solution.

The programmers typically sit side by side (though other configurations,
including remote pairing, are possible).

At any given time, each is in one of two roles: driving, which means
actively coding the solution using the keyboard, and navigating, which
means providing review and strategic guidance. Pairing is not one person
doing and the other simply sitting back and watching.

The programmers in a pair swap roles frequently during a pairing session,
potentially every time a test fails or passes.

Pairing sessions are short-lived, with pairs reforming as often as every
ninety minutes. A primary goal of rotating pairs in this manner is to
increase knowledge, and accordingly reduce risk, across the team.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 11. Growing and Sustaining TDD * 308

Much like TDD, studies of pair programming’® show increased quality and an
increase in the initial cost of development. The aphorism “two heads are better
than one” should come to mind. The increase in cost is not double, as you
might at first think. The higher quality brought about by the active review is
one reason. Peer pressure and increased levels of communication, coordina-
tion, and education might also explain the lower cost. Other benefits abound,
such as reduced risk and increased flexibility.”

Pair Programming and TDD

TDD supported with pair programming is a natural fit. Learning TDD is made
dramatically easier with a support system in place. Developers are more
likely to revert to old, non-TDD habits without a bit of peer pressure from
their teammates. Sitting with an experienced TDDer can more than halve the
time needed to ingrain the habit of TDD. Swapping pairs can help ensure
that tests are written first and with care.

The cycle of TDD also provides natural role-switching points throughout a
session. Many programmers practice ping-pong pairing. The first programmer
codes enough of a test to demonstrate failure and then relinquishes the
keyboard to the second programmer. The second programmer writes the
production code that makes the test pass and then writes the next portion
of the test (or the next test). Pairs might also alternate roles as they work
through various iterations of refactoring the code once a test passes.

Pairs will from time to time debate the direction of the tests, particularly as
they learn about each other’s preferred styles. The general rule of thumb is
to debate no more than five minutes before one of the pair grabs the keyboard
and demonstrates what they mean. Usually the direction the tests take will
win out the discussion.

Pair Rotating

As indicated earlier, pairing sessions should be short-lived. The natural ten-
dency, though, is to allow the pairing session to last as long as it takes to
complete a task, or perhaps an entire feature.

Indeed, swapping pairs incurs the overhead of context switching. If you're the
new party to a pairing session (the newcomer), you must first discard your

6. See Dyba, T. et. al. “Are Two Heads Better Than One? On the Effectiveness of Pair
Programming,” at http://dl.acm.org/citation.cfm?id=1309094, which summarizes a number of
pair programming studies.

7. See http://pragprog.com/magazines/2011-07/pair-programming-benefits for many other potential
benefits.

http://dl.acm.org/citation.cfm?id=1309094
http://pragprog.com/magazines/2011-07/pair-programming-benefits
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Pair Programming ¢ 309

often deep thoughts about the last problem you were solving. (I'll refer to the
programmer you're joining as the old hand.) For most folks, this is no big
deal, and a break of five or ten minutes does the trick. But you then face the
steeper challenge of coming up to speed on a new problem. Depending on its
difficulty, that might take a few minutes, but it also might require detailed,
time-consuming explanation from the old hand.

With TDD in play, the focus changes. Instead of a detailed explanation from
the old hand, you focus on the current failing test. (If there isn’t one, you
watch and listen as the old hand puts one in place.) Your goal is to read the
name of the test and ensure it makes sense. You can then read the test’s
steps to help complete your understanding of the current coding task.

Worrying only about a single test, particularly a well-written, laser-beam-
focused unit test, can make it much easier for you to begin contributing. You
don’t need to know all the details. Instead of providing a lengthy discussion
of the details up front, the old hand incrementally guides you along.

The more a team practices swapping midtask, the easier it gets, particularly
in a small team. But why not simply prevent swapping until the task is
complete?

Remember that a key goal of pairing is review. Two heads are usually better
than one, but it’s still possible for a pair to go down an unproductive avenue.
This is even more likely as a pair digs deeply into a solution, at which point
many find it easy to convince themselves that they have the only right answer.
A third party, someone not invested in the pair’s deep, shared train of thought,
can prevent bad solutions by interjecting with their untainted perspective.

Additionally, increasing swapping increases the likelihood that the newcomer
is familiar with the particular area of code. With regular swapping on a
modest-sized system, everyone ultimately gets their hands on all parts of the
system.

Increased code quality can be another key benefit of swapping—if the team
seeks and insists on it. Higher code quality can help further reduce context-
switching overhead by reducing the time the newcomer requires to understand
it. Code that isn’t clear must be reworked. Pairs should quickly learn that it
will save time to continually refactor for clarity, especially with respect to the
tests.

Pair swapping represents a trade-off between increased initial effort and long-
term payoffs, much like pair programming itself, TDD, and many other aspects
of agile software development. Context switching will indeed cause you

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

11.5

Chapter 11. Growing and Sustaining TDD * 310

immediate pain, which you can learn to abate over time. But a team full of
siloed developers, with little review and no shared knowledge, will create pain
that will only continue to increase over time.

Katas and Dojos

In addition to continually seeking new knowledge, successful professionals
practice their craft on a regular basis. Musicians use scales as warm-up
exercises, cosmetic surgeons practice on cadavers, athletes run drills and
scrimmages, speakers warm up in front of a mirror, and martial arts practi-
tioners practice katas—choreographed patterns of movement.

During such practice sessions, practitioners repeat common and basic ele-
ments that they learned at the outset of their careers. These drills help ingrain
basic skills. Practitioners also use them to warm up for a performance or
challenge. In the midst of a challenge, a skilled performer seeks to let their
“muscle memory” kick in as much as possible to handle basic movements.
That can help improve their ability to think and better react to their
environment.

Further, mastery of basic movements is an essential foundation for growth
and exploration. More sophisticated and effective forms are often creative
variants to basic forms. Advanced professionals may sometimes even find
that they can throw out basic rules. Their deep knowledge of basic forms
allows them to recognize and accept the costs of discarding them.

Many developers have applied the martial arts concept of katas to TDD. The
concept is much the same: test-drive the solution to a brief programming
challenge. Repeat until you are able to demonstrate an ideal path to the
solution by eliminating wasteful steps. Dave Thomas supplies a number of
sample problems at his site (http://codekata.pragprog.com).

Applying Katas to TDD

Does it make sense to practice test-driving code? To build software, you work
with an ample number of tools at any given time. Your hands interact with
a keyboard to produce code. You interact with an editor who provides
numerous ways to accomplish tasks. You work with a language and set of
libraries (including a test framework) that similarly provide countless ways
to produce solutions. Finally, you think about many things. And while each
bit of thinking through a solution might seem to represent a unique, nonre-
peatable process, there are many repetitive themes (patterns) in software
development.

http://codekata.pragprog.com
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Katas and Dojos ® 311

The more you practice these elements, the better you will become at each.
The longest pole in the tent is no doubt the thinking part, but it’s still possible
to get better at thinking through solving programming problems.

Where to get started? Find a kata that appeals to you, perhaps one you've
seen demonstrated before. For a first kata, prefer something small, a challenge
that you might be able to complete in an hour. Note the time and then test-
drive a solution. If you get stuck, be willing to backtrack a bit. Finally, record
the time you took to derive the solution.

If you became hopelessly mired, discard your attempt completely and try
again, seeking help if need be. (You'll know if you need to choose another first
kata.)

Review your solution, and think about the steps you took to derive it. Run
the kata again, preferably immediately (or within a reasonable period of time
so that you don’t forget everything you just learned). Don’'t memorize, but
instead think about a better sequencing of steps to follow. Compare the time
you took to the first time.

Repeat the kata from time to time, perhaps one to three times per week. Seek
out tweaks and other refinements. For example, explore a better API or lan-
guage construct, and seek to eliminate some typing by using a better editor
shortcut. At some point, you'll be close to an ideal solution, with the ability
to derive it via a minimal set of steps and mistakes. It's now a tool in your
warm-up bag!

To improve your test-driven problem-solving ability, you’ll want to grow the
number of katas in your bag. Solving different types of problems can teach
you different techniques and help you get better at coming up with important
insights.

Code Kata: Roman Numeral Converter contains a simple starting point, the
Roman numeral exercise, in which you test-drive an algorithm to convert an
Arabic number to its Roman numeral equivalent. You might also try other
exercises from this book, such as the Soundex example, as your first kata.

Table 1, Kata Resources, on page 312 describes many useful kata resources.

Dojos

Katas are typically a solo pursuit (although they also work well with a pair).
They're something you can pick up at any time and bang away at for five
minutes or fifty minutes. But you can also take your attempts at TDD mastery
to the next level by performing katas as a team in a dogjo. Like Japanese

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Site/List Name
CodeKata

Craftmanship Kata-
logue

Coders Dojo

Software Craftman-
ship Code Kata

TDD Problems

URL
http://codekata.prag-
prog.com

http://craftsman-
ship.sv.cmu.edu/katas

http://codersdojo.org

http://katas.softwarecrafts-

manship.org

https://sites.google.com/

Chapter 11. Growing and Sustaining TDD *® 312

Description
Dave Thomas’s original kata site

Rates and sources various katas
Also allows you to try and share
katas (in Ruby)

Contains videos of various katas

Designed primarily for demon-

site/tddproblems/ strating TDD, but you can also

use these problems as katas
cyber-dojo http://www.cyber-

dojo.com

An online dojo that allows you to
code and test in the browser

Table 1—Kata Resources

martial arts dojos, a TDD dojo is a group training session with some level of
ceremony and structure.

For a typical dojo, allot sixty to ninety minutes in a room where you can
project a single screen to everyone. To warm up the team to the notion of
dojos, your first dojo might involve a single presenter or pair who demonstrates
their path through a solution for a kata that they’ve already done before. The
presenter’s job is to ensure everyone understands their programming choices
before they move on to the next step.

For subsequent dojos, randori-style is more entertaining and engaging. Various
structures for randori dojos exist; here’s one as described by the Coding Dojo
wiki (at http://codingdojo.org):

e A starter pair tackles the problem chosen by the entire group at the outset
of the dojo.

¢ The pair switches roles frequently between driver and navigator, perhaps
using ping-pong pairing.

e The pair has a time limit, somewhere from five to fifteen minutes, to
advance the solution. They are expected to describe what they are doing
as they go.

http://codekata.pragprog.com
http://codekata.pragprog.com
http://craftsmanship.sv.cmu.edu/katas
http://craftsmanship.sv.cmu.edu/katas
http://codersdojo.org
http://katas.softwarecraftsmanship.org
http://katas.softwarecraftsmanship.org
https://sites.google.com/site/tddproblems/
https://sites.google.com/site/tddproblems/
http://codingdojo.org
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

11.6

Using the Code Coverage Metric Effectively ® 313

* One member of the pair (typically the driver) swaps out of the pair once
the time limit hits and is replaced by an audience member. All attendees
are expected to swap into the pair at least once during the dojo.

e The audience may offer suggestions as appropriate.

You might choose a sensei to offer advice by asking questions (but not provid-
ing answers) and to otherwise help facilitate the dojo.

If the kata runs any more than a half-hour or so, take a five-minute break
midway through. Finish with a brief retrospective: discuss what went well
with the session, and decide what you will do differently for the next.

Randori dojos provide opportunities for everyone on the team to get involved.
You might revert to presentation style when there’s a new problem that the
team wants to tackle or when someone wants to demonstrate an end-to-end
solution that they find more effective.

Dojos are about collaboration and sharing. Your team will have a better
understanding of how others on the team approach problem solving, and
you’ll pick up lots of new ideas along the way.

Using the Code Coverage Metric Effectively

Code coverage—the percentage of lines of code exercised by your unit tests—is
the new “lines of code” metric, sure to be abused by lazy managers. The naive
interpretation of the metric is that 100 percent means you have comprehensive
coverage, and O percent indicates that you haven’t even tried. You can find
a number of code coverage tools for C++; most are not free. COVTOOL
(http://covtool.sourceforge.net) is one open source test coverage tool.

A good coverage tool will also annotate your source, showing you specifically
which lines of code get executed when you run your tests. The real value in
measuring coverage lies here: knowing which lines of code aren’t covered can
help you determine where you need to add tests.

If you always follow the simple TDD cycle to drive your code, your coverage
metric will approach 100 percent. (It might not ever be 100 percent because
of some limitations in the tools and their ability to discern how certain code
elements are used. That’'s OK.) But you already knew that—if you only write
code in the presence of a failing test and you never write more code than
necessary to pass the test, you have 100 percent coverage by definition. I
personally don’t usually bother with code coverage tools for this reason. Still,
if you're struggling with always following the habit of writing a test first or if

http://covtool.sourceforge.net
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

11.7

Chapter 11. Growing and Sustaining TDD * 314

you tend to write more code than needed to pass a test, a coverage tool can
provide you with valuable feedback.

A system-wide, average coverage number less than 90 percent tells you the
codebase wasn’t (fully or at all) developed using TDD, and nothing more. A
coverage number of 90 percent or more similarly tells you little—it usually
indicates that the codebase was built using TDD, but it’s also possible to
write integration tests that blast through a large amount of code. More typi-
cally, the coverage across a non-test-driven system is considerably less (and
in my experience, rarely more than 70 percent). It's hard to cover every last
branch with integration tests, and it’s also hard to write comprehensive unit
tests after you've already written the code.

It's also possible to do TDD, write focused unit tests, attain coverage levels
in the 90+ percentile range, and create tests that are difficult to maintain. In
other words, high numbers may look good but might not tell the whole story.

Never set coverage numbers as goals. Managers who insist on high coverage
numbers get what they ask for—high coverage numbers and little else useful.

Continuous Integration

How many times in your career have you heard the phrase “It worked on my
machine?” Or perhaps you have uttered it yourself? Until your code is inte-
grated with the rest of the production code and passes all tests running on
an approved machine (one with an environment similar to production), you
don’t really know that it works. (You still don’t really know that it works, of
course, until it’s sitting in front of the customer.)

The job of a continuous integration (CI) server is to monitor your source
repository and kick off a consistent build process when a commit occurs.
Once the build completes, the CI server notifies any interested parties and
retains build output for future reference.

Your build script should compile, link, deploy, run unit tests, run any other
tests, and do anything else you deem necessary to demonstrate that you could
ship your system—at least to the next level. Some high-capability teams have
enough confidence in the build that they have evolved one level to the notion
of continuous delivery—with each successful build, software is deployed to
production.

Your CI build might take a while to run, and that’s OK. The nice part about
having a CI server is that you can continue to work, and you'll know once it
finds out about any problems. Be careful, though. Don’t allow the tool to let
you get complacent about your overall build time. A slowly but surely

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

11.8

Deriving Team Standards for TDD * 315

increasing build process will soon become a problem. Getting feedback several
times throughout the day is essential.

In a TDD shop, a CI server is a foundational tool. It makes no sense to proceed
without one. The tests (including any nonunit tests) represent your best
indicator of the health of your overall system. When you commit, you want
to know that your code adds to the value of the system and doesn’t break
anything in the latest, integrated version of the codebase.

Make sure your team is in agreement about all the processes surrounding
the CI server (see the next section on standards). You should know what’s
expected of you when you commit, and you should know what should happen
in the event that the CI server reports a build failure.

Numerous CI servers exist. Well-known tools include Jenkins, buildbot,
CruiseControl, and TeamCity. You’'ll want to choose one that meshes well
with your environment and your build scripts. You'll find some good discussion
on appropriate CI tools at StackOverflow.”

Deriving Team Standards for TDD

You'll want to make sure your team approaches TDD with a few simple
standards. Don’t let these standards be a barrier to getting started, however.
Like everything else in Agile and TDD, the goal is to put a little into place and
then continue to refine things as you go forward.

Here are a few of the key things you’ll want to agree upon:

e Unit testing tool (Google Test, CppUTest, or CppUnit, for example). Over
time, you might migrate to a better tool if one emerges. At that point, it’s
OK to do so incrementally. For now, though, find a unit testing tool that
suits your team best and stick with it until you have good reason not to.

e Other tools, including mock frameworks and code coverage tools.

¢ Integration standards. Team members should agree what level of testing
occurs before integrating code to the source control system. Ideally,
developers should run all unit tests, as long as it isn’t a barrier to frequent
integration (because of existing legacy system problems). You should
never permit the check-in of failing tests.

¢ Test run standards. How slow can tests be? Can tests spew output onto
the console (ideally not)?

8. See http://stackoverflow.com/questions/145586/what-continuous-integration-tool-is-best-for-a-c-project.

http://stackoverflow.com/questions/145586/what-continuous-integration-tool-is-best-for-a-c-project
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

11.9

Chapter 11. Growing and Sustaining TDD * 316

e Failure process. When the build breaks, what should happen, and who
needs to be involved?

e Disabled/commented-out tests. Generally, you’ll want to insist that these
don’t get checked in. If a compelling reason exists, the committer should
be required to provide an explanatory comment.

¢ Test naming forms. DoesSomethingWhenSomeContextExists isn’t a bad
place to start, though you might want to avoid being dogmatic about the
form. Conciseness and readability are important factors.

e Test structure. Are you following AAA? How are fixtures named? Where
do tests physically go (both from a packaging and file organization
standpoint)?

e Assertion form. Hamcrest or not? Are assertion comments OK?

Spend an hour in a meeting debating standards for your codebase, capture
it in a short list of bullets, shake hands, and move on. Revisit the standard
if you start to recognize conflict in the code. Standards are nice to have, but
never let them be a barrier to moving forward.

Keeping Up with the Community

TDD is a continuing exploration. New and better ideas continually arise about
how to best practice TDD. I've personally sought to regularly incorporate new
ideas about TDD over the dozen-plus years I've practiced it. My tests and
code from 2000 disappoint me, and my tests and code from yesterday disap-
point me too. That’s OK, since the cycle of TDD itself is built on the notion of
continual improvement.

This section provides you with a few ideas on how to find out what’s new and
interesting in the rest of the TDD world.

Reading Tests

Learning how to read code is a worthwhile skill. And an even better way to
read code is to first look at the tests that describe it.

Open source projects provide an easy way to learn more about how others
practice TDD. You'll find a wide variety of styles out there, and you’ll no doubt
already recognize some bad practices in the tests you read.

Don’t limit yourself to looking only at C++ tests. The core principles of TDD
apply equally well to all languages.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Blogs and Forums

Teardown ® 317

Be part of the discussion! The following table describes several active forums
and blogs where TDD is discussed often or always:

Site/List Name
Test-Driven Develop-
ment Yahoo! Group

Extreme Programming
Yahoo! Group

LinkedIn Test-Driven
Development Group

Agile Otter Blog

James Grenning'’s Blog

Michael Feathers

Uncle Bob

Coding Is Like Cooking

Sustainable
Test-Driven
Development

Jeff's Blog

11.10 Teardown

URL
http://tech.groups.yahoo.com/
group/testdrivendevelopment/

http://tech.groups.yahoo.com/
group/extremeprogramming/

http://www.linkedin.com/
groups/Test-Driven-Develop-
ment-155678

http://agileotter.blogspot.com/

http://www.renaissancesoft-
ware.net/blog/

http://michaelfeathers.type-
pad.com/michael_feath-
ers blog/

http://blog.8thlight.com/uncle-
bob/archive.html

http://emily-
bache.blogspot.com/

http://www.sustainablet-
dd.com/

http://langrsoft.com/jeff/

Who/What
Email-based discussion forum

Email-based discussion forum

Web-based discussion forum

Tim Ottinger, coauthor of Agile in
a Flash (Agile in a Flash:
Speed-Learning Agile Software
Development [LO11])

The author of Test-Driven Develop-
ment in Embedded C (Embedded
Test Driven Development Cycle
[GreO7])

The author of Working Effectively
with Legacy Code (Working
Effectively with Legacy Code
[Fea04)])

The author of Clean Code (Clean
Code: A Handbook of Agile Software
Craftsmanship [Mar08))

Emily Bache, author of The Coding
Dojo Handbook (The Coding Dojo
Handbook [Bacl2))

Authors Scott Bain and Amir
Kolsky

Yours truly

Congratulations! You've learned a wide array of information about Test-
Driven Development and how it can benefit you and your team. In this
chapter, you learned a few ideas about how to keep the fire burning, both
personally and within your team.

http://tech.groups.yahoo.com/group/testdrivendevelopment/
http://tech.groups.yahoo.com/group/testdrivendevelopment/
http://tech.groups.yahoo.com/group/extremeprogramming/
http://tech.groups.yahoo.com/group/extremeprogramming/
http://www.linkedin.com/groups/Test-Driven-Development-155678
http://www.linkedin.com/groups/Test-Driven-Development-155678
http://www.linkedin.com/groups/Test-Driven-Development-155678
http://agileotter.blogspot.com/
http://www.renaissancesoftware.net/blog/
http://www.renaissancesoftware.net/blog/
http://michaelfeathers.typepad.com/michael_feathers_blog/
http://michaelfeathers.typepad.com/michael_feathers_blog/
http://michaelfeathers.typepad.com/michael_feathers_blog/
http://blog.8thlight.com/uncle-bob/archive.html
http://blog.8thlight.com/uncle-bob/archive.html
http://emilybache.blogspot.com/
http://emilybache.blogspot.com/
http://www.sustainabletdd.com/
http://www.sustainabletdd.com/
http://langrsoft.com/jeff/
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Chapter 11. Growing and Sustaining TDD * 318

TDD is a simple cycle of specify, build, and improve. This book has provided
you with a specification for how to practice TDD. You must build out your
knowledge of TDD through continuing application and practice. Most impor-
tantly, you owe it to yourself and your team to continue to improve upon what
this book has helped you learn.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

A1.1

A1.2

APPENDIX 1

Comparing Unit Testing Tools

Setup

The examples you've seen in this book use Google Test/Google Mock and
CppUTest. You might already be using a different unit testing tool, or your
environment might demand consideration of a different tool. In this chapter,
you’ll get a quick overview regarding the features to consider for an appropriate
unit testing tool for TDD.

TDD Unit Testing Tool Features

Just about any tool you consider will work for Test-Driven Development. Some
tools make it easier, however, and some contain features that make TDD into
more of a chore. Many tools contain additional fancy bells and whistles that
you’ll probably never need when doing TDD. Some tools have different design
considerations, such as a minimal footprint, and as a result may include
features that clash with the goals of TDD.

I consider the following features to be “must haves” for doing TDD:

Discrete test The tool should support the ability to identify tests

names uniquely, preferably using a combination of a scoping/
grouping name and a test name. At least one tool supports
test names only as an afterthought, by default providing
only numbers for a test.

Ease of adding Tests should automatically register so that they are

new tests executed by default. The tool should not require the pro-
grammer to separately register a defined test. Older tools
such as CppUnit require programmers to explicitly register
new tests with a suite.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Fixture support

Isolated tests

Equality asser-
tions

Test suites

Mocking support

Appendix 1. Comparing Unit Testing Tools ® 320

The tool should provide the ability to define fixtures that
provide setup/teardown hooks, as well as the ability to
group common test helper functions.

The tool should support the ability to easily ensure that
each unit test can run with no dependency on the out-
come of any other unit test.

The tool should provide the ability to compare two quan-
tities and produce clear, expressive failure messages.
The tool should support the ability to easily execute
arbitrary groups of unit tests.

The tool either should directly provide support to simplify
the effort to define and use mocks or should support
working in conjunction with a third-party mocking tool.

The following features may enhance your test-driving experience but aren’t

essential:

Hamcrest

Customizable out-
put

Exception asser-
tions

Test execution
statistics

Memory leak test-
ing

Robustness

The tool should provide an enhanced assertion facility
that supports matchers (and the ability to define custom
matchers). Sustaining TDD requires highly readable tests,
and Hamcrest can aid in this goal.

The test tool should provide the ability to easily customize
test-run output. By default, the tool should provide a
simplified summary view showing only test failure detail.

The tool should provide a direct means of asserting that
an exception was thrown.

The tool should provide summary statistics on the test
run and should provide times for each individual test
execution.

The tool should support the configurable feature of failing
if memory was allocated during execution of an individual
test but not released.

The tool should provide the option to complete an entire
test run even when unexpected exceptions are thrown or
the application causes a crash. (This feature is more
useful when running tests in a CI build server than it is
when test-driving.)

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

A1.3

A1.4

A1.5

Notes on Google Mock *® 321

The following features may sound nice but are irrelevant for the purposes of
practicing TDD:

Parameterized You might find a rare case where having the ability to slam

tests a bunch of data against a single test is useful. It is not,
however, a test-driven practice, and it’s reasonably easy to
code on your own if necessary.

Dependencies For integration tests, it can be highly useful to be able to
force an order of execution. Creating tests that are depen-
dent upon the result of others, however, has nothing to do
with TDD.

Notes on Google Mock

Google Mock provides built-in support for mocks, provides a good Hamcrest
library, and appears to be widely used.

Google Mock provides inadequate support for test suites. While Google Mock
does provide the ability to execute a subset of tests using a command-line
filter, it provides no direct support for permanently defining suites. (You could
circumvent this deficiency by redirecting input from a series of files.)

The default test run output from Google Mock provides information on all
tests, unfortunately. In a large suite, the volume of output describing success-
fully executed tests will make it difficult to find information on failed tests
without command-line manipulation.

To counter this problem, you can create a custom test event listener in a
matter of minutes that produces simplified output for a Google Test execution.
See https://code.google.com/p/googletest/wiki/AdvancedGuide#Extending_Google Test by Han-
dling Test Events for further details.

Notes on CppUTest

CppUTest provides most of the features essential to a TDD-focused unit
testing tool. Its ability to run a subset of a test is provided through a com-
mand-line switch, similar to that of Google Test’s filter capability (but not
quite as robust).

A significant bonus feature in CppUTest is its memory leak detection facility,
which can potentially be configured to run with other unit testing tools.

Other Unit Testing Frameworks

You might consider one of the following unit test frameworks:

https://code.google.com/p/googletest/wiki/AdvancedGuide#Extending_Google_Test_by_Handling_Test_Events
https://code.google.com/p/googletest/wiki/AdvancedGuide#Extending_Google_Test_by_Handling_Test_Events
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Appendix 1. Comparing Unit Testing Tools ¢ 322

Boost.Test http://www.boost.org/doc/libs/1_53_0/libs/test/doc/html/index.html

CppUnit http://cppunit.sourceforge.net/doc/1.11.6/cppunit_cookbook.html
CppUnitLite http://c2.com/cgi/wiki?CppUnitLite

CUTE http://cute-test.com/

CxxTest http://cxxtest.com/

Unit++ http://unitpp.sourceforge.net/

A1.6 Teardown

The landscape of C++ unit testing tools continues to change. Rather than
summarize the existing tools at the time of publication, the goal of this
appendix is to help you define the criteria by which you choose your team’s
unit testing tool. You can find a number of sites that provide a comparison
of the available tools. One detailed article that compares a few of the tools is
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle, but note that it is
from 2010 and discusses neither CppUTest nor Google Test.

Your choice for an appropriate C++ unit testing tool is unlikely to be dead
wrong. Your tool will probably change for the better over time, and even if it
doesn’t, you'll usually have the opportunity to customize it. Pick one and go
with it.

http://www.boost.org/doc/libs/1_53_0/libs/test/doc/html/index.html
http://cppunit.sourceforge.net/doc/1.11.6/cppunit_cookbook.html
http://c2.com/cgi/wiki?CppUnitLite
http://cute-test.com/
http://cxxtest.com/
http://unitpp.sourceforge.net/
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

A2.1

A2.2

APPENDIX 2

Code Kata: Roman Numeral Converter

Setup

In Section 11.5, Katas and Dojos, on page 310, you learned about using katas
to help you ingrain fundamental TDD concepts, particularly its incremental
approach to growing a solution. This appendix supplies you with one possible
kata to practice on your own. Test by test, you'll drive the implementation of
a Roman numeral converter.

Let’s Go!
What are we building?

Story: Roman Numeral Converter
We need a function that takes an Arabic number and returns its Roman numeral equivalent (as
astring).

One, Two, Three, ...

Getting the first test to pass will take us a few minutes, since there’s a good
amount of setup work to do (getting the build script in place, adding header
includes, and so on). There are also decisions to be made: What are we going
to name our test method? What should the interface to our function look like?

We choose to make our conversion a free function. Here’s the first, failing
test:

roman/1/RomanConverterTest.cpp

TEST (RomanConverter, CanConvertPositiveDigits) {
EXPECT THAT (convert(l), Eq("I"));

}

One of the goals for a kata is to minimize our movements. While I'm not
enamored with free functions, they’re a fine place to start when we have a

http://media.pragprog.com/titles/lotdd/code/roman/1/RomanConverterTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Appendix 2. Code Kata: Roman Numeral Converter ® 324

purely functional need. When done, we can scope the function as a static
class member if needed.

To make things even simpler, we’ll keep the test and convert() implementations
in the same file for now. Here’s the entire file, including the code to make our
first test pass:

roman/2/RomanConverterTest.cpp
#include "gmock/gmock.h"

using namespace ::testing;
using namespace std;

string convert(unsigned int arabic)

{

return "I";

}

TEST (RomanConverter, CanConvertPositiveDigits) {
EXPECT_THAT (convert(1), Eq("I"));
}

Moving right along, converting two seems the next most sensible place to go.

roman/3/RomanConverterTest.cpp

TEST (RomanConverter, CanConvertPositiveDigits) {
EXPECT THAT(convert(1l), Eq("I"));
EXPECT THAT(convert(2), Eq("II"));

}

You might have noticed that we’re using EXPECT THAT as opposed to my preferred
use of ASSERT_THAT. To remind you of the distinction, if an EXPECT_THAT assertion
fails, Google Test keeps executing the current test. If an ASSERT THAT assertion
fails, Google Test halts the current test’s execution.

Normally, you want one scenario—a single test case—per test function. With
a single case, it usually makes little sense to continue executing the test if
an assertion fails—the rest of the test is generally invalid.

With respect to the Roman converter, however, there’s little sense to creating
new test methods, given that the externally recognized behavior (“convert a
number”) remains unchanged for each new case. Were we to have separate
test methods for our two cases so far, our names would be tedious and would
add little value: Convertl, Convert2.

Since we have one test function with lots of discrete cases, using EXPECT_THAT
makes more sense. If one assertion fails, we still want to know what other
cases pass or fail.

http://media.pragprog.com/titles/lotdd/code/roman/2/RomanConverterTest.cpp
http://media.pragprog.com/titles/lotdd/code/roman/3/RomanConverterTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Let's Go! * 325

To get our second assertion to pass, we treat the new conversion of two like
a special case by introducing an if statement. So far, that’s all we know. We
have two special cases—one and two—and our code mirrors that knowledge.

roman/3/RomanConverterTest.cpp
string convert(unsigned int arabic)

{
if (arabic == 2)
return "II";
return "I";
}

Here’s a third assertion:

roman/4/RomanConverterTest.cpp
EXPECT THAT(convert(3), Eq("III"));

Now we sense a pattern and can take advantage of it with a simple loop.

roman/4/RomanConverterTest.cpp
string convert(unsigned int arabic)
{
string roman{""};
while (arabic-- > 0)
roman += "I";
return roman;

}

Simple, simple. We don’t worry about optimization yet; hence, concatenating
to a string is good enough for now, and a for seems unnecessary.

Ten Sir!

One, two, three...ready for four? Not necessarily. TDD doesn’t have any rules
that force us to construct tests in a certain order. Instead, we always want
to apply a bit of thought to what our next test should be.

Four in Roman—IV—is a subtraction of sorts, one (I) less than five (V). We
haven’'t even hit five (V) yet, so perhaps it makes sense to hold off on four
until we at least tackle five. Regarding V, it seems like a simple special case.
Perhaps we should think about what is similar to what we already have going.
One, two, three results in the progression I, II, III. Let’s look at another similar
progression, that of X, XX, XXX.

roman/5/RomanConverterTest.cpp
EXPECT _THAT (convert(10), Eq("X"));

Ten is another special case, best dispatched with an if statement.

http://media.pragprog.com/titles/lotdd/code/roman/3/RomanConverterTest.cpp
http://media.pragprog.com/titles/lotdd/code/roman/4/RomanConverterTest.cpp
http://media.pragprog.com/titles/lotdd/code/roman/4/RomanConverterTest.cpp
http://media.pragprog.com/titles/lotdd/code/roman/5/RomanConverterTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Appendix 2. Code Kata: Roman Numeral Converter ® 326

roman/5/RomanConverterTest.cpp
string convert(unsigned int arabic)
{
string roman{""};
if (arabic == 10)
return "X";
while (arabic-- > 0)
roman += "I";
return roman;

}
Eleven promises to be a little more interesting.

roman/6/RomanConverterTest.cpp
EXPECT THAT (convert(1l), Eq("XI"));

roman/6/RomanConverterTest.cpp
string convert(unsigned int arabic)
{
string roman{""};
if (arabic >= 10)
{
roman += "X";
arabic -= 10;
}
while (arabic-- > 0)
roman += "I";
return roman;

}

If our converter is passed a number greater than ten, we append an X, subtract
10 from the number, and drop through to the same while loop. We figure that
assertions for twelve and thirteen should pass automatically.

roman/6/RomanConverterTest.cpp
EXPECT THAT(convert(12), Eq("XII"));
EXPECT THAT(convert(13), Eq("XIII"));

Both assertions indeed pass. A new assertion for twenty fails.

roman/7/RomanConverterTest.cpp
EXPECT _THAT (convert(20), Eq("XX"));

Getting it to pass is as simple as changing the keyword if to while.

roman/7/RomanConverterTest.cpp
string convert(unsigned int arabic)
{

string roman{""};

while (arabic >= 10)

{

roman += "X";

http://media.pragprog.com/titles/lotdd/code/roman/5/RomanConverterTest.cpp
http://media.pragprog.com/titles/lotdd/code/roman/6/RomanConverterTest.cpp
http://media.pragprog.com/titles/lotdd/code/roman/6/RomanConverterTest.cpp
http://media.pragprog.com/titles/lotdd/code/roman/6/RomanConverterTest.cpp
http://media.pragprog.com/titles/lotdd/code/roman/7/RomanConverterTest.cpp
http://media.pragprog.com/titles/lotdd/code/roman/7/RomanConverterTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Let's Go! * 327

arabic -= 10;
}
while (arabic-- > 0)
roman += "I";
return roman;

}

Duplicating Almost-Duplication to Eliminate It

We have an implementation with what appears to be near-duplicate code.
The while loops are similar. Faced with “almost duplication,” our next step is
to make things look as much alike as possible.

roman/8/RomanConverterTest.cpp
string convert(unsigned int arabic)
{
string roman{""};
while (arabic >= 10)
{
roman += "X";
arabic -= 10;
}
while (arabic >= 1)
{
roman += "I";
arabic -= 1;
}
return roman;

}

After refactoring, we have two loops with the same logic, varying only in data. We
could extract a common function to eliminate the duplication, but it seems a less-
than-stellar choice since two separate elements are changing (the Arabic total
and the Roman string). Let’s instead extract a conversion table:

roman/9/RomanConverterTest.cpp
string convert(unsigned int arabic)
{
const auto arabicToRomanConversions = {
make pair(10u, "X"),
make pair(lu, "I") };
string roman{""};
for (auto arabicToRoman: arabicToRomanConversions)
while (arabic >= arabicToRoman.first)
{
roman += arabicToRoman.second;
arabic -= arabicToRoman.first;
}

return roman;

http://media.pragprog.com/titles/lotdd/code/roman/8/RomanConverterTest.cpp
http://media.pragprog.com/titles/lotdd/code/roman/9/RomanConverterTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Appendix 2. Code Kata: Roman Numeral Converter ® 328

The duplicate loops collapse into a generalized loop that in turn is part of an
iteration over the conversion pairs.

Finishing Up

Our algorithm paraphrased goes like this: for each pair representing an Arabic-
to-Roman digit mapping, subtract the Arabic value and then append the
corresponding Roman value until the remaining total is less than the Arabic
digit. (We could use a different data structure, as long as we ensure that the
conversion mappings get iterated in order, descending from largest to smallest.)

A bit of thought suggests that the algorithm should work for any digit mapping,
as long as we add it to the table. Let’s try five, which we previously considered
a special case.

roman/10/RomanConverterTest.cpp
EXPECT THAT (convert(5), Eq("V"));

Getting the test to pass requires only adding an entry to the conversion table.

roman/10/RomanConverterTest.cpp

const auto arabicToRomanConversions = {
make pair(1lQu, "X"),
make pair(5u, "V"),
make pair(lu, "I") };

We're now writing tests mostly for confidence purposes (see Testing for Confi-
dence, on page 69), since were doing little other than adding data to a table,
but that’s OK. Let’s add a few more confidence measures. What about fifty,
one hundred, and combinations thereof?

roman/11/RomanConverterTest.cpp

EXPECT_THAT (convert(50), Eq("L"));
EXPECT_THAT (convert(80), Eq("LXXX"));

EXPECT _THAT(convert(100), Eq("C"));
EXPECT THAT (convert(288), Eq("CCLXXXVIII"));

We find they all easily pass, too, with requisite additions to the conversion
table.

roman/11/RomanConverterTest.cpp
const auto arabicToRomanConversions = {
make pair(100u, "C"),
make pair(50u, "L"),
make pair(1l0u, "X"),
make pair(5u, "V"),
make pair(lu, "I") };

http://media.pragprog.com/titles/lotdd/code/roman/10/RomanConverterTest.cpp
http://media.pragprog.com/titles/lotdd/code/roman/10/RomanConverterTest.cpp
http://media.pragprog.com/titles/lotdd/code/roman/11/RomanConverterTest.cpp
http://media.pragprog.com/titles/lotdd/code/roman/11/RomanConverterTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

Let's Go! * 329

Finally, we're again faced with the challenge we've been avoiding. What about
four?

roman/12/RomanConverterTest.cpp
EXPECT THAT (convert(4), Eq("IV"));

We could try supporting four by introducing a bit of subtraction logic. But
doing so seems like it would involve some rather convoluted contortions and
conditionals in our code. Hmm.

Remember, TDD isn’t a mindless exercise (see Thinking and TDD, on page
58). At each step, you need to think about many things, including what the
next step should be. So far, seeking the tests that drive in simpler implemen-
tations has worked well for us, as has seeking tests that look to represent
similar patterns. And we improved our ability to follow this simple-and-simpler
trajectory through the tests by ensuring our code was appropriately refactored
at each step.

From time to time, you’ll also need a few critical insights in order to best
succeed. Sometimes they come easily, sometimes they don’t. The more you
program and the more you seek to experiment with things, the more often
the bulbs will light in your head. A fantastic aspect of TDD is that it affords
such experimentations. Try something clever, and you'll know in a few minutes
whether it works. If not, revert and try something else.

What if we consider the Roman representation of four as a single digit, despite
that it requires two of our alphabet’s characters (IV)? Imagine, for example,
that the Romans used a single special character to represent it. At that point,
it’s simply another entry in the conversion table.

roman/12/RomanConverterTest.cpp
const auto arabicToRomanConversions = {
make pair(10Qu, "C"),

make pair(50u, "L"),
make pair(10u, "X"),
make pair(5u, "V"),

make pair(4u, "IV"),
make pair(lu, "I") };

The algorithm remains untouched. We can finish up with a couple final
assertions that verify our algorithm supports all the other subtraction-oriented
numbers, including 9, 40, 90, 400, and 900, as well as the other couple digits
we haven’t yet added (500 and 1,000). For these assertions, I entered convert
n to roman (where n is the number to convert) as a Google search and used
the answer it returned as my assertion expectation.

http://media.pragprog.com/titles/lotdd/code/roman/12/RomanConverterTest.cpp
http://media.pragprog.com/titles/lotdd/code/roman/12/RomanConverterTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

roman/13/RomanConverterTest.cpp
#include "gmock/gmock.h"

#include <vector>
#include <string>

using namespace ::testing;
using namespace std;

Appendix 2. Code Kata: Roman Numeral Converter ® 330

string convert(unsigned int arabic)

{

const auto arabicToRomanConversions

{

make_pair(1000u,

900u,
500u,
400u,
100u,
90u,
50u,
40u,
10u,

make pair
make pair
make_pair
make pair
make pair
make_pair
make_pair

M),
“ch)
"0"),
"co"),
"c"),
"XC"),
"L,
"XL"),
X",

make pair
make pair
make_pair
make pair
make pair(1l

9u,
5u,
4u,

"IX"),
v,

vy,
"I') };

~ e~~~ o~~~ o~~~ o~~~

string roman{""};
for (auto arabicToRoman:

arabicToRomanConversions)

while (arabic >= arabicToRoman.first)

{

roman += arabicToRoman.second;
arabic -= arabicToRoman.first;

}

return roman;

}

TEST (RomanConverter,
EXPECT THAT (convert(1l),
EXPECT _THAT (convert(2),
EXPECT _THAT (convert(3),
EXPECT THAT (convert(4),
EXPECT _THAT (convert(5),
EXPECT THAT(convert(10),
EXPECT THAT(convert(11),
EXPECT THAT (convert(1
EXPECT_THAT (convert(
EXPECT THAT (convert(2
EXPECT _THAT (convert(
EXPECT_THAT (convert(
EXPECT_THAT (convert(

2),
13),
0),
),
),

50
80
100)

CanConvertPositiveDigits) {

Eq("I"));
Eq("II"));
Eq("III"));
Eq("IV"));
EQ("V"));
Eq("X"));
Eq("XI"));
Eq("XII"));
Eq("XIII"));
Eq(" X")),
Eq("L

Eq(

Eq

"X

"L"));
"LXXX"));
("c"));

’

http://media.pragprog.com/titles/lotdd/code/roman/13/RomanConverterTest.cpp
http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

A2.3

A2.4

Practice Makes Perfect ® 331

EXPECT_THAT
EXPECT_THAT
EXPECT_THAT
EXPECT_THAT

convert
convert
convert
convert

288), Eq("CCLXXXVIII"));
2999), Eq("MMCMXCIX"));
3447), Eq("MMMCDXLVII"));
1513), Eq("MDXIII"));

—_~ o~~~
—_~ o~~~

}

And...done (except for enforcing the constraint that the number must be from
1 to 4,000).

We ended up with a short, simple, and concise implementation for our algo-
rithm. A bit of web searching will show you many other solutions that have
far more complexity for no additional benefit. Following TDD and refactoring
appropriately can often guide you toward an optimal solution.

Practice Makes Perfect

If you haven't already, you should follow the exact steps detailed in this
appendix to build the Roman numeral converter. Don’t stop there, however.
Implement the converter a second time, without referring to this book. Think
about what the next step should be, build a test, find a simple way to imple-
ment it, and refactor your code. Then do it again—maybe not immediately,
but perhaps the next day or a week later. Time yourself with each run through
the kata, seeking to minimize the keystrokes and effort required to derive a
complete solution. If you've been away from TDD or C++ for a while, use it as
a warm-up exercise.

Teardown

In this appendix, you saw another example of how you can use TDD to drive
the incremental growth of an algorithm. Of course, things don’t always go
this smoothly. Every time you tackle a new problem, chances are you’ll have
false starts and will need to undo a bit of code and try again. Practicing short
examples like the Roman numeral converter as a kata should help you become
more comfortable with taking short, incremental steps toward a solution. For
further details on katas, refer to Section 11.5, Katas and Dojos, on page 310.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

[Adz11]

[BE12]

[Bacl2]

[BecOO0]

[Bec02]

[EB14]

[FBBO99]

[FPO9]

[Fea0O4]

[Gre07]

[Grel0]

APPENDIX 3

Bibliography

Gojko Adzic. Specification by Example. Manning Publications Co., Green-
wich, CT, 2011.

Daniel Brolund and Ola Ellnestam. Behead Your Legacy Beast: Refactor
and Restructure Relentlessly with the Mikado Method. Daniel Brolund, Ola
Ellnestam, http://www.agical.com, 2012.

Emily Bache. The Coding Dojo Handbook. LeanPub, https://leanpub.com,
2012.

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Longman, Reading, MA, 2000.

Kent Beck. Test Driven Development: By Example. Addison-Wesley, Reading,
MA, 2002.

Ola Ellnestam and Daniel Brolund. The Mikado Method. Manning Publica-
tions Co., Greenwich, CT, 2014.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley, Reading,
MA, 1999.

Steve Freeman and Nat Pryce. Growing Object-Oriented Software, Guided
by Tests. Addison-Wesley Longman, Reading, MA, 2009.

Michael Feathers. Working Effectively with Legacy Code. Prentice Hall,
Englewood Cliffs, NJ, 2004.

James W. Grenning. Embedded Test Driven Development Cycle. Embedded
Systems Conference. Submissions, 2004, 2006, 2007.

James W. Grenning. Test Driven Development for Embedded C. The Prag-
matic Bookshelf, Raleigh, NC and Dallas, TX, 2010.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

[Gal2]

[LO11]

[Lan05]

[Lan99]

[MFCO1]

[Mar02]

[Mar08]

[Mes07]

[OL11]

Appendix 3. Bibliography ® 334
Marcus Gartner. ATDD By Example. Addison-Wesley Professional, Boston,
MA, 2012.

Jeff Langr and Tim Ottinger. Agile in a Flash: Speed-Learning Agile Software
Development. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2011.

Jeff Langr. Agile Java: Crafting Code With Test-Driven Development. Prentice
Hall, Englewood Cliffs, NJ, 2005.

Jeff Langr. Essential Java Style: Patterns for Implementation. Prentice Hall,
Englewood Cliffs, NJ, 1999.

Tim MacKinnon, Steve Freeman, and Philip Craig. Endo-Testing: Unit
Testing with Mock Objects. Extreme Programming Examined. 1:287-302,
2001.

Robert C. Martin. Agile Software Development, Principles, Patterns, and
Practices. Prentice Hall, Englewood Cliffs, NJ, 2002.

Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall, Englewood Cliffs, NJ, 2008.

Gerard Meszaros. xUnit Test Patterns. Addison-Wesley, Reading, MA, 2007.

Tim Ottinger and Jeff Langr. Agile in a Flash. The Pragmatic Bookshelf,
Raleigh, NC and Dallas, TX, 2011.

http://pragprog.com/titles/lotdd/errata/add
http://forums.pragprog.com/forums/lotdd

A

abstraction, in tests, 181
abstraction level, 29

Acceptance Test-Driven Devel-
opment (ATDD), 279-280

acceptance tests (ATs), 278
accessibility, of design, 168

Add() function, 70, 164, 254,
260
adding
comments, 190
tests to characterize be-
havior, 205

AddPurchaseRecord(), 159, 162
AddressExtractor, 107
Agile, 70, 166, 278, 304
Agile Otter Blog, 317
ApplyFine() function, 98

Arrange-Act-Assert, 56, 84,
179, 192

arrangement, 296
Assert-Act-Arrange, 295
ASSERT _ANY_THROW macro,
94
ASSERT_EQ(), 93
ASSERT_FALSE, 90
ASSERT_STREQ, 96
ASSERT THAT macro, 34,
93, 189, 324
ASSERT_TRUE, 92, 189
assertions
about, 89
choosing, 92
classic-form, 90
failure comments, 189
fatal, 89

Hamcrest, 91
multiple, 185
nonfatal, 89
null, 187
precondition, 41, 176
quality tests, 178
writing, 294
assumptions, invalid, 62
asynchronous solutions, de-
signing, 249
ATDD (Acceptance Test-Driv-
en Development), 279-280
ATDD By Example, 279
ATs (Acceptance tests), 278
Autumn Framework, 129

B
Beck, Kent, 141, 143
Test Driven Development:
By Example, 134, 283
behavior
adding tests to character-
ize, 205
private, 97
using tests to describe,
71
Behead Your Legacy Beast:
Refactor and Restructure
Relentlessly with the Mika-
do Method, 237
bloated construction, 181
blogs, 317
boolean flag, 257
Boost, 12
Boost.Test unit test frame-
work, 321

Index

BOOST_ROOT environment
variable, 12

Brolund, Daniel, 225

C
C++ Compiler, 3
C++11-compliant compiler, 2

cURL command-line transfer
tool, 9

callbackFunction, 252
Checkin() method, 97

CI (continuous integration),
314

Clang, 3
clarifying tests, 41
classic school, 134
classic-form assertions, 90
Cleveland school, 134
Clojure, 287
close(), 183
CMake

building the library us-

ing, 10

installing, 6
code coverage, 313
code duplication, 24
CodeKata, 311
Coders Dojo, 311
Coding Dojo wiki, 312
Coding Is Like Cooking, 317
Coffin, Rod, 304
cohesion, 130

collaborators, dependencies
on, 175

collection variable, 81
colon (:), 88

comments
adding, 190
in tests, 103
community technology pre-
view (CTP) release, 4
comparing
floats, 93
unit testing tools, 319
concrete classes, mocking,
138
concurrency, 177, 256
confidence, testing for, 69
constructor injection, 123
context switching, 308
continuous integration (CI),
314
converting multiple charac-
ters, 37
copy/paste, 204
cost, of duplication, 142
coupling, 130
COVTOOL, 313
CppUMock, 114, 220
CppUnit unit test framework,
321
CppUnitLite unit test frame-
work, 321
CppUTest, see also legacy
challenges
about, 8
as requirement, 2
creating a main for run-
ning tests, 9
installing, 9
notes on, 321
CPPUTEST_HOME environ-
ment variable, 9
Craftmanship Katalogue, 311
Craig, Philip, Endo-Testing:
Unit Testing with Mock Ob-
Jects, 134
creating
client threads in tests,
259
multiple threads in
ThreadPool, 261
test doubles for rlog, 207
CTP (community technology
preview) release, 4
CurlHttp, 107, 138
CUTE unit test framework,
321
CxxTest unit test framework,
321

cyber-dojo, 311
cycle of TDD, 57
Cygwin port, 3

D
defects, 76, 171
defining derivatives, 114

dependencies, on collabora-
tors, 175

dependency challenges, 105

dependency injection (DI),
123, 129

Dependency Inversion Princi-
ple (DIP), 138, 175

derivatives, defining, 114
descriptors, enhancing, 213

design, see also simple design
accessibility of, 168
asynchronous solutions,

249

exploring, 132

DI (dependency injection),

128, 129
Dinwiddie, George, 303

DIP (Dependency Inversion
Principle), 138, 175

disabling tests, 37, 76
DoAll() function, 121
dojos, 310-311
dropping vowels, 40
duplication

about, 152

of almost-duplication,

327
cost of, 142
simple, 145

E
Ellnestam, Ola, 225

encode() function, 21, 43, 45,
289

encodedDigits() function, 36, 39,
41, 45-46

encodeletter() function, 48
encodeTail() function, 47, 288

Endo-Testing: Unit Testing
with Mock Objects (MacKin-
nonn, Freeman and Craig),
134

enhancing descriptors, 213
Erlang, 287

examples, building, 12
exception handling, 188

Index * 336

exception-based tests, 94
execute() function, 215
executeFunction, 252
executing unit tests, 55

EXPECT_CALL() macro, 115,
120

EXPECT_THAT macro, 34,
324

expectations, setting, 115

Extreme Programming Yahoo!
Group, 317

F

fatal assertions, 89
Feathers, Michael, 129
blog, 317
Working Effectively with
Legacy Code, 196
files, organizing, 79
FileUtil, 215
filters, 86
find() function, 37, 274, 276
FIRST mnemonic, 173
fixture class, 28
fixtures, 80
floating-point numbers, 93
forums, 317

Fowler, Martin, Refactoring:
Improving the Design of Ex-
isting Code, 58

Freeman, Steve

Endo-Testing: Unit Testing
with Mock Objects, 134

Growing Object-Oriented
Software, Guided by
Tests, 134

functionality, 158

functions, refactoring to sin-
gle-responsibility, 46

G

gece port, 3
GeoServer, 240, 249, 263,
272, 295
get() function, 108-109, 117,
120, 187
GetNextLine(), 186
GitHub
repositories, 4
website, 1
Windows code, 5
Windows repositories, 4

Given-When-Then, 56, 84,
179, 192
global setup
C++ Compiler, 3
example code, 1
GMOCK_HOME environment
variable, 7
Google Group discussion fo-
rum, 4
Google Mock
about, 6
as requirement, 2
ASSERT_FALSE, 90
assertion forms, 93
creating a main for run-
ning tests, 8
disabling tests in, 37, 77
ElementsAre() matcher, 158
fixture class, 28
grouping related tasks,
80
installing, 6
MATCHER_P macro, 67
naming member func-
tions in, 81
notes on, 321
RUN record, 22
specifying test filters in,
87

support, 122

unit tests in, 56

using, 114

variadic templates in, 4
website, 6

Google Test
about, 6, 280
variadic templates in, 4

Grenning, James
blog, 317
Test Driven Development
for Embedded C, 8

Growing Object-Oriented Soft-
ware, Guided by Tests
(Freeman and Pryce), 134

H

Hamcrest assertions, 91
hasWork() function, 260-261
head() function, 53

Hippo Mocks, using, 114
HoldingService class, 97
HttpFactory, 126
httpServer() function, 125
httpService() function, 124
HttpStub, 108, 126

I
if statement, 34, 325

implementation-specific tests,
170
implicit meaning, 191
incremental design
refactoring inhibitors,
169
setup, 141
simple design, 141
up-front design, 166
incremental feedback, seek-
ing, 18
incrementalism, 26, 69
inhibitors, refactoring, 169
initialize() function, 117, 120

Inject via Template Parame-
ter, 224

injection techniques, alter-
nate, 224, see also test
doubles
injection tools, 129
inspecting privates, 96
installing
CMake, 6
CppUTest, 9
gece port, 3
Google Mock, 6
MacPorts, 3

insufficient tests, 169
integration, continuous, 314
integration tests, 57, 278
interaction-based testing, 96

Interface Segregation Princi-
ple (ISP), 174

invalid assumptions, 62

IsEmpty() function, 62, 65,
146, 180

isolation, of quality unit tests,
176

ISP (Interface Segregation
Principle), 174

isTracking(), 273
isVowel() function, 53

J

JSON (JavaScript Object No-
tation), 10

JsonCpp, 10

JSONCPP_HOME environ-
ment variable, 10

Index ® 337

K
katas
about, 50, 310
applying to TDD, 310
Roman numeral convert-
er, 323
kilo lines of code (KLOC), 171

KLOC (kilo lines of code), 171

L
Langr, Jeff, 317
large-scale changes, with
Mikado Method, 224
lastDigit() function, 42, 53
legacy challenges
adding tests to character-
ize behavior, 205
alternate injection tech-
niques, 224
creating test doubles for
rlog, 207
enhancing the descriptor,
213
large-scale changes with
Mikado Method, 224
Legacy application, 198
legacy code, 195, 206
Mikado Method, 225, 236
moving methods via
Mikado, 226
open() function, 215
safe refactoring, 202
seeking faster tests, 214
setup, 195
spying to sense using
member variables, 218
test-driven mentality, 201
test-driving changes, 211
themes, 196
legacy code, 195, 206
length() function, 290
length, limiting, 39
libcurl, 9
Library application, 177
libtool binary, 11
limiting length, 39
LineReader class, 181
linked production code, 66

LinkedIn Test-Driven Develop-
ment Group, 317

linker substitution, 207
locationlsUnknown() function, 296
locationOf(), 273

London school, 134
long-lived branches, 169

M

MacKinnon, Tim, Endo-Test-
ing: Unit Testing with Mock
Objects, 134

MacPorts, installing, 3

magic literal, 33

main() function, 8

Martin, Robert C., 59, 281

MATCHER_P macro, 67

mechanics for success, 73

member variables, spying to
sense using, 218

methods, moving via Mikado,
226

Microsoft Visual C++ Compil-
er November 2012 CTP, 3

Mikado Method
about, 236
large-scale changes with,
224
moving methods via, 226
overview of, 225

mind-sets, for successful
adoption of TDD, 69

MinGW port, 3

missing tests, 48

mock tools, 114
MOCK_METHOD(), 114, 122

mocks, spying to sense using,
219, see also test doubles

MockSupport object, 220

moving, methods via Mikado,
226

N
NiceMock, 117

Nominatim Search Service,
105

nonfatal assertions, 89
null assertions, 187

(@)
open() function, 198, 201-
202, 204, 215
Open MapQuest API, 105
operator==(), 158
optimizing
GeoServer code, 272
performance, 270

ordering mocks, 120

organizing
files, 79
unit tests, 55

O0S X
compiling rlog on, 11
installing CMake on, 6
installing gcc port on, 3

Ottinger, Tim, 173
overcoding, 68

Override Factory Method,
124, 224

Override Getter, 124
P

pair programming, 306
pair rotating, 308

pair swapping, 309
parameterized tests, 101
partial mock, 138
Patron, 98

PCM (Pulse-Code Modula-
tion), 198

performance
functions and, 276
requirements for thread-
ing, 246
TDD and, 269
vtables and, 137

performance optimization,
270

PIMPL (pointer to implementa-
tion), 175

plain ol’ unit testing (POUT),
56

pointer to implementation
(PIMPL), 175

PopLine(), 186
Portfolio Manager, 143, 145

POUT (plain ol’ unit testing,
56

precondition assertions, 41,
176

premature optimization, 33
premature passes, 60
private dependencies, shift-
ing, 131
privates, inspecting, 96
programmer-defined integra-
tion tests, 279
programming pairs, 306
Pryce, Nat, Growing Object-
Oriented Software, Guided
by Tests, 134

Index * 338

pullWork() function, 259-260

Pulse-Code Modulation
(PCM), 198

Purchase() function, 146, 150,
156, 160, 164

Q

Qt IoC Container, 129

quality tests
abstraction, 181
assertions, 178
FIRST mnemonic, 173
isolation of, 176
setup, 173

R

Rady, Ben, 304

reading tests, 316

recommendations, on perfor-
mance optimization, 277

red-green-refactor, 58

refactor, 58

refactoring
about, 24
inhibitors, 169
safe, 202
to single-responsibility
functions, 46
Refactoring: Improving the
Design of Existing Code
(Fowler), 58
Relative Unit-Level Perfor-
mance Tests (RUPTSs), 272
repeatability, of quality tests,
177
Representational State
Transfer (REST) service,
105
research, on TDD, 303

Resource Interchange File
Format (RIFF), 198

REST (Representational State
Transfer) service, 105

RIFF (Resource Interchange
File Format), 198

rlog, 10, 207

Roman numeral converter,
323

rotating pairs, 308
running
incorrect tests, 61

subsets of tests, 87, 175
tests, 12

RUPTs (Relative Unit-Level
Performance Tests), 272

S

scanning test lists, 284
schools of mock, 134
Schuchert, Brett, 173
Scons, 10
SCUMmy cycle, 304
selectStatement(), 75
self-verifying unit tests, 178
Sell() function, 156
setter injection, 123
setting expectations, 115
setting up
incremental design, 141
legacy challenges, 195
quality tests, 173
TDD, 15, 55
test construction, 79
test doubles, 105
threading, TDD and, 239
SetUp() function, 81, 191
ShareCount() function, 160
shifting private dependencies,
131
simple design
about, 141
cost of duplication, 142
duplication, 152
functionality, 158
incremental design, 162
Portfolio Manager, 143,
145
simplicity, need for, 71
single responsibility principle
(SRP), 46
Size() function, 62, 65, 180,
214-215
sleep_for(), 239
Software Craftmanship Code
Kata, 311
Soundex class, 15, 50, 282
source files, 1
Specification by Example, 279
spying
to sense using member
variables, 218

to sense using mocks,
219

SQL generation, 74

SRP (single responsibility
principle), 46

start() function, 255

static data, 177

StreamUtil, 215

StrictMock, 117

stubs, see test doubles

suboptimal test order, 62

substr(), 288

suite run, 56

suites, 86

summaryDescription() method,
109, 111, 114, 117, 132

SUnit, 90

Sustainable Test-Driven Devel-
opment, 317

swapping pairs, 309

T
TAD (Test-After Development),
201, 272
tail() function, 53
TDD, see Test-Driven Develop-
ment (TDD)
TDD Problems, 311
TearDown(), 183
Tell-Don’t-Ask, 96, 134
template parameter, 128
ten-minute limit, 75
test case, 17
test case name, 80
test doubles
about, 106
creating for rlog, 207
dependency challenges,
105
design changes with, 130
improving test abstrac-
tion when using, 112
miscellaneous topics, 136
mock tools, 114
placing, 123
setup, 105
strategies for using, 132
using, 107, 135

Test Driven Development for
Embedded C (Grenning), 8

Test Driven Development: By
Example (Beck), 134, 283

test filter, 87

test lists, 17

TEST macro, 17, 28, 81

test names, importance of, 18

Index * 339

test run, 56

Test-After Development (TAD),
201, 272

Test-Driven Development
(TDD), see also threading,
TDD and

about, 54, 77

applying katas to, 310

clarifying tests, 41

compared with ATDD,
280

cycle of, 57

driving incremental
growth of algorithms
with, 331

dropping vowels, 40

explaining, 300

finishing, 48

fixing unclean code, 23

fixtures and setup, 28

fundamentals, 55

getting started, 16

growing and sustaining,
299

incrementalism, 26

limiting length, 39

mechanics for success,
73

mind-sets for successful
adoption of, 69

missing tests, 48

multiple characters, 37

pair programming and,
308

performance and, 269

premature passes, 60

refactoring to single-re-
sponsibility functions,
46

research on, 303

rules of, 59, 325

setup, 15, 55

solution, 49

Soundex class, 15, 50

team standards for, 315

test-driving vs. testing,
33

testing outside the box,
43

thinking and, 30

unit testing tool feature,
319

unit tests, 55

what if questions, 36

writing the test, 45

Test-Driven Development Ya-
hoo! Group, 317

test-driving
changes, 211
core concepts for, 239
mentality of, 201
testing vs., 33, 100
threading, 252
units, 56

test-infected, 299

testing

behavior not methods, 70

for confidence, 69

incorrect code, 61

interaction-based, 96

outside the box, 43

supporting with safe
refactoring, 202

test-driving vs., 33, 100

tests

abstraction in, 181

Acceptance (ATs), 278

adding to characterize
behavior, 205

assertions, 89

clarifying, 41

comments in, 103

creating client threads in,
259

disabling, 37, 76

exception-based, 94

fast tests, 86

filters, 86

implementation-specific,
170

inspecting privates, 96

insufficient, 169

integration, 57, 278

missing, 48

organization, 79

parameterized, 101

programmer-defined inte-
gration, 279

quality, 173, 176, 178,
181

reading, 316

running, 12

running incorrect, 61

running subsets of, 87,
175

scanning test lists, 284

seeking faster, 214

self-verifying, 178

setup, 79

slow tests, 86

suboptimal order, 62

suites, 86

testing vs. test-driving,
100

unfortunate specification,
62
unit-level performance,
271
using to describe behav-
jor, 71
TestTimer class, 273, 275
themes, 196
Thomas, Dave, 310
threading, TDD and
concurrency issues, 256
core concepts for test-
driving, 239
creating client threads in
tests, 259
creating multiple threads
in ThreadPool, 261
designing asynchronous
solutions, 249
GeoServer, 240, 263
performance require-
ments, 246
setup, 239
test-driving, 252
ThreadPool class, 254
ThreadPool class, 249, 254,
261
timeliness
of design, 168
of quality unit tests, 178
TPL (transform priority list),
282
TPP (Transformation Priority
Premise), 73, 281, 294

Transact(), 156, 159

transform priority list (TPL),
282

Transformation Priority
Premise (TPP), 73, 281, 294

triangulation, 25, 283

triple-A, 85

troubleshooting mocks, 122

try-catch blocks, 94, 189

U

Ubuntu
building rlog on, 11
installing CMake on, 6
installing g++ on, 3

Uncle Bob, 317

unit tests
about, 55, 278
comparing tools for, 319
in Google Mock, 56

Index ® 340

organization and execu-
tion of, 55
tools, 315

Unit++ unit test framework,
321

unit-level performance tests,
271

units, test-driving, 56

Unix, installing Google Mock
in, 7

up-front design, 166

updating MacPorts, 3

upper() function, 53

upperfront() function, 43

usersinBox(), 263

Vv

variadic templates, 4
verify() function, 110
Visual Studio 2010, 7
Visual Studio 2012, 7
Visual Studio 2013, 5

volatility, of external services,
177

vowels, dropping, 40
vtables, 137

W
WAV (Waveform Audio), 198

WAV Snippet Publisher, 198,
214

Waveform Audio (WAV), 198
WavReader, 220, 226

websites
book, 13
Boost, 12

Coding Dojo wiki, 312
COVTOOL, 313
GitHub, 1
Google Mock, 6
JsonCpp, 10
katas, 310
Open MapQuest API, 105
priority list, 282
Resource Interchange File
Format (RIFF), 198
rlog, 10
Scons, 10
source files, 1
Waveform Audio (WAV),
198
what if questions, 36
while loop, 257, 326

WillOnce() function, 121

WillRepeatedly() function, 121
Windows
getting code to work on,
3
installing Google Mock in,
7

Work class, 249

worker() function, 255, 261

Working Effectively with
Legacy Code (Feathers),
196

writeData(), 211
writeSamples(), 203, 205, 232

Index ® 341

writeSnippet(), 217, 221, 226
writing assertions, 294

Z

zero-padding, 31

zeroPad() function, 39, 53,
285, 290

The Joy of Math and Healthy Programming

Rediscover the joy and fascinating weirdness of pure mathematics, and learn how to take
a healthier approach to programming.

Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand

years of mathematics: from Egyptian fractions to Tur- Good Math

ing machines; from the real meaning of numbers to Nombern Loie oo Conmiation

proof trees, group symmetry, and mechanical compu- -

tation. If you've ever wondered what lay beyond the %"‘ \
. . 7)

proofs you struggled to complete in high school geom- < B 4

etry, or what limits the capabilities of the computer on é B B: vy ¢

your desk, this is the book for you.

Mark C. Chu-Carroll

Mark C. Chu-Carroll Edtted by John Osborn
(282 pages) ISBN: 9781937785338. $34
http://pragprog.com/book/mcmath

The

To keep doing what you love, you need to maintain PR Smers
your own systems, not just the ones you write code

for. Regular exercise and proper nutrition help you The
learn, remember, concentrate, and be creative—skills Healthy
critical to doing your job well. Learn how to change Pr ogrammer

Get Fit, Feel Better,

your work habits, master exercises that make working and Keep Coding

at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for
those wishing to know more about health issues. In no

way is this book intended to replace, countermand, or Foreword thofx- o]
conflict with the advice given to you by your own e .
healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and

other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
http://pragprog.com/book/jkthp

http://pragprog.com/book/mcmath
http://pragprog.com/book/jkthp

Seven Databases, Seven Languages

There’s so much new to learn with the latest crop of NoSQL databases. And instead of

learning a language a year, how about seven?

Data is getting bigger and more complex by the day,
and so are your choices in handling it. From traditional
RDBMS to newer NoSQL approaches, Seven Databases
in Seven Weeks takes you on a tour of some of the
hottest open source databases today. In the tradition
of Bruce A. Tate’s Seven Languages in Seven Weeks,
this book goes beyond your basic tutorial to explore
the essential concepts at the core of each technology.

Eric Redmond and Jim R. Wilson
(354 pages) ISBN: 9781934356920. $35
http://pragprog.com/book/rwdata

Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

Eric Redmond
and Jim R. Wilson

A Tate

You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in
Seven Weeks? In this book you’ll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
examining these languages side-by-side. You’'ll learn
something new from each, and best of all, you'll learn
how to learn a language quickly.

Bruce A. Tate
(330 pages) ISBN: 9781934356593. $34.95
http://pragprog.com/book/btlang

Seven Languages
in Seven Weeks
A Pragmatic 3

Guide to
Learning

Programming
Languages

Bruce A.Tate

‘Bdted by Jacquelyn Carter

http://pragprog.com/book/rwdata
http://pragprog.com/book/btlang

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
http://pragprog.com/book/lotdd
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http.//pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http:/pragprog.com/book/lotdd

Contact Us

Online Orders: http://pragprog.com/catalog
Customer Service: support@pragprog.com
International Rights: translations@pragprog.com
Academic Use: academic@pragprog.com
Write for Us: http://pragprog.com/write-for-us
Or Call: +1 800-699-7764

http://pragprog.com/book/lotdd
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/lotdd
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Foreword
	Introduction
	But Can It Work for Me on My System?
	Who This Book Is For
	What You’ll Need
	How to Use This Book
	About “Us”
	About Me
	About the C++ Style in This Book
	Acknowledgments
	Dedication

	1. Global Setup
	Setup
	The Examples
	C++ Compiler
	CMake
	Google Mock
	CppUTest
	libcurl
	JsonCpp
	rlog
	Boost
	Building Examples and Running Tests
	Teardown

	2. Test-Driven Development: A First Example
	Setup
	The Soundex Class
	Getting Started
	Fixing Unclean Code
	Incrementalism
	Fixtures and Setup
	Thinking and TDD
	Test-Driving vs. Testing
	What If?
	One Thing at a Time
	Limiting Length
	Dropping Vowels
	Doing What It Takes to Clarify Tests
	Testing Outside the Box
	Back on Track
	Refactoring to Single-Responsibility Functions
	Finishing Up
	What Tests Are We Missing?
	Our Solution
	The Soundex Class
	Teardown

	3. Test-Driven Development Foundations
	Setup
	Unit Test and TDD Fundamentals
	The TDD Cycle: Red-Green-Refactor
	The Three Rules of TDD
	Getting Green on Red
	Mind-Sets for Successful Adoption of TDD
	Mechanics for Success
	Teardown

	4. Test Construction
	Setup
	Organization
	Fast Tests, Slow Tests, Filters, and Suites
	Assertions
	Inspecting Privates
	Testing vs. Test-Driving: Parameterized Tests and Other Toys
	Teardown

	5. Test Doubles
	Setup
	Dependency Challenges
	Test Doubles
	A Hand-Crafted Test Double
	Improving Test Abstraction When Using Test Doubles
	Using Mock Tools
	Getting Test Doubles in Place
	Design Will Change
	Strategies for Using Test Doubles
	Miscellaneous Test Double Topics
	Teardown

	6. Incremental Design
	Setup
	Simple Design
	Where Is the Up-Front Design?
	Refactoring Inhibitors
	Teardown

	7. Quality Tests
	Setup
	Tests Come FIRST
	One Assert per Test
	Test Abstraction
	Teardown

	8. Legacy Challenges
	Setup
	Legacy Code
	Themes
	The Legacy Application
	A Test-Driven Mentality
	Safe Refactoring to Support Testing
	Adding Tests to Characterize Existing Behavior
	Sidetracked by the Reality of Legacy Code
	Creating a Test Double for rlog
	Test-Driving Changes
	A New Story
	A Brief Exploration in Seeking Faster Tests
	Mondo Extracto
	Spying to Sense Using a Member Variable
	Spying to Sense Using a Mock
	Alternate Injection Techniques
	Large-Scale Change with the Mikado Method
	An Overview of the Mikado Method
	Moving a Method via Mikado
	More Thoughts on the Mikado Method
	Is It Worth It?
	Teardown

	9. TDD and Threading
	Setup
	Core Concepts for Test-Driving Threads
	The GeoServer
	Performance Requirements
	Designing an Asynchronous Solution
	Still Simply Test-Driving
	Ready for a Thready!
	Exposing Concurrency Issues
	Creating Client Threads in the Test
	Creating Multiple Threads in the ThreadPool
	Back to the GeoServer
	Teardown

	10. Additional TDD Concepts and Discussions
	Setup
	TDD and Performance
	Unit Tests, Integration Tests, and Acceptance Tests
	The Transformation Priority Premise
	Writing Assertions First
	Teardown

	11. Growing and Sustaining TDD
	Setup
	Explaining TDD to Nontechies
	The Bad Test Death Spiral, aka the SCUMmy Cycle
	Pair Programming
	Katas and Dojos
	Using the Code Coverage Metric Effectively
	Continuous Integration
	Deriving Team Standards for TDD
	Keeping Up with the Community
	Teardown

	A1. Comparing Unit Testing Tools
	Setup
	TDD Unit Testing Tool Features
	Notes on Google Mock
	Notes on CppUTest
	Other Unit Testing Frameworks
	Teardown

	A2. Code Kata: Roman Numeral Converter
	Setup
	Let's Go!
	Practice Makes Perfect
	Teardown

	A3. Bibliography
	Index
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Z –

