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PREFACE

The first four editions of this book were based on the idea that a computer can
be regarded as a hierarchy of levels, each one performing some well-defined func-
tion. This fundamental concept is as valid today as it was when the first edition
came out, so it has been retained as the basis for the fifth edition. As in the first
four editions, the digital logic level, the microarchitecture level, the instruction set
architecture level, the operating system machine level, and the assembly language
level are all discussed in detail.

Although the basic structure has been maintained, this fifth edition does con-
tain many changes, both small and large, that bring it up to date in the rapidly
changing computer industry. For example, the example machines used have been
brought up to date. The current examples are the Intel Pentium 4, the Sun Ultra-
SPARC III, and the Intel 8051. The Pentium 4 is an example of a popular CPU
used on desktop machines. The UltraSPARC III is an example of a popular
server, widely used in medium and large mutiprocessors.

However, the 8051 may come as a surprise to some people. It is a venerable
chip that has been around for decades. However, with the enormous growth of
embedded systems, it has finally come into its own. With computers running
everything from clock radios to microwave ovens, interest in embedded systems is
surging, and the 8051 is a widely-used choice due to its extremely low cost (pen-
nies), the wealth of software and peripherals for it, and the large number of 8051
programmers available.

Over the years, many professors teaching from the course have repeatedly
asked for material on assembly language programming. With the fifth edition,
that material is now available in Appendix C and on the accompanying CD-ROM.

xviii



PREFACE Xix

The assembly language chosen is the 8088 since it is a stripped down version of
the enormously popular Pentium. I could have used the UltraSPARC or the MIPS
or some other CPU almost no one has ever heard of, but as a motivational tool, the
8088 is a better choice since large numbers of students have a Pentium at home
and the Pentium is capable of running 8088 programs. However, since debugging
assembly code is very difficult, I have provided a set of tools for learning assem-
bly language programming, including an 8088 assembler, a simulator, and a
tracer. These tools are provided for Windows UNIX, and Linux. The tools are on
the CD-ROM and also on the book’s Website (see below).

The book has become longer over the years. Such an expansion is inevitable
as a subject develops and there is more known about it. As a result, when the
book is used for a course, it may not always be possible to finish the book in a sin-
gle course (e.g., in a trimester system). A possible approach would be to do all of
Chaps. 1, 2, and 3, the first part of Chap. 4 (up through and including Sec. 4.4),
and Chap. 5 as a bare minimum. The remaining time could be filled with the rest
of Chap. 4, and parts of Chaps. 6, 7, and 8, depending on the interest of the
instructor.

A chapter-by-chapter rundown of the major changes since the fourth edition
follows. Chapter 1 still contains an historical overview of computer architecture,
pointing out how we got where we are now and what the milestones were along
the way. The enlarged spectrum of computers that exist is now discussed, and our
three major examples (Pentium 4, UltraSPARC III, and 8051) are introduced.

In Chapter 2, the material on input/output devices has been updated, em-
phasizing the technology of modern devices, including digital cameras, DSL, and
Internet over cable.

Chapter 3 has undergone some revision and now treats computer buses and
modern I/O chips. The three new examples are described here at the chip level.
New material has been added about the PCI Express bus, which is expected to
replace the PCI bus shortly.

Chapter 4 has always been a popular chapter for explaining how a computer
really works, so most of it is unchanged since the fourth edition. However, there
are new sections discussing the microarchitecture level of Pentium 4, the Ultra-
SPARC III, and the 8051.

Chapters 5, 6, and 7 have been updated using the new examples, but are other-
wise relatively unchanged. Chapter 6 uses Windows XP rather than Windows NT
as an example, but at the level of discussion here, the changes are minimal.

In contrast, Chapter 8 has been heavily modified to reflect all the new activity
in parallel computers of all forms. It covers five different classes of parallel sys-
tems, from on-chip parallelism (instruction-level parallelism, on-chip multithread-
ing, and single-chip multiprocessors), through coprocessors, shared-memory sys-
tems, and clusters, and ends up with a brief discussion of grids. Numerous new
examples are discussed here, from the TriMedia CPU, to the BlueGene/L, Red
Storm and Google clusters.



XX PREFACE

The references in Chap. 9 have been updated heavily. Computer organization
is a dynamic field. Over half the references in this 5th edition are to books and
papers written after the 4th edition of this book was published.

Appendices A and B are unchanged since last time, but Appendix C on as-
sembly language programming is completely new. It is a hands-on, how-to guide
to assembly language programming using the tools provided on the CD-ROM and
the Website. Appendix C was written by Dr. Evert Wattel of the Vrije Universi-
teit, Amsterdam. Dr. Wattel has had many years of experience teaching students
using these tools. My thanks to him for writing this appendix.

In addition to the assembly language tools, the Website also contains a graphi-
cal simulator to be used in conjunction with Chap. 4. This simulator was written
by Prof. Richard Salter of Oberlin College. It can be used by students to help
grasp the principles discussed in this chapter. My thanks to him for providing this
software.

In addition, the figures used in the book and PowerPoint sheets for instructors
are also available on the Website. The URL is

http:/www.prenhall.com/tanenbaum

From there, click on the Companion Website for this book and select the page you
are looking for from the menu.

Instructors using this book for a university course can obtain a manual with
the solutions to the problems by contacting their Pearson Education representa-
tive.

A number of people have read (parts of) the manuscript and provided useful
suggestions or have been helpful in other ways. In particular, I would like to
thank Nikitas Alexandridis, Shekar Borkar, Herbert Bos, Scott Cannon, Doug
Carmean, Alan Charlesworth, Eric Cota-Robles, Michael Fetterman, Quinn
Jacobson, Thilo Kielmann, Iffat Kazi, Saul Levy, Ahmed Louri, Abhijit Pandya,
Krist Petersen, Mark Russinovich, Ronald Schroeder, and Saim Ural for their
help, for which I am most grateful. Thank you.

I would also like to thank Jim Goodman for his contributions to this book,
especially to Chaps, 4 and 5. The idea of using the Java Virtual Machine was his
and the book is better for it.

Finally, I would like to thank Suzanne once more for her love and patience. It
never ends, not even after 15 books. Barbara and Marvin are always a joy and
now know what professors do for a living. The Royal Netherlands Academy of
Arts and Sciences granted me a much-coveted Academy Professorship in 2004,
freeing me from some of the less attractive aspects of academia (such as endless
boring committee meetings), for which I am eternally grateful.

Andrew S. Tanenbaum
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INTRODUCTION

A digital computer is a machine that can solve problems for people by carry-
ing out instructions given to it. A sequence of instructions describing how to per-
form a certain task is called a program. The electronic circuits of each computer
can recognize and directly execute a limited set of simple instructions into which
all its programs must be converted before they can be executed. These basic
instructions are rarely much more complicated than

Add two numbers.
Check a number to see if it is zero.

Copy a piece of data from one part of the computer’s memory to another.

Together, a computer’s primitive instructions form a language in which peo-
ple can communicate with the computer. Such a language is called a machine
language. The people designing a new computer must decide what instructions to
include in its machine language. Usually, they try to make the primitive instruc-
tions as simple as possible, consistent with the computer’s intended use and per-
formance requirements, in order to reduce the complexity and cost of the electron-
ics needed. Because most machine languages are so simple, it is difficult and
tedious for people to use them.

This simple observation has, over the course of time, led to a way of structur-
ing computers as a series of abstractions, each abstraction building on the one

1



2 INTRODUCTION CHAP. 1

below it. In this way, the complexity can be mastered and computer systems can
be designed in a systematic, organized way. We call this approach structured
computer organization and have named the book after it. In the next section we
will describe what we mean by this term. After that we will look at some histori-
cal developments, the state-of-the-art, and some important examples.

1.1 STRUCTURED COMPUTER ORGANIZATION

As mentioned above, there is a large gap between what is convenient for peo-
ple and what is convenient for computers. People want to do X, but computers
can only do Y. This leads to a problem. The goal of this book is to explain how
this problem can be solved.

1.1.1 Languages, Levels, and Virtual Machines

The problem can be attacked in two ways: both involve designing a new set of
instructions that is more convenient for people to use than the set of built-in ma-
chine instructions. Taken together, these new instructions also form a language,
which we will call L1, just as the built-in machine instructions form a language,
which we will call LO. The two approaches differ in the way programs written in
L1 are executed by the computer, which, after all, can only execute programs
written in its machine language, LO.

One method of executing a program written in L1 is first to replace each
instruction in it by an equivalent sequence of instructions in LO. The resulting
program consists entirely of L0 instructions. The computer then executes the new
LO program instead of the old L1 program. This technique is called translation.

The other technique is to write a program in LO that takes programs in L1 as
input data and carries them out by examining each instruction in turn and execut-
ing the equivalent sequence of LO instructions directly. This technique does not
require first generating a new program in LO. It is called interpretation and the
program that carries it out is called an interpreter.

Translation and interpretation are similar. In both methods, the computer car-
ries out instructions in L1 by executing equivalent sequences of instructions in LO.
The difference is that, in translation, the entire L1 program is first converted to an
LO program, the L1 program is thrown away, and then the new LO program is
loaded into the computer’s memory and executed. During execution, the newly
generated LO program is running and in control of the computer.

In interpretation, after each L1 instruction is examined and decoded, it is car-
ried out immediately. No translated program is generated. Here, the interpreter is
in control of the computer. To it, the L1 program is just data. Both methods, and
increasingly, a combination of the two, are widely used.
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Rather than thinking in terms of translation or interpretation, it is often sim-
pler to imagine the existence of a hypothetical computer or virtual machine
whose machine language is L1. Let us call this virtual machine M1 (and let us
call the virtual machine corresponding to LO, MO0). If such a machine could be
constructed cheaply enough, there would be no need for having language LO or a
machine that executed programs in LO at all. People could simply write their pro-
grams in L1 and have the computer execute them directly. Even if the virtual
machine whose language is L1 is too expensive or complicated to construct out of
electronic circuits, people can still write programs for it. These programs can
either be interpreted or translated by a program written in LO that itself can be
directly executed by the existing computer. In other words, people can write pro-
grams for virtual machines, just as though they really existed.

To make translation or interpretation practical, the languages LO and L1 must
not be “too” different. This constraint often means that L1, although better than
L0, will still be far from ideal for most applications. This result is perhaps
discouraging in light of the original purpose for creating L1— relieving the pro-
grammer of the burden of having to express algorithms in a language more suited
to machines than people. However, the situation is not hopeless.

The obvious approach is to invent still another set of instructions that is more
people-oriented and less machine-oriented than L1. This third set also forms a
language, which we will call L2 (and with virtual machine M2). People can write
programs in L2 just as though a virtual machine with L2 as its machine language
really existed. Such programs can either be translated to L1 or executed by an
interpreter written in L1.

The invention of a whole series of languages, each one more convenient than
its predecessors, can go on indefinitely until a suitable one is finally achieved.
Each language uses its predecessor as a basis, sO we may view a computer using
this technique as a series of layers or levels, one on top of another, as shown in
Fig. 1-1. The bottommost language or level is the simplest and the topmost
language or level is the most sophisticated.

There is an important relation between a language and a virtual machine.
Each machine has a machine language, consisting of all the instructions that the
machine can execute. In effect, a machine defines a language. Similarly, a
language defines a machine—namely, the machine that can execute all programs
written in the language. Of course, the machine defined by a certain language
may be enormously complicated and expensive to construct directly out of elec-
tronic circuits but we can imagine it nevertheless. A machine with C or C++ or
Java as its machine language would be complex indeed but could easily be built
using today’s technology. There is a good reason, however, for not building such
a computer: it would not be cost effective compared to other techniques. Merely
being doable is not good enough: a practical design must be cost effective as well.

In a certain sense, a computer with n levels can be regarded as n different vir-
tual machines, each with a different machine language. We will use the terms
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Programs in Ln are
either interpreted by

Level n Virtual machine Mn, with / an interpreter running
machine language Ln on a lower machine, or
are translated to the
machine language of a
lower machine
Virtual machine M3, with
Level 3 machine language L3
Programs in L2 are
either interpreted by
interpreters running
Lovel2 | Virtual machine M2, with |.— on M1 or M0, or are
machine language L2 translated to L1 or LO
Programs in L1 are
either interpreted by
Virtual machine M1, with / an interpreter running on
Level 1 machine language L1 MO, or are translated to LO
Programs in LO can be
- directly executed by
Level 0 Actual computer MO, with the electronic circuits
machine language LO

Figure 1-1. A multilevel machine.

“level” and “virtual machine’ interchangeably. Only programs written in lan-
guage LO can be directly carried out by the electronic circuits, without the need
for intervening translation or interpretation. Programs written in L1, L2, ..., Ln
must either be interpreted by an interpreter running on a lower level or translated
to another language corresponding to a lower level.

A person who writes programs for the level n virtual machine need not be
aware of the underlying interpreters and translators. The machine structure
ensures that these programs will somehow be executed. It is of no real interest
whether they are carried out step by step by an interpreter which, in turn, is also
carried out by another interpreter, or whether they are carried out by the electronic
circuits directly. The same result appears in both cases: the programs are exe-
cuted.

Most programmers using an n-level machine are interested only in the top
level, the one least resembling the machine language at the very bottom. How-
ever, people interested in understanding how a computer really works must study
all the levels. People who design new computers or new levels (i.e., new virtual
machines) must also be familiar with levels other than the top one. The concepts
and techniques of constructing machines as a series of levels and the details of the
levels themselves form the main subject of this book.
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1.1.2 Contemporary Multilevel Machines

Most modern computers consist of two or more levels. Machines with as
many as six levels exist, as shown in Fig. 1-2. Level 0, at the bottom, is the
machine’s true hardware. Its circuits carry out the machine-language programs of
level 1. For the sake of completeness, we should mention the existence of yet
another level below our level 0. This level, not shown in Fig. 1-2 because it falls
within the realm of electrical engineering (and is thus outside the scope of this
book), is called the device level. At this level, the designer sees individual
transistors, which are the lowest-level primitives for computer designers. If one
asks how transistors work inside, that gets us into solid-state physics.

Level 5 | Problem-oriented language level |

Translation (compiler)

Level 4 | Assembly language level |

Translation (assembler)

Level 3 | Operating system machine level |

Partial interpretation (operating system)

Level 2 | Instruction set architecture level |

Interpretation (microprogram) or direct execution

Level 1 | Microarchitecture level |
Hardware
Level0 | Digital logc level |

Figure 1-2. A six-level computer. The support method for each level is indicat-
ed below it (along with the name of the supporting program).

At the lowest level that we will study, the digital logic level, the interesting
objects are called gates. Although built from analog components, such as transis-
tors, gates can be accurately modeled as digital devices. Each gate has one or
more digital inputs (signals representing O or 1) and computes as output some sim-
ple function of these inputs, such as AND or OR. Each gate is built up of at most
a handful of transistors. A small number of gates can be combined to form a 1-bit
memory, which can store a 0 or a 1. The 1-bit memories can be combined in
groups of (for example) 16, 32, or 64 to form registers. Each register can hold a
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single binary number up to some maximum. Gates can also be combined to form
the main computing engine itself. We will examine gates and the digital logic
level in detail in Chap. 3.

The next level up is the microarchitecture level. At this level we see a col-
lection of (typically) 8 to 32 registers that form a local memory and a circuit
called an ALU (Arithmetic Logic Unit), which is capable of performing simple
arithmetic operations. The registers are connected to the ALU to form a data
path, over which the data flow. The basic operation of the data path consists of
selecting one or two registers, having the ALU operate on them (for example,
adding them together), and storing the result stored back in some register.

On some machines the operation of the data path is controlled by a program
called a microprogram. On other machines the data path is controlled directly
by hardware. In the first three editions of this book, we called this level the
“microprogramming level,” because in the past it was nearly always a sofware in-
terpreter. Since the data path is now often (partially) controlled directly by
hardware, we changed the name in the previous edition to reflect this.

On machines with software control of the data path, the microprogram is an
interpreter for the instructions at level 2. It fetches, examines, and executes
instructions one by one, using the data path to do so. For example, for an ADD
instruction, the instruction would be fetched, its operands located and brought into
registers, the sum computed by the ALU, and finally the result routed back to the
place it belongs. On a machine with hardwired control of the data path, similar
steps would take place, but without an explicit stored program to control the
interpretation of the level 2 instructions.

At level 2 we have a level that we will call the Instruction Set Architecture
level or (ISA level). Every computer manufacturer publishes a manual for each
of the computers it sells, entitled “Machine Language Reference Manual” or
“Principles of Operation of the Western Wombat Model 100X Computer” or
something similar. These manuals are really about the ISA level, not the underly-
ing levels. When they describe the machine’s instruction set, they are in fact de-
scribing the instructions carried out interpretively by the microprogram or hard-
ware execution circuits. If a computer manufacturer provides two interpreters for
one of its machines, interpreting two different ISA levels, it will need to provide
two “machine language” reference manuals, one for each interpreter.

The next level is usually a hybrid level. Most of the instructions in its
language are also in the ISA level. (There is no reason why an instruction appear-
ing at one level cannot be present at other levels as well.) In addition, there is a
set of new instructions, a different memory organization, the ability to run two or
more programs concurrently, and various other features. More variation exists
between level 3 designs than between those at either level 1 or level 2.

The new facilities added at level 3 are carried out by an interpreter running at
level 2, which, historically, has been called an operating system. Those level 3
instructions that are identical to level 2’s are carried out directly by the micro-
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program (or hardwired control), not by the operating system. In other words,
some of the level 3 instructions are interpreted by the operating system and some
are interpreted directly by the microprogram. This is what we mean by “hybrid”
level. Throughout this book we will call this level the operating system machine
level.

There is a fundamental break between levels 3 and 4. The lowest three levels
are not designed for use by the average garden-variety programmer. Instead they
are intended primarily for running the interpreters and translators needed to sup-
port the higher levels. These interpreters and translators are written by people
called systems programmers who specialize in designing and implementing new
virtual machines. Levels 4 and above are intended for the applications program-
mer with a problem to solve.

Another change occurring at level 4 is the method by which the higher levels
are supported. Levels 2 and 3 are always interpreted. Levels 4, 5, and above are
usually, although not always, supported by translation.

Yet another difference between levels 1, 2, and 3, on the one hand, and levels
4, 5, and higher, on the other, is the nature of the language provided. The
machine languages of levels 1, 2, and 3 are numeric. Programs in them consist of
long series of numbers, which are fine for machines but bad for people. Starting
at level 4, the languages contain words and abbreviations meaningful to people.

Level 4, the assembly language level, is really a symbolic form for one of the
underlying languages. This level provides a method for people to write programs
for levels 1, 2, and 3 in a form that is not as unpleasant as the virtual machine
languages themselves. Programs in assembly language are first translated to level
1, 2, or 3 language and then interpreted by the appropriate virtual or actual
machine. The program that performs the translation is called an assembler.

Level 5 usually consists of languages designed to be used by applications pro-
grammers with problems to solve. Such languages are often called high-level
languages. Literally hundreds exist. A few of the better known ones are C, C++,
Java, LISP, and Prolog. Programs written in these languages are generally
translated to level 3 or level 4 by translators known as compilers, although occa-
sionally they are interpreted instead. Programs in Java, for example, are usually
first translated to a an ISA-like language called Java byte code, which is then
interpreted.

In some cases, level 5 consists of an interpreter for a specific application
domain, such as symbolic mathematics. It provides data and operations for solv-
ing problems in this domain in terms that people knowledgeable in that domain
can understand easily.

In summary, the key thing to remember is that computers are designed as a
series of levels, each one built on its predecessors. Each level represents a dis-
tinct abstraction, with different objects and operations present. By designing and
analyzing computers in this fashion, we are temporarily able to suppress irrelevant
detail and thus reduce a complex subject to something easier to understand.
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The set of data types, operations, and features of each level is called its archi-
tecture. The architecture deals with those aspects that are visible to the user of
that level. Features that the programmer sees, such as how much memory is
available, are part of the architecture. Implementation aspects, such as what kind
of technology is used to implement the memory, are not part of the architecture.
The study of how to design those parts of a computer system that are visible to the
programmers is called computer architecture. In common practice, however,
computer architecture and computer organization mean essentially the same thing.

1.1.3 Evolution of Multilevel Machines

To provide some perspective on multilevel machines, we will briefly examine
their historical development, showing how the number and nature of the levels has
evolved over the years. Programs written in a computer’s true machine language
(level 1) can be directly executed by the computer’s electronic circuits (level 0),
without any intervening interpreters or translators. These electronic circuits,
along with the memory and input/output devices, form the computer’s hardware.
Hardware consists of tangible objects—integrated circuits, printed circuit boards,
cables, power supplies, memories, and printers—rather than abstract ideas, algo-
rithms, or instructions.

Software, in contrast, consists of algorithms (detailed instructions telling
how to do something) and their computer representations—namely, programs.
Programs can be stored on hard disk, floppy disk, CD-ROM, or other media, but
the essence of software is the set of instructions that makes up the programs, not
the physical media on which they are recorded.

In the very first computers, the boundary between hardware and software was
crystal clear. Over time, however, it has blurred considerably, primarily due to
the addition, removal, and merging of levels as computers have evolved. Nowa-
days, it is often hard to tell them apart (Vahid, 2003). In fact, a central theme of
this book is

Hardware and software are logically equivalent.

Any operation performed by software can also be built directly into the
hardware, preferably after it is sufficiently well understood. As Karen Panetta
Lentz put it: “Hardware is just petrified software.”” Of course, the reverse is also
true: any instruction executed by the hardware can also be simulated in software.
The decision to put certain functions in hardware and others in software is based
on such factors as cost, speed, reliability, and frequency of expected changes.
There are few hard-and-fast rules to the effect that X must go into the hardware
and Y must be programmed explicitly. These decisions change with trends in
technology economics, demand, and computer usage.
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The Invention of Microprogramming

The first digital computers, back in the 1940s, had only two levels: the ISA
level, in which all the programming was done, and the digital logic level, which
executed these programs. The digital logic level’s circuits were complicated, dif-
ficult to understand and build, and unreliable.

In 1951, Maurice Wilkes, a researcher at the University of Cambridge, sug-
gested designing a three-level computer in order to drastically simplify the
hardware (Wilkes, 1951). This machine was to have a built-in, unchangeable
interpreter (the microprogram), whose function was to execute ISA-level pro-
grams by interpretation. Because the hardware would now only have to execute
microprograms, which have a limited instruction set, instead of ISA-level pro-
grams, which have a much larger instruction set, fewer electronic circuits would
be needed. Because electronic circuits were then made from vacuum tubes, such
a simplification promised to reduce tube count and hence enhance reliability (i.e.,
the number of crashes per day).

A few of these three-level machines were constructed during the 1950s. More
were constructed during the 1960s. By 1970 the idea of having the ISA level be
interpreted by a microprogram, instead of directly by the electronics, was dom-
inant. All the major machines of the day used it.

The Invention of the Operating System

In these early years, most computers were “open shop,” which meant that the
programmer had to operate the machine personally. Next to each machine was a
sign-up sheet. A programmer wanting to run a program signed up for a block of
time, say Wednesday morning 3 to 5 AM. (many programmers liked to work when
it was quiet in the machine room). When the time arrived, the programmer
headed for the machine room with a deck of 80-column punched cards (an early
input medium) in one hand and a sharpened pencil in the other. Upon arriving in
the computer room, he or she gently nudged the previous programmer toward the
door and took over the computer.

If the programmer wanted to run a FORTRAN program, the following steps
were necessary:

1. Hetf went over to the cabinet where the program library was kept,
took out the big green deck labeled FORTRAN compiler, put it in
the card reader, and pushed the START button.

2. He put his FORTRAN program in the card reader and pushed the
CONTINUE button. The program was read in.

T “He” should be read as “he or she” throughout this book.
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3. When the computer stopped, he read his FORTRAN program in a
second time. Although some compilers required only one pass over
the input, many required two or more. For each pass, a large card
deck had to be read in.

4. Finally, the translation neared completion. The programmer often
became nervous near the end because if the compiler found an error
in the program, he had to correct it and start the entire process all
over again. If there were no errors, the compiler punched out the
translated machine language program on cards.

5. The programmer then put the machine language program in the card
reader along with the subroutine library deck and read them both in.

6. The program began executing. More often than not it did not work
and unexpectedly stopped in the middle. Generally, the programmer
fiddled with the console switches and looked at the console lights for
a little while. If lucky, he figured out the problem, corrected the
error, and went back to the cabinet containing the big green FOR-
TRAN compiler to start all over again. If less fortunate, he made a
printout of the contents of memory, called a core dump, and took it
home to study.

This procedure, with minor variations, was normal at many computer centers
for years. It forced the programmers to learn how to operate the machine and to
know what to do when it broke down, which was often. The machine was fre-
quently idle while people were carrying cards around the room or scratching their
heads trying to find out why their programs were not working properly.

Around 1960 people tried to reduce the amount of wasted time by automating
the operator’s job. A program called an operating system was kept in the com-
puter at all times. The programmer provided certain control cards along with the
program that were read and carried out by the operating system. Figure 1-3 shows
a sample job for one of the first widespread operating systems, FMS (FORTRAN
Monitor System), on the IBM 709.

The operating system read the #*JOB card and used the information on it for
accounting purposes. (The asterisk was used to identify control cards, so they
would not be confused with program and data cards.) Later, it read the *FOR-
TRAN card, which was an instruction to load the FORTRAN compiler from a
magnetic tape. The compiler then read in and compiled the FORTRAN program.
When the compiler finished, it returned control back to the operating system,
which then read the *DATA card. This was an instruction to execute the trans-
lated program, using the cards following the *DATA card as the data.

Although the operating system was designed to automate the operator’s job
(hence the name), it was also the first step in the development of a new virtual
machine. The * FORTRAN card could be viewed as a virtual “compile program”
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*JOB, 5494, BARBARA
*XEQ
*FORTRAN

FORTRAN
program

*DATA

Data
cards

*END

Figure 1-3. A sample job for the FMS operating system.

instruction. Similarly, the *DATA card could be regarded as a virtual “execute
program’ instruction. A level with only two instructions was not much of a level
but it was a start in that direction.

In subsequent years, operating systems became more and more sophisticated.
New instructions, facilities, and features were added to the ISA level until it
began to take on the appearance of a new level. Some of this new level’s instruc-
tions were identical to the ISA-level instructions, but others, particularly
input/output instructions, were completely different. The new instructions were
often known as operating system macros or supervisor calls. The usual term
now is system call.

Operating systems developed in other ways as well. The early ones read card
decks and printed output on the line printer. This organization was known as a
batch system. Usually, there was a wait of several hours between the time a pro-
gram was submitted and the time the results were ready. Developing software
was difficult under those circumstances.

In the early 1960s researchers at Dartmouth College, M.I.T., and elsewhere
developed operating systems that allowed (multiple) programmers to communi-
cate directly with the computer. In these systems, remote terminals were con-
nected to the central computer via telephone lines. The computer was shared
among many users. A programmer could type in a program and get the results
typed back almost immediately, in the office, in a garage at home, or wherever the
terminal was located. These systems were called timesharing systems.
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Our interest in operating systems is in those parts that interpret the instruc-
tions and features present in level 3 and not present in the ISA level rather than in
the timesharing aspects. Although we will not emphasize it, you should keep in
mind that operating systems do more than just interpret features added to the ISA
level.

The Migration of Functionality to Microcode

Once microprogramming had become common (by 1970), designers realized
that they could add new instructions by just extending the microprogram. In other
words, they could add “hardware’” (new machine instructions) by programming.
This revelation led to a virtual explosion in machine instruction sets, as designers
competed with one another to produce bigger and better instruction sets. Many of
these instructions were not essential in the sense that their effect could be easily
achieved by existing instructions, but often they were slightly faster than a
sequence of existing instructions. For example, many machines had an instruction
INC (INCrement) that added one to a number. Since these machines also had a
general ADD instruction, having a special instruction to add 1 (or to add 720, for
that matter) was not necessary. However, the INC was usually a little faster than
the ADD, so it got thrown in.

For the same reason, many other instructions were added to the micropro-
gram. These often included

1. Instructions for integer multiplication and division.

2. Floating-point arithmetic instructions.

3. Instructions for calling and returning from procedures.
4. Instructions for speeding up looping.

5. Instructions for handling character strings.

Furthermore, once machine designers saw how easy it was to add new instruc-
tions, they began looking around for other features to add to their microprograms.
A few examples of these additions include

1. Features to speed up computations involving arrays (indexing and
indirect addressing).

2. Features to permit programs to be moved in memory after they have
started running (relocation facilities).

3. Interrupt systems that signal the computer as soon as an input or out-
put operation is completed.

4. The ability to suspend one program and start another in a small num-
ber of instructions (process switching).



SEC. 1.1 LANGUAGES, LEVELS, AND VIRTUAL MACHINES 13

5. Special instructions for processing audio, image, and multimedia
files.

Numerous other features and facilities have been added over the years as well,
usually for speeding up some particular activity.

The Elimination of Microprogramming

Microprograms grew fat during the golden years of microprogramming
(1960s and 1970s). They also tended to get slower and slower as they acquired
more bulk. Finally, some researchers realized that by eliminating the micropro-
gram, vastly reducing the instruction set, and having the remaining instructions be
directly executed (i.e., hardware control of the data path), machines could be
speeded up. In a certain sense, computer design had come full circle, back to the
way it was before Wilkes invented microprogramming in the first place.

But the wheel is still turning. Java programs are generally executed by com-
piling them to an intermediate language (Java byte code), and then interpreting the
Java byte code.

The point of this discussion is to show that the boundary between hardware
and software is arbitrary and constantly changing. Today’s software may be
tomorrow’s hardware, and vice versa. Furthermore, the boundaries between the
various levels are also fluid. From the programmer’s point of view, how an in-
struction is actually implemented is unimportant (except perhaps for its speed). A
person programming at the ISA level can use its multiply instruction as though it
were a hardware instruction without having to worry about it, or even be aware of
whether it really is a hardware instruction. One person’s hardware is another
person’s software. We will come back to all these topics later in this book.

1.2 MILESTONES IN COMPUTER ARCHITECTURE

Hundreds of different kinds of computers have been designed and built during
the evolution of the modern digital computer. Most have been long forgotten, but
a few have had a significant impact on modern ideas. In this section we will give
a brief sketch of some of the key historical developments in order to get a better
understanding of how we got where we are now. Needless to say, this section
only touches on the highlights and leaves many stones unturned. Figure 1-4 lists
some of the milestone machines to be discussed in this section. Slater (1987) is a
good place to look for additional historical material on the people who founded
the computer age. For short biographies and beautiful color photographs by Louis
Fabian Bachrach of some of the key people who founded the computer age, see
Morgan’s coffee-table book (1997).
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Year Name Made by Comments

1834 | Analytical Engine| Babbage First attempt to build a digital computer

1936 | Z1 Zuse First working relay calculating machine

1943 |COLOSSUS British gov’t First electronic computer

1944 |Mark | Aiken First American general-purpose computer
1946 |[ENIAC | Eckert/Mauchley | Modern computer history starts here

1949 |[EDSAC Wilkes First stored-program computer

1951 | Whirlwind | M.L.T. First real-time computer

1952 |IAS Von Neumann Most current machines use this design

1960 | PDP-1 DEC First minicomputer (50 sold)

1961 | 1401 IBM Enormously popular small business machine
1962 | 7094 IBM Dominated scientific computing in the early 1960s
1963 |B5000 Burroughs First machine designed for a high-level language
1964 | 360 IBM First product line designed as a family

1964 {6600 CDC First scientific supercomputer

1965 |PDP-8 DEC First mass-market minicomputer (50,000 sold)
1970 | PDP-11 DEC Dominated minicomputers in the 1970s

1974 {8080 Intel First general-purpose 8-bit computer on a chip
1974 |CRAY-1 Cray First vector supercomputer

1978 |VAX DEC First 32-bit superminicomputer

1981 |1BM PC IBM Started the modern personal computer era
1981 |Osborne-1 Osborne First portable computer

1983 | Lisa Apple First personal computer with a GUI

1985|386 Intel First 32-bit ancestor of the Pentium line

1985 | MIPS MIPS First commercial RISC machine

1987 |SPARC Sun First SPARC-based RISC workstation

1990 | RS6000 IBM First superscalar machine

1992 | Alpha DEC First 64-bit personal computer

1993 | Newton Apple First palmtop computer

Figure 1-4. Some milestones in the development of the modern digital computer.

1.2.1 The Zeroth Generation—Mechanical Computers (1642—-1945)

The first person to build a working calculating machine was the French scien-
tist Blaise Pascal (1623-1662), in whose honor the programming language Pascal
is named. This device, built in 1642, when Pascal was only 19, was designed to
help his father, a tax collector for the French government. It was entirely mechan-
ical, using gears, and powered by a hand-operated crank.
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Pascal’s machine could only do addition and subtraction operations, but thirty
years later the great German mathematician Baron Gottfried Wilhelm von Leibniz
(1646-1716) built another mechanical machine that could multiply and divide as
well. In effect, Leibniz had built the equivalent of a four-function pocket calcula-
tor three centuries ago.

Nothing much happened for 150 years until a professor of mathematics at the
University of Cambridge, Charles Babbage (1792-1871), the inventor of the
speedometer, designed and built his difference engine. This mechanical device,
which like Pascal’s could only add and subtract, was designed to compute tables
of numbers useful for naval navigation. The entire construction of the machine
was designed to run a single algorithm, the method of finite differences using
polynomials. The most interesting feature of the difference engine was its output
method: it punched its results into a copper engraver’s plate with a steel die, thus
foreshadowing later write-once media such as punched cards and CD-ROMs.

Although the difference engine worked reasonably well, Babbage quickly got
bored with a machine that could run only one algorithm. He began to spend in-
creasingly large amounts of his time and family fortune (not to mention 17,000
pounds of the government’s money) on the design and construction of a successor
called the analytical engine. The analytical engine had four components: the
store (memory), the mill (computation unit), the input section (punched card re-
ader), and the output section (punched and printed output). The store consisted of
1000 words of 50 decimal digits, each used to hold variables and results. The mill
could accept operands from the store, then add, subtract, multiply, or divide them,
and finally return the result to the store. Like the difference engine, it was
entirely mechanical.

The great advance of the analytical engine was that it was general purpose. It
read instructions from punched cards and carried them out. Some instructions
commanded the machine to fetch two numbers from the store, bring them to the
mill, be operated on (e.g., added), and have the result sent back to the store. Other
instructions could test a number and conditionally branch depending on whether it
was positive or negative. By punching a different program on the input cards, it
was possible to have the analytical engine perform different computations, some-
thing not true of the difference engine.

Since the analytical engine was programmable in a simple assembly language,
it needed software. To produce this software, Babbage hired a young woman
named Ada Augusta Lovelace, who was the daughter of the famed British poet,
Lord Byron. Ada Lovelace was thus the world’s first computer programmer. The
programming language Ada® is named in her honor.

Unfortunately, like many modern designers, Babbage never quite got the
hardware debugged. The problem was that he needed thousands upon thousands
of cogs and wheels and gears produced to a degree of precision that nineteenth-
century technology was unable to provide. Nevertheless, his ideas were far ahead
of his time, and even today most modern computers have a structure very similar
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to the analytical engine, so it is certainly fair to say that Babbage was the
(grand)father of the modern digital computer.

The next major development occurred in the late 1930s, when a German
engineering student named Konrad Zuse built a series of automatic calculating
machines using electromagnetic relays. He was unable to get government funding
after the war began because government bureaucrats expected to win the war so
quickly that the new machine would not be ready until after it was over. Zuse was
unaware of Babbage’s work, and his machines were destroyed by the Allied
bombing of Berlin in 1944, so his work did not have any influence on subsequent
machines. Still, he was one of the pioneers of the field.

Slightly later, in the United States, two people also designed calculators, John
Atanasoff at Iowa State College and George Stibbitz at Bell Labs. Atanasoff’s
machine was amazingly advanced for its time. It used binary arithmetic and had
capacitors for memory, which were periodically refreshed to keep the charge from
leaking out, a process he called “jogging the memory.” Modern dynamic memory
(DRAM) chips work the same way. Unfortunately the machine never really be-
came operational. In a way, Atanasoff was like Babbage: a visionary who was
ultimately defeated by the inadequate hardware technology of his time.

Stibbitz’ computer, although more primitive than Atanasoff’s, actually work-
ed. Stibbitz gave a public demonstration of it at a conference at Dartmouth Col-
lege in 1940. One of the people in the audience was John Mauchley, an unknown
professor of physics at the University of Pennsylvania. The computing world
would hear more about Prof. Mauchley later.

While Zuse, Stibbitz, and Atanasoff were designing automatic calculators, a
young man named Howard Aiken was grinding out tedious numerical calculations
by hand as part of his Ph.D. research at Harvard. After graduating, Aiken recog-
nized the importance of being able to do calculations by machine. He went to the
library, discovered Babbage’s work, and decided to build out of relays the
general-purpose computer that Babbage had failed to build out of toothed wheels.

Aiken’s first machine, the Mark I, was completed at Harvard in 1944. It had
72 words of 23 decimal digits each, and had an instruction time of 6 sec. Input
and output used punched paper tape. By the time Aiken had completed its succes-
sor, the Mark II, relay computers were obsolete. The electronic era had begun.

1.2.2 The First Generation—Vacuum Tubes (1945-1955)

The stimulus for the electronic computer was World War II. During the early
part of the war, German submarines were wreaking havoc on British ships. Com-
mands were sent from the German admirals in Berlin to the submarines by radio,
which the British could, and did, intercept. The problem was that these messages
were encoded using a device called the ENIGMA, whose forerunner was de-
signed by amateur inventor and former U.S. president, Thomas Jefferson.
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Early in the war, British intelligence managed to acquire an ENIGMA ma-
chine from Polish Intelligence, which had stolen it from the Germans. However,
to break a coded message, a huge amount of computation was needed, and it was
needed very soon after the message was intercepted to be of any use. To decode
these messages, the British government set up a top secret laboratory that built an
electronic computer called the COLOSSUS. The famous British mathematician
Alan Turing helped design this machine. The COLOSSUS was operational in
1943, but since the British government kept virtually every aspect of the project
classified as a military secret for 30 years, the COLOSSUS line was basically a
dead end. It is only worth noting because it was the world’s first electronic digital
computer.

In addition to destroying Zuse’s machines and stimulating the construction of
the COLOSSUS, the war also affected computing in the United States. The army
needed range tables for aiming its heavy artillery. It produced these tables by hir-
ing hundreds of women to crank them out using hand calculators (women were
thought to be more accurate than men). Nevertheless, the process was time con-
suming and errors often crept in.

John Mauchley, who knew of Atanasoff’s work as well as Stibbitz’, was
aware that the army was interested in mechanical calculators. Like many com-
puter scientists after him, he put together a grant proposal asking the army for
funding to build an electronic computer. The proposal was accepted in 1943, and
Mauchley and his graduate student, J. Presper Eckert, proceeded to build an elec-
tronic computer, which they called the ENIAC (Electronic Numerical Integra-
tor And Computer). It consisted of 18,000 vacuum tubes and 1500 relays. The
ENIAC weighed 30 tons and consumed 140 kilowatts of power. Architecturally,
the machine had 20 registers, each capable of holding a 10-digit decimal number.
(A decimal register is very small memory that can hold one number up to some
maximum number of decimal digits, somewhat like the odometer that keeps track
of how far a car has traveled in its lifetime.) The ENIAC was programmed by
setting up 6000 multiposition switches and connecting a multitude of sockets with
a veritable forest of jumper cables.

The machine was not finished until 1946, when it was too late to be of any use
for its original purpose. However, since the war was over, Mauchley and Eckert
were allowed to organize a summer school to describe their work to their scien-
tific colleagues. That summer school was the beginning of an explosion of inter-
est in building large digital computers.

After that historic summer school, many other researchers set out to build
electronic computers. The first one operational was the EDSAC (1949), built at
the University of Cambridge by Maurice Wilkes. Others included the JOHNIAC
at the Rand Corporation, the ILLIAC at the University of Illinois, the MANIAC at
Los Alamos Laboratory, and the WEIZAC at the Weizmann Institute in Israel.

Eckert and Mauchley soon began working on a successor, the EDVAC (Elec-
tronic Discrete Variable Automatic Computer). However, that project was
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fatally wounded when they left the University of Pennsylvania to form a startup
company, the Eckert-Mauchley Computer Corporation, in Philadelphia (Silicon
Valley had not yet been invented). After a series of mergers, this company be-
came the modern Unisys Corporation.

As a legal aside, Eckert and Mauchley filed for a patent claiming they
invented the digital computer. In retrospect, this would not be a bad patent to
own. After years of litigation, the courts decided that the Eckert-Mauchley patent
was invalid and that John Atanasoff invented the digital computer, even though he
never patented it.

While Eckert and Mauchley were working on the EDVAC, one of the people
involved in the ENIAC project, John von Neumann, went to Princeton’s Institute
of Advanced Studies to build his own version of the EDVAC, the IAS machine.
Von Neumann was a genius in the same league as Leonardo Da Vinci. He spoke
many languages, was an expert in the physical sciences and mathematics, and had
total recall of everything he ever heard, saw, or read. He was able to quote from
memory the verbatim text of books he had read years earlier. At the time he
became interested in computers, he was already the most eminent mathematician
in the world.

One of the things that was soon apparent to him was that programming com-
puters with huge numbers of switches and cables was slow, tedious, and inflexi-
ble. He came to realize that the program could be represented in digital form in
the computer’s memory, along with the data. He also saw that the clumsy serial
decimal arithmetic used by the ENIAC, with each digit represented by 10 vacuum
tubes (1 on and 9 off) could be replaced by using parallel binary arithmetic, some-
thing Atanasoff had realized years earlier.

The basic design, which he first described, is now known as a von Neumann
machine. It was used in the EDSAC, the first stored program computer, and is
still the basis for nearly all digital computers, even now, more than half a century
later. This design, and the IAS machine, built in collaboration with Herman
Goldstine, has had such an enormous influence that it is worth describing briefly.
Although Von Neumann’s name is always attached to this design, Goldstine and
others made substantial contributions to it as well. A sketch of the architecture is
given in Fig. 1-5.

The von Neumann machine had five basic parts: the memory, the arithmetic
logic unit, the control unit, and the input and output equipment. The memory con-
sisted of 4096 words, a word holding 40 bits, each a 0 or a 1. Each word held
either two 20-bit instructions or a 40-bit signed integer. The instructions had 8
bits devoted to telling the instruction type, and 12 bits for specifying one of the
4096 memory words. Together, the arithmetic logic unit and the control unit
formed the “brain” of the computer. In modern computers they are combined
onto a single chip called the CPU (Central Processing Unit).

Inside the arithmetic logic unit was a special internal 40-bit register called the
accumulator. A typical instruction added a word of memory to the accumulator
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Figure 1-5. The original von Neumann machine.

or stored the contents of the accumulator in memory. The machine did not have
floating-point arithmetic because von Neumann felt that any competent mathema-
tician ought to be able to keep track of the decimal point (actually the binary
point) in his or her head.

At about the same time von Neumann was building the IAS machine, re-
searchers at M.I.T. were also building a computer. Unlike IAS, ENIAC and other
machines of its type, which had long word lengths and which were intended for
heavy number crunching, the M.I.T. machine, the Whirlwind I, had a 16-bit word
and was designed for real-time control. This project led to the invention of the
magnetic core memory by Jay Forrester, and then eventually to the first commer-
cial minicomputer.

While all this was going on, IBM was a small company engaged in the busi-
ness of producing card punches and mechanical card sorting machines. Although
IBM had provided some of Aiken’s financing, it was not terribly interested in
computers until it produced the 701 in 1953, long after Eckert and Mauchley’s
company was number one in the commercial market with its UNIVAC computer.
The 701 had 2048 36-bit words, with two instructions per word. It was the first in
a series of scientific machines that came to dominate the industry within a decade.
Three years later came the 704, which initially had 4096 words of core memory,
36-bit instructions, and a new innovation, floating-point hardware. In 1958, IBM
began production of its last vacuum tube machine, the 709, which was basically a
beefed-up 704.

1.2.3 The Second Generation—Transistors (1955-1965)

The transistor was invented at Bell Labs in 1948 by John Bardeen, Walter
Brattain, and William Shockley, for which they were awarded the 1956 Nobel
Prize in physics. Within 10 years the transistor revolutionized computers, and by
the late 1950s, vacuum tube computers were obsolete. The first transistorized
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computer was built at M.I.T.’s Lincoln Laboratory, a 16-bit machine along the
lines of the Whirlwind I. It was called the TX-0 (Transistorized eXperimental
computer 0) and was merely intended as a device to test the much fancier TX-2.

The TX-2 never amounted to much, but one of the engineers working at the
Laboratory, Kenneth Olsen, formed a company, Digital Equipment Corporation
(DEC) in 1957 to manufacture a commercial machine much like the TX-0. It was
four years before this machine, the PDP-1, appeared, primarily because the ven-
ture capitalists who funded DEC firmly believed that there was no market for
computers. After all, T.J. Watson, former president of IBM, once said that the
world market for computers was about four or five units. Instead, DEC mostly
sold small circuit boards.

When the PDP-1 finally appeared in 1961, it had 4096 words of 18-bit words
and could execute 200,000 instructions/sec. This performance was half that of the
IBM 7090, the transistorized successor to the 709, and fastest computer in the
world at the time. The PDP-1 cost $120,000; the 7090 cost millions. DEC sold
dozens of PDP-1s, and the minicomputer industry was born.

One of the first PDP-1s was given to M.L.T., where it quickly attracted the
attention of some of the budding young geniuses so common at M.I.T. One of the
PDP-1’s many innovations was a visual display and the ability to plot points any-
where on its 512 by 512 screen. Before long, the students had programmed the
PDP-1 to play spacewar, and the world had its first video game.

A few years later DEC introduced the PDP-8, which was a 12-bit machine,
but much cheaper than the PDP-1 ($16,000). The PDP-8 had a major innovation:
a single bus, the omnibus, as shown in Fig. 1-6. A bus is a collection of parallel
wires used to connect the components of a computer. This architecture was a
major departure from the memory-centered IAS machine and has been adopted by
nearly all small computers since. DEC eventually sold 50,000 PDP-8s, which
established it as the leader in the minicomputer business.

Console Paper Other
cPU Memory terminal tape 1/0 I/0

Omnibus

Figure 1-6. The PDP-8 omnibus.

Meanwhile, IBM’s reaction to the transistor was to build a transistorized ver-
sion of the 709, the 7090, as mentioned above, and later the 7094. The 7094 had a
cycle time of 2 microsec and 32,536 words of 36-bit words of core memory. The
7090 and 7094 marked the end of the ENIAC-type machines, but they dominated
scientific computing for years in the 1960s.

At the same time IBM had become a major force in scientific computing with
the 7094, it was making a huge amount of money selling a little business-oriented
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machine called the 1401. This machine could read and write magnetic tapes, read
and punch cards, and print output almost as fast as the 7094, and at a fraction of
the price. It was terrible at scientific computing, but for business record keeping
it was perfect.

The 1401 was unusual in that it did not have any registers, or even a fixed
word length. Its memory was 4000 8-bit bytes, although later models supported
up to a then-astounding 16,000 bytes. Each byte contained a 6-bit character, an
administrative bit, and a bit used to indicate end-of-word. A MOVE instruction, for
example, had a source and a destination address and began moving bytes from the
source to the destination until it hit one with the end-of-word bit set to 1.

In 1964 a tiny unknown company, Control Data Corporation (CDC), intro-
duced the 6600, a machine that was nearly an order of magnitude faster than the
mighty 7094 and every other machine in existence at the time. It was love at first
sight among the number crunchers, and CDC was launched on its way to success.
The secret to its speed, and the reason it was so much faster than the 7094, was
that inside the CPU was a highly parallel machine. It had several functional units
for doing addition, others for doing multiplication, and still another for division,
and all of them could run in parallel. Although getting the most out of it required
careful programming, with some work it was possible to have 10 instructions
being executed at once.

As if this was not enough, the 6600 had a number of little computers inside to
help it, sort of like Snow White and the Seven Vertically Challenged People. This
meant that the CPU could spend all its time crunching numbers, leaving all the
details of job management and input/output to the smaller computers. In retros-
pect, the 6600 was decades ahead of its time. Many of the key ideas found in
modern computers can be traced directly back to the 6600.

The designer of the 6600, Seymour Cray, was a legendary figure, in the same
league as Von Neumann. He devoted his entire life to building faster and faster
machines, now called supercomputers, including the 6600, 7600, and Cray-1.
He also invented a now-famous algorithm for buying cars: you go to the dealer
closest to your house, point to the car closest to the door and say: “I’ll take that
one.” This algorithm wastes the least time on unimportant things (like buying
cars) to leave you the maximum time for doing important things (like designing
supercomputers).

There were many other computers in this era, but one stands out for quite a
different reason and is worth mentioning: the Burroughs B5000. The designers of
machines like the PDP-1, 7094, and 6600 were all totally preoccupied with the
hardware, either making it cheap (DEC) or fast (IBM and CDC). Software was
almost completely irrelevant. The B5000 designers took a different tack. They
built a machine specifically with the intention of having it programmed in Algol
60, a forerunner of C and Java, and included many features in the hardware to
ease the compiler’s task. The idea that software also counted was born. Unfor-
tunately it was forgotten almost immediately.
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1.2.4 The Third Generation—Integrated Circuits (1965-1980)

The invention of the silicon integrated circuit by Robert Noyce in 1958 allow-
ed dozens of transistors to be put on a single chip. This packaging made it possi-
ble to build computers that were smaller, faster, and cheaper than their transistor-
ized predecessors. Some of the more significant computers from this generation
are described below.

By 1964 IBM was the leading computer company and had a big problem with
its two highly successful machines, the 7094 and the 1401: they were as incompa-
tible as two machines could be. One was a high-speed number cruncher using
parallel binary arithmetic on 36-bit registers, and the other was a glorified
input/output processor using serial decimal arithmetic on variable-length words in
memory. Many of its corporate customers had both and did not like the idea of
having two separate programming departments with nothing in common.

When the time came to replace these two series, IBM took a radical step. It
introduced a single product line, the System/360, based on integrated circuits, that
was designed for both scientific and commercial computing. The System/360
contained many innovations, the most important of which was that it was a family
of about a half-dozen machines with the same assembly language, and increasing
size and power. A company could replace its 1401 with a 360 Model 30 and its
7094 with a 360 Model 75. The Model 75 was bigger and faster (and more expen-
sive), but software written for one of them could, in principle, run on the other. In
practice, software written for a small model would run on a large model without
problems, but when moving to a smaller machine, the program might not fit in
memory. Still, this was a major improvement over the situation with the 7094 and
1401. The idea of machine families caught on instantly, and within a few years
most computer manufacturers had a family of common machines spanning a wide
range of price and performance. Some characteristics of the initial 360 family are
shown in Fig. 1-7. Other models were introduced later.

Property Model 30 | Model 40 | Model 50 | Model 65
Relative performance 1 3.5 10 21
Cycle time (in billionths of a sec) 1000 625 500 250
Maximum memory (bytes) 65,536 | 262,144 262,144 524,288
Bytes fetched per cycle 1 2 4 16
Maximum number of data channels 3 3 4 6

Figure 1-7. The initial offering of the IBM 360 product line.

Another major innovation in the 360 was multiprogramming, having several
programs in memory at once, so that when one was waiting for input/output to
complete, another could compute. This resulted in a higher CPU utilization.
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The 360 also was the first machine that could emulate (simulate) other com-
puters. The smaller models could emulate the 1401, and the larger ones could
emulate the 7094, so that customers could continue to run their old unmodified
binary programs while converting to the 360. Some models ran 1401 programs so
much faster than the 1401 itself that many customers never converted their pro-
grams.

Emulation was easy on the 360 because all the initial models and most of the
later models were microprogrammed. All IBM had to do was write three micro-
programs, for the native 360 instruction set, the 1401 instruction set, and the 7094
instruction set. This flexibility was one of the main reasons microprogramming
was introduced.

The 360 solved the dilemma of binary-parallel versus serial decimal with a
compromise: the machine had 16 32-bit registers for binary arithmetic, but its
memory was byte-oriented, like that of the 1401. It also had 1401 style serial
instructions for moving variable-sized records around memory.

Another major feature of the 360 was a (for that time) huge address space of
2?* (16,777,216) bytes. With memory costing several dollars per byte in those
days, this much memory looked very much like infinity. Unfortunately, the 360
series was later followed by the 370 series, 4300 series, 3080 series, and 3090
series, all using the same architecture. By the mid 1980s, the memory limit be-
came a real problem, and IBM had to partially abandon compatibility when it
went to 32-bit addresses needed to address the new 232 byte memory.

With hindsight, it can be argued that since they had 32-bit words and registers
anyway, they probably should have had 32-bit addresses as well, but at the time
no one could imagine a machine with 16 million bytes of memory. Faulting IBM
for this lack of vision is like faulting a modern personal computer vendor for hav-
ing only 32-bit addresses. In a few years personal computers may need far more
than 4 billion bytes of memory, at which time 32-bit addresses will become
intolerably small.

The minicomputer world also took a big step forward in the third generation
with DEC’s introduction of the PDP-11 series, a 16-bit successor to the PDP-8. In
many ways, the PDP-11 series was like a little brother to the 360 series just as the
PDP-1 was like a little brother to the 7094. Both the 360 and PDP-11 had word-
oriented registers and a byte-oriented memory and both came in a range spanning
a considerable price/performance ratio. The PDP-11 was enormously successful,
especially at universities, and continued DEC’s lead over the other minicomputer
manufacturers.

1.2.5 The Fourth Generation—Very Large Scale Integration (1980-?)
By the 1980s, VLSI (Very Large Scale Integration) had made it possible to

put first tens of thousands, then hundreds of thousands, and finally millions of
transistors on a single chip. This development soon led to smaller and faster
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computers. Before the PDP-1, computers were so big and expensive that com-
panies and universities had to have special departments called computer centers
to run them. With the advent of the minicomputer, a department could buy its
own computer. By 1980, prices had dropped so low that it was feasible for a sin-
gle individual to have his or her own computer. The personal computer era had
begun.

Personal computers were used in a very different way than large computers.
They were used for word processing, spreadsheets, and numerous highly interac-
tive applications (such as games) that the larger computers could not handle well.

The first personal computers were usually sold as kits. Each kit contained a
printed circuit board, a bunch of chips, typically including an Intel 8080, some
cables, a power supply, and perhaps an 8-inch floppy disk. Putting the parts toget-
her to make a computer was up to the purchaser. Software was not supplied. If
you wanted any, you wrote your own. Later, the CP/M operating system, written
by Gary Kildall, became popular on 8080s. It was a true (floppy) disk operating
system, with a file system, and user commands typed in from the keyboard to a
command processor (shell).

Another early personal computer was the Apple and later the Apple II, de-
signed by Steve Jobs and Steve Wozniak in the proverbial garage. This machine
was enormously popular with home users and at schools and made Apple a seri-
ous player almost overnight.

After much deliberating and observing what other companies were doing,
IBM, then the dominant force in the computer industry, finally decided it wanted
to get into the personal computer business. Rather than design the entire machine
from scratch, using only IBM parts, which would have taken far too long, IBM
did something quite uncharacteristic. It gave an IBM executive, Philip Estridge, a
large bag of money and told him to go somewhere far from the meddling bureau-
crats at corporate headquarters in Armonk, NY, and not come back until he had a
working personal computer. Estridge set up shop far from headquarters, in Boca
Raton, FL, chose the Intel 8088 as his CPU, and built the IBM Personal Computer
from commercial components. It was introduced in 1981 and instantly became
the best-selling computer in history.

IBM also did something uncharacteristic that it would later come to regret.
Rather than keeping the design of the machine totally secret (or at least, guarded
by a wall of patents), as it normally did, it published the complete plans, including
all the circuit diagrams, in a book that it sold for $49. The idea was to make it
possible for other companies to make plug-in boards for the IBM PC, to increase
its flexibility and popularity. Unfortunately for IBM, since the design was now
completely public and all the parts were easily available from commercial ven-
dors, numerous other companies began making clones of the PC, often for far less
money than IBM was charging. Thus an entire industry started.

Although other companies made personal computers using non-Intel CPUs,
including Commodore, Apple, and Atari, the momentum of the IBM PC industry
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was so large that the others were steamrollered. Only a few survived, and these
were in niche markets.

One that did survive, although barely, was the Apple Macintosh. The Macin-
tosh was introduced in 1984 as the successor to the ill-fated Apple Lisa, which
was the first computer to come with a GUI (Graphical User Interface), similar
to the now-popular Windows interface. The Lisa failed because it was too expen-
sive, but the lower-priced Macintosh introduced a year later was a huge success
and inspired love and passion among its many admirers.

The early personal computer market also led to the then-unheard of desire for
portable computers. At that time, a portable computer made as much sense as a
portable refrigerator does now. The first true portable personal computer was the
Osborne-1, which at 11 kg was more of a luggable computer than a portable com-
puter. Still, it proved that portables were possible. The Osborne-1 was a modest
commercial success, but a year later Compaq brought out its first portable IBM
PC clone and was quickly established as the leader in the market for portable
computers.

The initial version of the IBM PC came equipped with the MS-DOS operating
system supplied by the then-tiny Microsoft Corporation. As Intel was able to pro-
duce increasingly powerful CPUs, IBM and Microsoft were able to develop a suc-
cessor to MS-DOS called OS/2, which featured a graphical user interface, similar
to that of the Apple Macintosh. Meanwhile, Microsoft also developed its own
operating system, Windows, which ran on top of MS-DOS, just in case OS/2 did
not catch on. To make a long story short, OS/2 did not catch on, IBM and Micro-
soft had a big and extremely public falling out, and Microsoft went on to make
Windows a huge success. How tiny Intel and even tinier Microsoft managed to
dethrone IBM, one of the biggest, richest, and most powerful corporations in the
history of the world, is a parable no doubt related in great detail in business
schools around the world.

With the success of the 8088 in hand, Intel went on to make bigger and better
versions of it. Particularly noteworthy was the 386, released in 1985, which was
essentially the first Pentium. Although modern Pentiums are much faster than the
386, in terms of architecture, the modern Pentium is basically a souped-up 386.

By the mid-1980s, a new development called RISC began to take over,
replacing complicated (CISC) architectures with much simpler (but faster) ones.
In the 1990s, superscalar CPUs began to appear. These machines could execute
multiple instructions at the same time, often in a different order than they
appeared in the program. We will introduce the concepts of CISC, RISC, and
superscalar in Chap. 2 and discuss them at length throughout this book.

Up until 1992, personal computers were either 8-bit, 16-bit, or 32-bit. Then
DEC came out with the revolutionary 64-bit Alpha, a true 64-bit RISC machine
that outperformed all other personal computers by a wide margin. It had a modest
success, but it was almost a decade later before 64-bit machines began to catch on
in a big way, and then mostly as high-end servers.
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1.2.6 The Fifth Generation—Invisible Computers

In 1981, the Japanese government announced that they were planning to
spend $500 million to help Japanese companies develop fifth-generation com-
puters, which would be based on artificial intelligence and represent a quantum
leap over “dumb” fourth-generation computers. Having seen Japanese com-
panies take over the market in many industries, from cameras to stereos to televi-
sions, American and European computer makers went from O to full panic in a
millisecond, demanding government subsidies and more. Despite lots of fanfare,
the Japanese fifth-generation project basically failed and was quietly abandoned.
In a sense, it was like Babbage’s analytical engine—a visionary idea but so far
ahead of its time that the technology for actually building it was nowhere in sight.

Nevertheless, what might be called the fifth generation did happen, but in an
unexpected way: computers shrunk. The Apple Newton, released in 1993, show-
ed that a computer could be built in a package no bigger than a portable audio
cassette player. The Newton used handwriting for user input, which proved to be
a big stumbling block, but later machines of this class, now called PDAs (Per-
sonal Digital Assistants), had improved user interfaces and became very popular.
Many of these now have almost as much computing power as personal computers
from a few years earlier.

But even the PDAs are not really revolutionary. Even more important are the
“invisible”” computers, which are embedded into appliances, watches, bank cards,
and numerous other devices (Bechini et al., 2004). These processors allow
increased functionality and lower cost in a wide variety of applications. Whether
these chips form a true generation is debatable (they have been around since the
1970s), but they are revolutionizing how thousands of appliances and other
devices work. They are already starting to have a major impact on the world and
their influence will increase rapidly in the coming years. One unusual aspects of
these embedded computers is that the hardware and software are often codes-
igned (Henkel et al., 2003). We will come back to them later in this book.

If we see the first generation as vacuum tube machines (e.g. ENIAC), the
second generation as transistor machines (e.g., the IBM 7094), the third genera-
tion as early integrated circuit machines (e.g., the IBM 360), and the fourth gen-
eration as personal computers (e.g., the Intel CPUs), the real fifth generation is
more a paradigm shift than a specific new architecture. In the future, computers
will be everywhere and embedded in everything—indeed, invisible. They will be
part of the framework of daily life, opening doors, turning on lights, dispensing
money, and thousands of other things. This model, devised by the late Mark
Weiser was originally called ubiquitous computing but the term pervasive com-
puting is also used frequently now (Weiser, 2002). It will change the world as
profoundly as the industrial revolution did. We will not discuss it further in this
book, but for more information about it, see (Lyytinen and Yoo, 2002; Saha and
Mukherjee, 2003; and Sakamura, 2002).
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1.3 THE COMPUTER Z0OO

In the previous section, we gave a very brief history of computer systems. In
this one we will look at the present and gaze toward the future. Although personal
computers are the best known computers, there are other kinds of machines
around these days, so it is worth taking a brief look at what else is out there.

1.3.1 Technological and Economic Forces

The computer industry is moving ahead like no other. The primary driving
force is the ability of chip manufacturers to pack more and more transistors per
chip every year. More transistors, which are tiny electronic switches, means
larger memories and more powerful processors. Gordon Moore, co-founder and
former chairman of Intel, once joked that if aviation technology had moved ahead
as fast as computer technology, an airplane would cost $500 and circle the earth in
20 minutes on 5 gallons of fuel. However, it would be the size of a shoebox.

Specifically, while preparing a speech for an industry group, Moore noticed
that each new generation of memory chips was being introduced 3 years after the
previous one. Since each new generation had four times as much memory as its
predecessor, he realized that the number of transistors on a chip was increasing at
a constant rate and predicted this growth would continue for decades to come.
This observation has become known as Moore’s law. Today, Moore’s law is
often expressed as the number of transistors doubling every 18 months. Note that
this is equivalent to about a 60 percent increase in transistor count per year. The
sizes of the memory chips and their dates of introduction shown in Fig. 1-8 con-
firm that Moore’s law has held for over three decades.
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Figure 1-8. Moore’s law predicts a 60-percent annual increase in the number of
transistors that can be put on a chip. The data points given in this figure are
memory sizes, in bits.
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Of course, Moore’s law is not a law at all, but simply an empirical observa-
tion about how fast solid state physicists and process engineers are advancing the
state-of-the-art, and a prediction that they will continue at the same rate in the
future. Some industry observers expect Moore’s law to continue for at least an-
other decade, maybe longer. At that point transistors will consist of too few atoms
to be reliable, although advances in quantum computing may conceivable change
that (Oskin et al., 2002). However, other observers expect energy dissipation,
current leakage, and other effects to kick in earlier and cause serious problems
that need to be solved (Bose, 2004; Kim et al., 2003).

Moore’s law has created what economist’s call a virtuous circle. Advances
in technology (transistors/chip) lead to better products and lower prices. Lower
prices lead to new applications (nobody was making video games for computers
when computers cost $10 million each). New applications lead to new markets
and new companies springing up to take advantage of them. The existence of all
these companies leads to competition, which in turn, creates economic demand for
better technologies with which to beat the others. The circle is then round.

Another factor driving technological improvement is Nathan’s first law of
software (due to Nathan Myhrvold, a former top Microsoft executive). It states:
“Software is a gas. It expands to fill the container holding it.”” Back in the 1980s,
word processing was done with programs like troff (still used for this book).
Troff occupies kilobytes of memory. Modern word processors occupy megabytes
of memory. Future ones will no doubt require gigabytes of memory. (To a first
approximation, the prefixes kilo, mega, and giga mean thousand, million, and bil-
lion, respectively, but see Sec. 1.5 for details.) Software that continues to acquire
features (not unlike boats that continue to acquire barnacles) creates a constant
demand for faster processors, bigger memories, and more I/O capacity.

While the gains in transistors per chip have been dramatic over the years, the
gains in other computer technologies have been hardly less so. For example, the
IBM PC/XT was introduced in 1982 with a 10-megabyte hard disk. Twenty years
later, 100-gigabyte hard disks were common on the PC/XT’s successors. This
improvement of four orders of magnitude in 20 years represents an annual capa-
city increase of 58 percent. However, measuring disk improvement is trickier,
since there are other parameters besides capacity, such as data rate, seek time, and
price. Nevertheless, almost any metric will show that the price/performance has
increased since 1982 by at least 50 percent per year. These enormous gains in
disk performance, coupled with the fact that the dollar volume of disks shipped
from Silicon Valley has exceeded that of CPU chips led Al Hoagland to suggest
that the place was named wrong: it should have been called Iron Oxide Valley
(since this is the recording medium used on disks).

Another area that has seen spectacular gains has been telecommunication and
networking. In less than two decades, we have gone from 300 bit/sec modems, to
analog modems at 56,000 bits/sec to fiber-optic networks at 10! bits/sec. Fiber-
optic transatlantic telephone cables, such as TAT-12/13, cost about $700 million,
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last for 10 years, and can carry 300,000 simultaneous calls, which comes to under
one cent for a 10-minute intercontinental call. Optical communication systems
running at 10'? bits/sec) over distances exceeding 100 km without amplifiers have
been proven feasible. The exponential growth of the Internet hardly needs com-
ment here.

1.3.2 The Computer Spectrum

Richard Hamming, a former researcher at Bell Labs, once observed that a
change of an order of magnitude in quantity causes a change in quality. Thus a
racing car that can go 1000 km/hour in the Nevada desert is a fundamentally dif-
ferent kind of machine than a normal car that goes 100 km/hour on a highway.
Similarly, a 100-story skyscraper is not just a scaled up 10-story apartment build-
ing. And with computers, we are not talking about factors of 10, but over the
course of three decades, factors of a million.

The gains afforded by Moore’s law can be used in several different ways.
One way is to build increasingly powerful computers at constant price. Another
approach is to build the same computer for less and less money every year. The
computer industry has done both of these and more, resulting in a wide variety of
computers available now. A very rough categorization of current computers is
given in Fig. 1-9.

Type Price ($) Example application
Disposable computer 0.5 | Greeting cards
Microcontroller 5 Watches, cars, appliances
Game computer 50 Home video games
Personal computer 500 Desktop or notebook computer
Server 5K | Network server
Collection of Workstations | 50-500K Departmental minisupercomputer
Mainframe 5M | Batch data processing in a bank

Figure 1-9. The current spectrum of computers available. The prices should be
taken with a grain (or better yet, a metric ton) of salt.

In the following sections we will examine each of these categories and discuss
their properties briefly.

1.3.3 Disposable Computers

At the bottom end, we find single chips glued to the inside of greeting cards
for playing “Happy Birthday,” “Here Comes the Bride,” or some equally appal-
ling ditty. The author has not yet spotted a condolence card that plays a funeral
dirge, but having now released this idea into the public domain, he expects it
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shortly. To anyone who grew up with multimillion-dollar mainframes, the idea of
disposable computers makes about as much sense as disposable aircraft.

However, disposable computers are here to stay. Probably the most important
development in the area of throwaway computers is the RFID (Radio Frequency
IDentification) chip. It is now possible to manufacture, for a few cents, battery-
less RFID chips smaller than 0.5 mm on edge that contain a tiny radio transponder
and a built-in unique 128-bit number. When pulsed from an external antenna,
they are powered by the incoming radio signal long enough to transmit their num-
ber back to the antenna. While the chips are tiny, their implications are certainly
not.

Let us start with a mundane application: removing bar codes from products.
Experimental trials have already been held in which products in stores have RFID
chips (instead of bar codes) attached by the manufacturer. The customer selects
her products, puts them in a shopping cart, and just wheels them out of the store,
bypassing the checkout counter. At the store’s exit, a reader with an antenna
sends out a signal asking each product to identify itself, which it does by a short
wireless transmission. The customer is also identified by a chip on her bank card
or credit card. At the end of the month, the store sends the customer an itemized
bill for this month’s purchases. If the customer does not have a valid RFID bank
or credit card, an alarm is sounded. Not only does this system eliminate the need
for cashiers and the corresponding wait in line, but it also serves as an antitheft
system because hiding a product in a pocket or bag has no effect.

An interesting property of this system is that while bar codes identify the pro-
duct type, they do not identify the specific item. With 128 bits available, RFID
chips do. As a consequence, every package of, say, aspirins, on a supermarket
shelf will have a different RFID code. This means that if a drug manufacturer dis-
covers a manufacturing defect in a batch of aspirins after they have been shipped,
supermarkets all over the world can be told to sound the alarm when a customer
buys any package whose RFID number lies in the affected range, even if the pur-
chase happens in a distant country months later. Aspirins not in the defective
batch will not sound the alarm.

But labeling packages of aspirins, cookies, and dog biscuits is only the start.
Why stop at labeling the dog biscuits when you can label the dog? Pet owners are
already asking veterinarians to implant RFID chips in their animals, to allow them
to be traced if they are stolen or lost. Farmers want their livestock tagged as well.
The obvious next step is for nervous parents to ask their pediatrician to implant
RFID chips in their children in case they get stolen or lost. While we are at it,
why not have hospitals put them in all newborns to avoid mixups at the hospital.
Governments and the police can no doubt think of many good reasons for tracking
all citizens all the time. By now, the “implications’ of RFID chips alluded to
above may be getting a bit clearer.

Another (slightly less controversial) application of RFID chips is vehicle
tracking. When a string of railroad cars with embedded RFID chips passes by a
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reader, the computer attached to the reader then has a list of which cars passed by.
This system makes it easy to keep track of the location of all railroad cars, which
helps suppliers, their customers, and the railroads. A similar scheme can be
applied to trucks. For cars, the idea can be used for collecting tolls electronically.

Airline baggage systems and many other package transport systems can also
use RFID chips. An experimental system tested at Heathrow airport in London
allowed arriving passengers to remove the lugging from their luggage. Bags car-
ried by passengers purchasing this service were tagged with RFID chips, routed
separately within the airport, and delivered directly to the passengers’ hotels.
Other uses of RFID chips include having cars arriving at the painting station of
the assembly line specify what color they are supposed to be, studying animal
migrations, having clothes tell the washing machine what temperature to use, and
many more. Some chips may be integrated with sensors so that the low-order bits
may contain the current temperature, pressure, humidity or other environmental
variable.

Advanced RFID chips also contain permanent storage. This capability led the
European Central Bank to make a decision to put RFID chips in euro banknotes in
the coming years. The chips would record where they have been. Not only would
this make counterfeiting euro notes virtually impossible, but it would make trac-
ing kidnapping ransoms, the loot taken from robberies, and laundered money
much easier to track and possibly remotely invalidated. When cash is no longer
anonymous, standard police procedure in the future may be to check out where the
suspect’s money has been recently. Who needs to implant chips in people when
their wallets are full of them? Again, when the public learns about what RFID
chips can do, there is likely to be some public discussion about the matter.

The technology used in RFID chips is developing rapidly. The smallest ones
are passive (not internally powered) and only capable of transmitting their unique
numbers when queried. However, larger ones are active, can contain a small bat-
tery and a primitive computer, and are capable of doing some calculations. Smart
cards used in financial transactions fall into this category.

RFID chips differ not only in being active or passive, but also in the range of
radio frequencies they respond to. Those operating at low frequences have a lim-
ited data rate but can be sensed at great distances from the antenna. Those operat-
ing at high frequencies have a higher data rate and a shorter range. The chips also
differ in other ways and are being improved all the time. The Internet is full of
information about RFID chips, with www.rfid.org being one good starting point.

1.3.4 Microcontrollers

Next up the ladder we have computers that are embedded inside devices that
are not sold as computers. The embedded computers, sometimes called micro-
controllers, manage the devices and handle the user interface. Microcontrollers
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are found in a large variety of different devices, including the following. Some
examples of each category are given in parentheses.

1. Appliances (clock radio, washer, dryer, microwave, burglar alarm).
Communications gear (cordless phone, cell phone, fax, pager).
Computer peripherals (printer, scanner, modem, CD ROM drive).
Entertainment devices(VCR, DVD, stereo, MP3 player, set top box).
Imaging devices (TV, digital camera, camcorder, lens, photocopier).
Medical devices (X-ray, MRI, heart monitor, digital thermometer).

Military weapon systems (cruise missile, [CBM, torpedo).

® N kv

Shopping devices (vending machine, ATM, cash register).
9. Toys (talking doll, game console, radio-controlled car or boat).

A high-end car could easily contain 50 microcontrollers, running subsystems
including the antilock brakes, fuel injection, radio, and GPS. A jet plane could
easily have 200 or more of them. A family might easily own several hundred
computers without knowing it. Within a few years, practically everything that
runs on electricity or batteries will contain a microcontroller. The numbers of
microcontrollers sold every year dwarfs all other kinds of computers except dis-
posable computers by orders of magnitude.

While RFID chips are minimal systems, microcontrollers are small, but com-
plete, computers. Each microcontroller has a processor, memory, and I/O capabil-
ity. The I/O capability usually includes sensing the device’s buttons and switches
and controlling the device’s lights, display, sound. motors In most cases, the
software is hardwired into the chip in the form of a read-only memory created
when the microcontroller is manufactured. Microcontrollers come in two general
types: general purpose and special purpose. The former are just small, but ordi-
nary computers; the latter have an architecture and instruction set tuned to some
specific application, for example, multimedia. Microcontrollers come in 4-bit, 8-
bit, 16-bit, and 32-bit versions.

However, even the general-purpose microcontrollers differ from standard PCs
in important ways. First, they are extremely cost sensitive. A company buying
millions of units may make the choice based on a 1 cent price difference per unit.
This constraint makes microcontroller manufacturers make architectural choices
based on manufacturing costs much more than on chips costing hundreds of dol-
lars. Although microcontroller prices vary greatly depending on how many bits
wide they are, how much and what kind of memory they have, and other factors;
to get an idea, an 8-bit microcontroller purchased in large enough volume can
probably be had for as little as 10 cents per unit. This price is what makes it pos-
sible to put a computer inside a $9.95 clock radio.
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Second, virtually all microcontrollers operate in real time. They get a stim-
ulus and are expected to give an instantaneous response. For example, when the
user presses a button, often a light goes on, and there should not be any delay
between the button being pressed and the light going on. The need to operate in
real time often has impact on the architecture.

Third, embedded systems often have physical constraints in terms of size,
weight, battery consumption, and other electrical and mechanical limits. The
microcontrollers used in them have to be designed with these restrictions in mind.

1.3.5 Game Computers

A step up are the video game machines. They are normal computers, with
special graphics and sound capability, but limited software and little extensibility.
They started out as low-end CPUs for playing simple action games like ping pong
on TV sets. Over the years they have evolved into far more powerful systems,
rivaling or even outperforming personal computers in certain dimensions.

To get an idea of what is inside a game computer, consider the specifications
of three popular products. First, the Sony PlayStation 2. It contains a 295-MHz
128-bit proprietary CPU (called the Emotion Engine), which is based on the MIPS
IV RISC CPU. The PlayStation 2 also contains 32 MB of RAM, a 160-MHz cus-
tom graphics chip, a 48-channel custom audio chip, and a DVD player. Second,
the Microsoft XBOX. It contains a 733-MHz Intel Pentium III with 64 MB of
RAM, a 300-MHz custom graphics chip, a 256-channel custom audio chip, a
DVD player and an 8-GB hard disk. Third, the Nintendo GameCube. It contains
a 485-MHz 32-bit custom CPU (called the Gekko) derived from the IBM
PowerPC RISC CPU, 24 MB of RAM, a 200-MHz custom graphics chip, a 64-
channel audio chip, and a proprietary 1.5 gigabyte optical disk.

While these machines are not quite as powerful as personal computers pro-
duced in the same time period, they are not that far behind, and in some ways are
ahead (e.g., the 128-bit CPU in the PlayStation 2 is wider than the CPU in any
PC, although the clock speed is much lower). The main difference between a
game machine and a PC is not so much the CPU as it is the fact that game ma-
chines are closed systems. Users may not expand them with plug-in cards, al-
though USB or FireWire interfaces are sometimes provided. Also, and perhaps
most important, game machines are carefully optimized for a single application
area: highly interactive 3D games with high quality stereo audio. Everything else
is secondary. These hardware and software restrictions, slow clock speeds, small
memories, absence of a high-resolution monitor, and (usually) absence of a hard
disk make it possible to build and sell these machines more cheaply than personal
computers. Despite these restrictions, millions of game machines have been sold.

The same companies that make the main game machines also make portable
game machines that are handheld and run on batteries. These are closer to the
embedded systems we discussed above than to personal computers though.
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1.3.6 Personal Computers

Next, we come to the personal computers that most people think of when they
hear the term “computer.” These include desktop and notebook models. They
usually come with hundreds of megabytes of memory, a hard disk holding around
100 gigabytes of data, a CD-ROM/DVD drive, modem, sound card, network inter-
face, high-resolution monitor, and other peripherals. They have elaborate operat-
ing systems, many expansion options, and a huge range of available software.
Some people reserve the term “PC” for those machines that have an Intel CPU
and use ‘“workstation” for those powered by a high-end RISC chip, such as the
Sun UltraSPARC. Conceptually, however, there is little difference between them.

The heart of every personal computer is a printed circuit board at the bottom
of the case. It usually contains the CPU. memory, various I/O devices (such as a
sound chip and possibly a modem), as well as interfaces to the keyboard, mouse,
disk, network, etc., and some expansion slots. A picture of one of these circuit
boards is given in Fig. 1-10.

Notebook computers are basically PCs in a smaller package. The use the
same hardware components, but manufactured in smaller sizes. They also run the
same software as desktop PCs.

Yet another closely related machine type is the PDA. While these are even
smaller than notebook computers, each one has a CPU, memory, keyboard,
display, and most of the other features of a personal computer in miniature. Since
most readers are probably quite familiar with personal computers, additional
introductory material is hardly needed.

1.3.7 Servers

Beefed-up personal computers or workstations are often used as network
servers, both for local area networks (typically within a single company), and for
the Internet. These come in single-processor and multiple-processor configura-
tions, have gigabytes of memory, hundreds of gigabytes of hard disk space, and
high-speed networking capability. Some of them can handle thousands of transac-
tions per second.

Architecturally, however, a single-processor server is not really very different
from a single-processor personal computer. It is just faster, bigger, has more disk
space and possibly a faster network connection. Servers run the same operating
systems as personal computers, typically some flavor of UNIX or Windows.

1.3.8 Collections of Workstations
Due to almost continuous improvements in the price/performance ratio of

workstations and personal computers, in recent years system designers have
begun connecting large numbers of them together to form COWs (Clusters of
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Figure 1-10. A printed circuit board is at the heart of every personal computer.
This figure is a photograph of the Intel D875PBZ board. The photograph is
copyrighted by the Intel Corporation, 2003 and used by permission.

1. Pentium 4 socket 5. Disk interface 8. USB 2.0 ports

2. 875P Support chip 6. Gigabit Ethernet 9. Cooling technology
3. Memory sockets 7. Five PCI slots 10. BIOS

4. AGP connector

Workstations), or sometimes just clusters. They consist of standard personal
computers or workstations connected by gigabit/sec networks, and running special
software that allow all the machines to work together on a single problem, often in
science or engineering. Normally they are what are called COTS (Commodity
Off The Shelf) computers that anyone can just buy from a normal PC vendor. The
main addition is high-speed networking, but sometimes that is also a standard
commercial network card too. Clusters scale easily, from a handful of machines
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to thousands of them. Usually, the amount of money available is the limiting fac-
tor. Due to their low component price, individual departments can now own such
machines.

Another use for a COW is as an Internet Web server. When a Website ex-
pects thousands of requests per second for its pages, the most economical solution
is often a cluster with hundreds, or even thousands, of servers. The incoming
requests are then sprayed among the servers to allow them to be processed in
parallel. When used this way, a COW is often called a server farm.

1.3.9 Mainframes

Now we come to the mainframes: room-sized computers that hark back to the
1960s. In many cases, these machines are the direct descendants of IBM 360
mainframes acquired decades ago. For the most part, they are not much faster
than powerful servers, but they always have more 1/O capacity and are often
equipped with vast disk farms, often holding thousands of gigabytes of data.
While expensive, they are often kept running due to the immense investment in
software, data, operating procedures, and personnel that they represent. Many
companies find it cheaper to just pay a few million dollars once in a while for a
new one, than to even contemplate the effort required to reprogram all their appli-
cations for smaller machines.

It is this class of computer that led to the now-infamous Year 2000 problem,
which was caused by COBOL programmers in the 1960s and 1970s representing
the year as two decimal digits (in order to save memory). They never envisioned
their software lasting three or four decades. While the predicted disaster never
occurred due to a huge amount of work put into fixing the problem, many com-
panies have repeated the same mistake by simply adding two more digits to the
year. The author hereby predicts the end of civilization as we know it at midnight
on Dec. 31, 9999, when 8000 years worth of old COBOL programs crash simul-
taneously.

In addition to their use for running 30-year-old legacy software, the Internet
has breathed new life into mainframes in recent years. They have found a new
niche as powerful Internet servers, for example, by handling massive numbers of
e-commerce transactions per second, particularly in businesses where huge data
bases are required. Although the focus of this book is on PCs, servers, and micro-
controllers, we will look at mainframes a bit more in Chap. 5.

Up until recently, there was another category of computers even more power-
ful than mainframes: supercomputers. They had enormously fast CPUs, many
gigabytes of main memory, and very fast disks and networks. They were used for
massive scientific and engineering calculations such as simulating colliding galax-
ies, synthesizing new medicines, or modeling the flow of air around an airplane
wing. However, in recent years, COWs have come to offer as much computing
power at much lower prices, and the true supercomputers are now a dying breed.
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1.4 EXAMPLE COMPUTER FAMILIES

In this book we will focus on three kinds of computers: personal computers.
servers, and embedded computers. Personal computers are of interest because
every reader has undoubtedly used one. Servers are of interest because they run
all the services on the Internet. Finally, embedded computers are invisible to their
users but control cars, televisions, microwave ovens, washing machines, and prac-
tically every other electrical device costing more than $50.

In this section we will give a brief introduction to the three computers that
will be used as examples in the rest of the book, one in each of these three
categories. They are the Pentium 4, the UltraSPARC III, and the 8051.

1.4.1 Introduction to the Pentium 4

In 1968, Robert Noyce, inventor of the silicon integrated circuit, Gordon
Moore, of Moore’s law fame, and Arthur Rock, a San Francisco venture capitalist,
formed the Intel Corporation to make memory chips. In its first year of operation,
Intel sold only $3000 worth of chips, but business has picked up since then.

In the late 1960s, calculators were large electromechanical machines the size
of a modern laser printer and weighing 20 kg. In Sept. 1969, a Japanese com-
pany, Busicom, approached Intel with a request for it to manufacture 12 custom
chips for a proposed electronic calculator. The Intel engineer assigned to this pro-
ject, Ted Hoff, looked at the plan and realized that he could put a 4-bit general-
purpose CPU on a single chip that would do the same thing and be simpler and
cheaper as well. Thus in 1970, the first single-chip CPU, the 2300-transistor 4004
was born (Faggin et al., 1996).

It is worth noting that neither Intel nor Busicom had any idea what they had
just done. When Intel decided that it might be worth a try to use the 4004 in other
projects, it offered to buy back all the rights to the new chip from Busicom by
returning the $60,000 Busicom had paid Intel to develop it. Intel’s offer was
quickly accepted, at which point it began working on an 8-bit version of the chip,
the 8008, introduced in 1972. The Intel family, starting with the 4004 and 8008 is
shown in Fig. 1-11.

Intel did not expect much demand for the 8008, so it set up a low-volume pro-
duction line. Much to everyone’s amazement, there was an enormous amount of
interest, so Intel set about designing a new CPU chip that got around the 8008’s
limit of 16 kilobytes of memory (imposed by the number of pins on the chip).
This design resulted in the 8080, a small, general-purpose CPU, introduced in
1974. Much like the PDP-8, this product took the industry by storm and instantly
became a mass market item. Only instead of selling thousands, as DEC had, Intel
sold millions.

In 1978 came the 8086, a genuine 16-bit CPU on a single chip. The 8086 was
designed to be similar to the 8080, but it was not completely compatible with the
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Chip Date MHz  Transistors| Memory Notes
4004 4/1971 0.108 2300 640 | First microprocessor on a chip
8008 4/1972 0.108 3500 16 KB | First 8-bit microprocessor
8080 4/1974 2 6000 | 64 KB | First general-purpose CPU on a chip
8086 6/1978 5-10 29,000 1 MB | First 16-bit CPU on a chip
8088 6/1979 5-8 29,000 1 MB | Used in IBM PC
80286 2/1982 8-12 134,000 | 16 MB | Memory protection present
80386 10/1985 16-33 | 275,000 4 GB | First 32-bit CPU
80486 4/1989 25-100 1.2M 4 GB | Built-in 8-KB cache memory
Pentium 3/1993 60-233 3.1M 4 GB | Two pipelines; later models had MMX
Pentium Pro| 3/1995 | 150-200 5.5M 4 GB | Two levels of cache built in
Pentium I 5/1997 | 233-450 7.5M 4 GB | Pentium Pro plus MMX instructions
Pentium Il | 2/1999 | 650-1400 9.5M 4 GB | SSE Instructions for 3D graphics
Pentium 4 |11/2000 [1300-3800 42M 4 GB | Hyperthreading; more SSE instructions

Figure 1-11. The Intel CPU family. Clock speeds are measured in MHz
(megahertz) where 1 MHz is 1 million cycles/sec.

8080. The 8086 was followed by the 8088, which had the same architecture as
the 8086, and ran the same programs but had an 8-bit bus instead of a 16-bit bus,
making it both slower and cheaper than the 8086. When IBM chose the 8088 as
the CPU for the original IBM PC, this chip quickly became the personal computer
industry standard.

Neither the 8088 nor the 8086 could address more than 1 megabyte of mem-
ory. By the early 1980s this became more and more of a serious problem, so Intel
designed the 80286, an upward compatible version of the 8086. The basic instruc-
tion set was essentially the same as that of the 8086 and 8088, but the memory
organization was quite different, and rather awkward, due to the requirement of
compatibility with the older chips. The 80286 was used in the IBM PC/AT and in
the midrange PS/2 models. Like the 8088, it was a huge success, mostly because
people viewed it as a faster 8088.

The next logical step was a true 32-bit CPU on a chip, the 80386, brought out
in 1985. Like the 80286, this one was more-or-less compatible with everything
back to the 8080. Being backward compatible was a boon to people for whom
running old software was important, but a nuisance to people who would have
preferred a simple, clean, modern architecture unencumbered by the mistakes and
technology of the past.

Four years later the 80486 came out. It was essentially a faster version of the
80386 that also had a floating-point unit and 8 kilobytes of cache memory on chip.
Cache memory is used to hold the most commonly used memory words inside or
close to the CPU, to avoid (slow) accesses to main memory. The 80486 also had
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built-in multiprocessor support, to allow manufacturers to build systems contain-
ing multiple CPUs sharing a common memory.

At this point, Intel found out the hard way (by losing a trademark infringe-
ment lawsuit) that numbers (like 80486) cannot be trademarked, so the next gen-
eration got a name: Pentium (from the Greek word for five, mevte). Unlike the
80486, which had one internal pipeline, the Pentium had two of them, which
helped make it twice as fast (we will discuss pipelines in detail in Chap. 2).

Later in the production run, Intel added special MMX (MultiMedia eXten-
sion) instructions. These instructions were intended to speed up computations
required to process audio and video, making the addition of special multimedia
COprocessors unnecessary.

When the next generation appeared, people who were hoping for the Sexium
(sex is Latin for six) were disappointed. The name Pentium was now so well
known that the marketing people wanted to keep it, and the new chip was called
the Pentium Pro. Despite the small name change from its predecessor, this pro-
cessor represented a major break with the past. Instead of having two or more
pipelines, the Pentium Pro had a very different internal organization and could
execute up to five instructions at a time.

Another innovation found in the Pentium Pro was a two-level cache memory.
The processor chip itself had 8 kilobytes of fast memory to hold commonly-used
instructions and another 8 kilobytes of fast memory to hold commonly-used data.
In the same cavity within the Pentium Pro package (but not on the chip itself) was
a second cache memory of 256 kilobytes.

Although the Pentium Pro had a big cache, it lacked the MMX instructions
(because Intel was unable to manufacture such a large chip with acceptable
yields). When the technology improved enough to get both the MMX instructions
and the cache on one chip, the combined product was released as the Pentium II.
Next, yet more multimedia instructions, called SSE (Streaming SIMD Exten-
sions), were added for enhanced 3D graphics (Raman et al., 2000). The new chip
was dubbed the Pentium III, but internally it was essentially a Pentium II.

The next Pentium was based on a different internal architecture. To celebrate
this event, Intel switched from Roman numerals to Arabic numbers and called it
the Pentium 4. As usual, the Pentium 4 was faster than all its predecessors. The
3.06 GHz version also introduced an intriguing new feature—hyperthreading.
This feature allowed programs to split their work into two threads of control
which the Pentium 4 could run in parallel, speeding up execution. In addition,
another batch of SSE instructions was added to speed up audio and video process-
ing even more. A photograph of the Pentium 4 chip is given in Fig. 1-12. In real-
ity, it is about 16.0 mm X 13.5 mm, an extremely large chip.

In addition to the mainline desktop CPUs discussed above, Intel has manufac-
tured variants of some of the Pentium chips for special markets. In early 1998,
Intel introduced a new product line called the Celeron, which was basically a
low-price, low-performance version of the Pentium 2 intended for low-end PCs.
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Figure 1-12. The Pentium 4 chip. The photograph is copyrighted by the Intel
Corporation, 2003 and used by permission.

Since the Celeron has the same architecture as the Pentium 2, we will not discuss
it further in this book. In June 1998, Intel introduced a special version of the Pen-
tium 2 for the upper end of the market. This processor, called the Xeon, had a
larger cache, a faster bus, and better multiprocessor support, but was otherwise a
normal Pentium 2, so we will not discuss it separately either. The Pentium III
also had a Xeon version.

In Nov. 2000, Intel released the Pentium 4, which ran the same programs as
the Pentium III and Xeon, but internally was a completely new design. The 3.06
GHz version of the Pentium 4 introduced hyperthreading, a subject we will dis-
cuss in Chap. 8.

1n 2003, Intel introduced the Pentium M (as in Mobile), a chip designed for
notebook computers. This chip was part of the Centrino architecture, whose goals
were lower power consumption for longer battery lifetime; smaller, lighter, com-
puters; and built-in wireless networking capability using the IEEE 802.11 (WiFi)
standard. Intel intends to introduce chip sets for other specific applications in the
future, for example, home entertainment devices and IEEE 802.16 (WiMax) note-
books.

All the Intel chips are backward compatible with their predecessors back as
far as the 8086. In other words, a Pentium 4 can run old 8086 programs without



SEC. 14 EXAMPLE COMPUTER FAMILIES 41

modification. This compatibility has always been a design requirement for Intel,
to allow users to maintain their existing investment in software. Of course, the
Pentium 4 is three orders of magnitude more complex than the 8086, so it can do
quite a few things that the 8086 could not do. These piecemeal extensions have
resulted in an architecture that is not as elegant as it might have been had some-
one given the Pentium 4 architects 42 million transistors and instructions to start
all over again.

It is interesting to note that although Moore’s law has long been associated
with the number of bits in a memory, it applies equally well to CPU chips. By
plotting the transistor counts given in Fig. 1-12 against the date of introduction of
each chip on a semilog scale, we see that Moore’s law holds here too. This graph
is given in Fig. 1-13.
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Figure 1-13. Moore’s law for (Intel) CPU chips.

While Moore’s law will probably continue to hold for some years to come,
another problem is starting to overshadow it: heat dissipation. Smaller transistors
make it possible to run at higher clock frequencies, which requires higher using a
higher voltage. Power consumed and heat dissipated is proportional to the square
of the voltage, so going faster means having more heat to get rid of. At 3.6 GHz,
the Pentium 4 consumes 115 watts of power. That means it gets about as hot as a
100-watt light bulb. Speeding up the clock makes the problem worse.

In November 2004, Intel canceled the 4-GHz Pentium 4 due to problems dis-
sipating the heat. Large fans can help but the noise they make is not popular with
users and water cooling, while used on large mainframes, is not an option for
desktop machines (and even less so for notebook computers). As a consequence,
the once-relentless march of the clock may be temporarily stymied, at least until
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Intel’s engineers figure out how to get rid of all the heat generated in an efficient
way. Instead, Intel’s future plans call for putting two CPUs on a single chip,
along with large shared cache. Because of the way power consumption is related
to voltage and clock speed, two CPUs on a chip consumes far less power than one
CPU at the twice the speed. As a consequence, the gain offered by Moore’s law
may be increasingly exploited in the future to include larger and larger on-chip
caches, rather than higher and higher clock speeds (because memory does not
consume much power).

1.4.2 Introduction to the UltraSPARC III

In the 1970s, UNIX was popular at universities, but no personal computers ran
UNIX, so UNIX-lovers had to use (often overloaded) timeshared minicomputers
such as the PDP-11 and VAX. In 1981, a German Stanford graduate student,
Andy Bechtolsheim, who was frustrated at having to go to the computer center to
use UNIX, decided to solve this problem by building himself a personal UNIX
workstation out of off-the-shelf parts. He called it the SUN-1 (Stanford Univer-
sity Network).

Bechtolsheim soon attracted the attention of Vinod Khosla, a 27-year-old
Indian who had a burning desire to retire as a millionaire by age 30. Khosla con-
vinced Bechtolsheim to form a company to build and sell Sun workstations.
Khosla then hired Scott McNealy, another Stanford graduate student, to head
manufacturing. To write the software, they hired Bill Joy, the principle architect
of Berkeley UNIX. The four of them founded Sun Microsystems in 1982.

Sun’s first product, the Sun-1, which was powered by a Motorola 68020 CPU,
was an instant success, as were the follow-up Sun-2 and Sun-3 machines, which
also used Motorola CPUs. Unlike other personal computers of the day, these
machines were far more powerful (hence the designation “workstation”) and
were designed from the start to be run on a network. Each Sun workstation came
equipped with an Ethernet connection and with TCP/IP software for connecting to
the ARPANET, the forerunner of the Internet.

By 1987, Sun, now selling half a billion dollars a year worth of systems, de-
cided to design its own CPU, basing it upon a revolutionary new design from the
University of California at Berkeley (the RISC II). This CPU, called the SPARC
(Scalable Processor ARChitecture), formed the basis of the Sun-4 workstation.
Within a short time, all of Sun’s products used the SPARC CPU.

Unlike many other computer companies, Sun decided not to manufacture the
SPARC CPU chip itself. Instead, it licensed several different semiconductor
manufacturers to produce them, hoping that competition among them would drive
performance up and prices down. These vendors produced a number of different
chips, based on different technologies, running at different clock speeds, and with
various prices. These chips included the MicroSPARC, HyperSPARC, Super-
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SPARC, and TurboSPARC. Although these CPUs differed in minor ways, all
were binary compatible and ran the same user programs without modification.

Sun always wanted SPARC to be an open architecture, with many suppliers of
parts and systems, in order to build an industry that could compete in a personal
computer world already dominated by Intel-based CPUs. To gain the trust of
companies that were interested in the SPARC but did not want to invest in a pro-
duct controlled by a competitor, Sun created an industry consortium, SPARC
International, to manage the development of future versions of the SPARC archi-
tecture. Thus it is important to distinguish between the SPARC architecture,
which is a specification of the instruction set and other programmer-visible
features, and a particular implementation of it. In this book we will study both the
generic SPARC architecture, and, when discussing CPU chips in Chaps. 3 and 4,
a specific SPARC chip used in Sun workstations.

The initial SPARC was a full 32-bit machine, running at 36 MHz. The CPU,
called the IU (Integer Unit) was lean and mean, with only three major instruction
formats and only 55 instructions in all. In addition, a floating-point unit added
another 14 instructions. This history can be contrasted to the Intel line, which
started out with 8- and 16-bit chips (8088, 8086, 80286) and finally became a 32-
bit chip with the 80386.

The SPARC’s first break with the past occurred in 1995, with the develop-
ment of Version 9 of the SPARC architecture, a full 64-bit architecture, with 64-
bit addresses and 64-bit registers. The first Sun workstation to implement the V9
(Version 9) architecture was the UltraSPARC 1, introduced in 1995 (Tremblay
and O’Connor, 1996). Despite its being a 64-bit machine, it was also fully binary
compatible with the existing 32-bit SPARC:s.

The UltraSPARC was intended to break new ground. Whereas previous ma-
chines were designed for handling alphanumeric data and running programs like
word processors and spreadsheets, the UltraSPARC was designed from the begin-
ning to handle images, audio, video, and multimedia in general. Among other
innovations besides the 64-bit architecture were 23 new instructions, including
some for packing and unpacking pixels from 64-bit words, scaling and rotating
images, block moves, and performing real-time video compression and decom-
pression. These instructions, called VIS (Visual Instruction Set) were aimed at
providing general multimedia capability, analogous to Intel’s MMX instructions.

The UltraSPARC was aimed at high-end applications, such as large multipro-
cessor Web servers with dozens of CPUs and physical memories of up to 8§ TB [1
TB (terabyte) = 10'? bytes]. However, smaller versions can be used in notebook
computers as well.

The successors to the UltraSPARC I were the UltraSPARC II, UltraSPARC
III, and UltraSPARC IV. These models differ primarily in clock speed, but some
new features were added in each iteration as well. In most of this book, when we
discuss the SPARC architecture, we will primarily use the 64-bit V9 UltraSPARC
IIT Cu as our example. The UltraSPARC 1V is essentially a dual processor in
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which two UltraSPARC IlIs are colocated on the same CPU chip and share the
same memory. We will cover it when we come to multiprocessors in Chap. 8.

1.4.3 Introduction to the 8051

Our third example is very different from our first (the Pentium 4, used in per-
sonal computers) and the second (the UltraSPARC III, used in servers). It is the
8051, which is used in embedded systems. The 8051 story starts in 1976, when
the 8-bit 8080 had been on the market for about two years. Appliance makers
were starting to incorporate the 8080 into their devices, but to build a complete
system they needed the 8080 CPU chip, one or more memory chips, and one or
more I/0O chips. The cost of at least three chips and their interconnection was sub-
stantial, and restricted the use of computers in embedded systems to fairly large
and expensive items. Many manufacturers asked Intel to put the whole computer
(CPU, memory, and I/O) on a single chip to reduce costs.

Intel responded to its customers by producing the 8748 chip, a 17,000-
transistor microcontroller containing an 8080-like CPU, 1 KB of read-only mem-
ory for the program, 64 bytes of read/write memory for the variables, an 8-bit
timer, and 27 1/O lines for controlling switches, buttons, and lights. While primi-
tive, the chip was a commercial success, which led Intel to release the 8051 in
1980. This new chip contained 60,000 transistors, a much faster CPU, 4 KB of
read-only memory, 128 bytes of read-write memory, 32 I/O lines, a serial port,
and two 16-bit timers. It was soon followed by other members of what Intel
called the MCS-51 family, shown in Fig. 1-14.

Chip | Program memory | Mem. type | RAM | Timers | Interrupts
8031 0 KB 128 2 5
8051 4 KB ROM 128 2 5
8751 8 KB EPROM 128 2 5
8032 0 KB 256 3 6
8052 8 KB ROM 256 3 6
8752 8 KB EPROM 256 3 6

Figure 1-14. Members of the MCS-51 family.

All of these chips use read-only memories for the program plus a small
amount of read-write memory, called RAM (Random Access Memory) for data
storage. With the 8031 and 8032, the program memory is external, allowing more
than 8 KB to be used if needed. We will study ROM (Read Only Memory) and
EPROM (Erasable Programmable ROM) in Chap. 3. For the moment, it is
sufficient to know that the 8051 and 8052 are single chip microcontrollers used in
actual products. Each batch is custom manufactured for the customer (e.g., an
appliance manufacturer) and contains the program supplied by the customer.
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In order to develop the software, however, the customer needs a development
system. That is where the 8751 and 8752 come in. They are much more expen-
sive than the 8051 and 8052, but can be programmed by the customer for the pur-
pose of software testing. If a bug is found in the code, the program in the 8751 or
8752 can be erased by exposing the chip to an ultraviolet light. A new program
can then be burned into it. When the software is finished, it can be delivered to
the chip manufacturer, which then produces custom 8051s or 8052s containing the
code.

In terms of architecture, interfacing, and programming, all the MCS-51 family
members are very similar. For simplicity, we will mostly refer to the 8051, point-
ing out differences with the other chips where that is needed.

To some people, using an 8-bit chip that is more than 20 years old as an
example may seem like a strange idea, but there are good reasons for doing so.
The number of microcontrollers sold each year is around 8 billion, and climbing
rapidly. This number is orders of magnitude more than the number of Pentiums
sold annually. It was not until 2001 until the number of 8-bit microcontrollers
sold per year exceeded the volume of the 4-bit microcontrollers. Currently 8-bit
microcontrollers outsell all the others combined, and the MCS-51 family is the
most popular 8-bit family. Given the growing importance of embedded systems,
anyone studying computer architecture should be familiar with the chips used in
them, and the 8051 is one of the most popular ones.

There are a variety of reasons for the success of the 8051. First, and foremost,
is the price. Depending on the number of units ordered, an 8051 can be had for
around 10 to 15 cents per chip, maybe less in large volume. In contrast, a 32-bit
microcontroller typically costs 30 times as much, with a 16-bit one somewhere in
between. For products that sell for under $50 in competitive markets, knocking a
couple of dollars off the manufacturing cost can make a significant difference in
retail price and in sales. This is the main reason the 8051 is so popular—it is very
cheap.

Second, over half a dozen companies manufacture 8051s under license from
Intel. Their products cover a wide range of speeds, from the original 12 MHz to
100 MHz, and use many different manufacturing and packaging technologies.
Not only does this competition keep prices low, but large customers are much
happier when they are not dependent on a single supplier.

Third, because the 8051 has been around for so long, there is a vast amount of
software for it, including assemblers, compilers for C and other languages,
libraries of all kinds, debuggers, simulators, test software, and much more. There
are also many complete development systems on the market, which speed up
developing the embedded hardware and software. Finally, large numbers of pro-
grammers and hardware engineers are familiar with the 8051, making it easy to
find skilled personnel.

This popularity feeds on itself. Researchers interested in embedded systems
often choose the 8051 as their main object of study due to its widespread use, for
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example, for testing out new energy-efficient technologies (Martin et al., 2003) or
fault tolerance (Lima et al., 2002).

There is a great deal of information about the 8051 on the Internet. One good
starting place is www.8051.com. In addition, people are still writing new books
about it (Ayala, 2004; Calcutt et al., 2004; MacKenzie et al., 2005; and Mazidi et
al., 2005).

1.5 METRIC UNITS

To avoid any confusion, it is worth stating explicitly that in this book, as in
computer science in general, metric units are used instead of traditional English
units (the furlong-stone-fortnight system). The principal metric prefixes are listed
in Fig. 1-15. The prefixes are typically abbreviated by their first letters, with the
units greater than 1 capitalized (KB, MB, etc.). One exception (for historical rea-
sons) is kbps for kilobits/sec. Thus, a 1-Mbps communication line transmits 10°
bits/sec and a 100 psec (or 100 ps) clock ticks every 107!° seconds. Since milli
and micro both begin with the letter “m,” a choice had to be made. Normally,
“m” is for milli and “p” (the Greek letter mu) is for micro.

Exp. Explicit Prefix | Exp. Explicit Prefix
10°° 0.001 milli 10° 1,000 | Kilo
10® | 0.000001 micro | 10° 1,000,000 | Mega
107° 0.000000001 nano 10° 1,000,000,000 | Giga
102 | 0.000000000001 pico 10" 1,000,000,000,000 | Tera
107" | 0.000000000000001 femto | 10" 1,000,000,000,000,000 | Peta
107'® | 0.0000000000000000001 atto 10" 1,000,000,000,000,000,000 | Exa
102" | 0.0000000000000000000001 zepto | 10* 1,000,000,000,000,000,000,000 | Zetta
102* | 0.0000000000000000000000001 | yocto | 10* 1,000,000,000,000,000,000,000,000 | Yotta

Figure 1-15. The principal metric prefixes.

It is also worth pointing out that for measuring memory, disk, file, and data-
base sizes, in common industry practice, the units have slightly different mean-
ings. There, kilo means 210 (1024) rather than 10° (1000) because memories are
always a power of two. Thus, a 1-KB memory contains 1024 bytes, not 1000
bytes. Similarly, a 1-MB memory contains 220 (1,048,576) bytes, a 1-GB mem-
ory contains 230 (1,073,741,824) bytes, and a 1-TB database contains 240
(1,099,511,627,776) bytes. However, a 1-kbps communication line can transmit
1000 bits per second and a 10-Mbps LAN runs at 10,000,000 bits/sec because
these speeds are not powers of two. Unfortunately, many people tend to mix up
these two systems, especially for disk sizes. To avoid ambiguity, in this book, we
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will use the symbols KB, MB, GB, and TB for 210, 220, 230, and 2% bytes, respec-
tively, and the symbols kbps, Mbps, Gbps, and Tbps for 103, 10%, 10, and 10'?
bits/sec, respectively.

1.6 OUTLINE OF THIS BOOK

This book is about multilevel computers (which includes nearly all modern
computers) and how they are organized. We will examine four levels in consider-
able detail—namely, the digital logic level, the microarchitecture level, the ISA
level, and the operating system machine level. Some of the basic issues to be
examined include the overall design of the level (and why it was designed that
way), the kinds of instructions and data available, the memory organization and
addressing, and the method by which the level is implemented. The study of these
topics, and similar ones, is called computer organization or computer architecture.

We are primarily concerned with concepts rather than details or formal
mathematics. For that reason, some of the examples given will be highly simpli-
fied, in order to emphasize the central ideas and not the details.

To provide some insight into how the principles presented in this book can be,
and are, applied in practice, we will use the Pentium 4, the UltraSPARC III, and
the 8051 as running examples throughout the book. These three have been chosen
for several reasons. First, all are widely used and the reader is likely to have
access to at least one of them. Second, each one has its own unique architecture,
which provides a basis for comparison and encourages a ‘“what are the alterna-
tives?” attitude. Books dealing with only one machine often leave the reader with
a “true machine design revealed”’ feeling, which is absurd in light of the many
compromises and arbitrary decisions that designers are forced to make. The
reader is encouraged to study these and all other computers with a critical eye and
to try to understand why things are the way they are, as well as how they could
have been done differently rather than simply accepting them as given.

It should be made clear from the beginning that this is not a book about how
to program the Pentium 4, UltraSPARC III, or 8051. These machines will be used
for illustrative purposes where appropriate, but we make no pretense of being
complete. Readers wishing a thorough introduction to one of them should consult
the manufacturer’s publications.

Chapter 2 is an introduction to the basic components of a computer—
processors, memories, and input/output equipment. It is intended to provide an
overview of the system architecture and an introduction to the following chapters.

Chapters 3, 4, 5, and 6 each deal with one specific level shown in Figure 1-2.
Our treatment is bottom-up, because machines have traditionally been designed
that way. The design of level k is largely determined by the properties of level
k — 1, so it is hard to understand any level unless you already have a good grasp
of the underlying level that motivated it. Also, it is educationally sound to
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proceed from the simpler lower levels to the more complex higher levels rather
than vice versa.

Chapter 3 is about the digital logic level, the machine’s true hardware. It
discusses what gates are and how they can be combined into useful circuits.
Boolean algebra, a tool for analyzing digital circuits, is also introduced. Com-
puter buses are explained, especially the popular PCI bus. Numerous examples
from industry are discussed in this chapter, including the three running examples
mentioned above.

Chapter 4 introduces the architecture of the microarchitecture level and its
control. Since the function of this level is to interpret the level 2 instructions in
the layer above it, we will concentrate on this topic and illustrate it by means of
examples. The chapter also contains discussions of the microarchitecture level of
some real machines.

Chapter 5 discusses the ISA level, the one most computer vendors advertise as
the machine language. We will look at our example machines here in detail.

Chapter 6 covers some of the instructions, memory organization, and control
mechanisms present at the operating system machine level. The examples used
here are Windows XP (popular on high-end Pentium 4 server systems) and UNIX,
used on the UltraSPARC III.

Chapter 7 is about the assembly language level. It covers both assembly
language and the assembly process. The subject of linking also comes up here.

Chapter 8 discusses parallel computers, an increasingly important topic nowa-
days. Some of these parallel computers have multiple CPUs that share a common
memory. Others have multiple CPUs without common memory. Some are super-
computers; some are systems on a chip; others are COWs.

Chapter 9 contains an annotated list of suggested readings, arranged by sub-
ject, and an alphabetical list of literature citations. It is the most important
chapter in the book. Use it.

PROBLEMS

1. Explain each of the following terms in your own words:

a. Translator.
b. Interpreter.
c. Virtual machine.

2. What is the difference between interpretation and translation?

3. Is it conceivable for a compiler to generate output for the microarchitecture level
instead of for the ISA level? Discuss the pros and cons of this proposal.

4. Can you imagine any multilevel computer in which the device level and digital logic
levels were not the lowest levels? Explain.
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S.

Consider a multilevel computer in which all the levels are different. Each level has
instructions that are m times as powerful as those of the level below it; that is, one
level r instruction can do the work of m level r — 1 instructions. If a level 1 program
requires k seconds to run, how long would equivalent programs take at levels 2, 3, and
4, assuming 7 level r instructions are required to interpret a single r + 1 instruction?

. Some instructions at the operating system machine level are identical to ISA language

instructions. These instructions are carried out directly by the microprogram rather
than by the operating system. In light of your answer to the preceding problem, why
do you think this is the case?

. Consider a computer with identical interpreters at levels 1, 2, and 3. It takes an inter-

preter n instructions to fetch, examine, and execute one instruction. A level 1 instruc-
tion takes k nanoseconds to execute. How long does it take for an instruction at levels
2,3, and 4?

. In what sense are hardware and software equivalent? Not equivalent?

9. Babbage’s difference engine had a fixed program that could not be changed. Is this

10.

11.

12.

13.

14.
15.

16.

essentially the same thing as a modern CD-ROM that cannot be changed? Explain
your answer.

One of the consequences of von Neumann’s idea to store the program in memory is
that programs can be modified, just like data. Can you think of an example where this
facility might have been useful? (Hint: Think about doing arithmetic on arrays.)

The performance ratio of the 360 model 75 was 50 times that of the 360 model 30, yet
the cycle time was only five times as fast. How do you account for this discrepancy?

Two basic system designs are shown in Figure 1-5 and Figure 1-6. Describe how
input/output might occur in each system. Which one has the potential for better
overall system performance?

Suppose that each of the 300 million people in the United States fully consumes two
packages of goods a day bearing RFID tags. How many RFID tags have to be pro-
duced annually to meet that demand? At a penny a tag, what is the total cost of the
tags? Given the size of GDP, is this amount of money going to be an obstacle to their
use on every package offered for sale?

Name three appliances that are candidates for being run by an embedded CPU.

At a certain point in time, a transistor on a microprocessor was 0.1 micron in diameter.
According to Moore’s law, how big would a transistor be on next year’s model?

The legal issue of who invented the computer was settled in April 1973 by Judge Earl
Larson, who handled a patent infringement lawsuit filed by the Sperry Rand Corpora-
tion, which had acquired the ENIAC patents. Sperry Rand’s position was that every-
body making a computer owed them royalties because it owned the key patents. The
case went to trial in June 1971 and over 30,000 exhibits were entered. The court tran-
script ran to over 20,000 pages. Study this case more carefully using the extensive
information available on the Internet and write a report discussing the technical
aspects of the case. What exactly did Eckert and Mauchley patent and why did the
judge feel their system was based on Atanasoff’s earlier work?
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17. Pick the three people you think were most influential in creating modern computer
hardware and write a short report describing their contributions and why you picked
them.

18. Repeat the previous question for computer software.



COMPUTER SYSTEMS
ORGANIZATION

A digital computer consists of an interconnected system of processors,
memories, and input/output devices. This chapter is an introduction to these three
components and to their interconnection, as background for the detailed examina-
tion of specific levels in the five succeeding chapters. Processors, memories, and
input/output are key concepts and will be present at every level, so we will start
our study of computer architecture by looking at all three in turn.

2.1 PROCESSORS

The organization of a simple bus-oriented computer is shown in Fig. 2-1. The
CPU (Central Processing Unit) is the “brain’’ of the computer. Its function is to
execute programs stored in the main memory by fetching their instructions, exa-
mining them, and then executing them one after another. The components are
connected by a bus, which is a collection of parallel wires for transmitting
address, data, and control signals. Buses can be external to the CPU, connecting
it to memory and I/O devices, but also internal to the CPU, as we will see shortly.

The CPU is composed of several distinct parts. The control unit is responsi-
ble for fetching instructions from main memory and determining their type. The
arithmetic logic unit performs operations such as addition and Boolean AND
needed to carry out the instructions.

51
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Figure 2-1. The organization of a simple computer with one CPU and two I/O
devices.

The CPU also contains a small, high-speed memory used to store temporary
results and certain control information. This memory is made up of a number of
registers, each of which has a certain size and function. Usually, all the registers
have the same size. Each register can hold one number, up to some maximum
determined by the size of the register. Registers can be read and written at high
speed since they are internal to the CPU.

The most important register is the Program Counter (PC), which points to
the next instruction to be fetched for execution. ( The name *“program counter” is
somewhat misleading because it has nothing to do with counting anything, but the
term is universally used. Also important is the Instruction Register (IR), which
holds the instruction currently being executed. ( Most computers have numerous
other registers as well, some of them general purpose as well as some for specific
purposes.

2.1.1 CPU Organization

The internal organization of part of a typical von Neumann CPU is shown in
Fig. 2-2 in more detail. This part is called the data path and consists of the regis-
ters (typically 1 to 32), the ALU (Arithmetic Logic Unit), and several buses con-
necting the pieces. The registers feed into two ALU input registers, labeled A and
B in the figure. These registers hold the ALU input while the ALU is performing
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some computation. The data path is very important in all machines and we will
discuss it at great length throughout this book.

— A+B

~ Registers

ﬁh ﬁh‘/ALu input register

/ALU input bus

ALU

ALU output register
A+B |‘/ p g

Figure 2-2. The data path of a typical von Neumann machine.

The ALU itself performs addition, subtraction, and other simple operations on
its inputs, thus yielding a result in the output register. This output register can be
stored back into a register. Later on, the register can be written (i.e., stored) into
memory, if desired. Not all designs have the A, B, and output registers. In the
example, addition is illustrated.

Most instructions can be divided into one of two categories: register-memory
or register-register. Register-memory instructions allow memory words to be
fetched into registers, where they can be used as ALU inputs in subsequent
instructions, for example. (“Words™ are the units of data moved between mem-
ory and registers. A word might be an integer. We will discuss memory organ-
ization later in this chapter.) Other register-memory instructions allow registers to
be stored back into memory.

The other kind of instruction is register-register. A typical register-register
instruction fetches two operands from the registers, brings them to the ALU input
registers, performs some operation on them, for example, addition or Boolean
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AND, and stores the result back in one of the registers. The process of running
two operands through the ALU and storing the result is called the data path cycle
and is the heart of most CPUs. To a considerable extent, it defines what the
machine can do. The faster the data path cycle is, the faster the machine runs.

2.1.2 Instruction Execution

The CPU executes each instruction in a series of small steps. Roughly speak-
ing, the steps are as follows:

Fetch the next instruction from memory into the instruction register.
Change the program counter to point to the following instruction.
Determine the type of instruction just fetched.

If the instruction uses a word in memory, determine where it is.
Fetch the word, if needed, into a CPU register.

Execute the instruction.

N A WD

Go to step 1 to begin executing the following instruction.

This sequence of steps is frequently referred to as the fetch-decode-execute
cycle. Itis central to the operation of all computers.

This description of how a CPU works closely resembles a program written in
English. Figure 2-3 shows this informal program rewritten as a Java method (i.e.,
procedure) called interpret. The machine being interpreted has two registers visi-
ble to user programs: the program counter (PC), for keeping track of the address
of the next instruction to be fetched, and the accumulator (AC), for accumulating
arithmetic results. It also has internal registers for holding the current instruction
during its execution (instr), the type of the current instruction (instr_type), the ad-
dress of the instruction’s operand (data_loc), and the current operand itself (data).
Instructions are assumed to contain a single memory address. The memory loca-
tion addressed contains the operand, for example, the data item to add to the accu-
mulator.

The very fact that it is possible to write a program that can imitate the func-
tion of a CPU shows that a program need not be executed by a “hardware”” CPU
consisting of a box full of electronics. Instead, a program can be carried out by
having another program fetch, examine, and execute its instructions. A program
(such as the one in Fig. 2-3) that fetches, examines, and executes the instructions
of another program is called an interpreter, as mentioned in Chap. 1.

This equivalence between hardware processors and interpreters has important
implications for computer organization and the design of computer systems. After
having specified the machine language, L, for a new computer, the design team
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public class Interp {

static int PC; // program counter holds address of next instr
static int AC; // the accumulator, a register for doing arithmetic
static int instr; // a holding register for the current instruction
static int instr_type; / the instruction type (opcode)

static int data_loc; // the address of the data, or —1 if none

static int data; // holds the current operand

static boolean run_bit = true; // a bit that can be turned off to halt the machine

public static void interpret(int memory[ ], int starting_address) {
// This procedure interprets programs for a simple machine with instructions having
// one memory operand. The machine has a register AC (accumulator), used for
// arithmetic. The ADD instruction adds an integer in memory to the AC, for example.
/[ The interpreter keeps running until the run bit is turned off by the HALT instruction.
// The state of a process running on this machine consists of the memory, the
// program counter, the run bit, and the AC. The input parameters consist of
/I of the memory image and the starting address.

PC = starting_address;
while (run_bit) {

instr = memory[PC]; // fetch next instruction into instr

PC=PC + 1; // increment program counter

instr_type = get_instr_type(instr); // determine instruction type

data_loc = find_data(instr, instr_type); //locate data (-1 if none)

if (data_loc >= 0) /I if data_loc is —1, there is no operand
data = memory[data_loc]; // fetch the data

execute(instr_type, data); // execute instruction

}

private static int get_instr_type(int addr) { ... }
private static int find_data(int instr, int type) { ... }
private static void execute(int type, int data) { ... }

Figure 2-3. An interpreter for a simple computer (written in Java).

can decide whether they want to build a hardware processor to execute programs
in L directly or whether they want to write an interpreter to interpret programs in
L instead. If they choose to write an interpreter, they must also provide some
hardware machine to run the interpreter. Certain hybrid constructions are also
possible, with some hardware execution as well as some software interpretation.
An interpreter breaks the instructions of its target machine into small steps.
As a consequence, the machine on which the interpreter runs can be much simpler
and less expensive than a hardware processor for the target machine would be.
This saving is especially significant if the target machine has a large number of
instructions and the instructions are fairly complicated, with many options. The
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saving comes essentially from the fact that hardware is being replaced by software
(the interpreter) and it costs more to replicate hardware than software.

Early computers had small, simple sets of instructions. But the quest for more
powerful computers led, among other things, to more powerful individual instruc-
tions. Very early on, it was discovered that more complex instructions often led
to faster program execution even though individual instructions might take longer
to execute. A floating-point instruction is an example of a more complex instruc-
tion. Direct support for accessing array elements is another. Sometimes it was as
simple as observing that the same two instructions often occurred consecutively,
so a single instruction could accomplish the work of both.

The more complex instructions were better because the execution of indivi-
dual operations could sometimes be overlapped or otherwise executed in parallel
using different hardware. For expensive, high-performance computers, the cost of
this extra hardware could be readily justified. Thus expensive, high-performance
computers came to have many more instructions than lower-cost ones. However,
the rising cost of software development and instruction compatibility require-
ments created the need to implement complex instructions even on low-cost com-
puters where cost was more important than speed.

By the late 1950s, IBM (then the dominant computer company) had recog-
nized that supporting a single family of machines, all of which executed the same
instructions, had many advantages, both for IBM and for its customers. IBM in-
troduced the term architecture to describe this level of compatibility. A new
family of computers would have one architecture but many different implementa-
tions that could all execute the same program, differing only in price and speed.
But how to build a low-cost computer that could execute all the complicated
instructions of high-performance, expensive machines?

The answer lay in interpretation. This technique, first suggested by Wilkes
(1951), permitted the design of simple, lower-cost computers that could neverthe-
less execute a large number of instructions. The result was the IBM System/360
architecture, a compatible family of computers, spanning nearly two orders of
magnitude, both in price and capability. A direct hardware (i.e., not interpreted)
implementation was used only on the most expensive models.

Simple computers with interpreted instructions also had other benefits.
Among the most important were

1. The ability to fix incorrectly implemented instructions in the field, or
even make up for design deficiencies in the basic hardware.

2. The opportunity to add new instructions at minimal cost, even after
delivery of the machine.

3. Structured design that permitted efficient development, testing, and
documenting of complex instructions.

As the market for computers exploded dramatically in the 1970s and computing
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capabilities grew rapidly, the demand for low-cost computers favored designs of
computers using interpreters. The ability to tailor the hardware and the interpreter
for a particular set of instructions emerged as a highly cost-effective design for
processors. As the underlying semiconductor technology advanced rapidly, the
advantages of the cost outweighed the opportunities for higher performance, and
interpreter-based architectures became the conventional way to design computers.
Nearly all new computers designed in the 1970s, from minicomputers to main-
frames, were based on interpretation.

By the late 70s, the use of simple processors running interpreters had become
very widespread except among the most expensive, highest-performance models,
such as the Cray-1 and the Control Data Cyber series. The use of an interpreter
eliminated the inherent cost limitations of complex instructions, and architectures
began to explore much more complex instructions, particularly the ways to
specify the operands to be used.

This trend reached its zenith with Digital Equipment Corporation’s VAX
computer, which had several hundred instructions, and more than 200 different
ways of specifying the operands to be used in each instruction. Unfortunately, the
VAX architecture was conceived from the beginning to be implemented with an
interpreter, with little thought given to the implementation of a high-performance
model. This mind set resulted in the inclusion of a very large number of instruc-
tions of marginal value and which were difficult to execute directly. This omis-
sion proved to be fatal to the VAX, and ultimately to DEC as well (Compaq
bought DEC in 1998 and Hewlett-Packard bought Compaq in 2001).

Though the earliest 8-bit microprocessors were very simple machines with
very simple instruction sets, by the late 70s, even microprocessors had switched to
interpreter-based designs. During this period, one of the major challenges facing
microprocessor designers was dealing with the growing complexity possible
through integrated circuits. A major advantage of the interpreter-based approach
was the ability to design a simple processor, with the complexity largely confined
to the memory holding the interpreter. Thus a complex hardware design could be
turned into a complex software design.

The success of the Motorola 68000, which had a large interpreted instruction
set, and the concurrent failure of the Zilog Z8000 (which had an equally large
instruction set, but without an interpreter) demonstrated the advantages of an
interpreter for bringing a new microprocessor to market quickly. This success
was all the more surprising given Zilog’s head start (the Z8000’s predecessor, the
780, was far more popular than the 68000’s predecessor, the 6800). Of course,
other factors were instrumental here too, not the least of which was Motorola’s
long history as a chip manufacturer and Exxon’s (Zilog’s owner) long history of
being an oil company, not a chip manufacturer.

Another factor working in favor of interpretation during that era was the
existence of fast read-only memories, called control stores, to hold the inter-
preters. Suppose that a typical interpreted instruction took the interpreter 10
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instructions, called microinstructions, at 100 nsec each, and two references to
main memory, at 500 nsec each. Total execution time was then 2000 nsec, only a
factor of two worse than the best that direct execution could achieve. Had the
control store not been available, the instruction would have taken 6000 nsec. A
factor of six penalty is a lot harder to swallow than a factor of two penalty.

2.1.3 RISC versus CISC

During the late 70s there was experimentation with very complex instructions,
made possible by the interpreter. Designers tried to close the ‘“semantic gap”
between what machines could do and what high-level programming languages
required. Hardly anyone thought about designing simpler machines, just as now
not a lot of research goes into designing less powerful operating systems, net-
works, word processors, etc. (perhaps unfortunately).

One group that bucked the trend and tried to incorporate some of Seymour
Cray’s ideas in a high-performance minicomputer was led by John Cocke at IBM.
This work led to an experimental minicomputer, named the 801, Although IBM
never marketed this machine and the results were not published until years later
(Radin, 1982), word got out and other people began investigating similar architec-
tures.

In 1980, a group at Berkeley led by David Patterson and Carlo Séquin began
designing VLSI CPU chips that did not use interpretation (Patterson, 1985; Patter-
son and Séquin, 1982). They coined the term RISC for this concept and named
their CPU chip the RISC I CPU followed shortly by the RISC II. Slightly later, in
1981, across the San Francisco Bay at Stanford, John Hennessy designed and fab-
ricated a somewhat different chip he called the MIPS (Hennessy, 1984). These
chips evolved into commercially important products, the SPARC and the MIPS,
respectively.

These new processors were significantly different than commercial processors
of the day. Since these new CPUs did not have to be backward compatible with
existing products, their designers were free to choose new instruction sets that
would maximize total system performance. While the initial emphasis was on
simple instructions that could be executed quickly, it was soon realized that
designing instructions that could be issued (started) quickly was the key to good
performance. How long an instruction actually took mattered less than how many
could be started per second.

At the time these simple processors were being first designed, the characteris-
tic that caught everyone’s attention was the relatively small number of instruc-
tions available, typically around 50. This number was far smaller than the 200 to
300 on established computers such as the DEC VAX and the large IBM main-
frames. In fact, the acronym RISC stands for Reduced Instruction Set Com-
puter, which was contrasted with CISC, which stands for Complex Instruction
Set Computer (a thinly-veiled reference to the VAX, which dominated university
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Computer Science Departments at the time). Nowadays, few people think that the
size of the instruction set is a major issue, but the name stuck.

To make a long story short, a great religious war ensued, with the RISC sup-
porters attacking the established order (VAX, Intel, large IBM mainframes).
They claimed that the best way to design a computer was to have a small number
of simple instructions that execute in one cycle of the data path of Figure 2-2,
namely, fetching two registers, combining them somehow (e.g., adding or AND-
ing them), and storing the result back in a register. Their argument was that even
if a RISC machine takes four or five instructions to do what a CISC machine does
in one instruction, if the RISC instructions are 10 times as fast (because they are
not interpreted), RISC wins. It is also worth pointing out that by this time the
speed of main memories had caught up to the speed of read-only control stores, so
the interpretation penalty had greatly increased, strongly favoring RISC machines.

One might think that given the performance advantages of RISC technology,
RISC machines (such as the Sun UltraSPARC) would have mowed over CISC
machines (such as the Intel Pentium) in the marketplace. Nothing like this has
happened. Why not?

First of all, there is the issue of backward compatibility and the billions of
dollars companies have invested in software for the Intel line. Second, surpris-
ingly, Intel has been able to employ the same ideas even in a CISC architecture.
Starting with the 486, the Intel CPUs contain a RISC core that executes the sim-
plest (and typically most common) instructions in a single data path cycle, while
interpreting the more complicated instructions in the usual CISC way. The net
result is that common instructions are fast and less common instructions are slow.
While this hybrid approach is not as fast as a pure RISC design, it gives competi-
tive overall performance while still allowing old software to run unmodified.

2.1.4 Design Principles for Modern Computers

Now that more than two decades have passed since the first RISC machines
were introduced, certain design principles have come to be accepted as a good
way to design computers given the current state of the hardware technology. If a
major change in technology occurs (e.g., a new manufacturing process suddenly
makes memory cycle time 10 times faster than CPU cycle time), all bets are off.
Thus machine designers should always keep an eye out for technological changes
that may affect the balance among the components.

That said, there is a set of design principles, sometimes called the RISC
design principles, that architects of general-purpose CPUs do their best to follow.
External constraints, such as the requirement of being backward compatible with
some existing architecture, often require compromises from time to time, but
these principles are goals that most designers strive to meet. Below we will dis-
cuss the major ones.
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All Instructions Are Directly Executed by Hardware

All common instructions are directly executed by the hardware. They are not
interpreted by microinstructions. Eliminating a level of interpretation provides
high speed for most instructions. For computers that implement CISC instruction
sets, the more complex instructions may be broken into separate parts, which can
then be executed as a sequence of microinstructions. This extra step slows the
machine down, but for less frequently occurring instructions it may be acceptable.

Maximize the Rate at Which Instructions Are Issued

Modern computers resort to many tricks to maximize their performance, chief
among which is trying to start as many instructions per second as possible. After
all, if you can issue 500 million instructions/sec, you have built a 500-MIPS pro-
cessor, no matter how long the instructions actually take to complete. (MIPS
stands for Millions of Instructions Per Second; the MIPS processor was so-named
as to be a pun on this acronym.) This principle suggests that parallelism can play
a major role in improving performance, since issuing large numbers of slow
instructions in a short time interval is only possible if multiple instructions can
execute at once.

Although instructions are always encountered in program order, they are not
always issued in program order (because some needed resource might be busy)
and they need not finish in program order. Of course, if instruction 1 sets a regis-
ter and instruction 2 uses that register, great care must be taken to make sure that
instruction 2 does not read the register until it contains the correct value. Getting
this right requires a lot of bookkeeping but has the potential for performance gains
by executing multiple instructions at once.

Instructions Should be Easy to Decode

A critical limit on the rate of issue of instructions is decoding individual
instructions to determine what resources they need. Anything that can aid this
process is useful. That includes making instructions regular, fixed length, with a
small number of fields. The fewer different formats for instructions, the better.

Only Loads and Stores Should Reference Memory

One of the simplest ways to break operations into separate steps is to require
that operands for most instructions come from—and return to—CPU registers.
The operation of moving operands from memory into registers can be performed
in separate instructions. Since access to memory can take a long time, and the
delay is unpredictable, these instructions can best be overlapped with other in-
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structions if they do nothing but move operands between registers and memory.
This observation means that only LOAD and STORE instructions should reference
memory. All other instructions should operate only on registers.

Provide Plenty of Registers

Since accessing memory is relatively slow, many registers (at least 32) need
to be provided, so that once a word is fetched, it can be kept in a register until it is
no longer needed. Running out of registers and having to flush them back to
memory only to later reload them is undesirable and should be avoided as much as
possible. The best way to accomplish this is to have enough registers.

2.1.5 Instruction-Level Parallelism

Computer architects are constantly striving to improve performance of the
machines they design. Making the chips run faster by increasing their clock speed
is one way, but for every new design, there is a limit to what is possible by brute
force at that moment in history. Consequently, most computer architects look to
parallelism (doing two or more things at once) as a way to get even more perfor-
mance for a given clock speed.

Parallelism comes in two general forms, namely, instruction-level parallelism
and processor-level parallelism. In the former, parallelism is exploited within
individual instructions to get more instructions/sec out of the machine. In the
latter, multiple CPUs work together on the same problem. Each approach has its
own merits. In this section we will look at instruction-level parallelism; in the one
after it, we will look at processor-level parallelism.

Pipelining

It has been known for years that the actual fetching of instructions from mem-
ory is a major bottleneck in instruction execution speed. To alleviate this prob-
lem, computers going back at least as far as the IBM Stretch (1959) have had the
ability to fetch instructions from memory in advance, so they would be there when
they were needed. These instructions were stored in a set of registers called the
prefetch buffer. This way, when an instruction was needed, it could usually be
taken from the prefetch buffer rather than waiting for a memory read to complete.

In effect, prefetching divides instruction execution up into two parts: fetching
and actual execution. The concept of a pipeline carries this strategy much fur-
ther. Instead of dividing instruction execution into only two parts, it is often
divided into many (often a dozen or more) parts, each one handled by a dedicated
piece of hardware, all of which can run in parallel.
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Figure 2-4(a) illustrates a pipeline with five units, also called stages. Stage 1
fetches the instruction from memory and places it in a buffer until it is needed.
Stage 2 decodes the instruction, determining its type and what operands it needs.
Stage 3 locates and fetches the operands, either from registers or from memory.
Stage 4 actually does the work of carrying out the instruction, typically by running
the operands through the data path of Figure 2-2. Finally, stage 5 writes the result
back to the proper register.

S1 S2 S3 S4 S5
Instruction Instruction Operand Instruction Write
fetch decode fetch execution back
unit unit unit unit unit
(a)

st |[1|[2]|[=]{[4]|[5] |[e]|[z]|[&]|[=]

s2: [6]

s3 OB EEE|E|E

s4: [6]

s5: 3

1 2 3 4 5 6 7 8 9

Time ——

T
=)

Figure 2-4. (a) A five-stage pipeline. (b) The state of each stage as a function
of time. Nine clock cycles are illustrated.

In Fig. 2-4(b) we see how the pipeline operates as a function of time. During
clock cycle 1, stage S1 is working on instruction 1, fetching it from memory.
During cycle 2, stage S2 decodes instruction 1, while stage S1 fetches instruction
2. During cycle 3, stage S3 fetches the operands for instruction 1, stage S2
decodes instruction 2, and stage S1 fetches the third instruction. During cycle 4,
stage S4 executes instruction 1, S3 fetches the operands for instruction 2, S2
decodes instruction 3, and S1 fetches instruction 4. Finally, during cycle 5, S5
writes the result of instruction 1 back, while the other stages work on the follow-
ing instructions.

Let us consider an analogy to make the concept of pipelining clearer. Imagine
a cake factory in which the baking of the cakes and the packaging of the cakes for
shipment are separated. Suppose that the shipping department has a long con-
veyor belt with five workers (processing units) lined up along it. Every 10 sec
(the clock cycle), worker 1 places an empty cake box on the belt. The box is car-
ried down to worker 2, who places a cake in it. A little later, the box arrives at
worker 3’s station, where it is closed and sealed. Then it continues to worker 4,
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who puts a label on the box. Finally, worker 5 removes the box from the belt and
puts it in a large container for later shipment to a supermarket. Basically, this is
the way computer pipelining works too: each instruction (cake) goes through
several processing steps before emerging completed at the far end.

Getting back to our pipeline of Fig. 2-4, suppose that the cycle time of this
machine is 2 nsec. Then it takes 10 nsec for an instruction to progress all the way
through the five-stage pipeline. At first glance, with an instruction taking 10 nsec,
it might appear that the machine can run at 100 MIPS, but in fact it does much
better than this. At every clock cycle (2 nsec), one new instruction is completed,
so the actual rate of processing is 500 MIPS, not 100 MIPS.

Pipelining allows a trade-off between latency (how long it takes to execute an
instruction), and processor bandwidth (how many MIPS the CPU has). With a
cycle time of 7 nsec, and n stages in the pipeline, the latency is nT nsec because
each instruction passes through n stages, each of which takes T nsec.

Since one instruction completes every clock cycle and there are 10°/7 clock
cycles/second, the number of instructions executed per second is 10°/T. For ex-
ample, if 7= 2 nsec, 500 million instructions are executed each seconds. To get
the number of MIPS, we have to divide the instruction execution rate by 1 million
to get (10°/T)/10° = 1000/T MIPS. Theoretically, we could measure instruction
execution rate in BIPS instead of MIPS, but nobody does that so we will not
either.

Superscalar Architectures

If one pipeline is good, then surely two pipelines are better. One possible
design for a dual pipeline CPU, based on Figure 2-4, is shown in Fig. 2-5. Here a
single instruction fetch unit fetches pairs of instructions together and puts each
one into its own pipeline, complete with its own ALU for parallel operation. To
be able to run in parallel, the two instructions must not conflict over resource
usage (e.g., registers), and neither must depend on the result of the other. As with
a single pipeline, either the compiler must guarantee this situation to hold (i.e., the
hardware does not check and gives incorrect results if the instructions are not
compatible), or conflicts are detected and eliminated during execution using extra
hardware.

Although pipelines, single or double, are mostly used on RISC machines (the
386 and its predecessors did not have any), starting with the 486 Intel began intro-
ducing data pipelines into its CPUs. The 486 had one pipeline and the original
Pentium had two five-stage pipelines roughly as in Fig. 2-5, although the exact
division of work between stages 2 and 3 (called decode-1 and decode-2) was
slightly different than in our example. The main pipeline, called the u pipeline,
could execute an arbitrary Pentium instruction. The second pipeline, called the v
pipeline, could execute only simple integer instructions (and also one simple
floating-point instruction—FXCH).
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S1 S2 S3 S4 S5
Instruction Operand Instruction Write
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Figure 2-5. Dual five-stage pipelines with a common instruction fetch unit.

Fixed rules determined whether a pair of instructions were compatible so they
could be executed in parallel. If the instructions in a pair were not simple enough
or incompatible, only the first one was executed (in the u pipeline). The second
one was then held and paired with the instruction following it. Instructions were
always executed in order. Thus Pentium-specific compilers that produced compa-
tible pairs could produce faster-running programs than older compilers. Measure-
ments showed that a Pentium running code optimized for it was exactly twice as
fast on integer programs as a 486 running at the same clock rate (Pountain, 1993).
This gain could be attributed entirely to the second pipeline.

Going to four pipelines is conceivable, but doing so duplicates too much
hardware (computer scientists, unlike folklore specialists, do not believe in the
number three). Instead, a different approach is used on high-end CPUs. The
basic idea is to have just a single pipeline but give it multiple functional units, as
shown in Fig. 2-6. For example, the Pentium II has a structure similar to this fig-
ure. It will be discussed in Chap. 4. The term superscalar architecture was
coined for this approach in 1987 (Agerwala and Cocke, 1987). Its roots, however,
go back more than 40 years to the CDC 6600 computer. The 6600 fetched an
instruction every 100 nsec and passed it off to one of 10 functional units for paral-
lel execution while the CPU went off to get the next instruction.

The definition of “superscalar’’ has evolved somewhat over time. It is now
used to describe processors that issue multiple instructions—often four or six—in
a single clock cycle. Of course, a superscalar CPU must have multiple functional
units to hand all these instructions to. Since superscalar processors generally have
one pipeline, they tend to look like Fig. 2-6.

Using this definition, the 6600 was technically not superscalar because it
issued only one instruction per cycle. However, the effect was almost the same:
instructions were issued at a much higher rate than they could be executed. The
difference between a CPU with a 100 nsec clock that issues one instruction every
cycle to a group of functional units and a CPU with a 400 nsec clock that issues
four instructions per cycle to the same group of functional units is very small. In
both cases, the key idea is that the issue rate is much higher than the execution
rate, with the workload being spread across a collection of functional units.
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Figure 2-6. A superscalar processor with five functional units.

Implicit in the idea of a superscalar processor is that the S3 stage can issue
instructions considerably faster than the S4 stage is able to execute them. If the
S3 stage issued an instruction every 10 nsec and all the functional units could do
their work in 10 nsec, no more than one would ever be busy at once, negating the
whole idea. In reality, most of the functional units in stage 4 take appreciably
longer than one clock cycle to execute, certainly the ones that access memory or
do floating-point arithmetic. As can be seen from the figure, it is possible to have
multiple ALUs in stage S4.

2.1.6 Processor-Level Parallelism

The demand for ever faster computers seems to be insatiable. Astronomers
want to simulate what happened in the first microsecond after the big bang, econ-
omists want to model the world economy, and teenagers want to play 3D interac-
tive multimedia games over the Internet with their virtual friends. While CPUs
keep getting faster, eventually they are going to run into the problems with the
speed of light, which is likely to stay at 20 cm/nanosecond in copper wire or opti-
cal fiber, no matter how clever Intel’s engineers are. Faster chips also produce
more heat, whose dissipation is a problem.

Instruction-level parallelism helps a little, but pipelining and superscalar
operation rarely win more than a factor of five or ten. To get gains of 50, 100, or
more, the only way is to design computers with multiple CPUs, so we will now
take a look at how some of these are organized.
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Array Computers

A substantial number of problems in the physical sciences and engineering
involve arrays or otherwise have a highly regular structure. Often the same calcu-
lations are performed on many different sets of data at the same time. The regu-
larity and structure of these programs makes them especially easy targets for
speedup through parallel execution. There are two methods that have been used
to execute large scientific programs quickly. While these two schemes are
remarkably similar in most ways, ironically, one of them is thought of as an exten-
sion to a single processor, while the other is thought of as a parallel computer.

An array processor consists of a large number of identical processors that
perform the same sequence of instructions on different sets of data. The world’s
first array processor was the University of Illinois ILLIAC IV computer, illus-
trated in Fig. 2-7 (Bouknight et al., 1972). The original plan was to build a
machine consisting of four quadrants, each quadrant having an 8 X 8 square grid
of processor/memory elements. A single control unit per quadrant broadcast
instructions, which were carried out in lockstep by all the processors, each one
using its own data from its own memory (loaded during the initialization phase).
This design, clearly very different from a standard Von Neumann machine, is
sometimes referred to as a SIMD (Single Instruction-stream Multiple Data-
stream) processor. Due to a cost overrun by a factor of four, only one quadrant
was ever built, but it did achieve a performance of 50 megaflops (million
floating-point operations per second). It is said that had the entire machine been
completed and had it achieved its original performance goal (1 gigaflop), it would
have doubled the computing power of the entire world.

Control unit |

é Broadcasts instructions

~ 8 x 8 Processor/memory grid
Processor

Memory

DZIIII\III/D:ID:ID:ID]D] ]
DODODOOODOO
DODODOOODOO
O OOOOODOad
O OOOOODOad
O OOOOODOad
O OOOOODOad
DODODOOODOO

Figure 2-7. An array processor of the ILLIAC IV type.

A vector processor appears to the programmer very much like an array pro-
cessor. Like an array processor, it is very efficient at executing a sequence of
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operations on pairs of data elements. But unlike an array processor, all of the
addition operations are performed in a single, heavily-pipelined adder. The com-
pany Seymour Cray founded, Cray Research, produced many vector processors,
starting with the Cray-1 back in 1974 and continuing through current models
(Cray Research is now part of SGI).

Both array processors and vector processors work on arrays of data. Both
execute single instructions that, for example, add the elements together pairwise
for two vectors. But while the array processor does it by having as many adders
as elements in the vector, the vector processor has the concept of a vector regis-
ter, which consists of a set of conventional registers that can be loaded from
memory in a single instruction, which actually loads them from memory serially.
Then a vector addition instruction performs the pairwise addition of the elements
of two such vectors by feeding them to a pipelined adder from the two vector reg-
isters. The result from the adder is another vector, which can either be stored into
a vector register, or used directly as an operand for another vector operation.

While no array processors are currently in production, the idea is far from
dead. The MMX and SSE instructions available on the Pentium 4 use this execu-
tion model to speed up multimedia software. In this respect, the Pentium 4 has
the ILLIAC IV as one of its ancestors.

Multiprocessors

The processing elements in an array processor are not independent CPUs,
since there is only one control unit shared among all of them. Our first parallel
system with multiple full-blown CPUs is the multiprocessor, a system with more
than one CPU sharing a common memory, like a group of people in a room shar-
ing a common blackboard. Since each CPU can read or write any part of mem-
ory, they must co-ordinate (in software) to avoid getting in each other’s way.
When two or more CPUs have the ability to interact closely, as is the case with
multiprocessors, they are said to be tightly coupled.

Various implementation schemes are possible. The simplest one is to have a
single bus with multiple CPUs and one memory all plugged into it. A diagram of
such a bus-based multiprocessor is shown in Fig. 2-8(a).

It does not take much imagination to realize that with a large number of fast
processors constantly trying to access memory over the same bus, conflicts will
result. Multiprocessor designers have come up with various schemes to reduce
this contention and improve performance. One design, shown in Fig. 2-8(b),
gives each processor some local memory of its own, not accessible to the others.
This memory can be used for program code and those data items that need not be
shared. Access to this private memory does not use the main bus, greatly reduc-
ing bus traffic. Other schemes (e.g., caching) are also possible.

Multiprocessors have the advantage over other kinds of parallel computers
that the programming model of a single shared memory is an easy one to work



68 COMPUTER SYSTEMS ORGANIZATION CHAP. 2
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Figure 2-8. (a) A single-bus multiprocessor. (b) A multicomputer with local
memories.

with. For example, imagine a program looking for cancer cells in a photograph of
some tissue taken through a microscope. The digitized photograph could be kept
in the common memory, with each processor assigned some region of the photo-
graph to hunt in. Since each processor has access to the entire memory, studying
a cell that starts in its assigned region but straddles the boundary into the next
region is no problem.

Multicomputers

Although multiprocessors with a modest number of processors (< 256) are
relatively easy to build, large ones are surprisingly difficult to construct. The dif-
ficulty is in connecting all the processors to the memory. To get around these
problems, many designers have simply abandoned the idea of having a shared
memory and just build systems consisting of large numbers of interconnected
computers, each having its own private memory, but no common memory. These
systems are called multicomputers. The CPUs in a multicomputer are some-
times said to be loosely coupled, to contrast them with the tightly-coupled CPUs
in a multiprocessor.

The CPUs in a multicomputer communicate by sending each other messages,
something like e-mail, but much faster. For large systems, having every computer
connected to every other computer is impractical, so topologies such as 2D and
3D grids, trees, and rings are used. As a result, messages from one computer to
another often must pass through one or more intermediate computers or switches
to get from the source to the destination. Nevertheless, message-passing times on
the order of a few microseconds can be achieved without much difficulty. Multi-
computers with nearly 10,000 CPUs have been built and put into operation.
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Since multiprocessors are easier to program and multicomputers are easier to
build, there is much research on designing hybrid systems that combine the good
properties of each. Such computers try to present the illusion of shared memory,
without going to the expense of actually constructing it. We will go into multipro-
cessors and multicomputers in detail in Chap. 8.

2.2 PRIMARY MEMORY

The memory is that part of the computer where programs and data are stored.
Some computer scientists (especially British ones) use the term store or storage
rather than memory, although more and more, the term “storage’ is used to refer
to disk storage. Without a memory from which the processors can read and write
information, there would be no stored-program digital computers.

2.2.1 Bits

The basic unit of memory is the binary digit, called a bit. A bit may contain a
0 or a 1. It is the simplest possible unit. (A device capable of storing only zeros
could hardly form the basis of a memory system; at least two values are needed.)

People often say that computers use binary arithmetic because it is “‘effi-
cient.”” What they mean (although they rarely realize it) is that digital information
can be stored by distinguishing between different values of some continuous phy-
sical quantity, such as voltage or current. The more values that must be dis-
tinguished, the less separation between adjacent values, and the less reliable the
memory. The binary number system requires only two values to be distinguished.
Consequently, it is the most reliable method for encoding digital information. If
you are not familiar with binary numbers, see Appendix A.

Some computers, such as the large IBM mainframes, are advertised as having
decimal as well as binary arithmetic. This trick is accomplished by using 4 bits to
store one decimal digit using a code called BCD (Binary Coded Decimal). Four
bits provide 16 combinations, used for the 10 digits O through 9, with six combi-
nations not used. The number 1944 is shown below encoded in decimal and in
pure binary, using 16 bits in each example:

decimal: 0001 1001 0100 0100  binary: 0000011110011000

Sixteen bits in the decimal format can store the numbers from 0 to 9999, giving
only 10,000 combinations, whereas a 16-bit pure binary number can store 65,536
different combinations. For this reason, people say that binary is more efficient.
However, consider what would happen if some brilliant young electrical
engineer invented a highly reliable electronic device that could directly store the
digits 0 to 9 by dividing the region from O to 10 volts into 10 intervals. Four of
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these devices could store any decimal number from 0 to 9999. Four such devices
would provide 10,000 combinations. They could also be used to store binary
numbers, by only using 0 and 1, in which case, four of them could only store 16
combinations. With such devices, the decimal system is obviously more efficient.

2.2.2 Memory Addresses

Memories consist of a number of cells (or locations) each of which can store
a piece of information. Each cell has a number, called its address, by which pro-
grams can refer to it. If a memory has n cells, they will have addresses 0 to n — 1.
All cells in a memory contain the same number of bits. If a cell consists of k bits,
it can hold any one of 2% different bit combinations. Figure 2-9 shows three dif-
ferent organizations for a 96-bit memory. Note that adjacent cells have consecu-
tive addresses (by definition).

Address Address 1 Cell Address

.
O[T I T T T1] oI T IIIITITITT] oI I IIIIIIIITITITIT1T1]
AT T 1O I T ] OO I T T T T I I I T T111]
oI T IT1] 2T I I T I T ITI] 2T I I I IIITIIT11]
I T ITITI] I IIIIIITITITT] sIITIIIIIITIITITIITIT]
ACTTIIITT] 40T T T I ITITT] 4JTII I T T IITITITIT1]
SCITTTTT1] sIITIIIITI T 1] sIIIIIIIITITITIT1T111]
6T TTTITT] 6T T TITITITITITIT] 16 bits
7O I 70T TITTTITITT] )
8 12 bits ——
o (TT 111111 (b)
10T TTTTTT]
11 T 1]

Figure 2-9. Three ways of organizing a 96-bit memory.

Computers that use the binary number system (including octal and hexade-
cimal notation for binary numbers) express memory addresses as binary numbers.
If an address has m bits, the maximum number of cells addressable is 2™. For
example, an address used to reference the memory of Fig. 2-9(a) needs at least 4
bits in order to express all the numbers from O to 11. A 3-bit address is sufficient
for Fig. 2-9(b) and (c), however. The number of bits in the address determines the
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maximum number of directly addressable cells in the memory and is independent
of the number of bits per cell. A memory with 2!2 cells of 8 bits each and a mem-
ory with 2'2 cells of 64 bits each need 12-bit addresses.

The number of bits per cell for some computers that have been sold commer-
cially is listed in Fig. 2-10.

Computer Bits/cell
Burroughs B1700 1
IBM PC 8
DEC PDP-8 12
IBM 1130 16
DEC PDP-15 18
XDS 940 24
Electrologica X8 27
XDS Sigma 9 32
Honeywell 6180 36
CDC 3600 48
CDC Cyber 60

Figure 2-10. Number of bits per cell for some historically interesting commer-
cial computers.

The significance of the cell is that it is the smallest addressable unit. In recent
years, nearly all computer manufacturers have standardized on an 8-bit cell,
which is called a byte. Bytes are grouped into words. A computer with a 32-bit
word has 4 bytes/word, whereas a computer with a 64-bit word has 8 bytes/word.
The significance of a word is that most instructions operate on entire words, for
example, adding two words together. Thus a 32-bit machine will have 32-bit reg-
isters and instructions for manipulating 32-bit words, whereas a 64-bit machine
will have 64-bit registers and instructions for moving, adding, subtracting, and
otherwise manipulating 64-bit words.

2.2.3 Byte Ordering

The bytes in a word can be numbered from left-to-right or right-to-left. At
first it might seem that this choice is unimportant, but as we shall see shortly, it
has major implications. Figure 2-11(a) depicts part of the memory of a 32-bit
computer whose bytes are numbered from left-to-right, such as the SPARC or the
big IBM mainframes. Figure 2-11(b) gives the analogous representation of a 32-
bit computer using right-to-left numbering, such as the Intel family. The former
system, where the numbering begins at the “big” (i.e., high-order) end is called a
big endian computer, in contrast to the little endian of Fig. 2-11(b). These terms
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are due to Jonathan Swift, whose Gulliver’s Travels satirized politicians who
made war over their dispute about whether eggs should be broken at the big end or
the little end. The term was first used in computer architecture in a delightful arti-
cle by Cohen (1981).

Address Big endian Little endian Address
0| O 1 2 3 3 2 1 0 0
41 4 5 6 7 7 6 5 4 4
8| 8 9 10 11 11 10 9 8 8
12| 12 13 14 15 15 14 13 12 |12
—~— —~—
Byte Byte
——— 32-bit word 32-bit word ——

(a) (b)

Figure 2-11. (a) Big endian memory. (b) Little endian memory.

It is important to understand that in both the big endian and little endian sys-
tems, a 32-bit integer with the numerical value of, say, 6, is represented by the bits
110 in the rightmost (low-order) 3 bits of a word and zeros in the leftmost 29 bits.
In the big endian scheme, the 110 bits are in byte 3 (or 7, or 11, etc.), whereas in
the little endian scheme they are in byte O (or 4, or 8, etc.). In both cases, the
word containing this integer has address O.

If computers only stored integers, there would not be any problem. However,
many applications require a mixture of integers, character strings, and other data
types. Consider, for example, a simple personnel record consisting of a string
(employee name), and two integers (age and department number). The string is
terminated with 1 or more 0 bytes to fill out a word. The big endian representa-
tion is shown in Fig. 2-12(a); the little endian representation is shown in Fig. 2-
12(b) for Jim Smith, age 21, department 260 (1 X 256 + 4 =260).

Both of these representations are fine and internally consistent. The problems
begin when one of the machines tries to send the record to the other one over a
network. Let us assume that the big endian sends the record to the little endian
one byte at a time, starting with byte 0 and ending with byte 19. (We will be
optimistic and assume the bits of the bytes are not reversed by the transmission, as
we have enough problems as is.) Thus the big endian’s byte 0 goes into the little
endian’s memory at byte 0, and so on, as shown in Fig. 2-12(c).

When the little endian tries to print the name, it works fine, but the age comes
out as 21 x 2%* and the department is just as garbled. This situation arises because
the transmission has reversed the order of the characters in a word, as it should,
but it has also reversed the bytes in an integer, which it should not.

An obvious solution is to have the software reverse the bytes within a word
after the copy has been made. Doing this leads to Fig. 2-12(d) which makes the
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Transfer from

big endian to Transfer and
Big endian Little endian little endian swap
ofJ|I|M MIT|[J 0 MIT]J J| 1M 0
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Figure 2-12. (a) A personnel record for a big endian machine. (b) The same
record for a little endian machine. (c) The result of transferring the record from
a big endian to a little endian. (d) The result of byte-swapping (c).

two integers fine but turns the string into “MIJTIMS” with the “H” hanging in
the middle of nowhere. This reversal of the string occurs because when reading
it, the computer first reads byte O (a space), then byte 1 (M), and so on.

There is no simple solution. One way that works, but is inefficient, is to
include a header in front of each data item telling what kind of data follows
(string, integer, or other) and how long it is. This allows the receiver to perform
the necessary conversions only. In any event, it should be clear that the lack of a
standard for byte ordering is a major nuisance when exchanging data between dif-
ferent machines.

2.2.4 Error-Correcting Codes

Computer memories can make errors occasionally due to voltage spikes on
the power line or other causes. To guard against such errors, some memories use
error-detecting or error-correcting codes. When these codes are used, extra bits
are added to each memory word in a special way. When a word is read out of
memory, the extra bits are checked to see if an error has occurred.

To understand how errors can be handled, it is necessary to look closely at
what an error really is. Suppose that a memory word consists of m data bits to
which we will add r redundant, or check bits. Let the total length be n (i.e.,
n =m + r). An n-bit unit containing m data and r check bits is often referred to as
an n-bit codeword.

Given any two codewords, say, 10001001 and 10110001, it is possible to
determine how many corresponding bits differ. In this case, 3 bits differ. To
determine how many bits differ, just compute the bitwise Boolean EXCLUSIVE
OR of the two codewords, and count the number of 1 bits in the result. The num-
ber of bit positions in which two codewords differ is called the Hamming dis-
tance (Hamming, 1950). Its main significance is that if two codewords are a
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Hamming distance d apart, it will require d single-bit errors to convert one into
the other. For example, the codewords 11110001 and 00110000 are a Hamming
distance 3 apart because it takes 3 single-bit errors to convert one into the other.

With an m-bit memory word, all 2™ bit patterns are legal, but due to the way
the check bits are computed, only 2" of the 2" codewords are valid. If a memory
read turns up an invalid codeword, the computer knows that a memory error has
occurred. Given the algorithm for computing the check bits, it is possible to con-
struct a complete list of the legal codewords, and from this list find the two code-
words whose Hamming distance is minimum. This distance is the Hamming dis-
tance of the complete code.

The error-detecting and error-correcting properties of a code depend on its
Hamming distance. To detect d single-bit errors, you need a distance d + 1 code
because with such a code there is no way that d single-bit errors can change a
valid codeword into another valid codeword. Similarly, to correct d single-bit
errors, you need a distance 2d + 1 code because that way the legal codewords are
so far apart that even with d changes, the original codeword is still closer than any
other codeword, so it can be uniquely determined.

As a simple example of an error-detecting code, consider a code in which a
single parity bit is appended to the data. The parity bit is chosen so that the num-
ber of 1 bits in the codeword is even (or odd). Such a code has a distance 2, since
any single-bit error produces a codeword with the wrong parity. In other words, it
takes two single-bit errors to go from a valid codeword to another valid codeword.
It can be used to detect single errors. Whenever a word containing the wrong par-
ity is read from memory, an error condition is signaled. The program cannot con-
tinue, but at least no incorrect results are computed.

As a simple example of an error-correcting code, consider a code with only
four valid codewords:

0000000000, 0000011111, 1111100000, and 1111111111

This code has a distance 5, which means that it can correct double errors. If the
codeword 0000000111 arrives, the receiver knows that the original must have
been 0000011111 (if there was no more than a double error). If, however, a triple
error changes 0000000000 into 0000000111, the error cannot be corrected.

Imagine that we want to design a code with m data bits and r check bits that
will allow all single-bit errors to be corrected. Each of the 2" legal memory
words has n illegal codewords at a distance 1 from it. These are formed by sys-
tematically inverting each of the n bits in the n-bit codeword formed from it.
Thus each of the 2™ legal memory words requires n + 1 bit patterns dedicated to it
(for the n possible errors and correct pattern). Since the total number of bit pat-
terns is 2" we must have (n + 1)2" <2". Using n =m + r this requirement
becomes (m +r + 1) <2". Given m, this puts a lower limit on the number of
check bits needed to correct single errors. Figure 2-13 shows the number of check
bits required for various memory word sizes.
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Word size | Check bits | Total size | Percent overhead

8 4 12 50

16 5 21 31

32 6 38 19

64 7 71 11

128 8 136 6
256 9 265 4
512 10 522 2

Figure 2-13. Number of check bits for a code that can correct a single error.

This theoretical lower limit can be achieved using a method due to Richard
Hamming (1950). Before taking a look at Hamming’s algorithm, let us look at a
simple graphical representation that clearly illustrates the idea of an error-
correcting code for 4-bit words. The Venn diagram of Fig. 2-14(a) contains three
circles, A, B, and C, which together form seven regions. As an example, let us
encode the 4-bit memory word 1100 in the regions AB, ABC, AC, and BC, 1 bit
per region (in alphabetical order). This encoding is shown in Fig. 2-14(a).

Figure 2-14. (a) Encoding of 1100. (b) Even parity added. (c) Error in AC.

Next we add a parity bit to each of the three empty regions to produce even
parity, as illustrated in Fig. 2-14(b). By definition, the sum of the bits in each of
the three circles, A, B, and C, is now an even number. In circle A, we have the
four numbers 0, 0, 1, and 1, which add up to 2, an even number. In circle B, the
numbers are 1, 1, 0, and 0, which also add up to 2, an even number. Finally, in
circle C, we have the same thing. In this example all the circles happen to be the
same, but sums of 0 and 4 are also possible in other examples. This figure
corresponds to a codeword with 4 data bits and 3 parity bits.

Now suppose that the bit in the AC region goes bad, changing fromaOtoa 1,
as shown in Fig. 2-14(c). The computer can now see that circles A and C have the
wrong (odd) parity. The only single-bit change that corrects them is to restore AC
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back to 0, thus correcting the error. In this way, the computer can repair single-bit
memory errors automatically.

Now let us see how Hamming’s algorithm can be used to construct error-
correcting codes for any size memory word. In a Hamming code, r parity bits are
added to an m-bit word, forming a new word of length m + r bits. The bits are
numbered starting at 1, not 0, with bit 1 the leftmost (high-order) bit. All bits
whose bit number is a power of 2 are parity bits; the rest are used for data. For
example, with a 16-bit word, 5 parity bits are added. Bits 1, 2, 4, 8, and 16 are
parity bits, and all the rest are data bits. In all, the memory word has 21 bits (16
data, 5 parity). We will (arbitrarily) use even parity in this example.

Each parity bit checks specific bit positions; the parity bit is set so that the
total number of 1s in the checked positions is even. The bit positions checked by
the parity bits are

Bit 1 checksbits 1, 3,5,7,9, 11, 13, 15, 17, 19, 21.
Bit 2 checks bits 2, 3, 6,7, 10, 11, 14, 15, 18, 19.
Bit 4 checks bits 4, 5, 6, 7, 12, 13, 14, 15, 20, 21.
Bit 8 checks bits 8, 9, 10, 11, 12, 13, 14, 15.

Bit 16 checks bits 16, 17, 18, 19, 20, 21.

In general, bit b is checked by those bits by, b,, ..., b; such that by +b, + ...
+ b; =b. For example, bit 5 is checked by bits 1 and 4 because 1 +4 =5. Bit 6 is
checked by bits 2 and 4 because 2 + 4 = 6, and so on.

Figure 2-15 shows construction of a Hamming code for the 16-bit memory
word 1111000010101110. The 21-bit codeword is 001011100000101101110. To
see how error correction works, consider what would happen if bit 5 were inverted
by an electrical surge on the power line. The new codeword would be
001001100000101101110 instead of 001011100000101101110. The 5 parity bits
will be checked, with the following results:

Parity bit 1 incorrect (1, 3, 5,7, 9, 11, 13, 15, 17, 19, 21 contain five 1s).
Parity bit 2 correct (2, 3, 6, 7, 10, 11, 14, 15, 18, 19 contain six 1s).
Parity bit 4 incorrect (4, 5, 6, 7, 12, 13, 14, 15, 20, 21 contain five 1s).
Parity bit 8 correct (8, 9, 10, 11, 12, 13, 14, 15 contain two 1s).
Parity bit 16 correct (16, 17, 18, 19, 20, 21 contain four 1s).
The total number of 1sin bits 1, 3, 5,7, 9, 11, 13, 15, 17, 19, and 21 should be an
even number because even parity is being used. The incorrect bit must be one of

the bits checked by parity bit I—namely, bit 1, 3,5, 7,9, 11, 13, 15, 17, 19, or 21.
Parity bit 4 is incorrect, meaning that one of bits 4, 5, 6, 7, 12, 13, 14, 15, 20, or
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21 is incorrect. The error must be one of the bits in both lists, namely, 5, 7, 13,
15, or 21. However, bit 2 is correct, eliminating 7 and 15. Similarly, bit 8 is
correct, eliminating 13. Finally, bit 16 is correct, eliminating 21. The only bit left
is bit 5, which is the one in error. Since it was read as a 1, it should be a 0. In this
manner, errors can be corrected.

Memory word 1111000010101110

[oJfo] 1fo]J1 1 1foJoooo 10 1[tfo1 110
1 2 4

1 1
3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21

R

Parity bits

Figure 2-15. Construction of the Hamming code for the memory word
1111000010101110 by adding 5 check bits to the 16 data bits.

A simple method for finding the incorrect bit is first to compute all the parity
bits. If all are correct, there was no error (or more than one). Then add up all the
incorrect parity bits, counting 1 for bit 1, 2 for bit 2, 4 for bit 4, and so on. The
resulting sum is the position of the incorrect bit. For example, if parity bits 1 and
4 are incorrect but 2, 8, and 16 are correct, bit 5 (1 + 4) has been inverted.

2.2.5 Cache Memory

Historically, CPUs have always been faster than memories. As memories
have improved, so have CPUs, preserving the imbalance. In fact, as it becomes
possible to put more and more circuits on a chip, CPU designers are using these
new facilities for pipelining and superscalar operation, making CPUs go even fas-
ter. Memory designers have usually used new technology to increase the capacity
of their chips, not the speed, so the problem appears to be getting worse in time.
What this imbalance means in practice is that after the CPU issues a memory
request, it will not get the word it needs for many CPU cycles. The slower the
memory, the more cycles the CPU will have to wait.

As we pointed out above, there are two ways to deal with this problem. The
simplest way is to just start memory READs when they are encountered but con-
tinue executing and stall the CPU if an instruction tries to use the memory word
before it has arrived. The slower the memory, the more often this problem will
occur and the greater the penalty when it does occur. For example, if the memory
delay is 10 cycles, it is very likely that one of the next 10 instructions will try to
use the word read.

The other solution is to have machines that do not stall but instead require the
compilers not to generate code to use words before they have arrived. The trouble



78 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

is that this approach is far easier said than done. Often after a LOAD there is noth-
ing else to do, so the compiler is forced to insert NOP (no operation) instructions,
which do nothing but occupy a slot and waste time. In effect, this approach is a
software stall instead of a hardware stall, but the performance degradation is the
same.

Actually, the problem is not technology, but economics. Engineers know how
to build memories that are as fast as CPUs, but to run at full speed, they have to
be located on the CPU chip (because going over the bus to memory is very slow).
Putting a large memory on the CPU chip makes it bigger, which makes it more
expensive, and even if cost were not an issue, there are limits to how big a CPU
chip can be made. Thus the choice comes down to having a small amount of fast
memory or a large amount of slow memory. What we would prefer is a large
amount of fast memory at a low price.

Interestingly enough, techniques are known for combining a small amount of
fast memory with a large amount of slow memory to get the speed of the fast
memory (almost) and the capacity of the large memory at a moderate price. The
small, fast memory is called a cache (from the French cacher, meaning to hide,
and pronounced ‘“cash”). Below we will briefly describe how caches are used
and how they work. A more detailed description will be in Chap. 4.

The basic idea behind a cache is simple: the most heavily used memory words
are kept in the cache. When the CPU needs a word, it first looks in the cache.
Only if the word is not there does it go to main memory. If a substantial fraction
of the words are in the cache, the average access time can be greatly reduced.

Success or failure thus depends on what fraction of the words are in the cache.
For years, people have known that programs do not access their memories com-
pletely at random. If a given memory reference is to address A, it is likely that the
next memory reference will be in the general vicinity of A. A simple example is
the program itself. Except for branches and procedure calls, instructions are
fetched from consecutive locations in memory. Furthermore, most program exe-
cution time is spent in loops, in which a limited number of instructions are exe-
cuted over and over. Similarly, a matrix manipulation program is likely to make
many references to the same matrix before moving on to something else.

The observation that the memory references made in any short time interval
tend to use only a small fraction of the total memory is called the locality princi-
ple and forms the basis for all caching systems. The general idea is that when a
word is referenced, it and some of its neighbors are brought from the large slow
memory into the cache, so that the next time it is used, it can be accessed quickly.
A common arrangement of the CPU, cache, and main memory is illustrated in
Fig. 2-16. If a word is read or written k times in a short interval, the computer
will need 1 reference to slow memory and k — 1 references to fast memory. The
larger k is, the better the overall performance.

We can formalize this calculation by introducing c, the cache access time, m,
the main memory access time, and h, the hit ratio, which is the fraction of all
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Figure 2-16. The cache is logically between the CPU and main memory. Phy-
sically, there are several possible places it could be located.

references that can be satisfied out of the cache. In our little example of the previ-
ous paragraph, i = (k — 1)/k. Some authors also define the miss ratio, which is
1-nh.

With these definitions, we can calculate the mean access time as follows:

mean accesstime=c+ (1 —h)m

As h — 1, all references can be satisfied out of the cache, and the access time
approaches c. On the other hand, as 4 — 0, a memory reference is needed every
time, so the access time approaches c + m, first a time ¢ to check the cache
(unsuccessfully), and then a time m to do the memory reference. On some sys-
tems, the memory reference can be started in parallel with the cache search, so
that if a cache miss occurs, the memory cycle has already been started. However,
this strategy requires that the memory can be stopped in its tracks on a cache hit,
making the implementation more complicated.

Using the locality principle as a guide, main memories and caches are divided
up into fixed-size blocks. When talking about these blocks inside the cache, they
are commonly referred to as cache lines. When a cache miss occurs, the entire
cache line is loaded from the main memory into the cache, not just the word
needed. For example, with a 64-byte line size, a reference to memory address 260
will pull the line consisting of bytes 256 to 319 into one cache line. With a little
bit of luck, some of the other words in the cache line will be needed shortly.
Operating this way is more efficient than fetching individual words because it is
faster to fetch k words all at once than one word k times. Also, having cache
entries be more than one word means there are fewer of them, hence a smaller
overhead is required.

Cache design is an increasingly important subject for high-performance
CPUs. One issue is cache size. The bigger the cache, the better it performs, but
also the more it costs. A second issue is the size of the cache line. A 16-KB
cache can be divided up into 1024 lines of 16 bytes, 2048 lines of 8 bytes, and
other combinations. A third issue is how the cache is organized, that is, how does
the cache keep track of which memory words are currently being held? We will
examine caches in detail in Chap. 4.
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A fourth design issue is whether instructions and data are kept in the same
cache or different ones. Having a unified cache (instructions and data use the
same cache) is a simpler design and automatically balances instruction fetches
against data fetches. Nevertheless, the trend these days is toward a split cache,
with instructions in one cache and data in the other. This design is also called a
Harvard architecture, the reference going all the way back to Howard Aiken’s
Mark III computer, which had different memories for instructions and data. The
force driving designers in this direction is the widespread use of pipelined CPUs.
The instruction fetch unit needs to access instructions at the same time the oper-
and fetch unit needs access to data. A split cache allows parallel accesses; a uni-
fied one does not. Also, since instructions are not modified during execution, the
contents of the instruction cache never has to be written back into memory.

Finally, a fifth issue is the number of caches. It is not uncommon these days
to have chips with a primary cache on chip, a secondary cache off chip but in the
same package as the CPU chip, and a third cache still further away.

2.2.6 Memory Packaging and Types

From the early days of semiconductor memory until the early 1990s, memory
was manufactured, bought, and installed as single chips. Chip densities went
from 1K bits to 1M bits and beyond, but each chip was sold as a separate unit.
Early PCs often had empty sockets into which additional memory chips could be
plugged, if and when the purchaser needed them.

At present, a different arrangement is used. A group of chips, typically 8 or
16, is mounted on a tiny printed circuit board and sold as a unit. This unit is cal-
led a SIMM (Single Inline Memory Module) or a DIMM (Dual Inline Mem-
ory Module), depending on whether it has a row of connectors on one side or
both sides of the board. SIMMs have one edge connector with 72 contacts and
transfer 32 bits per clock cycle. DIMMs usually have edge connectors with 84
contacts on each side of the board, for a total of 168 contacts and transfer 64 bits
per clock cycle. An example SIMM is illustrated in Fig. 2-17.

B . momon
BNANRRN R

Figure 2-17. A single inline memory module (SIMM) holding 256 MB. Two of
the chips control the SIMM.

A typical SIMM or DIMM configuration might have eight data chips with 256
megabits (32 MB) each. The entire module would then hold 256 MB. Many
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computers have room for four modules, giving a total capacity of 1 GB when
using 256-MB modules and more when using larger ones.

A physically smaller DIMM, called an SO-DIMM (Small Qutline DIMM) is
used in notebook computers. SIMMs and DIMMS can have a parity bit or error
correction added, but since the average error rate of a module is one error every
10 years, for most garden-variety computers, error detection and correction are
omitted.

2.3 SECONDARY MEMORY

No matter how big the main memory is, it is always way too small. People
always want to store more information than it can hold, primarily because as tech-
nology improves, people begin thinking about storing things that were previously
entirely in the realm of science fiction. For example, as the U.S. government’s
budget discipline forces government agencies to generate their own revenue, one
can imagine the Library of Congress deciding to digitize and sell its full contents
as a consumer article (“All of human knowledge for only $99.95”). Roughly 50
million books, each with 1 MB of text and 1 MB of compressed pictures, requires
storing 10'* bytes or 100 terabytes. Storing all 50,000 movies ever made is also
in this general ballpark. This amount of information is not going to fit in main
memory, at least not for a few decades.

2.3.1 Memory Hierarchies

The traditional solution to storing a great deal of data is a memory hierarchy,
as illustrated in Fig. 2-18. At the top are the CPU registers, which can be
accessed at full CPU speed. Next comes the cache memory, which is currently on
the order of 32 KB to a few megabytes. Main memory is next, with sizes current-
ly ranging from 16 MB for entry-level systems to tens of gigabytes at the high
end. After that come magnetic disks, the current work horse for permanent
storage. Finally, we have magnetic tape and optical disks for archival storage.

As we move down the hierarchy, three key parameters increase. First, the
access time gets bigger. CPU registers can be accessed in a few nanoseconds.
Cache memories take a small multiple of CPU registers. Main memory accesses
are typically a few tens of nanoseconds. Now comes a big gap, as disk access
times are at least 10 msec, and tape or optical disk access can be measured in
seconds if the media have to be fetched and inserted into a drive.

Second, the storage capacity increases as we go downward. CPU registers are
good for perhaps 128 bytes, caches for a few megabytes, main memories for tens
to thousands of megabytes, magnetic disks for a few gigabytes to tens of giga-
bytes. Tapes and optical disks are usually kept off-line, so their capacity is lim-
ited only by the owner’s budget.
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Figure 2-18. A five-level memory hierarchy.

Third, the number of bits you get per dollar spent increases down the hierar-
chy. Although the actual prices change rapidly, main memory is measured in
dollars/megabyte, magnetic disk storage in pennies/megabyte, and magnetic tape
in dollars/gigabyte or less.

We have already looked at registers, cache, and main memory. In the follow-
ing sections we will look at magnetic disks; after that, we will study optical ones.
We will not study tapes because they are rarely used except for backup, and there
is not a lot to say about them anyway.

2.3.2 Magnetic Disks

A magnetic disk consists of one or more aluminum platters with a magnetiz-
able coating. Originally these platters were as much as 50 cm in diameter, but at
present they are typically 3 to 12 cm, with disks for notebook computers already
under 3 cm and still shrinking. A disk head containing an induction coil floats
just over the surface, resting on a cushion of air (except for floppy disks, where it
touches the surface). When a positive or negative current passes through the
head, it magnetizes the surface just beneath the head, aligning the magnetic parti-
cles facing left or facing right, depending on the polarity of the drive current.
When the head passes over a magnetized area, a positive or negative current is
induced in the head, making it possible to read back the previously stored bits.
Thus as the platter rotates under the head, a stream of bits can be written and later
read back. The geometry of a disk track is shown in Fig. 2-19.

The circular sequence of bits written as the disk makes a complete rotation is
called a track. Each of the tracks is divided up into some number of fixed-length
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Figure 2-19. A portion of a disk track. Two sectors are illustrated.

sectors, typically containing 512 data bytes, preceded by a preamble that allows
the head to be synchronized before reading or writing. Following the data is an
Error-Correcting Code (ECC), either a Hamming code, or more commonly, a code
that can correct multiple errors called a Reed-Solomon code. Between consecu-
tive sectors is a small intersector gap. Some manufacturers quote their disks’
capacities in unformatted state (as if each track contained only data), but a more
honest measurement is the formatted capacity, which does not count the pream-
bles, ECCs and gaps as data. The formatted capacity is typically about 15 percent
lower than the unformatted capacity.

All disks have movable arms that are capable of moving in and out to differ-
ent radial distances from the spindle about which the platter rotates. At each
radial distance, a different track can be written. The tracks are thus a series of
concentric circles about the spindle. The width of a track depends on how large
the head is and how accurately the head can be positioned radially. With current
technology, disks have between 5000 and 10,000 tracks per centimeter, giving
track widths in the 1- to 2-micron range (1 micron = 1/1000 mm). It should be
noted that a track is not a physical groove in the surface, but simply an annulus
(ring) of magnetized material, with small guard areas separating it from the tracks
inside and outside it.

The linear bit density around the circumference of the track is different from
the radial one. It is determined largely by the purity of the surface and air quality.
Current disks achieve densities of 50,000 to 100,000 bits/cm. Thus a bit is about
50 times as big in the radial direction as along the circumference.

To go to even higher densities, disk manufacturers are developing technolo-
gies in which the “long” dimension of the bits are not along the circumference of
the disk, but vertically, down into the iron oxide. This technique is called per-
pendicular recording and will be commercialized soon.

In order to achieve high surface and air quality, most disks are sealed at the
factory to prevent dust from getting in. Such drives are called Winchester disks.
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matters is the average sustained rate over a period of seconds, which has to take
into account the necessary seeks and rotational delays as well.

A little thought and the use of that old high-school math formula for the cir-
cumference of a circle, ¢ = 2nr, will reveal that the outer tracks have more linear
distance around them than the inner ones do. Since all magnetic disks rotate at a
constant angular velocity, no matter where the heads are, this observation creates
a problem. In older drives, manufacturers used the maximum possible linear den-
sity on the innermost track, and successively lower linear bit densities on tracks
further out. If a disk had 18 sectors per track, for example, each one occupied 20
degrees of arc, no matter which cylinder it was in.

Nowadays, a different strategy is used. Cylinders are divided into zones (typ-
ically 10 to 30 per drive), and the number of sectors per track is increased in each
zone moving outward from the innermost track. This change makes keeping track
of information harder but increases the drive capacity, which is viewed as more
important. All sectors are the same size. A disk with five zones is shown in

Fig. 2-21.
’\,S\ector

Figure 2-21. A disk with five zones. Each zone has many tracks.

Associated with each drive is a disk controller, a chip that controls the drive.
Some controllers contain a full CPU. The controller’s tasks include accepting
commands from the software, such as READ, WRITE, and FORMAT (writing all the
preambles), controlling the arm motion, detecting and correcting errors, and con-
verting 8-bit bytes read from memory into a serial bit stream and vice versa.
Some controllers also handle buffering of multiple sectors, caching sectors read
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for potential future use, and remapping bad sectors. This latter function is caused
by the existence of sectors with a bad (permanently magnetized) spot. When the
controller discovers a bad sector, it replaces it by one of the spare sectors reserved
for this purpose within each cylinder or zone.

2.3.3 Floppy Disks

With the advent of the personal computer, a way was needed to distribute
software. The solution was found in the diskette or floppy disk, a small, remov-
able medium so called because the early ones were physically flexible. The
floppy disk was actually invented by IBM for recording maintenance information
about its mainframes for the service staff but was quickly seized on by personal
computer manufacturers as a convenient way to distribute software for sale.

The general characteristics are the same as the disks we have just described,
except that unlike hard disks, where the heads float just above the surface on a
cushion of rapidly-moving air, floppy disk heads actually touch the diskettes. As
a result, both the media and the heads wear out comparatively quickly. To reduce
wear and tear, personal computers retract the heads and stop the rotation when a
drive is not reading or writing. Consequently, when the next read or write com-
mand is given, there is a delay of about half a second while the motor gets up to
speed. Floppy disks had a run of about 20 years, but modern computers are usu-
ally shipped without them.

2.3.4 IDE Disks

Modern personal computer disks evolved from the one in the IBM PC XT,
which was a 10-MB Seagate disk controlled by a Xebec disk controller on a
plug-in card. The Seagate disk had 4 heads, 306 cylinders, and 17 sectors/track.
The controller was capable of handling two drives. The operating system read
from and wrote to a disk by putting parameters in CPU registers and then calling
the BIOS (Basic Input Output System), located in the PC’s built-in read-only
memory. The BIOS issued the machine instructions to load the disk controller
registers that initiated transfers.

The technology evolved rapidly from having the controller on a separate
board, to having it closely integrated with the drives, starting with IDE
(Integrated Drive Electronics) drives in the mid 1980s. However, the BIOS cal-
ling conventions were not changed for reasons of backward compatibility. These
calling conventions addressed sectors by giving their head, cylinder, and sector
numbers, with the heads and cylinders numbered starting at 0 and the sectors start-
ing at 1. This choice was probably due to a mistake on the part of the original
BIOS programmer, who wrote his masterpiece in 8088 assembler. With 4 bits for
the head, 6 bits for the sector, and 10 bits for the cylinder, the maximum drive
could have 16 heads, 63 sectors, and 1024 cylinders, for a total of 1,032,192
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sectors. Such a maximum drive has a capacity of 504 MB, which probably
seemed like infinity at the time but certainly does not today. (Would you fault a
new machine today that could not handle drives bigger than a petabyte?)

Before too long, drives above 504 MB appeared, but with the wrong geometry
(e.g., 4 heads, 32 sectors, 2000 cylinders). There was no way for the operating
system to address them due to the long-frozen BIOS calling conventions. As a
result, disk controllers began to lie, pretending that the geometry was within the
BIOS limits but actually remapping the virtual geometry onto the real geometry.
Although this approach worked, it wreaked havoc with operating systems that
carefully placed data to minimize seek times.

Eventually, IDE drives evolved into EIDE drives (Extended IDE), which
also support a second addressing scheme called LBA (Logical Block Address-
ing), which just numbers the sectors starting at 0 up until a maximum of 228 — 1.
This scheme requires the controller to convert LBA addresses to head, sector, and
cylinder addresses, but it does get beyond the 504-MB limit. Unfortunately, it
created a new bottleneck at 228 x 2° bytes (128 GB). In 1994, when the EIDE
standard was adopted, nobody could imagine 128 GB disks. Standards commit-
tees, like politicians, have a tendency to push problems forward in time so the
next committee has to solve them.

EIDE drives and controllers also had other improvements as well. For exam-
ple, EIDE controllers could have two channels, each with a primary and a secon-
dary drive. This arrangement allowed a maximum of four drives per controller.
CD-ROM and DVD drives were also supported, and the transfer rate was
increased from 4 MB/sec to 16.67 MB/sec.

As disk technology continued to improved, the EIDE standard, continued to
evolve, but for some reason the successor to EIDE was called ATA-3 (AT
Attachment), a reference to the IBM PC/AT (where AT referred to the then-
Advanced Technology of a 16-bit CPU running at 8 MHz). In the next edition,
the standard was called ATAPI-4 (ATA Packet Interface) and the speed was
increased to 33 MB/sec. In ATAPI-5 it went to 66 MB/sec.

By this time, the 128-GB limit imposed by the 28-bit LBA addresses was
looming larger and larger, so ATAPI-6 changed the LBA size to 48 bits. The new
standard will run into trouble when disks reach 2% x 2° bytes (128 PB). With a
50% annual increase in capacity, the 48-bit limit will probably last until about
2035. To find out how the problem was solved, please consult the 11th edition of
this book. The smart money is betting on increasing the LBA size to 64 bits. The
ATAPI-6 standard also increased the transfer rate to 100 MB/sec and addressed
the issue of disk noise for the first time.

The ATAPI-7 standard is a radical break with the past. Instead of increasing
the size of the drive connector (to increase the data rate), this standard uses what
is called serial ATA to transfer 1 bit at a time over a 7-pin connector at speeds
starting at 150 MB/sec and expected to rise over time to 1.5 GB/sec. Replacing
the current 80-wire flat cable with a round cable only a few mm thick improves
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airflow within the computer. Also, serial ATA uses 0.5 volts for signaling (com-
pared to 5 volts on ATAPI-6 drives), which reduces power consumption. It is
likely that within a few years, all computers will use serial ATA. The issue of
power consumption by disks is an increasingly important one, both at the high
end, where data centers have vast disk farms as at the low end, where notebooks
are power limited (Gurumurthi et al., 2003).

2.3.5 SCSI Disks

SCSI disks are not different from IDE disks in terms of how their cylinders,
tracks, and sectors are organized, but they have a different interface and much
higher transfer rates. SCSI traces its history back to Howard Shugart, the inventor
of the floppy disk, whose company introduced the SASI (Shugart Associates Sys-
tem Interface) disk in 1979. After some modification and much discussion, ANSI
standardized it in 1986 and changed the name to SCSI (Small Computer System
Interface). SCSI is pronounced “scuzzy.”’” Since then, increasingly faster ver-
sions have been standardized under the names Fast SCSI (10 Mhz), Ultra SCSI
(20 MHz), Ultra2 SCSI (40 MHz), Ultra3 SCSI (80 MHz), and Ultra4 SCSI (160
MHz). Each of these has a wide (16-bit) version as well. The main combinations
are shown in Fig. 2-22.

Name Data bits | Bus MHz | MB/sec
SCSI-1 8 5 5
Fast SCSI 8 10 10
Wide Fast SCSI 16 10 20
Ultra SCSI 8 20 20
Wide Ultra SCSI 16 20 40
Ultra2 SCSI 8 40 40
Wide Ultra2 SCSI 16 40 80
Ultra3 SCSI 8 80 80
Wide Ultra3 SCSI 16 80 160
Ultra4 SCSI 8 160 160
Wide Ultra4 SCSI 16 160 320

Figure 2-22. Some of the possible SCSI parameters.

Because SCSI disks have high transfer rates, they are the standard disk in
most UNIX workstations from Sun, HP, SGI, and other vendors. They are also the
standard disk in Macintoshes and high-end Intel PCs, especially network servers.

SCSI is more than just a hard disk interface. It is a bus to which a SCSI con-
troller and up to seven devices can be attached. These can include one or more
SCSI hard disks, CD-ROMs, CD recorders, scanners, tape units, and other SCSI
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The first such drives (created by IBM) had 30 MB of sealed, fixed storage and 30
MB of removable storage. Supposedly, these 30-30 disks reminded people of the
Winchester 30-30 rifles that played a great role in opening the American frontier,
and the name “Winchester’’ stuck.

Most disks consist of multiple platters stacked vertically, as depicted in
Fig. 2-20. Each surface has its own arm and head. All the arms are ganged
together so they move to different radial positions all at once. The set of tracks at
a given radial position is called a cylinder. Current PC disks typically have 6 to
12 platters per drive, giving 12 to 24 recording surfaces.

Read/write head (1 per surface)

= ——

Surface 7

Surface 6
Surface 5

Surface 4 >< -

Surface 3 = ~
>< Direction of arm motion

Surface 2

Surface 1 ><

Surface 0

Figure 2-20. A disk with four platters.

Disk performance depends on a variety of factors. To read or write a sector,
first the arm must be moved to the right radial position. This action is called a
seek. Average seek times (between random tracks) range in the 5- to 10-msec
range, although seeks between consecutive tracks are now down below 1 msec.
Once the head is positioned radially, there is a delay, called the rotational
latency, until the desired sector rotates under the head. Most disks rotate at 5400
RPM, 7200 RPM, or 10,800 RPM, so the average delay (half a rotation) is 3 to 6
msec. Transfer time depends on the linear density and rotation speed. With typi-
cal transfer rates of 20 to 40 MB/sec, a 512-byte sector takes between 13 and 26
usec. Consequently, the seek time and rotational latency dominate the transfer
time. Reading random sectors all over the disk is clearly an inefficient way to
operate.

It is worth mentioning that on account of the preambles, the ECCs, the inter-
sector gaps, the seek times, and the rotational latencies, there is a big difference
between a drive’s maximum burst rate and its maximum sustained rate. The max-
imum burst rate is the data rate once the head is over the first data bit. The com-
puter must be able to handle data coming in this fast. However, the drive can only
keep up that rate for one sector. For some applications, such as multimedia, what
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peripherals. Each SCSI device has a unique ID, from O to 7 (15 for wide SCSI).
Each device has two connectors: one for input and one for output. Cables connect
the output of one device to the input of the next one, in series, like a string of
cheap Christmas tree lamps. The last device in the string must be terminated to
prevent reflections from the ends of the SCSI bus from interfering with other data
on the bus. Typically, the controller is on a plug-in card and the start of the cable
chain, although this configuration is not strictly required by the standard.

The most common cable for 8-bit SCSI has 50 wires, 25 of which are grounds
paired one-to-one with the other 25 wires to provide the excellent noise immunity
needed for high-speed operation. Of the 25 wires, 8 are for data, 1 is for parity, 9
are for control, and the remainder are for power or are reserved for future use.
The 16-bit (and 32-bit) devices need a second cable for the additional signals.
The cables may be several meters long, allowing for external drives, scanners, etc.

SCSI controllers and peripherals can operate either as initiators or as targets.
Usually, the controller, acting as initiator, issues commands to disks and other
peripherals acting as targets. These commands are blocks of up to 16 bytes telling
the target what to do. Commands and responses occur in phases, using various
control signals to delineate the phases and arbitrate bus access when multiple
devices are trying to use the bus at the same time. This arbitration is important
because SCSI allows all the devices to run at once, potentially greatly improving
performance in an environment with multiple processes active at once (e.g., UNIX
or Windows XP). IDE and EIDE allow only one active device at a time.

2.3.6 RAID

CPU performance has been increasing exponentially over the past decade,
roughly doubling every 18 months. Not so with disk performance. In the 1970s,
average seek times on minicomputer disks were 50 to 100 msec. Now seek times
are 10 msec. In most technical industries (say, automobiles or aviation), a factor
of 5 to 10 performance improvement in two decades would be major news, but in
the computer industry it is an embarrassment. Thus the gap between CPU perfor-
mance and disk performance has become much larger over time.

As we have seen, parallel processing is often used to speed up CPU perfor-
mance. It has occurred to various people over the years that parallel I/O might be
a good idea too. In their 1988 paper, Patterson et al. suggested six specific disk
organizations that could be used to improve disk performance, reliability, or both
(Patterson et al., 1988). These ideas were quickly adopted by industry and have
led to a new class of I/O device called a RAID. Patterson et al. defined RAID as
Redundant Array of Inexpensive Disks, but industry redefined the I to be
“Independent’’ rather than “Inexpensive’” (maybe so they could use expensive
disks?). Since a villain was also needed (as in RISC versus CISC, also due to
Patterson), the bad guy here was the SLED (Single Large Expensive Disk).
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The idea behind a RAID is to install a box full of disks next to the computer,
typically a large server, replace the disk controller card with a RAID controller,
copy the data over to the RAID, and then continue normal operation. In other
words, a RAID should look like a SLED to the operating system but have better
performance and better reliability. Since SCSI disks have good performance, low
price, and the ability to have up to 7 drives on a single controller (15 for wide
SCSI), it is natural that most RAIDs consist of a RAID SCSI controller plus a box
of SCSI disks that appear to the operating system as a single large disk. In this
way, no software changes are required to use the RAID, a big selling point for
many system administrators.

In addition to appearing like a single disk to the software, all RAIDs have the
property that the data are distributed over the drives, to allow parallel operation.
Several different schemes for doing this were defined by Patterson et al., and they
are now known as RAID level O through RAID level 5. In addition, there are a
few other minor levels that we will not discuss. The term “level” is something of
a misnomer since there is no hierarchy involved; there are simply six different
organizations possible.

RAID level O is illustrated in Fig. 2-23(a). It consists of viewing the virtual
disk simulated by the RAID as being divided up into strips of k sectors each, with
sectors 0 to k — 1 being strip 0, sectors k to 2k — 1 as strip 1, and so on. For k =1,
each strip is a sector; for k =2 a strip is two sectors, etc. The RAID level 0
organization writes consecutive strips over the drives in round robin fashion, as
depicted in Fig. 2-23(a) for a RAID with four disk drives. Distributing data over
multiple drives like this is called striping. For example, if the software issues a
command to read a data block consisting of four consecutive strips starting at a
strip boundary, the RAID controller will break this command up into four separate
commands, one for each of the four disks, and have them operate in parallel.
Thus we have parallel I/O without the software knowing about it.

RAID level 0 works best with large requests, the bigger the better. If a
request is larger than the number of drives times the strip size, some drives will
get multiple requests, so that when they finish the first request they start the
second one. It is up to the controller to split the request up and feed the proper
commands to the proper disks in the right sequence and then assemble the results
in memory correctly. Performance is excellent and the implementation is straight-
forward.

RAID level 0 works worst with operating systems that habitually ask for data
one sector at a time. The results will be correct, but there is no parallelism and
hence no performance gain. Another disadvantage of this organization is that the
reliability is potentially worse than having a SLED. If a RAID consists of four
disks, each with a mean time to failure of 20,000 hours, about once every 5000
hours a drive will fail and all the data will be completely lost. A SLED with a
mean time to failure of 20,000 hours would be four times more reliable. Because
no redundancy is present in this design, it is not really a true RAID.
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Figure 2-23. RAID levels 0 through 5. Backup and parity drives are shown shaded.
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The next option, RAID level 1, shown in Fig. 2-23(b), is a true RAID. It
duplicates all the disks, so there are four primary disks and four backup disks. On
a write, every strip is written twice. On a read, either copy can be used, distribut-
ing the load over more drives. Consequently, write performance is no better than
for a single drive, but read performance can be up to twice as good. Fault toler-
ance is excellent: if a drive crashes, the copy is simply used instead. Recovery
consists of simply installing a new drive and copying the entire backup drive to it.

Unlike levels 0 and 1, which work with strips of sectors, RAID level 2 works
on a word basis, possibly even a byte basis. Imagine splitting each byte of the sin-
gle virtual disk into a pair of 4-bit nibbles, then adding a Hamming code to each
one to form a 7-bit word, of which bits 1, 2, and 4 were parity bits. Further ima-
gine that the seven drives of Fig. 2-23(c) were synchronized in terms of arm posi-
tion and rotational position. Then it would be possible to write the 7-bit Hamming
coded word over the seven drives, one bit per drive.

The Thinking Machines CM-2 computer used this scheme, taking 32-bit data
words and adding 6 parity bits to form a 38-bit Hamming word, plus an extra bit
for word parity, and spread each word over 39 disk drives. The total throughput
was immense, because in one sector time it could write 32 sectors worth of data.
Also, losing one drive did not cause problems, because loss of a drive amounted
to losing 1 bit in each 39-bit word read, something the Hamming code could han-
dle on the fly.

On the down side, this scheme requires all the drives to be rotationally syn-
chronized, and it only makes sense with a substantial number of drives (even with
32 data drives and 6 parity drives, the overhead is 19 percent). It also asks a lot of
the controller, since it must do a Hamming checksum every bit time.

RAID level 3 is a simplified version of RAID level 2. It is illustrated in
Fig. 2-23(d). Here a single parity bit is computed for each data word and written
to a parity drive. As in RAID level 2, the drives must be exactly synchronized,
since individual data words are spread over multiple drives.

At first thought, it might appear that a single parity bit gives only error detec-
tion, not error correction. For the case of random undetected errors, this observa-
tion is true. However, for the case of a drive crashing, it provides full 1-bit error
correction since the position of the bad bit is known. If a drive crashes, the con-
troller just pretends that all its bits are Os. If a word has a parity error, the bit from
the dead drive must have been a 1, so it is corrected. Although both RAID levels
2 and 3 offer very high data rates, the number of separate 1/O requests per second
they can handle is no better than for a single drive.

RAID levels 4 and 5 work with strips again, not individual words with parity,
and do not require synchronized drives. RAID level 4 [see Fig. 2-23(e)] is like
RAID level 0, with a strip-for-strip parity written onto an extra drive. For exam-
ple, if each strip is k bytes long, all the strips are EXCLUSIVE ORed together,
resulting in a parity strip k bytes long. If a drive crashes, the lost bytes can be
recomputed from the parity drive.
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This design protects against the loss of a drive but performs poorly for small
updates. If one sector is changed, it is necessary to read all the drives in order to
recalculate the parity, which then must be rewritten. Alternatively, it can read the
old user data and the old parity data and recompute the new parity from them.
Even with this optimization, a small update requires two reads and two writes,
clearly a bad arrangement.

As a consequence of the heavy load on the parity drive, it may become a
bottleneck. This bottleneck is eliminated in RAID level 5 by distributing the par-
ity bits uniformly over all the drives, round robin fashion, as shown in Fig. 2-
23(f). However, in the event of a drive crash, reconstructing the contents of the
failed drive is a complex process.

2.3.7 CD-ROMs

Optical disks were originally developed for recording television programs, but
they can be put to more esthetic use as computer storage devices. Due to their
large capacity and low price optical disks are widely used for distributing
software, books, movies, and data of all kinds, as well as making backups of hard
disks.

First-generation optical disks were invented by the Dutch electronics con-
glomerate Philips for holding movies. They were 30 cm across and marketed
under the name LaserVision, but they did not catch on, except in Japan.

In 1980, Philips, together with Sony, developed the CD (Compact Disc),
which rapidly replaced the 33 1/3 RPM vinyl record for music. The precise
technical details for the CD were published in an official International Standard
(IS 10149), popularly called the Red Book, due to the color of its cover. (Interna-
tional Standards are issued by the International Organization for Standardization,
which is the international counterpart of national standards groups like ANSI,
DIN, etc. Each one has an IS number.) The point of publishing the disk and drive
specifications as an International Standard is to allow CDs from different music
publishers and players from different electronics manufacturers to work together.
All CDs are 120 mm across and 1.2 mm thick, with a 15-mm hole in the middle.
The audio CD was the first successful mass market digital storage medium. They
are supposed to last 100 years. Please check back in 2080 for an update on how
well the first batch did.

A CD is prepared by using a high-power infrared laser to burn 0.8-micron
diameter holes in a coated glass master disk. From this master, a mold is made,
with bumps where the laser holes were. Into this mold, molten polycarbonate is
injected to form a CD with the same pattern of holes as the glass master. Then a
thin layer of reflective aluminum is deposited on the polycarbonate, topped by a
protective lacquer and finally a label. The depressions in the polycarbonate sub-
strate are called pits; the unburned areas between the pits are called lands.
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When played back, a low-power laser diode shines infrared light with a wave-
length of 0.78 micron on the pits and lands as they stream by. The laser is on the
polycarbonate side, so the pits stick out in the direction of the laser as bumps in
the otherwise flat surface. Because the pits have a height of one-quarter the
wavelength of the laser light, light reflecting off a pit is half a wavelength out of
phase with light reflecting off the surrounding surface. As a result, the two parts
interfere destructively and return less light to the player’s photodetector than light
bouncing off a land. This is how the player tells a pit from a land. Although it
might seem simplest to use a pit to record a 0 and a land to record a 1, it is more
reliable to use a pit/land or land/pit transition for a 1 and its absence as a 0, so this
scheme is used.

The pits and lands are written in a single continuous spiral starting near the
hole and working out a distance of 32 mm toward the edge. The spiral makes
22,188 revolutions around the disk (about 600 per mm). If unwound, it would be
5.6 km long. The spiral is illustrated in Fig. 2-24.

Spiral groove

2K block of
user data

Figure 2-24. Recording structure of a Compact Disc or CD-ROM.

To make the music play at a uniform rate, it is necessary for the pits and lands
to stream by at a constant linear velocity. Consequently, the rotation rate of the
CD must be continuously reduced as the reading head moves from the inside of
the CD to the outside. At the inside, the rotation rate is 530 RPM to achieve the
desired streaming rate of 120 cm/sec; at the outside it has to drop to 200 RPM to
give the same linear velocity at the head. A constant linear velocity drive is quite
different than a magnetic disk drive, which operates at a constant angular velocity,
independent of where the head is currently positioned. Also, 530 RPM is a far cry
from the 3600 to 7200 RPM that most magnetic disks whirl at.
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In 1984, Philips and Sony realized the potential for using CDs to store com-
puter data, so they published the Yellow Book defining a precise standard for
what are now called CD-ROMs (Compact Disc-Read Only Memory). To pig-
gyback on the by-then already substantial audio CD market, CD-ROMs were to
be the same physical size as audio CDs, mechanically and optically compatible
with them, and produced using the same polycarbonate injection molding ma-
chines. The consequences of this decision were that slow variable-speed motors
were required, but also that the manufacturing cost of a CD-ROM would be well
under one dollar in moderate volume.

What the Yellow Book defined was the formatting of the computer data. It
also improved the error-correcting abilities of the system, an essential step
because although music lovers do not mind losing a bit here and there, computer
lovers tend to be Very Picky about that. The basic format of a CD-ROM consists
of encoding every byte in a 14-bit symbol. As we saw above, 14 bits is enough to
Hamming encode an 8-bit byte with 2 bits left over. In fact, a more powerful
encoding system is used. The 14-to-8 mapping for reading is done in hardware by
table lookup.

At the next level up, a group of 42 consecutive symbols forms a 588-bit
frame. Each frame holds 192 data bits (24 bytes). The remaining 396 bits are
used for error correction and control. So far, this scheme is identical for audio
CDs and CD-ROMs.

What the Yellow Book adds is the grouping of 98 frames into a CD-ROM
sector, as shown in Fig. 2-25. Every CD-ROM sector begins with a 16-byte
preamble, the first 12 of which are OOFFFFFFFFFFFFFFFFFFFFO0 (hexade-
cimal), to allow the player to recognize the start of a CD-ROM sector. The next 3
bytes contain the sector number, needed because seeking on a CD-ROM with its
single data spiral is much more difficult than on a magnetic disk with its uniform
concentric tracks. To seek, the software in the drive calculates approximately
where to go, moves the head there, and then starts hunting around for a preamble
to see how good its guess was. The last byte of the preamble is the mode.

The Yellow Book defines two modes. Mode 1 uses the layout of Fig. 2-25,
with a 16-byte preamble, 2048 data bytes, and a 288-byte error-correcting code (a
cross-interleaved Reed-Solomon code). Mode 2 combines the data and ECC
fields into a 2336-byte data field for those applications that do not need (or cannot
afford the time to perform) error correction, such as audio and video. Note that to
provide excellent reliability, three separate error-correcting schemes are used:
within a symbol, within a frame, and within a CD-ROM sector. Single-bit errors
are corrected at the lowest level, short burst errors are corrected at the frame level,
and any residual errors are caught at the sector level. The price paid for this relia-
bility is that it takes 98 frames of 588 bits (7203 bytes) to carry a single 2048-byte
payload, an efficiency of only 28 percent.

Single-speed CD-ROM drives operate at 75 sectors/sec, which gives a data
rate of 153,600 bytes/sec in mode 1 and 175,200 bytes/sec in mode 2. Double-
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Figure 2-25. Logical data layout on a CD-ROM.

speed drives are twice as fast, and so on up to the highest speed. A standard audio
CD has room for 74 minutes of music, which, if used for mode 1 data, gives a
capacity of 681,984,000 bytes. This figure is usually reported as 650 MB because
1 MB is 2%° bytes (1,048,576 bytes), not 1,000,000 bytes.

Note that even a 32x CD-ROM drive (4,915,200 bytes/sec) is no match for a
fast SCSI-2 magnetic disk drive at 10 MB/sec, even though many CD-ROM
drives use the SCSI interface (IDE CD-ROM drives also exist). When you realize
that the seek time is often several hundred milliseconds, it should be clear that
CD-ROM drives are not at all in the same performance category as magnetic disk
drives, despite their large capacity.

In 1986, Philips struck again with the Green Book, adding graphics and the
ability to interleave audio, video and data in the same sector, a feature essential
for multimedia CD-ROMs.

The last piece of the CD-ROM puzzle is the file system. To make it possible
to use the same CD-ROM on different computers, agreement was needed on CD-
ROM file systems. To get this agreement, representatives of many computer
companies met at Lake Tahoe in the High Sierras on the California-Nevada boun-
dary and devised a file system that they called High Sierra. It later evolved into
an International Standard (IS 9660). It has three levels. Level 1 uses file names
of up to 8 characters optionally followed by an extension of up to 3 characters (the
MS-DOS file naming convention). File names may contain only uppercase letters,
digits, and the underscore. Directories may be nested up to eight deep, but direc-
tory names may not contain extensions. Level 1 requires all files to be contigu-
ous, which is not a problem on a medium written only once. Any CD-ROM con-
formant to IS 9660 level 1 can be read using MS-DOS, an Apple computer, a UNIX
computer, or just about any other computer. CD-ROM publishers regard this pro-
perty as being a big plus.

IS 9660 level 2 allows names up to 32 characters, and level 3 allows noncon-
tiguous files. The Rock Ridge extensions (whimsically named after the town in
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the Mel Brooks film Blazing Saddles) allow very long names (for UNIX), UlDs,
GIDs, and symbolic links, but CD-ROMs not conforming to level 1 will not be
readable on all computers.

2.3.8 CD-Recordables

Initially, the equipment needed to produce a master CD-ROM (or audio CD,
for that matter) was extremely expensive. But as usual in the computer industry,
nothing stays expensive for long. By the mid 1990s, CD recorders no bigger than
a CD player were a common peripheral available in most computer stores. These
devices were still different from magnetic disks because once written, CD-ROMs
could not be erased. Nevertheless, they quickly found a niche as a backup
medium for large hard disks and also allowed individuals or startup companies to
manufacture their own small-run CD-ROMs or make masters for delivery to
high-volume commercial CD duplication plants. These drives are known as CD-
Rs (CD-Recordables).

Physically, CD-Rs start with 120-mm polycarbonate blanks that are like CD-
ROMs, except that they contain a 0.6-mm wide groove to guide the laser for writ-
ing. The groove has a sinusoidal excursion of 0.3 mm at a frequency of exactly
22.05 kHz to provide continuous feedback so the rotation speed can be accurately
monitored and adjusted if need be. The first CD-Rs looked like regular CD-
ROMs, except that they were gold colored on top instead of silver colored. The
gold color came from the use of real gold instead of aluminum for the reflective
layer. Unlike silver CDs, which have physical depressions on them, on CD-Rs the
differing reflectivity of pits and lands has to be simulated. This is done by adding
a layer of dye between the polycarbonate and the reflective layer, as shown in
Fig. 2-26. Two kinds of dye are used: cyanine, which is green, and pthalocyanine,
which is a yellowish orange. Chemists can argue endlessly about which one is
better. These dyes are similar to those used in photography, which explains why
Kodak and Fuji are major manufacturers of CD-Rs. Eventually, an aluminum
reflective layer replaced the gold one.

In its initial state, the dye layer is transparent and lets the laser light pass
through and reflect off the reflective layer. To write, the CD-R laser is turned up
to high power (8—16 mW). When the beam hits a spot of dye, it heats up, break-
ing a chemical bond. This change to the molecular structure creates a dark spot.
When read back (at 0.5 mW), the photodetector sees a difference between the
dark spots where the dye has been hit and transparent areas where it is intact.
This difference is interpreted as the difference between pits and lands, even when
read back on a regular CD-ROM reader or even on an audio CD player.

No new kind of CD could hold up its head with pride without a colored book,
so CD-R has the Orange Book, published in 1989. This document defines CD-R
and also a new format, CD-ROM XA, which allows CD-Rs to be written incre-
mentally, a few sectors today, a few tomorrow, and a few next month. A group of
consecutive sectors written at once is called a CD-ROM track.



98 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

Printed label
I _ |
Protective lacquer Dark spot in the
Reflective layer dye layer burned
[ 1 [ ] Dye [k layer [T T=F bylaserwhen
1.2 mm writing
/
Polycarbonate Substrate
Direction
of motion < Lens

A

Photodetector H [ j Prism

Infrared
< laser

diode

Figure 2-26. Cross section of a CD-R disk and laser (not to scale). A CD-ROM
has a similar structure, except without the dye layer and with a pitted aluminum
layer instead of a reflective layer.

One of the first uses of CD-R was for the Kodak PhotoCD. In this system the
customer brings a roll of exposed film and his old PhotoCD to the photo processor
and gets back the same PhotoCD with the new pictures added after the old ones.
The new batch, which is created by scanning in the negatives, is written onto the
PhotoCD as a separate CD-ROM track. Incremental writing is needed because
the CD-R blanks are too expensive to provide a new one for every film roll.

However, incremental writing creates a new problem. Prior to the Orange
Book, all CD-ROMs had a single VTOC (Volume Table of Contents) at the
start. That scheme does not work with incremental (i.e., multitrack) writes. The
Orange Book’s solution is to give each CD-ROM track its own VTOC. The files
listed in the VTOC can include some or all of the files from previous tracks.
After the CD-R is inserted into the drive, the operating system searches through
all the CD-ROM tracks to locate the most recent VTOC, which gives the current
status of the disk. By including some, but not all, of the files from previous tracks
in the current VTOQC, it is possible to give the illusion that files have been deleted.
Tracks can be grouped into sessions, leading to multisession CD-ROMs. Stan-
dard audio CD players cannot handle multisession CDs since they expect a single
VTOC at the start.

Each track has to be written in a single continuous operation without stopping.
As a consequence, the hard disk from which the data are coming has to be fast
enough to deliver it on time. If the files to be copied are spread all over the hard
disk, the seek times may cause the data stream to the CD-R to dry up and cause a
dreaded buffer underrun. A buffer underrun results in producing a nice shiny (but
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somewhat expensive) coaster for your drinks, or a 120-mm gold- or silver-colored
frisbee. CD-R software usually offers the option of collecting all the input files
into a single contiguous 650-MB CD-ROM image prior to burning the CD-R, but
this process typically doubles the effective writing time, requires 650 MB of free
disk space, and still does not protect against hard disks that panic and decide to do
a thermal recalibration when they get too hot.

CD-R makes it possible for individuals and companies to easily copy CD-
ROMs (and audio CDs), generally in violation of the publisher’s copyright.
Several schemes have been devised to make such piracy harder and to make it dif-
ficult to read a CD-ROM using anything other than the publisher’s software. One
of them involves recording all the file lengths on the CD-ROM as multigigabyte,
thwarting any attempts to copy the files to hard disk using standard copying
software. The true lengths are embedded in the publisher’s software or hidden
(possibly encrypted) on the CD-ROM in an unexpected place. Another scheme
uses intentionally incorrect ECCs in selected sectors, in the expectation that CD
copying software will “fix” the errors. The application software checks the ECCs
itself, refusing to work if they are correct. Using nonstandard gaps between the
tracks and other physical “defects’ are also possibilities.

2.3.9 CD-Rewritables

Although people are used to other write-once media such as paper and photo-
graphic film, there is a demand for a rewritable CD-ROM. One technology now
available is CD-RW (CD-ReWritable), which uses the same size media as CD-
R. However, instead of cyanine or pthalocyanine dye, CD-RW uses an alloy of
silver, indium, antimony, and tellurium for the recording layer. This alloy has two
stable states: crystalline and amorphous, with different reflectivities.

CD-RW drives use lasers with three different powers. At high power, the
laser melts the alloy, converting it from the high-reflectivity crystalline state to
the low-reflectivity amorphous state to represent a pit. At medium power, the
alloy melts and reforms in its natural crystalline state to become a land again. At
low power, the state of the material is sensed (for reading), but no phase transition
occurs.

The reason CD-RW has not replaced CD-R completely is that the CD-RW
blanks are more expensive than the CD-R blanks. Also, for applications consist-
ing of backing up hard disks, the fact that once written, a CD-R cannot be
accidentally erased is a big plus.

2.3.10 DVD

The basic CD/CD-ROM format has been around since 1980. The technology
has improved since then, so higher-capacity optical disks are now economically
feasible and there is great demand for them. Hollywood would dearly love to
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replace analog video tapes by digital disks, since disks have a higher quality, are
cheaper to manufacture, last longer, take up less shelf space in video stores, and
do not have to be rewound. The consumer electronics companies are looking for
a new blockbuster product, and many computer companies want to add multi-
media features to their software.

This combination of technology and demand by three immensely rich and
powerful industries has led to DVD, originally an acronym for Digital Video
Disk, but now officially Digital Versatile Disk. DVDs use the same general
design as CDs, with 120-mm injection-molded polycarbonate disks containing pits
and lands that are illuminated by a laser diode and read by a photodetector. What
is new is the use of

1. Smaller pits (0.4 microns versus 0.8 microns for CDs).
2. A tighter spiral (0.74 microns between tracks versus 1.6 microns for CDs).

3. A red laser (at 0.65 microns versus 0.78 microns for CDs).

Together, these improvements raise the capacity sevenfold, to 4.7 GB. A 1x DVD
drive operates at 1.4 MB/sec (versus 150 KB/sec for CDs). Unfortunately, the
switch to the red lasers used in supermarkets means that DVD players will require
a second laser or fancy conversion optics to be able to read existing CDs and CD-
ROMs, something not all of them may provide. Also, reading CD-Rs and CD-
RWs on a DVD drive may not be possible.

Is 4.7 GB enough? Maybe. Using MPEG-2 compression (standardized in IS
13346), a 4.7 GB DVD disk can hold 133 minutes of full-screen, full-motion
video at high resolution (720 x 480), as well as soundtracks in up to eight
languages and subtitles in 32 more. About 92 percent of all the movies Holly-
wood has ever made are under 133 minutes. Nevertheless, some applications such
as multimedia games or reference works may need more, and Hollywood would
like to put multiple movies on the same disk, so four formats have been defined:

1. Single-sided, single-layer (4.7 GB).
2. Single-sided, dual-layer (8.5 GB).

3. Double-sided, single-layer (9.4 GB).
4. Double-sided, dual-layer (17 GB).

Why so many formats? In a word: politics. Philips and Sony wanted single-
sided, dual-layer disks for the high capacity version, but Toshiba and Time
Warner wanted double-sided, single-layer disks. Philips and Sony did not think
people would be willing to turn the disks over, and Time Warner did not believe
putting two layers on one side could be made to work. The compromise: all com-
binations, but the market will determine which ones survive.
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The dual layering technology has a reflective layer at the bottom, topped with
a semireflective layer. Depending on where the laser is focused, it bounces off
one layer or the other. The lower layer needs slightly larger pits and lands to be
read reliably, so its capacity is slightly smaller than the upper layer’s.

Double-sided disks are made by taking two 0.6-mm single-sided disks and
gluing them together back to back. To make the thicknesses of all versions the
same, a single-sided disk consists of a 0.6-mm disk bonded to a blank substrate
(or perhaps in the future, one consisting of 133 minutes of advertising, in the hope
that people will be curious as to what is down there). The structure of the
double-sided, dual-layer disk is illustrated in Fig. 2-27.
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Figure 2-27. A double-sided, dual layer DVD disk.

DVD was devised by a consortium of 10 consumer electronics companies,
seven of them Japanese, in close cooperation with the major Hollywood studios
(some of which are owned by the Japanese electronics companies in the consor-
tium). The computer and telecommunications industries were not invited to the
picnic, and the resulting focus was on using DVD for movie rental and sales
shows. For example, standard features include real-time skipping of dirty scenes
(to allow parents to turn a film rated NC17 into one safe for toddlers), six-channel
sound, and support for Pan-and-Scan. The latter feature allows the DVD player to
dynamically decide how to crop the left and right edges off movies (whose
width:height ratio is 3:2) to fit on current television sets (whose aspect ratio is
4:3).

Another item the computer industry probably would not have thought of is an
intentional incompatibility between disks intended for the United States and disks
intended for Europe and yet other standards for other continents. Hollywood
demanded this “feature’” because new films are always released first in the United
States and then shipped to Europe when the videos come out in the United States.
The idea was to make sure European video stores could not buy videos in the U.S.
too early, thereby reducing new movies’ European theater sales. If Hollywood
had been running the computer industry, we would have had 3.5-inch floppy disks
in the United States and 9-cm floppy disks in Europe.
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2.3.11 Blu-Ray

Nothing stands still in the computer business, certainly not storage technol-
ogy. DVD was barely introduced before its successor threatened to make it
obsolete. The successor to DVD is Blu-Ray, so called because it uses a blue laser
instead of the red one used by DVDs. A blue laser has a shorter wavelength than
a red one, which allows it to focus more accurately and thus support smaller pits
and lands. Single-sided Blu-Ray disks hold about 25 GB of data; double-sided
ones hold about 50 GB. The data rate is about 4.5 MB/sec, which is good for an
optical disk, but still insignificant compared to magnetic disks (cf. ATAPI-6 at
100 MB/sec and wide Ultra4 SCSI at 320 MB/sec). It is expected that Blu-Ray
will eventually replace CD-ROMs and DVDs, but this transition will take some
years.

2.4 INPUT/OUTPUT

As we mentioned at the start of this chapter, a computer system has three
major components: the CPU, the memories (primary and secondary), and the I/O
(Input/Output) equipment such as printers, scanners, and modems. So far we
have looked at the CPU and the memories. Now it is time to examine the I/O
equipment and how it is connected to the rest of the system.

2.4.1 Buses

Physically, most personal computers and workstations have a structure similar
to the one shown in Fig. 2-28. The usual arrangement is a metal box with a large
printed circuit board at the bottom, called the motherboard (parentboard, for the
politically correct). The motherboard contains the CPU chip, some slots into
which DIMM modules can be clicked, and various support chips. It also contains
a bus etched along its length, and sockets into which the edge connectors of I/O
boards can be inserted (the PCI bus). Older PCs also have a second bus (the ISA
bus), for legacy I/O boards, but modern computers usually lack it and it is rapidly
dying off.

The logical structure of a simple low-end personal computer is shown in
Fig. 2-29. This one has a single bus used to connect the CPU, memory, and I/O
devices; most systems have two or more buses. Each 1/O device consists of two
parts: one containing most of the electronics, called the controller, and one con-
taining the I/O device itself, such as a disk drive. The controller is usually con-
tained on a board plugged into a free slot, except for those controllers that are not
optional (such as the keyboard), which are sometimes located on the motherboard.
Even though the display (monitor) is not an option, the video controller is some-
times located on a plug-in board to allow the user to choose between boards with
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Figure 2-28. Physical structure of a personal computer.

or without graphics accelerators, extra memory, and so on. The controller con-
nects to its device by a cable attached to a connector on the back of the box.
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Figure 2-29. Logical structure of a simple personal computer.

The job of a controller is to control its I/O device and handle bus access for it.
When a program wants data from the disk for example, it gives a command to the
disk controller, which then issues seeks and other commands to the drive. When
the proper track and sector have been located, the drive begins outputting the data
as a serial bit stream to the controller. It is the job of the controller to break the
bit stream up into units, and write each unit into memory, as it is assembled. A
unit is typically one or more words. A controller that reads or writes data to or
from memory without CPU intervention is said to be performing Direct Memory
Access, better known by its acronym DMA. When the transfer is completed, the
controller normally causes an interrupt, forcing the CPU to immediately suspend
running its current program and start running a special procedure, called an
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interrupt handler, to check for errors, take any special action needed, and inform
the operating system that the 1/O is now finished. When the interrupt handler is
finished, the CPU continues with the program that was suspended when the inter-
rupt occurred.

The bus is not only used by the I/O controllers, but also by the CPU for fetch-
ing instructions and data. What happens if the CPU and an I/O controller want to
use the bus at the same time? The answer is that a chip called a bus arbiter
decides who goes next. In general, I/O devices are given preference over the
CPU, because disks and other moving devices cannot be stopped, and forcing
them to wait would result in lost data. When no I/O is in progress, the CPU can
have all the bus cycles for itself to reference memory. However, when some I/O
device is also running, that device will request and be granted the bus when it
needs it. This process is called cycle stealing and it slows down the computer.

This design worked fine for the first personal computers, since all the com-
ponents were roughly in balance. However, as the CPUs, memories, and I/O
devices got faster, a problem arose: the bus could no longer handle the load
presented. On a closed system, such as an engineering workstation, the solution
was to design a new and faster bus for the next model. Because nobody ever
moved I/O devices from an old model to a new one, this approached worked fine.

However, in the PC world, people often upgraded their CPU but wanted to
move their printer, scanner, and modem to the new system. Also, a huge industry
had grown up around providing a vast range of I/O devices for the IBM PC bus,
and this industry had exceedingly little interest in throwing out its entire invest-
ment and starting over. IBM learned this the hard way when it brought out the
successor to the IBM PC, the PS/2 range. The PS/2 had a new, and faster bus, but
most clone makers continued to use the old PC bus, now called the ISA (Industry
Standard Architecture) bus. Most disk and I/O device makers also continued to
make controllers for it, so IBM found itself in the peculiar situation of being the
only PC maker that was no longer IBM compatible. Eventually, it was forced
back to supporting the ISA bus. As an aside, please note that ISA stands for
Instruction Set Architecture in the context of machine levels whereas it stands for
Industry Standard Architecture in the context of buses.

Nevertheless, despite the market pressure not to change anything, the old bus
really was too slow, so something had to be done. This situation led to other com-
panies developing machines with multiple buses, one of which was the old ISA
bus, or its backward-compatible successor, the EISA (Extended ISA) bus. The
most popular of these now is the PCI (Peripheral Component Interconnect)
bus. It was designed by Intel, but Intel decided to put all the patents in the public
domain, to encourage the entire industry (including its competitors) to adopt it.

The PCI bus can be used in many configurations, but a typical one is illus-
trated in Fig. 2-30. Here the CPU talks to a memory controller over a dedicated
high-speed connection. The controller talks to the memory and to the PCI bus
directly, so CPU-memory traffic does not go over the PCI bus. However, high-
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bandwidth (i.e., high data rate) peripherals can connect to the PCI bus directly. In
addition, here the PCI bus has a bridge to the ISA bus, so that ISA controllers and
their devices can still be used, although as mentioned earlier, the ISA bus is being
phased out. A machine of this design would typically contain three or four empty
PCI slots and one or two ISA slots, to allow customers to plug in both old ISA 1/O
cards (usually for slow devices) and new PCI I/O cards (usually for fast devices).

Memory bus
CPU PCI / Main
scs| [cache] bridge memory
bus
& I I
4 SCsli SCsSi SCSI Video Network
~1 scanner [ | disk controller controller| |controller

PCl bus

Sound Printer
card controller

Modem

ISA bus

Figure 2-30. A typical modern PC with a PCI bus and an ISA bus. The modem
and sound card are ISA devices; the SCSI controller is a PCI device.

Many kinds of I/O devices are available today. A few of the more common
ones are discussed below.

2.4.2 Terminals

Computer terminals consist of two parts: a keyboard and a monitor. In the
mainframe world, these parts are often integrated into a single device and attached
to the main computer by a serial line or over a telephone line. In the airline reser-
vation, banking, and other mainframe-oriented industries, these devices are still in
widespread use. In the personal computer world, the keyboard and monitor are
independent devices. Either way, the technology of the two parts is the same.

Keyboards
Keyboards come in several varieties. The original IBM PC came with a key-

board that had a snap-action switch under each key that gave tactile feedback and
made a click when the key was depressed far enough. Nowadays, the cheaper
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keyboards have keys that just make mechanical contact when depressed. Better
ones have a sheet of elastometric material (a kind of rubber) between the keys and
the underlying printed circuit board. Under each key is a small dome that buckles
when depressed far enough. A small spot of conductive material inside the dome
closes the circuit. Some keyboards have a magnet under each key that passes
through a coil when struck, thus inducing a current that can be detected. Various
other methods, both mechanical and electromagnetic, are also in use.

On personal computers, when a key is depressed, an interrupt is generated and
the keyboard interrupt handler (a piece of software that is part of the operating
system) is started. The interrupt handler reads a hardware register inside the key-
board controller to get the number of the key (1 through 102) that was just
depressed. When a key is released, a second interrupt is caused. Thus if a user
depresses the SHIFT key, then depresses and releases the M key, then releases the
SHIFT key, the operating system can see that the user wants an uppercase “M”
rather than a lowercase “m.” Handling of multikey sequences involving SHIFT,
CTRL, and ALT is done entirely in software (including the infamous CTRL-
ALT-DEL key sequence that is used to reboot all IBM PCs and clones).

CRT Monitors

A monitor is a box containing a CRT (Cathode Ray Tube) and its power
supplies. The CRT contains a gun that can shoot an electron beam against a phos-
phorescent screen near the front of the tube, as shown in Fig. 2-31(a). (Color
monitors have three electron guns, one each for red, green, and blue.) During the
horizontal scan, the beam sweeps across the screen in about 50 psec, tracing out
an almost horizontal line on the screen. Then it executes a horizontal retrace to
get back to the left-hand edge in order to begin the next sweep. A device like this
that produces an image line by line is called a raster scan device.

Horizontal scan

Grid
Screen - / N\
Electron gun

Spot on

screen
(o)

Vacuum o
[e)

Vertical
deflection
plate Vertical retrace Horizontal retrace

(a) (b)

Figure 2-31. (a) Cross section of a CRT. (b) CRT scanning pattern.



SEC. 24 INPUT/OUTPUT 107

Horizontal sweeping is controlled by a linearly increasing voltage applied to
the horizontal deflection plates placed to the left and right of the electron gun.
Vertical motion is controlled by a much more slowly linearly increasing voltage
applied to the vertical deflection plates placed above and below the gun. After
somewhere between 400 and 1000 sweeps, the voltages on the vertical and hor-
izontal deflection plates are rapidly reversed together to put the beam back in the
upper left-hand corner. A full-screen image is normally repainted between 30 and
60 times a second. The beam motions are shown in Fig. 2-31(b). Although we
have described CRTs as using electric fields for sweeping the beam across the
screen, many models use magnetic fields instead of electric ones, especially in
high-end monitors.

To produce a pattern of dots on the screen, a grid is present inside the CRT.
When a positive voltage is applied to the grid, the electrons are accelerated, caus-
ing the beam to hit the screen and make it glow briefly. When a negative voltage
is used, the electrons are repelled, so they do not pass through the grid and the
screen does not glow. Thus the voltage applied to the grid causes the correspond-
ing bit pattern to appear on the screen. This mechanism allows a binary electrical
signal to be converted into a visual display consisting of bright and dark spots.

Flat Panel Displays

CRTs are far too bulky and heavy to be used in notebook computers, so a
completely different technology is needed for their screens. The most common
one is LCD (Liquid Crystal Display) technology. It is highly complex, has
many variations, and is changing rapidly, so this description will, of necessity, be
brief and greatly simplified.

Liquid crystals are viscous organic molecules that flow like a liquid but also
have spatial structure, like a crystal. They were discovered by an Austrian botan-
ist (Rheinitzer) in 1888, and first applied to displays (e.g., calculators, watches) in
the 1960s. When all the molecules are lined up in the same direction, the optical
properties of the crystal depend on the direction and polarization of the incoming
light. Using an applied electric field, the molecular alignment, hence the optical
properties, can be changed. In particular, by shining a light through a liquid crys-
tal, the intensity of the light exiting from it can be controlled electrically. This
property can be exploited to construct flat panel displays.

An LCD display screen consists of two parallel glass plates between which is
a sealed volume containing a liquid crystal. Transparent electrodes are attached
to both plates. A light behind the rear plate (either natural or artificial) illumi-
nates the screen from behind. The transparent electrodes attached to each plate
are used to create electric fields in the liquid crystal. Different parts of the screen
get different voltages, to control the image displayed. Glued to the front and rear
of the screen are polaroids because the display technology requires the use of
polarized light. The general setup is shown in Fig. 2-32(a).
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Figure 2-32. (a) The construction of an LCD screen. (b) The grooves on the
rear and front plates are perpendicular to one another.

Although many kinds of LCD displays are in use, we will now consider one
particular kind of display, the TN (Twisted Nematic) display as an example. In
this display, the rear plate contains tiny horizontal grooves and the front plate con-
tains tiny vertical grooves, as illustrated in Fig. 2-32(b). In the absence of an elec-
tric field, the LCD molecules tend to align with the grooves. Since the front and
rear alignments differ by 90 degrees, the molecules (and thus the crystal structure)
twist from rear to front.

At the rear of the display is a horizontal polaroid. It only allows in horizon-
tally polarized light. At the front of the display is a vertical polaroid. It only
allows vertically polarized light to pass through. If there were no liquid present
between the plates, horizontally polarized light let in by the rear polaroid would
be blocked by the front polaroid, making the screen uniformly black.

However the twisted crystal structure of the LCD molecules guides the light
as it passes and rotates its polarization, making it come out vertically. Thus in the
absence of an electric field, the LCD screen is uniformly bright. By applying a
voltage to selected parts of the plate, the twisted structure can be destroyed,
blocking the light in those parts.

Two schemes can be used for applying the voltage. In a (low-cost) passive
matrix display, both electrodes contain parallel wires. In a 640 x 480 display, for
example, the rear electrode might have 640 vertical wires and the front one might
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have 480 horizontal ones. By putting a voltage on one of the vertical wires and
then pulsing one of the horizontal ones, the voltage at one selected pixel position
can be changed, making it go dark briefly. By repeating this pulse with the next
pixel and then the next one, a dark scan line can be painted, analogous to how a
CRT works. Normally, the entire screen is painted 60 times a second to fool the
eye into thinking there is a constant image there, again, the same way as a CRT.

The other scheme in widespread use is the active matrix display. It is more
expensive but it gives a better image. Instead of just having two sets of perpen-
dicular wires, it has a tiny switching element at each pixel position on one of the
electrodes. By turning these on and off, an arbitrary voltage pattern can be
created across the screen, allowing for an arbitrary bit pattern. The switching ele-
ments are called thin film transistors and the flat panel displays using them are
often called TFT displays. Most notebook computers and stand-alone flat panel
displays for desktop computers use TFT technology now.

So far we have described how a monochrome display works. Suffice it to say
that color displays use the same general principles as monochrome displays, but
that the details are a great deal more complicated. Optical filters are used to
separate the white light into red, green, and blue components at each pixel posi-
tion so these can be displayed independently. Every color can be built up from a
linear superposition of these three primary colors.

Video RAM

Both CRTs and TFT displays are refreshed 60—100 times per second from a
special memory, called a video RAM, on the display’s controller card. This
memory has one or more bit maps that represent the screen. On a screen with,
say, 1600 x 1200 picture elements, called pixels, the vidleo RAM would contain
1600 x 1200 values, one for each pixel. In fact, it might contain many such bit
maps, to allow rapid switching from one screen image to another.

On a high-end display, each pixel would be represented as a 3-byte RGB
value, one each for the intensity of the red, green, and blue components of the
pixel’s color. From the laws of physics, it is known that any color can be con-
structed from a linear superposition of red, green, and blue light.

A video RAM with 1600 x 1200 pixels at 3 bytes/pixels requires almost 5.5
MB to store the image and a fair amount of CPU time to do anything with it. For
this reason, some computers compromise by using an 8-bit number to indicate the
color desired. This number is then used as an index into a hardware table, called
the color palette that contains 256 entries, each holding a 24-bit RGB value.
Such a design, called indexed color, reduces the memory video RAM memory
requirements by 2/3, but allows only 256 colors on the screen at once. Usually,
each window on the screen has its own mapping, but with only one hardware
color palette, often when multiple windows are present on the screen, only the
current one has its colors rendered correctly.
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Bit-mapped video displays require a lot of bandwidth. To display full-screen,
full-color multimedia on a 1600 x 1200 display requires copying 5.5 MB of data
to the video RAM for every frame. For full-motion video, a rate of at least 25
frame/sec is needed, for a total data rate of 137.5 MB/sec. This load is far more
than the (E)ISA bus can handle, and even more than the original PCI bus could
handle (127.2 MB/sec). Of course, smaller images require less bandwidth, but
bandwidth is still a major issue.

To allow more bandwidth from the CPU to the video RAM, starting with the
Pentium II, Intel added support for a new bus to the video RAM, the AGP bus
(Accelerated Graphics Port), which can transfer 32 bits at a rate of 66 MHz for
a data rate of 252 MB/sec. Subsequent versions ran at 2x, 4x, and even 8x to pro-
vide sufficient bandwidth for highly interactive graphics without overloading the
main PCI bus.

2.4.3 Mice

As time goes on, computers are being used by people with less expertise in
how computers work. Computers of the ENIAC generation were used only by the
people who built them. In the 1950s, computers were only used by highly-skilled
professional programmers. Now, computers are widely used by people who need
to get some job done and do not know (or even want to know) much about how
computers work or how they are programmed.

In the old days, most computers had command line interfaces, to which users
typed commands. Since people who are not computer specialists often perceived
command line interfaces as user-unfriendly, if not downright hostile, many com-
puter vendors developed point-and-click interfaces, such as the Macintosh and
Windows. Using this model requires having a way to point at the screen. The
most common way of allowing users to point at the screen is with a mouse.

A mouse is a small plastic box that sits on the table next to the keyboard.
When it is moved around on the table, a little pointer on the screen moves too,
allowing users to point at screen items. The mouse has one, two, or three buttons
on top, to allow users to select items from menus. Much blood has been spilled as
a result of arguments about how many buttons a mouse ought to have. Naive
users prefer one (it is hard to push the wrong button if there is only one), but
sophisticated ones like the power of multiple buttons to do fancy things.

Three kinds of mice have been produced: mechanical mice, optical mice, and
optomechanical mice. The first mice had two rubber wheels protruding through
the bottom, with their axles perpendicular to one another. When the mouse was
moved parallel to its main axis, one wheel turned. When it is moved perpendicu-
lar to its main axis, the other one turned. Each wheel drove a variable resistor or
potentiometer. By measuring changes in the resistance, it was possible to see how
much each wheel had rotated and thus calculate how far the mouse had moved in
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each direction. In recent years, this design has largely been replaced by one in
which a ball that protrudes slightly from the bottom is used instead of wheels. It
is shown in Fig. 2-33.

Pointer controlled by mouse
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Mouse buttons
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Figure 2-33. A mouse being used to point to menu items.

The second kind of mouse is the optical mouse. This kind has no wheels or
ball. Instead, it has an LED (Light Emitting Diode) and a photodetector on the
bottom. The optical mouse is used on top of a special plastic pad containing a
rectangular grid of closely spaced lines. As the mouse moves over the grid, the
photodetector senses line crossings by seeing the changes in the amount of light
being reflected back from the LED. Electronics inside the mouse count the num-
ber of grid lines crossed in each direction.

The third kind of mouse is optomechanical. Like the newer mechanical
mouse, it has a rolling ball that turns two shafts aligned at 90 degrees to each
other. The shafts are connected to encoders that have slits through which light
can pass. As the mouse moves, the shafts rotate, and light pulses strike the detec-
tors whenever a slit comes between an LED and its detector. The number of
pulses detected is proportional to the amount of motion.

Although mice can be set up in various ways, a common arrangement is to
have the mouse send a sequence of 3 bytes to the computer every time the mouse
moves a certain minimum distance (e.g., 0.01 inch), sometimes called a mickey.
Usually, these characters come in on a serial line, one bit at time. The first byte
contains a signed integer telling how many units the mouse has moved in the x-
direction since the last time. The second byte gives the same information for y
motion. The third byte contains the current state of the mouse buttons. Some-
times 2 bytes are used for each coordinate.



112 COMPUTER SYSTEMS ORGANIZATION CHAP. 2

Low-level software in the computer accepts this information as it comes in
and converts the relative movements sent by the mouse to an absolute position. It
then displays an arrow on the screen at the position corresponding to where the
mouse is. When the arrow points at the proper item, the user clicks a mouse but-
ton, and the computer can then figure out which item has been selected from its
knowledge of where the arrow is on the screen.

2.4.4 Printers

Having prepared a document or fetched a page from the World Wide Web,
users often want to print it, so all computers can be equipped with a printer. In
this section we will describe some of the more common kinds of monochrome
(i.e., black and white) and color printers.

Monochrome Printers

The cheapest kind of printer is the matrix printer, in which a print head con-
taining between 7 and 24 electromagnetically activatable needles is scanned
across each print line. Low-end printers have seven needles, for printing, say, 80
characters in a 5 X 7 matrix across the line. In effect, the print line then consists
of 7 horizontal lines, each consisting of 5x 80=400 dots. Each dot can be
printed or not printed, depending on the characters to be printed. Figure 2-34(a)
illustrates the letter “A” printed on a 5 X 7 matrix.

Figure 2-34. (a) The letter “A” on a 5 X 7 matrix. (b) The letter “A” printed
with 24 overlapping needles.

The print quality can be increased by two techniques: using more needles and
having the circles overlap. Figure 2-34(b) shows an “A” printed using 24 needles
that produce overlapping dots. Usually, multiple passes over each scan line are
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required to produce overlapping dots, so increased quality goes hand in hand with
slower printing rates. Most matrix printers can operate in several modes, offering
different trade-offs between print quality and speed.

Matrix printers are cheap (especially in terms of consumables) and highly reli-
able, but slow, noisy, and poor at graphics. They have three main uses in current
systems. First, they are popular for printing on large (> 30 cm) preprinted forms.
Second, they are good at printing on small pieces of paper, such as cash register
receipts, ATM machine or credit card transaction slips, or airline boarding passes.
Third, for printing on multipart continuous forms with carbon paper embedded
between the copies, they are usually the cheapest technology.

For low-cost home printing, inkjet printers are a favorite. The movable print
head, which holds an ink cartridge, is swept horizontally across the paper by a belt
while ink is sprayed from its tiny nozzles. The ink droplets have a volume of
about 1 picoliter, which means that 100 million of them would fit nicely in a sin-
gle drop of water.

Inkjet printers come in two varieties: piezoelectric (used by Epson) and ther-
mal (used by Canon, HP, and Lexmark). The piezoelectric inkjet printers have a
special kind of crystal next to the ink chamber. When a voltage is applied to the
crystal, it deforms slightly, forcing a droplet of ink out of the nozzle. The higher
the voltage, the larger the droplet, allowing the software to control the droplet
size.

Thermal inkjet printers (also called bubblejet printers) contain a tiny resistor
inside each nozzle. When a voltage is applied to the resistor, it heats up
extremely fast, instantly raising the temperature of the ink touching it to the boil-
ing point until the ink vaporizes to form a gas bubble. The gas bubble takes up
more volume than the ink that created it, producing pressure in the nozzle. The
only place the ink can go is out the front of the nozzle onto the paper. The nozzle
is then cooled and the resulting vacuum sucks in another ink droplet from the ink
tank. The speed of the printer is limited by how fast the boil/cool cycle can be
repeated. The droplets are all the same size, but usually smaller than what the
piezo-electric printers produce.

Inkjet printers typically have resolutions of at least 1200 dpi (dots per inch)
and at the high end, 4800 dpi, They are cheap, quiet, and have good quality,
although they are also slow, and use expensive ink cartridges. When the best of
the high-end inkjet printers is used to print a high-resolution photograph on
specially-coated photographic paper, the results are indistinguishable from con-
ventional photography, even up to 8 x 10 prints.

Probably the most exciting development in printing since Johann Gutenberg
invented movable type in the fifteenth century is the laser printer. This device
combines a high quality image, excellent flexibility, great speed, and moderate
cost into a single peripheral. Laser printers use almost the same technology as
photocopy machines. In fact, many companies make devices that combine copy-
ing and printing (and sometimes fax as well).
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The basic technology is illustrated in Fig. 2-35. The heart of the printer is a
rotating precision drum (or in some high-end systems, a belt). At the start of each
page cycle, it is charged up to about 1000 volts and coated with a photosensitive
material. Then light from a laser is scanned along the length of the drum much
like the electron beam in a CRT, only instead of achieving the horizontal deflec-
tion using a voltage, a rotating octagonal mirror is used to scan the length of the
drum. The light beam is modulated to produce a pattern of light and dark spots.
The spots where the beam hits lose their electrical charge.

Laser Rotating octagonal
D miror

Drum sprayed and charged
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Figure 2-35. Operation of a laser printer.

After a line of dots has been painted, the drum rotates a fraction of a degree to
allow the next line to be painted. Eventually, the first line of dots reaches the
toner, a reservoir of an electrostatically sensitive black powder. The toner is
attracted to those dots that are still charged, thus forming a visual image of that
line. A little later in the transport path, the toner-coated drum is pressed against
the paper, transferring the black powder to the paper. The paper is then passed
through heated rollers to fuse the toner to the paper permanently, fixing the image.
Later in its rotation, the drum is discharged and scraped clean of any residual
toner, preparing it for being charged and coated again for the next page.

That this process is an exceedingly complex combination of physics, chemis-
try, mechanical engineering, and optical engineering hardly needs to be said.
Nevertheless, complete assemblies, called print engines, are available from
several vendors. Laser printer manufacturers combine the print engines with their
own electronics and software to make a complete printer. The electronics consists
of a fast embedded CPU along with megabytes of memory to hold a full-page bit
map and numerous fonts, some of them built in and some of them downloadable.
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Most printers accept commands that describe the pages to be printed (as opposed
to simply accepting bit maps prepared by the main CPU). These commands are
given in languages such as HP’s PCL and Adobe’s PostScript.

Laser printers at 600-dpi and up can do a reasonable job of printing black and
white photographs but the technology is trickier than it might at first appear. Con-
sider a photograph scanned in at 600 dpi that is to be printed on a 600 dpi printer.
The scanned image contains 600 X 600 pixels/inch, each one consisting of a gray
value from O (white) to 255 (black). The printer can also print 600 dpi, but each
printed pixel is either black (toner present) or white (no toner present). Gray
values cannot be printed.

The usual solution to printing images with gray values is to use halftoning,
the same as commercially printed posters. The image is broken up into halftone
cells, each typically 6 x 6 pixels. Each cell can contain between 0 and 36 black
pixels. The eye perceives a cell with many pixels as darker than one with fewer
pixels. Gray values in the range O to 255 are represented by dividing this range
into 37 zones. Values from O to 6 are in zone 0, values from 7 to 13 are in zone 1,
and so on (zone 36 is slightly smaller than the others because 37 does not divide
256 exactly). Whenever a gray value in zone O is encountered, its halftone cell on
the paper is left blank, as illustrated in Fig. 2-36(a). A zone 1 value is printed as 1
black pixel. A zone 2 value is printed as 2 black pixels, as shown in Fig. 2-36(b).
Other zone values are shown in Fig. 2-36(c)-(f). Of course, taking a photograph
scanned at 600 dpi and halftoning this way reduces the effective resolution to 100
cells/inch, called the halftone screen frequency, conventionally measured in Ipi
(lines per inch).
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Figure 2-36. Halftone dots for various gray scale ranges. (a) 0-6. (b) 14-20. (c)
28-34. (d) 56-62. (e) 105-111. (f) 161-167.

Color Printers

Color images can be viewed in one of two ways: transmitted light and
reflected light. Transmitted light images, such as those produced on CRT moni-
tors, are built up from the linear superposition of the three additive primary colors,
red, green, and blue. Reflected light images, such as color photographs and pic-
tures in glossy magazines, absorb certain wavelengths of light and reflect the rest.
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These are built up from a linear superposition of the three subtractive primary
colors, cyan (all red absorbed), yellow (all blue absorbed), and magenta (all green
absorbed). In theory, every color can be produced by mixing cyan, yellow, and
magenta ink. In practice it is difficult to get the inks pure enough to absorb all
light and produce a true black. For this reason, nearly all color printing systems
use four inks: cyan, yellow, magenta, and black. These systems are called
CYMK printers (K is for blacK, to avoid confusion with Blue). Monitors, in
contrast, use transmitted light and the RGB system for producing colors.

The complete set of colors that a display or printer can produce is called its
gamut. No device has a gamut that matches the real world, since at best each
color comes in 256 intensities, giving only 16,777,216 discrete colors. Imperfec-
tions in the technology reduce the total more, and the remaining ones are not
always uniformly spaced over the color spectrum. Furthermore, color perception
has a lot to do with how the rods and cones in the human retina work, and not just
the physics of light.

As a consequence of the above observations, converting a color image that
looks fine on the screen to an identical printed one is far from trivial. Among the
problems are

1. Color monitors use transmitted light; color printers use reflected light.
2. CRTs produce 256 intensities per color; color printers must halftone.
3. Monitors have a dark background; paper has a light background.

4. The RGB and CMYK gamuts are different.

Getting printed color images to match real life (or even to match screen images)
requires device calibration, sophisticated software, and considerable expertise on
the part of the user.

Five technologies are in common use for color printing, all of them based on
the CMYK system. At the low end are color ink jet printers. They work the same
way as monochrome ink jet printers, but with four cartridges (for C, M, Y, and K)
instead of one. They give good results for color graphics and passable results for
photographs at modest cost (the printers are cheap but the ink cartridges are not).

For best results, special ink and paper should be used. Two kinds of ink exist.
Dye-based inks consist of colored dyes dissolved in a fluid carrier. They give
bright colors and flow easily. Their main disadvantage is that they fade when
exposed to ultraviolet light, such as that contained in sunlight. Pigment-based
ink contains solid particles of pigment suspended in a fluid carrier that evaporates
from the paper, leaving the pigment behind. They do not fade in time but are not
as bright as dye-based inks and the pigment particles have a tendency to clog the
nozzles, requiring periodic cleaning. Coated or glossy paper is required for print-
ing photographs. These kinds of paper have been specially designed to hold the
ink droplets and not let them spread out.
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A step up from ink jet printers leads to the solid ink printers. These accept
four solid blocks of a special waxy ink which are then melted into hot ink reser-
voirs. Startup times of these printers can be as much as 10 minutes, while the ink
blocks are melting. The hot ink is sprayed onto the paper, where it solidifies and
is fused with the paper by forcing it between two hard rollers

The third kind of color printer is the color laser printer. It works like its
monochrome cousin, except that separate C, Y, M, and K images are laid down
and transferred to a roller using four different toners. Since the full bit map is
generally produced in advance, a 1200 x 1200 dpi image for a page containing 80
square inches needs 115 million pixels. With 4 bits/pixels, the printer needs 55
MB just for the bit map, exclusive of memory for the internal processors, fonts,
etc. This requirement makes color laser printers expensive, but printing is fast,
the quality is high, and the images are stable over time.

The fourth kind of color printer is the wax printer. It has a wide ribbon of
four-color wax that is segmented into page-size bands. Thousands of heating ele-
ments melt the wax as the paper moves under it. The wax is fused to the paper in
the form of pixels using the CMYK system. Wax printers used to be the main
color printing technology, but they are being replaced by the other kinds, which
have cheaper consumables.

The fifth kind of color printer is the dye sublimation printer. Although it
has Freudian undertones, sublimation is the scientific name for a solid changing
into a gas without passing through the liquid state. Dry ice (frozen carbon diox-
ide) is a well-known material that sublimates. In a dye sublimation printer, a car-
rier containing the CMYK dyes passes over a thermal print head containing
thousands of programmable heating elements. The dyes are vaporized instantly
and absorbed by a special paper close by. Each heating element can produce 256
different temperatures. The higher the temperature, the more dye that is deposited
and the more intense the color. Unlike all the other color printers, nearly continu-
ous colors are possible for each pixel, so no halftoning is needed. Small snapshot
printers often use the dye sublimation process to produce highly realistic photo-
graphic images on special (and expensive) paper.

2.4.5 Telecommunications Equipment

Most computers nowadays are connected to a computer network, often the
Internet. Achieving this access requires special equipment. In this section we
will see how this equipment works.
Modems

With the growth of computer usage in the past years, it is common for one

computer to need to communicate with another computer. For example, many
people have personal computers at home that they use for communicating with
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their computer at work, with an Internet Service Provider, or with a home banking
system. In many cases, the telephone line provides the physical communication.

However, a raw telephone line (or cable) is not suitable for transmitting com-
puter signals, which generally represent a 0 as O volts and a 1 as 3 to 5 volts as
shown in Fig. 2-37(a). Two-level signals suffer considerable distortion when
transmitted over a voice-grade telephone line, thereby leading to transmission
errors. A pure sine wave signal at a frequency of 1000 to 2000 Hz, called a car-
rier, can be transmitted with relatively little distortion, however, and this fact is
exploited as the basis of most telecommunication systems.
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Figure 2-37. Transmission of the binary number 01001011000100 over a tele-
phone line bit by bit. (a) Two-level signal. (b) Amplitude modulation.
(c) Frequency modulation. (d) Phase modulation.

Because the pulsations of a sine wave are completely predictable, a pure sine
wave transmits no information at all. However, by varying the amplitude, fre-
quency, or phase, a sequence of 1s and Os can be transmitted, as shown in Fig. 2-
37. This process is called modulation. In amplitude modulation [see Fig. 2-
37(b)], two different voltage levels are used, for 0 and 1, respectively. A person
listening to digital data transmitted at a very low data rate would hear a loud noise
for a 1 and no noise for a 0.

In frequency modulation [see Fig. 2-37(c)], the voltage level is constant but
the carrier frequency is different for 1 and 0. A person listening to frequency
modulated digital data would hear two tones, corresponding to 0 and 1. Fre-
quency modulation is often referred to as frequency shift keying.
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In simple phase modulation [see Fig. 2-37(d)], the amplitude and frequency
do not change, but the phase of the carrier is reversed 180 degrees when the data
switch from O to 1 or 1 to 0. In more sophisticated phase-modulated systems, at
the start of each indivisible time interval, the phase of the carrier is abruptly
shifted by 45, 135, 225, or 315 degrees, to allow 2 bits per time interval, called
dibit phase encoding. For example, a phase shift of 45 degrees could represent
00, a phase shift of 135 degrees could represent 01, and so on. Other schemes, for
transmitting 3 or more bits per time interval also exist. The number of time inter-
vals (i.e., the number of potential signal changes per second) is baud rate. With 2
or more bits per interval, the bit rate will exceed the baud rate. Many people con-
fuse these two terms.

If the data to be transmitted consist of a series of 8-bit characters, it would be
desirable to have a connection capable of transmitting 8 bits simultaneously—that
is, eight pairs of wires. Because voice-grade telephone lines provide only one
channel, the bits must be sent serially, one after another (or in groups of two if
dibit encoding is being used). The device that accepts characters from a computer
in the form of two-level signals, one bit at a time, and transmits the bits in groups
of one or two, in amplitude-, frequency-, or phase-modulated form, is the modem.
To mark the start and end of each character, an 8-bit character is normally sent
preceded by a start bit and followed by a stop bit, making 10 bits in all.

The transmitting modem sends the individual bits within one character at
regularly-spaced time intervals. For example, 9600 baud implies one signal
change every 104 usec. A second modem at the receiving end is used to convert a
modulated carrier to a binary number. Because the bits arrive at the receiver at
regularly-spaced intervals, once the receiving modem has determined the start of
the character, its clock tells it when to sample the line to read the incoming bits.

Modern modems operate at data rates ranging from 28,800 bits/sec to 57,600
bits/sec, usually at much lower baud rates. They use a combination of techniques
to send multiple bits per baud, modulating the amplitude, frequency, and phase.
Nearly all of them are full-duplex, meaning they can transmit in both directions at
the same time (using different frequencies). Modems or transmission lines that
can only transmit in one direction at a time (like a single-track railroad that can
handle north-bound trains or south-bound trains but not at the same time) are
called half-duplex. Lines that can only transmit in one direction are simplex.

Digital Subscriber Lines

When the telephone industry finally got to 56 kbps, it patted itself on the back
for a job well done. Meanwhile, the cable TV industry was offering speeds up to
10 Mbps on shared cables, and satellite companies were planning to offer upward
of 50 Mbps. As Internet access became an increasingly important part of their
business, the telcos (telephone companies) began to realize they needed a more
competitive product than dialup lines. Their answer was to start offering a new
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digital Internet access service. Services with more bandwidth than standard tele-
phone service are sometimes called broadband, although the term really is more
of a marketing concept than a specific technical concept.

Initially, there were many overlapping offerings, all under the general name of
xDSL (Digital Subscriber Line), for various x. Below we will discuss what is
probably going to become the most popular of these services, ADSL (Asym-
metric DSL). Since ADSL is still being developed and not all the standards are
fully in place, some of the details given below may change in time, but the basic
picture should remain valid. For more information about ADSL, see (Summers,
1999; and Vetter et al., 2000).

The reason that modems are so slow is that telephones were invented for car-
rying the human voice and the entire system has been carefully optimized for this
purpose. Data have always been stepchildren. The wire, called the local loop,
from each subscriber to the telephone company’s office has traditionally been lim-
ited to about 3000 Hz by a filter in the telco office. It is this filter that limits the
data rate. The actual bandwidth of the local loop depends on its length, but for
typical distances of a few kilometers, 1.1 MHz is feasible.

The most common approach to offering ADSL is illustrated in Fig. 2-38. In
effect, what it does is remove the filter and divide the available 1.1 MHz spectrum
on the local loop into 256 independent channels of 4312.5 Hz each. Channel O is
used for POTS (Plain Old Telephone Service). Channels 1-5 are not used, to
keep the voice signal and data signals from interfering with each other. Of the
remaining 250 channels, one is used for upstream control and one is used for
downstream control. The rest are available for user data. ADSL is like having
250 modems.

256 4-kHz Channels
o}
=
s}
o
0 25 1100 kHz
-
Voice Upstream Downstream

Figure 2-38. Operation of ADSL.

In principle, each of the remaining channels can be used for a full-duplex data
stream, but harmonics, crosstalk, and other effects keep practical systems well
below the theoretical limit. It is up to the provider to determine how many chan-
nels are used for upstream and how many for downstream. A 50-50 mix of
upstream and downstream is technically possible, but most providers allocate
something like 80%—90% of the bandwidth to the downstream channel since most
users download more data than they upload. This choice gives rise to the “A” in
ADSL. A common split is 32 channels for upstream and the rest downstream.
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Within each channel the line quality is constantly monitored and the data rate
adjusted continuously as needed, so different channels may have different data
rates. The actual data are sent using a combination of amplitude and phase modu-
lation with up to 15 bits per baud. With, for example, 224 downstream channels
and 15 bits/baud at 4000 baud, the downstream bandwidth is 13.44 Mbps. In
practice, the signal-to-noise ratio is never good enough to achieve this rate, but
4-8 Mbps is possible on short runs over high-quality loops.

A typical ADSL arrangement is shown in Fig. 2-39. In this scheme, the user
or a telephone company technician must install a NID (Network Interface
Device) on the customer’s premises. This small plastic box marks the end of the
telephone company’s property and the start of the customer’s property. Close to
the NID (or sometimes combined with it) is a splitter, an analog filter that
separates the 0-4000 Hz band used by POTS from the data. The POTS signal is
routed to the existing telephone or fax machine, and the data signal is routed to an
ADSL modem. The ADSL modem is actually a digital signal processor that has
been set up to act as 250 modems operating in parallel at different frequencies.
Since most current ADSL modems are external, the computer must be connected
to it at high speed. Usually, this is done by putting an Ethernet card in the com-
puter and operating a very short two-node Ethernet containing only the computer
and ADSL modem. (Ethernet is a popular and inexpensive local area network
standard.) Occasionally the USB port is used instead of Ethernet. In the future,
internal ADSL modem cards will no doubt become available.

Voice
switch /Telephone

), —Codec

Splitter Telephone
line

Splitter

Computer

A /
ADSL Ethernet
modem

Telephone company end office Customer premises

Figure 2-39. A typical ADSL equipment configuration.

At the other end of the wire, on the telco side, a corresponding splitter is
installed. Here the voice portion of the signal is filtered out and sent to the normal
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voice switch. The signal above 26 kHz is routed to a new kind of device called a
DSLAM (Digital Subscriber Line Access Multiplexer), which contains the
same kind of digital signal processor as the ADSL modem. Once the digital sig-
nal has been recovered into a bit stream, packets are formed and sent off to the
ISP.

Internet over Cable

Many cable TV companies are now offering Internet access over their cables.
Since the technology is quite different from ADSL, it is worth looking at briefly.
The cable operator in each city has a main office and a large number of boxes full
of electronics, called headends, spread all over its territory. The headends are
connected to the main office by high-bandwidth cables or fiber optics.

Each headend has one or more cables that run from it past hundreds of homes
and offices. Each cable customer taps onto the cable as it passes the customer’s
premises. Thus hundreds of users share the same cable to the headend. Usually,
the cable has a bandwidth of about 750 MHz. This system is radically different
from ADSL because each telephone user has a private (i.e., not shared) wire to the
telco office. However, in practice, having your own 1.1 MHz channel to a telco
office is not that different than sharing a 200-MHz piece of cable spectrum to the
headend with 400 users, half of whom are not using it at any one instant. It does
mean, however, that a cable Internet user will get much better service at 4 A.M.
than at 4 P.M whereas ADSL service is constant all day long. People intent on
getting optimal Internet over cable service might wish to consider moving to a
rich neighborhood (houses far apart so fewer customers per cable) or a poor
neighborhood (nobody can afford Internet service).

Since the cable is a shared medium, determining who may send when and at
which frequency is a big issue. To see how that works, we have to briefly
describe how cable TV operates. Cable television channels in North America
normally occupy the 54-550 MHz region (except for FM radio from 88 to 108
MHz). These channels are 6 MHz wide, including guard bands to prevent signal
leakage between channels. In Europe the low end is usually 65 MHz and the
channels are 6-8 MHz wide for the higher resolution required by PAL and
SECAM but otherwise the allocation scheme is similar. The low part of the band
is not used for television transmission.

When introducing Internet over cable, the cable companies had two problems
to solve:

1. How to add Internet access without interfering with TV programs.

2. How to have two-way traffic when amplifiers are inherently one way.

The solutions chosen are as follows. Modern cables operate well above 550 MHz,
often to 750 MHz or more. The upstream (i.e., user to headend) channels go in
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the 5-42 MHz band (slightly higher in Europe) and the downstream (i.e., headend
to user) traffic uses the frequencies at the high end, as illustrated in Fig. 2-40.

54254 88
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% § TV |FM TV Downstream data
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Downstream frequencies

Upstream
frequencies

Figure 2-40. Frequency allocation in a typical cable TV system used for Inter-
net access.

Note that since the television signals are all downstream, it is possible to use
upstream amplifiers that work only in the 5-42 MHz region and downstream
amplifiers that work only at 54 MHz and up, as shown in the figure. Thus, we get
an asymmetry in the upstream and downstream bandwidths because more spec-
trum is available above television than below it. On the other hand, most of the
traffic is likely to be downstream, so cable operators are not unhappy with this
fact of life. As we saw earlier, telephone companies usually offer an asymmetric
DSL service, even though they have no technical reason for doing so.

Internet access requires a cable modem, a device that has two interfaces on it:
one to the computer and one to the cable network. The computer-to-cable-modem
interface is straightforward. It is normally Ethernet, just as with ADSL. In the
future, the entire modem might be a small card plugged into the computer, just as
with V.9x internal modems.

The other end is more complicated. A large part of the cable standard deals
with radio engineering, a subject far beyond the scope of this book. The only part
worth mentioning here is that cable modems, like ADSL modems, are always on.
They make a connection when turned on and maintain that connection as long as
they are powered up because cable operators do not charge for connect time.

To better understand how they work, let us see what happens when a cable
modem is plugged in and powered up. The modem scans the downstream chan-
nels looking for a special packet periodically put out by the headend to provide
system parameters to modems that have just come on-line. Upon finding this
packet, the new modem announces its presence on one of the upstream channels.
The headend responds by assigning the modem to its upstream and downstream
channels. These assignments can be changed later if the headend deems it neces-
sary to balance the load.

The modem then determines its distance from the headend by sending it a spe-
cial packet and seeing how long it takes to get the response. This process is called
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ranging. It is important for the modem to know its distance to accommodate the
way the upstream channels operate and to get the timing right. They are divided
in time in minislots. Each upstream packet must fit in one or more consecutive
minislots. The headend announces the start of a new round of minislots periodi-
cally, but the starting gun is not heard at all modems simultaneously due to the
propagation time down the cable. By knowing how far it is from the headend,
each modem can compute how long ago the first minislot really started. Minislot
length is network dependent. A typical payload is 8 bytes.

During initialization, the headend also assigns each modem to a minislot to
use for requesting upstream bandwidth. As a rule, multiple modems will be
assigned the same minislot, which leads to contention. When a computer wants to
send a packet, it transfers the packet to the modem, which then requests the neces-
sary number of minislots for it. If the request is accepted, the headend puts an
acknowledgement on the downstream channel telling the modem which minislots
have been reserved for its packet. The packet is then sent, starting in the minislot
allocated to it. Additional packets can be requested using a field in the header.

On the other hand, if there is contention for the request minislot, there will be
no acknowledgement and the modem just waits a random time and tries again.
After each successive failure, the randomization time is doubled to spread out the
load when there is heavy traffic.

The downstream channels are managed differently from the upstream chan-
nels. For one thing, there is only one sender (the headend) so there is no conten-
tion and no need for minislots, which is actually just time division statistical mul-
tiplexing. For another, the traffic downstream is usually much larger than
upstream, so a fixed packet size of 204 bytes is used. Part of that is a Reed-
Solomon error-correcting code and some other overhead, leaving a user payload
of 184 bytes. These numbers were chosen for compatibility with digital television
using MPEG-2, so the TV and downstream data channels are formatted the same
way. Logically, the connections are as depicted in Fig. 2-41.

Getting back to modem initialization, once the modem has completed ranging
and gotten its upstream channel, downstream channel, and minislot assignments,
it is free to start sending packets. These packets go to the headend, which relays
them over a dedicated channel to the cable company’s main office and then to the
ISP (which may be the cable company itself). The first packet is one to the ISP
requesting a network address (technically, an IP address), which is dynamically
assigned. It also requests and gets an accurate time of day.

The next step involves security. Since cable is a shared medium, anybody
who wants to go to the trouble to do so can read all the traffic going past him. To
prevent everyone from snooping on their neighbors (literally), all traffic is
encrypted in both directions. Part of the initialization procedure involves estab-
lishing encryption keys. At first one might think that having two strangers, the
headend and the modem, establish a secret key in broad daylight with thousands
of people watching would be impossible to accomplish. Turns out it is not, but
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Figure 2-41. Typical details of the upstream and downstream channels in North
America. QAM-64 (Quadrature Amplitude Modulation) allows 6 bits/Hz but
only works at high frequencies. QPSK (Quadrature Phase Shift Keying) works
at low frequencies but allows only 2 bits/Hz.

the technique used (the Diffie-Hellman algorithm) is beyond the scope of this
book. See Kaufman et al. (2002) for a discussion of it.

Finally, the modem has to log in and provide its unique identifier over the
secure channel. At this point the initialization is complete. The user can now log
in to the ISP and get to work.

There is much more to be said about cable modems. Some relevant refer-
ences are (Adams and Dulchinos, 2001; Donaldson and Jones, 2001; and Dutta-
Roy, 2001).

2.4.6 Digital Cameras

An increasingly popular use of computers is for digital photography, making
digital cameras a kind of computer peripheral. Let us briefly see how that works.
All cameras have a lens that forms an image of the subject in the back of the cam-
era. In a conventional camera, the back of the camera is lined with film, on which
a latent image is formed when light strikes it. The latent image can be made visi-
ble by the action of certain chemicals in the film developer. A digital camera
works the same way except that the film is replaced by a rectangular array of
CCDs (Charge-Coupled Devices) that are sensitive to light. (Some digital cam-
eras use CMOS, but we will concentrate on the more common CCDs here.)

When light strikes a CCD, it acquires an electrical charge. The more light,
the more charge. The charge can be read off by an analog-to-digital converter as
an integer from O to 255 (on low-end cameras) or 0 to 4095 (on digital single lens
reflex cameras). The basic arrangement is shown in Fig. 2-42.

Each CCD produces a single value, independent of the color of light striking
it. To form color images, the CCDs are organized in groups of four elements. A
Bayer filter is placed on top of the CCD to allow only red light to strike one of
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One pixel is made
up for four CCDs,
one red, one blue,
and two green
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Figure 2-42. A digital camera.

the four CCDs in each group, blue light to strike another one, and green light to
strike the other two. Two greens are used because using four CCDs to represent
one pixel is much more convenient than using three, and the eye is more sensitive
to green light than to red or blue light. When a digital camera manufacturer
claims a camera has, say, 6 million pixels, it is lying. The camera has 6 million
CCDs, which together form 1.5 million pixels. The image will be read out as an
array of 2828 x 2121 pixels (on low-end cameras) or 3000 times 2000 pixels (on
digital SLRs), but the extra pixels are produced by interpolation by software
inside the camera.

When the camera’s shutter button is depressed, software in the camera per-
forms three tasks: setting the focus, determining the exposure, and performing the
white balance. The autofocus works by analyzing the high frequency information
in the image and then moving the lens until it is maximized, to give the most
detail. The exposure is determined by measuring the light falling on the CCDs
and then adjusting the lens diaphragm and exposure time to have the light inten-
sity fall in the middle of the CCDs’ range. Setting the white balance has to do
with measuring the spectrum of the incident light to perform necessary color
corrections later.

Then the image is read off the CCDs and stored as a pixel array in the
camera’s internal RAM. High-end digital SLRs used by photojournalists can
shoot eight high-resolution frames per second for 5 seconds, and need around 1
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GB of internal RAM to store the images before processing and storing them per-
manently. Low-end cameras have less RAM, but still quite a bit.

In the post-capture phase, the camera’s software applies the white balance
color correction to compensate for reddish or bluish light (e.g., from a subject in
shadow or use of a flash). Then it applies an algorithm to do noise reduction and
another one to compensate for defective CCDs. After that, it attempts to sharpen
the image (unless this feature has been disabled) by looking for edges and increas-
ing the intensity gradient around them.

Finally, the image may be compressed to reduce the amount of storage
required. A common format is JPEG (Joint Photographic Experts Group), in
which a two-dimensional spatial Fourier transform is applied and some of the
high-frequency components omitted. The result of this transformation is that the
image requires fewer bits to store but fine detail is lost.

When all the in-camera processing is completed, the image is written to the
storage medium, usually a flash memory or a tiny removable hard disk called a
microdrive. The postprocessing and writing can take several seconds per image.

When the user gets home, the camera can be connected to a computer, usually
using, for example, a USB or FireWire cable. The images are then transferred
from the camera to the computer’s hard disk. Using special software, such as
Adobe Photoshop, the user can then crop the image, adjust brightness, contrast,
and color balance, sharpen, blur or remove portions of the image, and apply
numerous filters. When the user is content with the result, the image files can be
printed on a color printer, uploaded over the Internet to a photofinisher, or written
to CD-ROM or DVD for archival storage or subsequent printing.

The amount of computing power, RAM, hard disk space, and software in a
digital SLR camera is mind boggling. Not only does the computer have to do all
the things mentioned above, but it also has to communicate with the CPU in the
lens and the CPU in the flash, refresh the image on the LCD screen, and manage
all the buttons, wheels, lights, displays, and gizmos on the camera in real time.
This is an extremely powerful embedded system, often rivaling a desktop com-
puter of only a few years earlier.

2.4.7 Character Codes

Each computer has a set of characters that it uses. As a bare minimum, this
set includes the 26 uppercase letters, the 26 lowercase letters, the digits O through
9, and a set of special symbols, such as space, period, minus sign, comma, and
carriage return.

In order to transfer these characters into the computer, each one is assigned a
number: for example, a=1, b=2, ..., z=26, + =27, —=28. The mapping of
characters onto integers is called a character code. It is essential that communi-
cating computers use the same code or they will not be able to understand one
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another. For this reason, standards have been developed. Below we will examine
two of the most important ones.

ASCII

One widely used code is called ASCII (American Standard Code for Infor-
mation Interchange). Each ASCII character has 7 bits, allowing for 128 charac-
ters in all. Figure 2-43 shows the ASCII code. Codes O to 1F (hexadecimal) are
control characters and do not print.

Many of the ASCII control characters are intended for data transmission. For
example, a message might consist of an SOH (Start of Header) character, a
header, an STX (Start of Text) character, the text itself, an ETX (End of Text)
character and then an EOT (End of Transmission) character. In practice, how-
ever, the messages sent over telephone lines and networks are formatted quite dif-
ferently, so the ASCII transmission control characters are not used much any
more.

The ASCII printing characters are straightforward. They include the upper
and lowercase letters, digits, punctuation marks and a few math symbols.

UNICODE

The computer industry grew up mostly in the U.S., which led to the ASCII
character set. ASCII is fine for English but less fine for other languages. French
needs accents (e.g., syst¢tme); German needs diacritical marks (e.g., fur), and so
on. Some European languages have a few letters not found in ASCII, such as the
German P and the Danish é. Some languages have entirely different alphabets
(e.g., Russian and Arabic), and a few languages have no alphabet at all (e.g.,
Chinese). As computers spread to the four corners of the globe, and software ven-
dors want to sell products in countries where most users do not speak English, a
different character set is needed.

The first attempt at extending ASCII was IS 646, which added another 128
characters to ASCII, making it an 8-bit code called Latin-1. The additional char-
acters were mostly Latin letters with accents and diacritical marks. The next
attempt was IS 8859, which introduced the concept of a code page, a set of 256
characters for a particular language or group of languages. IS 8859-1 is Latin-1.
IS 8859-2 handles the Latin-based Slavic languages (e.g., Czech, Polish, and Hun-
garian). IS 8859-3 contains the characters needed for Turkish, Maltese, Es-
peranto, and Galician, and so on. The trouble with the code page approach is that
the software has to keep track of which page it is on, it is impossible to mix
languages over pages, and the scheme does not cover Japanese and Chinese at all.

A group of computer companies decided to solve this problem by forming a
consortium to create a new system, called UNICODE, and getting it proclaimed
an International Standard (IS 10646). UNICODE is now supported by some
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Hex Name Meaning Hex Name Meaning
0 NUL Null 10 DLE Data Link Escape
1 SOH  Start Of Heading 11 DCH1 Device Control 1
2 STX Start Of Text 12 DC2 Device Control 2
3 ETX End Of Text 13 DC3 Device Control 3
4 EOT End Of Transmission| 14 DC4 Device Control 4
5 ENQ  Enquiry 15 NAK Negative AcKnowledgement
6 ACK  ACKnowledgement | 16 SYN SYNchronous idle
7 BEL BELI 17 ETB End of Transmission Block
8 BS BackSpace 18 CAN CANCcel
9 HT Horizontal Tab 19 EM End of Medium
A LF Line Feed 1A SUB SUBstitute
B VT Vertical Tab 1B ESC ESCape
C FF Form Feed iC FS File Separator
D CR Carriage Return D GS Group Separator
E SO Shift Out 1E RS Record Separator
F Sl Shift In 1F us Unit Separator
Hex Char | Hex Char | Hex Char| Hex Char | Hex Char | Hex Char
20 (Space) | 30 0 |40 @ |50 P |60 ‘ 70 p
21 ! 31 1 41 A 51 Q 61 a 71 q
22 " 32 2 42 B 52 R 62 b 72 r
23 # 33 3 |43 C |53 S |63 c |73 s
24 $ 34 4 44 D 54 T 64 d 74 t
25 % 35 5 |45 E |55 U |65 e |75 u
26 & 36 6 |46 F |56 V |66 f 76 v
27 ’ 37 7 47 G 57 W |67 g 77 w
28 ( 38 8 |48 H |58 X |68 h |78 X
29 ) 39 9 |49 | 59 Y |69 i 79 y
2A * 3A : 4A J 5A Z |6A j 7A z
2B + 3B ; 4B K | 5B [ 6B k |7B {
2C , 3C < |4C L |5C \ 6C I 7C |
2D - 3D = | 4D M | 5D ] 6D m | 7D }
2E . 3E > | 4E N | 5E " 6E n |7E ~
2F / 3F ? | 4F O |5F _ | 6F o |7F DEL

Figure 2-43. The ASCII character set.

programming languages (e.g., Java), some operating systems (e.g., Windows XP),
and many applications. It is likely to become increasingly accepted as the com-
puter industry goes global.

The idea behind UNICODE is to assign every character and symbol a unique
16-bit value, called a code point. No multibyte characters or escape sequences
are used. Having every symbol be 16 bits makes writing software simpler.
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With 16-bit symbols, UNICODE has 65,536 code points. Since the world’s
languages collectively use about 200,000 symbols, code points are a scarce
resource that must be allocated with great care. About half the code points have
already been allocated, and the UNICODE consortium is continually reviewing
proposals to eat up the rest. To speed the acceptance of UNICODE, the consor-
tium cleverly used Latin-1 as code points 0 to 255, making conversion between
ASCII and UNICODE easy. To avoid wasting code points, each diacritical mark
has its own code point. It is up to software to combine diacritical marks with their
neighbors to form new characters.

The code point space is divided up into blocks, each one a multiple of 16 code
points. Each major alphabet in UNICODE has a sequence of consecutive zones.
Some examples (and the number of code points allocated) are Latin (336), Greek
(144), Cyrillic (256), Armenian (96), Hebrew (112), Devanagari (128), Gurmukhi
(128), Oriya (128), Telugu (128), and Kannada (128). Note that each of these
languages has been allocated more code points than it has letters. This choice was
made in part because many languages have multiple forms for each letter. For ex-
ample, each letter in English has two forms—Ilowercase and UPPERCASE. Some
languages have three or more forms, possibly depending on whether the letter is at
the start, middle, or end of a word.

In addition to these alphabets, code points have been allocated for diacritical
marks (112), punctuation marks (112), subscripts and superscripts (48), currency
symbols (48), math symbols (256), geometric shapes (96), and dingbats (192).

After these come the symbols needed for Chinese, Japanese, and Korean.
First are 1024 phonetic symbols (e.g., katakana and bopomofo) and then the uni-
fied Han ideographs (20,992) used in Chinese and Japanese, and the Korean
Hangul syllables (11,156).

To allow users to invent special characters for special purposes, 6400 code
points have been allocated for local use.

While UNICODE solves many problems associated with internationalization,
it does not (attempt to) solve all the world’s problems. For example, while the
Latin alphabet is in order, the Han ideographs are not in dictionary order. As a
consequence, an English program can examine ‘“cat” and “dog” and sort them
alphabetically by simply comparing the UNICODE value of their first character.
A Japanese program needs external tables to figure out which of two symbols
comes before the other in the dictionary.

Another issue is that new words are popping up all the time. Fifty years ago
nobody talked about applets, cyberspace, gigabytes, lasers, modems, smileys, or
videotapes. Adding new words in English does not require new code points.
Adding them in Japanese does. In addition to new technical words, there is a
demand for adding at least 20,000 new (mostly Chinese) personal and place
names. Blind people think Braille should be in there, and special interest groups
of all kinds want what they perceive as their rightful code points. The UNICODE
consortium reviews and decides on all new proposals.
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UNICODE uses the same code point for characters that look almost identical
but have different meanings or are written slightly differently in Japanese and
Chinese (as though English word processors always spelled “blue” as blew”
because they sound the same). Some people view this as an optimization to save
scarce code points; others see it as Anglo-Saxon cultural imperialism (and you
thought assigning 16-bit values to characters was not highly political?). To make
matters worse, a full Japanese dictionary has 50,000 kanji (excluding names), so
with only 20,992 code points available for the Han ideographs, choices had to be
made. Not all Japanese people think that a consortium of computer companies,
even if a few of them are Japanese, is the ideal forum to make these choices.

2.5 SUMMARY

Computer systems are built up from three types of components: processors,
memories, and I/O devices. The task of a processor is to fetch instructions one at
a time from a memory, decode them, and execute them. The fetch-decode-
execute cycle can always be described as an algorithm and, in fact, is sometimes
carried out by a software interpreter running at a lower level. To gain speed,
many computers now have one or more pipelines or have a superscalar design
with multiple functional units that operate in parallel.

Systems with multiple processors are increasingly common. Parallel com-
puters include array processors, on which the same operation is performed on
multiple data sets at the same time, multiprocessors, in which multiple CPUs
share a common memory, and multicomputers, in which multiple computers each
have their own memories but communicate by message passing.

Memories can be categorized as primary or secondary. The primary memory
is used to hold the program currently being executed. Its access time is short—a
few tens of nanoseconds at most—and independent of the address being accessed.
Caches reduce this access time even more. Some memories are equipped with
error-correcting codes to enhance reliability.

Secondary memories, in contrast, have access times that are much longer
(milliseconds or more) and dependent on the location of the data being read or
written. Tapes, magnetic disks and optical disks are the most common secondary
memories. Magnetic disks come in many varieties, including floppy disks, Win-
chester disks, IDE disks, SCSI disks, and RAIDs. Optical disks include CD-
ROMs, CD-Rs, and DVDs.

I/O devices are used to transfer information into and out of the computer.
They are connected to the processor and memory by one or more buses. Exam-
ples are terminals, mice, printers, and modems. Most I/O devices use the ASCII
character code, although UNICODE is rapidly gaining acceptance as the com-
puter industry goes global.
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10.

PROBLEMS

Consider the operation of a machine with the data path of Figure 2-2. Suppose that
loading the ALU input registers takes 5 nsec, running the ALU takes 10 nsec, and
storing the result back in the register scratchpad takes 5 nsec. What is the maximum
number of MIPS this machine is capable of in the absence of pipelining?

What is the purpose of step 2 in the list of Sec. 2.1.2? What would happen if this step
were omitted?

On computer 1, all instructions take 10 nsec to execute. On computer 2, they all take
5 nsec to execute. Can you say for certain that computer 2 is faster? Discuss.

Imagine you are designing a single-chip computer for an embedded system. The chip
is going to have all its memory on chip and running at the same speed as the CPU with
no access penalty. Examine each of the principles discussed in Sec. 2.1.4 and tell
whether they are so important (assuming that high performance is still desired).

A certain computation is highly sequential—that is, each step depends on the one
preceding it. Would an array processor or a pipeline processor be more appropriate
for this computation? Explain.

To compete with the newly-invented printing press, a medieval monastery decided to
mass-produce handwritten paperback books by assembling a vast number of scribes in
a huge hall. The head monk would then call out the first word of the book to be pro-
duced and all the scribes would copy it down. Then the head monk would call out the
second word and all the scribes would copy it down. This process was repeated until
the entire book had been read aloud and copied. Which of the parallel processor sys-
tems discussed in Sec. 2.1.6 does this system resemble most closely?

As one goes down the five-level memory hierarchy discussed in the text, the access
time increases. Make a reasonable guess about the ratio of the access time of optical
disk to that of register memory. Assume that the disk is already on-line.

Sociologists can get three possible answers to a typical survey question such as “Do
you believe in the tooth fairy?”’—namely, yes, no, and no opinion. With this in mind,
the Sociomagnetic Computer Company has decided to build a computer to process
survey data. This computer has a trinary memory—that is, each byte (tryte?) consists
of 8 trits, with a trit holding a 0, 1, or 2. How many trits are needed to hold a 6-bit
number? Give an expression for the number of trits needed to hold # bits.

Compute the data rate of the human eye using the following information. The visual
field consists of about 10° elements (pixels). Each pixel can be reduced to a superpo-
sition of the three primary colors, each of which has 64 intensities. The time resolu-
tion is 100 msec.

Compute the data rate of the human ear from the following information. People can
hear frequencies up to 22 kHz. To capture all the information in a sound signal at 22
kHz, it is necessary to sample the sound at twice that frequency, that is, at 44 kHz. A
16-bit sample is probably enough to capture most of the auditory information (i.e., the
ear cannot distinguish more than 65,535 intensity levels).
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11.

12.

13.
14.
15.

16.

17.

18.

19.

20.

21.

22,

23.

Genetic information in all living things is coded as DNA molecules. A DNA
molecule is a linear sequence of the four basic nucleotides: A, C, G, and T. The
human genome contains approximately 3 x 10° nucleotides in the form of about
30,000 genes. What is the total information capacity (in bits) of the human genome?
What is the maximum information capacity (in bits) of the average gene?

A certain computer can be equipped with 268,435,456 bytes of memory. Why would
a manufacturer choose such a peculiar number, instead of an easy-to-remember num-
ber like 250,000,000?

Devise a 7-bit even-parity Hamming code for the digits 0 to 9.
Devise a code for the digits 0 to 9 whose Hamming distance is 2.

In a Hamming code, some bits are “wasted” in the sense that they are used for check-
ing and not information. What is the percentage of wasted bits for messages whose
total length (data + check bits) is 2" — 1? Evaluate this expression numerically for
values of n from 3 to 10.

The disk illustrated in Figure 2-19 has 1024 sectors/track and a rotation rate of 7200
RPM. What is the sustained transfer rate of the disk over one track?

A computer has a bus with a 5 nsec cycle time, during which it can read or write a
32-bit word from memory. The computer has an Ultra4-SCSI disk that uses the bus
and runs at 160 Mbytes/sec. The CPU normally fetches and executes one 32-bit
instruction every 1 nsec. How much does the disk slow down the CPU?

Imagine you are writing the disk management part of an operating system. Logically,
you represent the disk as a sequence of blocks, from 0 on the inside to some maximum
on the outside. As files are created, you have to allocate free sectors. You could do it
from the outside in or the inside out. Does it matter which strategy you choose?
Explain your answer.

How long does it take to read a disk with 10,000 cylinders, each containing four tracks
of 2048 sectors? First, all the sectors of track O are to be read starting at sector 0, then
all the sectors of track 1 starting at sector 0, and so on. The rotation time is 10 msec,
and a seek takes 1 msec between adjacent cylinders and 20 msec for the worst case.
Switching between tracks of a cylinder can be done instantaneously.

RAID level 3 is able to correct single-bit errors using only one parity drive. What is
the point of RAID level 2? After all, it also can only correct one error and takes more
drives to do so.

What is the exact data capacity (in bytes) of a mode 2 CD-ROM containing the now-
standard 80-min media? What is the capacity for user data in mode 1?

To burn a CD-R, the laser must pulse on and off at a high speed. When running at 10x
speed in mode 1, what is the pulse length, in nanoseconds?

To be able to fit 133 minutes worth of video on a single-sided single-layer DVD, a fair
amount of compression is required. Calculate the compression factor required.
Assume that 3.5 GB of space is available for the video track, that the image resolution
is 720 x 480 pixels with 24-bit color, and images are displayed at 30 frames/sec.
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24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

Blu-Ray runs at 4.5 MB/sec and has a capacity of 25 GB. How long does it take to
read the entire disk?

The transfer rate between a CPU and its associated memory is orders of magnitude
higher than the mechanical I/O transfer rate. How can this imbalance cause ineffi-
ciencies? How can it be alleviated?

A manufacturer advertises that its color bit-map terminal can display 2>* different
colors. Yet the hardware only has 1 byte for each pixel. How can this be done?

A bit-map terminal has a 1600 x 1200 display. The display is redrawn 75 times a
second. How long is the pulse corresponding to one pixel?

In a certain font, a monochrome laser printer can print 50 lines of 80 characters per
page. The average character occupies a box 2 mm X 2 mm, about 25% of which is
toner. The rest is blank. The toner layer is 25 microns thick. The printer’s toner car-
tridge measures 25 X 8 X 2 cm. How many pages is one toner cartridge good for?

When odd-parity ASCII text is transmitted asynchronously at a rate of 5600
characters/sec over a 56,000 bps modem, what percent of the received bits actually
contain data (as opposed to overhead)?

The Hi-Fi Modem Company has just designed a new frequency-modulation modem
that uses 64 frequencies instead of just 2. Each second is divided into n equal time
intervals, each of which contains one of the 64 possible tones. How many bits per
second can this modem transmit, using synchronous transmission?

An Internet user has subscribed to a 2 Mbps ADSL service. Her neighbor has sub-
scribed to a cable Internet service that has a shared bandwidth of 12 MHz. The modu-
lation scheme in use is QAM-64. There are n houses on the cable, each with one com-
puter. A fraction f of these computers are online at any one time. Under what condi-
tions will the cable user get better service than the ADSL user?

A digital camera has a resolution of 3000 x 2000 pixels, with 3 bytes/pixel for RGB
color. The manufacturer of the camera wants to be able to write a JPEG image at a 5x
compression factor to the flash memory in 2 sec. What data rate is required?

A high-end digital camera has a sensor with 16 million pixels, each with 3 bytes/pixel.
How many pictures can be stored on a 1-GB flash memory card if the compression
factor is 5x? Assume that I GB means 2 bytes.

Estimate how many characters, including spaces, a typical computer science textbook
contains. How many bits are needed to encode a book in ASCII with parity? How
many CD-ROMs are needed to store a computer science library of 10,000 books?
How many double-side, dual-layer DVDs are needed for the same library?

Write a procedure hamming (ascii, encoded) that converts the low-order 7 bits of ascii
into an 11-bit integer codeword stored in encoded.

Write a function distance(code, n, k) that takes an array code of n characters of k bits
each as input, and returns the distance of the character set as output.



THE DIGITAL LOGIC LEVEL

At the bottom of the hierarchy of Fig. 1-2 we find the digital logic level, the
computer’s real hardware. In this chapter, we will examine many aspects of digi-
tal logic, as a building block for the study of higher levels in subsequent chapters.
This subject is on the boundary of computer science and electrical engineering,
but the material is self-contained, so no previous hardware or engineering experi-
ence is needed to follow it.

The basic elements from which all digital computers are constructed are
amazingly simple. We will begin our study by looking at these basic elements
and also at the special two-valued algebra (Boolean algebra) used to analyze
them. Next we will examine some fundamental circuits that can be built using
gates in simple combinations, including circuits for doing arithmetic. The follow-
ing topic is how gates can be combined to store information, that is, how
memories are organized. After that, we come to the subject of CPUs and espe-
cially how single-chip CPUs interface with memory and peripheral devices.
Numerous examples from industry will be discussed later in this chapter.

3.1 GATES AND BOOLEAN ALGEBRA

Digital circuits can be constructed from a small number of primitive elements
by combining them in innumerable ways. In the following sections we will
describe these primitive elements, show how they can be combined, and introduce
a powerful mathematical technique that can be used to analyze their behavior.

135



136 THE DIGITAL LOGIC LEVEL CHAP. 3

3.1.1 Gates

A digital circuit is one in which only two logical values are present. Typi-
cally, a signal between 0 and 1 volt represents one value (e.g., binary 0) and a sig-
nal between 2 and 5 volts represents the other value (e.g., binary 1). Voltages out-
side these two ranges are not permitted. Tiny electronic devices, called gates, can
compute various functions of these two-valued signals. These gates form the
hardware basis on which all digital computers are built.

The details of how gates work inside is beyond the scope of this book, belong-
ing to the device level, which is below our level 0. Nevertheless, we will now
digress ever so briefly to take a quick look at the basic idea, which is not difficult.
All modern digital logic ultimately rests on the fact that a transistor can be made
to operate as a very fast binary switch. In Fig. 3-1(a) we have shown a bipolar
transistor (the circle) embedded in a simple circuit. This transistor has three con-
nections to the outside world: the collector, the base, and the emitter. When the
input voltage, V;,, is below a certain critical value, the transistor turns off and acts
like an infinite resistance. This causes the output of the circuit, V,,,,, to take on a
value close to V.., an externally regulated voltage, typically +5 volts for this type
of transistor. When V;, exceeds the critical value, the transistor switches on and
acts like a wire, causing V,,, to be pulled down to ground (by convention, 0 volts).

+VCC

+VCC
+VCC

Vout

V4
Collector

Vout - Vout
Vg V1 V2

Base Emitter

(@) (b) (©)

Figure 3-1. (a) A transistor inverter. (b) A NAND gate. (c) A NOR gate.

The important thing to notice is that when V;, is low, V,,, is high, and vice
versa. This circuit is thus an inverter, converting a logical O to a logical 1, and a
logical 1 to a logical 0. The resistor (the jagged line) is needed to limit the
amount of current drawn by the transistor so it does not burn out. The time
required to switch from one state to the other is typically a few nanoseconds.
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In Fig. 3-1(b) two transistors are cascaded in series. If both V| and V, are
high, both transistors will conduct and V,,, will be pulled low. If either input is
low, the corresponding transistor will turn off, and the output will be high. In
other words, V,,, will be low if and only if both V; and V, are high.

In Fig. 3-1(c) the two transistors are wired in parallel instead of in series. In
this configuration, if either input is high, the corresponding transistor will turn on
and pull the output down to ground. If both inputs are low, the output will remain
high.

These three circuits, or their equivalents, form the three simplest gates. They
are called NOT, NAND, and NOR gates, respectively. NOT gates are often called
inverters; we will use the two terms interchangeably. If we now adopt the con-
vention that “high” (V.. volts) is a logical 1, and that “low” (ground) is a logical
0, we can express the output value as a function of the input values. The symbols
used to depict these three gates are shown in Fig. 3-2(a)—(c), along with the func-
tional behavior for each circuit. In these figures, A and B are inputs and X is the
output. Each row specifies the output for a different combination of the inputs.

NOT NAND NOR AND OR
A A A A
Lo e 5 1D S
B | B B B
Al X AlB[X AlB[xX AlB[x AlB[x
01 olo]1 AIIE olo]o ololo
1|0 o141 ol1]o0 ol1]o0 o171
101 1100 100 TRE
1110 1110 'HERE 'BERE

Figure 3-2. The symbols and functional behavior for the five basic gates.

If the output signal of Fig. 3-1(b) is fed into an inverter circuit, we get another
circuit with precisely the inverse of the NAND gate—namely, a circuit whose out-
put is 1 if and only if both inputs are 1. Such a circuit is called an AND gate; its
symbol and functional description are given in Fig. 3-2(d). Similarly, the NOR
gate can be connected to an inverter to yield a circuit whose output is 1 if either or
both inputs is a 1 but 0 if both inputs are 0. The symbol and functional description
of this circuit, called an OR gate, are given in Fig. 3-2(e). The small circles used
as part of the symbols for the inverter, NAND gate, and NOR gate are called inver-
sion bubbles. They are often used in other contexts as well to indicate an
inverted signal.

The five gates of Fig. 3-2 are the principal building blocks of the digital logic
level. From the foregoing discussion, it should be clear that the NAND and NOR
gates require two transistors each, whereas the AND and OR gates require three
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each. For this reason, many computers are based on NAND and NOR gates rather
than the more familiar AND and OR gates. (In practice, all the gates are imple-
mented somewhat differently, but NAND and NOR are still simpler than AND and
OR.) In passing it is worth noting that gates may well have more than two inputs.
In principle, a NAND gate, for example, may have arbitrarily many inputs, but in
practice more than eight inputs is unusual.

Although the subject of how gates are constructed belongs to the device level,
we would like to mention the major families of manufacturing technology because
they are referred to frequently. The two major technologies are bipolar and MOS
(Metal Oxide Semiconductor). The major bipolar types are TTL (Transistor-
Transistor Logic), which had been the workhorse of digital electronics for years,
and ECL (Emitter-Coupled Logic), which was used when very high-speed opera-
tion is required. For computer circuits, MOS has now largely taken over.

MOS gates are slower than TTL and ECL but require much less power and
take up much less space, so large numbers of them can be packed together tightly.
MOS comes in many varieties, including PMOS, NMOS, and CMOS. While
MOS transistors are constructed differently from bipolar transistors, their ability
to function as electronic switches is the same. Most modern CPUs and memories
use CMOS technology, which runs on +3.3 volts. This is all we will say about the
device level. Readers interested in pursuing their study of this level should con-
sult the suggested readings given in Chap. 9.

3.1.2 Boolean Algebra

To describe the circuits that can be built by combining gates, a new type of
algebra is needed, one in which variables and functions can take on only the
values 0 and 1. Such an algebra is called a Boolean algebra, after its discoverer,
the English mathematician George Boole (1815-1864). Strictly speaking, we are
really referring to a specific type of Boolean algebra, a switching algebra, but the
term “Boolean algebra’ is so widely used to mean ‘““‘switching algebra’ that we
will not make the distinction.

Just as there are functions in “ordinary” (i.e., high school) algebra, so are
there functions in Boolean algebra. A Boolean function has one or more input
variables and yields a result that depends only on the values of these variables. A
simple function, f, can be defined by saying that f(A) is 1 if A is O and f(A) is O if
Ais 1. This function is the NOT function of Fig. 3-2(a).

Because a Boolean function of n variables has only 2" possible combinations
of input values, the function can be completely described by giving a table with 2"
rows, each row telling the value of the function for a different combination of
input values. Such a table is called a truth table. The tables of Fig. 3-2 are all
examples of truth tables. If we agree to always list the rows of a truth table in
numerical order (base 2), that is, for two variables in the order 00, 01, 10, and 11,
the function can be completely described by the 2"-bit binary number obtained by
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reading the result column of the truth table vertically. Thus NAND is 1110, NOR is
1000, AND is 0001, and OR is 0111. Obviously, only 16 Boolean functions of two
variables exist, corresponding to the 16 possible 4-bit result strings. In contrast,
ordinary algebra has an infinite number of functions of two variables, none of
which can be described by giving a table of outputs for all possible inputs because
each variable can take on any one of an infinite number of possible values.

Figure 3-3(a) shows the truth table for a Boolean function of three variables:
M = f (A, B, C). This function is the majority logic function, that is, it is O if a
majority of its inputs are 0 and 1 if a majority of its inputs are 1. Although any
Boolean function can be fully specified by giving its truth table, as the number of
variables increases, this notation becomes increasingly cumbersome. Instead,
another notation is frequently used.

ABC ABC
A
[0
A
4\/350
-
5\A|§o
B -
AlB[c[m B
olofofo
ofol1]o 6 —
o[1]ofo |/ aBG
o117+ C
1lofo]o
1{o]1]1 {}g
1101 [, )ABC
THERERE J

(@) (b)

Figure 3-3. (a) The truth table for the majority function of three variables.
(b) A circuit for (a).

To see how this other notation comes about, note that any Boolean function
can be specified by telling which combinations of input variables give an output
value of 1. For the function of Fig. 3-3(a) there are four combinations of input
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variables that make M 1. By convention, we will place a bar over an input vari-
able to indicate that its value is inverted. The absence of a bar means that it is not
inverted. Furthermore, we will use implied multiplication or a dot to mean the
Boolean AND function and + to mean the Boolean OR function. Thus, for exam-
ple, ABC takes the value 1 only when A =1 and B =0 and C =1. Also, AB + BC
is 1 only when (A =1 and B =0) or (B =1 and C =0). The four rows of Fig. 3-
3(a) producing 1 bits in the output are: ABC, ABC, ABC, and ABC. The function,
M, is true (i.e., 1) if any one of these four conditions is true; hence we can write

M =ABC + ABC + ABC + ABC

as a compact way of giving the truth table. A function of n variables can thus be
described by giving a “sum” of at most 2" n-variable “product” terms. This for-
mulation is especially important, as we will see shortly, because it leads directly
to an implementation of the function using standard gates.

It is important to keep in mind the distinction between an abstract Boolean
function and its implementation by an electronic circuit. A Boolean function con-
sists of variables, such as A, B, and C, and Boolean operators such as AND, OR,
and NOT. A Boolean function is described by giving a truth table or a Boolean
function such as

F =ABC + ABC

A Boolean function can be implemented by an electronic circuit (often in many
different ways) using signals that represent the input and output variables and
gates such as AND, OR, and NOT. We will generally use the notation AND, OR,
and NOT when referring to the Boolean operators and AND, OR, and NOT when
referring to the gates, but often it is ambiguous.

3.1.3 Implementation of Boolean Functions

As mentioned above, the formulation of a Boolean function as a sum of up to
2" product terms leads directly to a possible implementation. Using Fig. 3-3 as an
example, we can see how this implementation is accomplished. In Fig. 3-3(b), the
inputs, A, B, and C, are shown at the left edge and the output function, M, is
shown at the right edge. Because complements (inverses) of the input variables
are needed, they are generated by tapping the inputs and passing them through the
inverters labeled 1, 2, and 3. To keep the figure from becoming cluttered, we
have drawn in six vertical lines, three of which are connected to the input vari-
ables, and three of which are connected to their complements. These lines pro-
vide a convenient source for the inputs to subsequent gates. For example, gates 5,
6, and 7 all use A as an input. In an actual circuit these gates would probably be
wired directly to A without using any intermediate “vertical’” wires.

The circuit contains four AND gates, one for each term in the equation for M
(i.e., one for each row in the truth table having a 1 bit in the result column). Each
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AND gate computes one row of the truth table, as indicated. Finally, all the pro-
duct terms are ORed together to get the final result.

The circuit of Fig. 3-3(b) uses a convention that we will use repeatedly
throughout this book: when two lines cross, no connection is implied unless a
heavy dot is present at the intersection. For example, the output of gate 3 crosses
all six vertical lines but it is connected only to C. Be warned that some authors
use other conventions.

From the example of Fig. 3-3 it should be clear how to implement a circuit for
any Boolean function:

Write down the truth table for the function.
Provide inverters to generate the complement of each input.
Draw an AND gate for each term with a 1 in the result column.

Wire the AND gates to the appropriate inputs.

A T e

Feed the output of all the AND gates into an OR gate.

Although we have shown how any Boolean function can be implemented
using NOT, AND, and OR gates, it is often convenient to implement circuits using
only a single type of gate. Fortunately, it is straightforward to convert circuits
generated by the preceding algorithm to pure NAND or pure NOR form. To make
such a conversion, all we need is a way to implement NOT, AND, and OR using a
single gate type. The top row of Fig. 3-4 shows how all three of these can be
implemented using only NAND gates; the bottom row shows how it can be done
using only NOR gates. (These are straightforward, but there are other ways, too.)

One way to implement a Boolean function using only NAND or only NOR gates
is first follow the procedure given above for constructing it with NOT, AND, and
OR. Then replace the multi-input gates with equivalent circuits using two-input
gates. For example, A + B + C + D can be computed as (A + B) + (C + D), using
three two-input OR gates. Finally, the NOT, AND, and OR gates are replaced by the
circuits of Fig. 3-4.

Although this procedure does not lead to the optimal circuits, in the sense of
the minimum number of gates, it does show that a solution is always feasible.
Both NAND and NOR gates are said to be complete, because any Boolean function
can be computed using either of them. No other gate has this property, which is
another reason they are often preferred for the building blocks of circuits.

3.1.4 Circuit Equivalence
Circuit designers often try to reduce the number of gates in their products to

reduce component cost, printed circuit board space, power consumption, and so
on. To reduce the complexity of a circuit, the designer must find another circuit
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A AB A—[}—l— A+B
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i T

(b) (c)

Figure 3-4. Construction of (a) NOT, (b) AND, and (c) OR gates using only NAND
gates or only NOR gates.

that computes the same function as the original but does so with fewer gates (or
perhaps with simpler gates, for example, two-input gates instead of four-input
gates). In the search for equivalent circuits, Boolean algebra can be a valuable
tool.

As an example of how Boolean algebra can be used, consider the circuit and
truth table for AB + AC shown in Fig. 3-5(a). Although we have not discussed
them yet, many of the rules of ordinary algebra also hold for Boolean algebra. In
particular, AB + AC can be factored into A(B + C) using the distributive law.
Figure 3-5(b) shows the circuit and truth table for A(B + C). Because two func-
tions are equivalent if and only if they have the same output for all possible
inputs, it is easy to see from the truth tables of Fig.3-5 that A(B+C) is
equivalent to AB + AC. Despite this equivalence, the circuit of Fig. 3-5(b) is
clearly better than that of Fig. 3-5(a) because it contains fewer gates.

In general, a circuit designer starts with a Boolean function and then applies
the laws of Boolean algebra to it in an attempt to find a simpler but equivalent
one. From the final function, a circuit can be constructed.

To use this approach, we need some identities from Boolean algebra. Figure
3-6 shows some of the major ones. It is interesting to note that each law has two
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AB + AC A A(B + C)
B
AC C B+C

C
A | B| C|AB|AC|AB+AC A|B|[C|A]|B+C|AB+C)
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1 1 0 1 0
1 0 0 0 0 0 1 0 0 1 0 0
1 0 1 0 1 1 1 0 1 1 1 1
1 1 0 1 0 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

(a) (b)
Figure 3-5. Two equivalent functions. (a) AB + AC. (b) A(B + C).

forms that are duals of each other. By interchanging AND and OR and also 0 and
1, either form can be produced from the other one. All the laws can be easily pro-
ven by constructing their truth tables. Except for DeMorgan’s law, the absorption
law, and the AND form of the distributive law, the results are reasonably intuitive.
DeMorgan’s law can be extended to more than two variables, for example,
ABC=A+B+C.

DeMorgan’s law suggests an alternative notation. In Fig. 3-7(a) the AND
form is shown with negation indicated by inversion bubbles, both for input and
output. Thus an OR gate with inverted inputs is equivalent to a NAND gate. From
Fig. 3-7(b), the dual form of DeMorgan’s law, it should be clear that a NOR gate
can be drawn as an AND gate with inverted inputs. By negating both forms of
DeMorgan’s law, we arrive at Fig. 3-7(c) and (d), which show equivalent
representations of the AND and OR gates. Analogous symbols exist for the multi-
ple variable forms of DeMorgan’s law (e.g., an n input NAND gate becomes an OR
gate with » inverted inputs).

Using the identities of Fig. 3-7 and the analogous ones for multi-input gates, it
is easy to convert the sum-of-products representation of a truth table to pure NAND
or pure NOR form. As an example, consider the EXCLUSIVE OR function of
Fig. 3-8(a). The standard sum-of-products circuit is shown in Fig. 3-8(b). To
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Name AND form OR form
Identity law 1A=A 0+A=A
Null law 0OA=0 1+A=1
Idempotent law AA=A A+A=A
Inverse law AA=0 A+A=1
Commutative law | AB = BA A+B=B+A
Associative law (AB)C = A(BC) (A+B)+C=A+((B+0C)
Distributive law A+BC=(A+B)A+C) [AB+C)=AB+AC
Absorption law AA+B)=A A+AB=A
De Morgan'slaw |AB=A+B A+B=AB

Figure 3-6. Some identities of Boolean algebra.

A+B

AB = A+B =
T I>— > =
—] —dg

(a) (b)

A+ A+B

T > 9>

(d)

Y

—0
—0

Figure 3-7. Alternative symbols for some gates: (a) NAND. (b) NOR. (c) AND. (d) OR.

convert to NAND form, the lines connecting the output of the AND gates to the
input of the OR gate should be redrawn with two inversion bubbles, as shown in
Fig. 3-8(c). Finally, using Fig. 3-7(a), we arrive at Fig. 3-8(d). The variables A
and B can be generated from A and B using NAND or NOR gates with their inputs
tied together. Note that inversion bubbles can be moved along a line at will, for
example, from the outputs of the input gates in Fig. 3-8(d) to the inputs of the out-
put gate.

As a final note on circuit equivalence, we will now demonstrate the surprising
result that the same physical gate can compute different functions, depending on
the conventions used. In Fig. 3-9(a) we show the output of a certain gate, F, for
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Figure 3-8. (a) The truth table for the XOR function. (b)-(d) Three circuits for

computing it.

different input combinations. Both inputs and outputs are shown in volts. If we
adopt the convention that 0 volts is logical 0 and 3.3 volts or 5 volts is logical 1,
called positive logic, we get the truth table of Fig. 3-9(b), the AND function. If,
however, we adopt negative logic, which has 0 volts as logical 1 and 3.3 volts or
5 volts as logical 0, we get the truth table of Fig. 3-9(c), the OR function.

A|B|F A|B|F A|lB|F
ov|ov]|ov 0 0 111 |1
ov |5 | oY ol1]o 1] 0] 1
5V [ oV | oV 1]1o0fo o1 |1
5Y | 5V | 5Y 1] 1|1 olofo

(@)

(b)

(©

Figure 3-9. (a) Electrical characteristics of a device. (b) Positive logic. (c)

Negative logic.

Thus the convention chosen to map voltages onto logical values is critical.
Except where otherwise specified, we will henceforth use positive logic, so the
terms logical 1, true, and high are synonyms, as are logical 0, false, and low.
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3.2 BASIC DIGITAL LOGIC CIRCUITS

In the previous sections we saw how to implement truth tables and other sim-
ple circuits using individual gates. In practice, few circuits are actually con-
structed gate-by-gate anymore, although this once was common. Nowadays, the
usual building blocks are modules containing a number of gates. In the following
sections we will examine these building blocks more closely and see how they are
used and how they can be constructed from individual gates.

3.2.1 Integrated Circuits

Gates are not manufactured or sold individually but rather in units called
Integrated Circuits, often called ICs or chips. An IC is a square piece of silicon
about 5 mm X 5 mm on which some gates have been deposited. Small ICs are
usually mounted in rectangular plastic or ceramic packages measuring 5 to 15 mm
wide and 20 to 50 mm long. Along the long edges are two parallel rows of pins
about 5 mm long that can be inserted into sockets or soldered to printed circuit
boards. Each pin connects to the input or output of some gate on the chip or to
power or to ground. The packages with two rows of pins outside and ICs inside
are technically known as Dual Inline Packages or DIPs, but everyone calls them
chips, thus blurring the distinction between the piece of silicon and its package.
The most common packages have 14, 16, 18, 20, 22, 24, 28, 40, 64, or 68 pins.
For large chips, square packages with pins on all four sides or on the bottom are
often used.

Chips can be divided into rough classes based on the number of gates they
contain, as given below. This classification scheme is obviously extremely crude,
but it is sometimes useful.

SSI (Small Scale Integrated) circuit: 1 to 10 gates.

MSI (Medium Scale Integrated) circuit: 10 to 100 gates.
LSI (Large Scale Integrated) circuit: 100 to 100,000 gates.
VLSI (Very Large Scale Integrated) circuit: >100,000 gates.

These classes have different properties and are used in different ways.

An SSI chip typically contains two to six independent gates, each of which
can be used individually, in the style of the previous sections. Figure 3-10 illus-
trates a schematic drawing of a common SSI chip containing four NAND gates.
Each of these gates has two inputs and one output, requiring a total of 12 pins for
the four gates. In addition, the chip needs power (V,.), and ground (GND), which
are shared by all gates. The package generally has a notch near pin 1 to identify
the orientation. To avoid clutter in circuit diagrams, neither power, nor ground,
nor unused gates are conventionally shown.

Many other chips like this are available for a few cents each. Each SSI chip
has a handful of gates and up to 20 or so pins. In the 1970s, computers were con-
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Vee
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Notch )
1 2 3 4 5 6 7

GND
Figure 3-10. An SSI chip containing four gates.

structed out of large numbers of these chips, but nowadays an entire CPU and a
substantial amount of (cache) memory is etched onto a single chip.

For our purposes, all gates are ideal in the sense that the output appears as
soon as the input is applied. In reality, chips have a finite gate delay, which
includes both the signal propagation time through the chip and the switching time.
Typical delays are 1 to 10 nsec.

It is within the current state of the art to put almost 10 million transistors on a
chip. Because any circuit can be built up from NAND gates, you might think that a
manufacturer could make a very general chip containing 5 million NAND gates.
Unfortunately, such a chip would need 15,000,002 pins. With the standard pin
spacing of 0.1 inch, the chip would be over 19 km long, which might have a nega-
tive effect on sales. Clearly, the only way to take advantage of the technology is
to design circuits with a high gate/pin ratio. In the following sections we will look
at simple MSI circuits that combine a number of gates internally to provide a use-
ful function requiring only a limited number of external connections (pins).

3.2.2 Combinational Circuits

Many applications of digital logic require a circuit with multiple inputs and
multiple outputs in which the outputs are uniquely determined by the current
inputs. Such a circuit is called a combinational circuit. Not all circuits have this
property. For example, a circuit containing memory elements may well generate
outputs that depend on the stored values as well as the input variables. A circuit
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implementing a truth table, such as that of Fig. 3-3(a), is a typical example of a
combinational circuit. In this section we will examine some frequently-used com-
binational circuits.

Multiplexers

At the digital logic level, a multiplexer is a circuit with 2" data inputs, one
data output, and n control inputs that select one of the data inputs. The selected
data input is “gated” (i.e., routed) to the output. Figure 3-11 is a schematic
diagram for an eight-input multiplexer. The three control lines, A, B, and C,
encode a 3-bit number that specifies which of the eight input lines is gated to the
OR gate and thence to the output. No matter what value is on the control lines,
seven of the AND gates will always output O; the other one may output either O or
1, depending on the value of the selected input line. Each AND gate is enabled by
a different combination of the control inputs. The multiplexer circuit is shown in
Fig. 3-11. When power and ground are added, it can be packaged in a 14-pin
package.

Using the multiplexer, we can implement the majority function of Fig. 3-3(a),
as shown in Fig. 3-12(b). For each combination of A, B, and C, one of the data
input lines is selected. Each input is wired to either V. (logical 1) or ground (log-
ical 0). The algorithm for wiring the inputs is simple: input D; is the same as the
value in row i of the truth table. In Fig. 3-3(a), rows 0, 1, 2, and 4 are 0, so the
corresponding inputs are grounded; the remaining rows are 1, so they are wired to
logical 1. In this manner any truth table of three variables can be implemented
using the chip of Fig. 3-12(a).

We just saw how a multiplexer chip can be used to select one of several
inputs and how it can implement a truth table. Another of its applications is as a
parallel-to-serial data converter. By putting 8 bits of data on the input lines and
then stepping the control lines sequentially from 000 to 111 (binary), the 8 bits are
put onto the output line in series. A typical use for parallel-to-serial conversion is
in a keyboard, where each keystroke implicitly defines a 7- or 8-bit number that
must be output serially over a telephone line.

The inverse of a multiplexer is a demultiplexer, which routes its single input
signal to one of 2" outputs, depending on the values of the n control lines. If the
binary value on the control lines is &, output k is selected.

Decoders

As a second example, we will now look at a circuit that takes an n-bit number
as input and uses it to select (i.e., set to 1) exactly one of the 2" output lines. Such
a circuit, illustrated for n = 3 in Fig. 3-13, is called a decoder.

To see where a decoder might be useful, imagine a small memory consisting
of eight chips, each containing 1 MB. Chip O has addresses 0 to 1 MB, chip 1 has
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Figure 3-11. An eight-input multiplexer circuit.

addresses 1 MB to 2 MB, and so on. When an address is presented to the
memory, the high-order 3 bits are used to select one of the eight chips. Using the
circuit of Fig. 3-13, these 3 bits are the three inputs, A, B, and C. Depending on
the inputs, exactly one of the eight output lines, Dy, ..., D7, is 1; the rest are 0.
Each output line enables one of the eight memory chips. Because only one output
line is set to 1, only one chip is enabled.

The operation of the circuit of Fig. 3-13 is_straightforward. Each AND gate
has three inputs, of which the first is either A or A, the second is either B or B, and
the third is either C or C. Each gate is enabled by a different combination of

inputs: Dy by A B C, D, by A B C, and so on.
Comparators
Another useful circuit is the comparator, which compares two input words.

The simple comparator of Fig. 3-14 takes two inputs, A and B, each of length 4
bits, and produces a 1 if they are equal and a 0 if they are not equal. The circuit is
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Figure 3-12. (a) An MSI multiplexer.. (b) The same multiplexer wired to com-
pute the majority function.

based on the XOR (EXCLUSIVE OR) gate, which puts out a O if its inputs are
equal and a 1 if they are unequal. If the two input words are equal, all four of the
XOR gates must output 0. These four signals can then be ORed together; if the
result is O, the input words are equal, otherwise not. In our example we have used
a NOR gate as the final stage to reverse the sense of the test: 1 means equal, O
means unequal.

Programmable Logic Arrays

We saw earlier that arbitrary functions (truth tables) can be constructed by
computing product terms with AND gates and then ORing the products together. A
very general chip for forming sums of products is the Programmable Logic
Array or PLA, a small example of which is shown in Fig. 3-15. This chip has
input lines for 12 variables. The complement of each input is generated inter-
nally, making 24 input signals in all. The heart of the circuit is an array of 50 AND
gates, each of which can potentially have any subset of the 24 input signals as an
input. Which input signal goes to which AND gate is determined by a 24 X 50 bit
matrix supplied by the user. Each input line to the 50 AND gates contains a fuse.
When shipped from the factory, all 1200 fuses are intact. To program the matrix
the user burns out selected fuses by applying a high voltage to the chip.

The output part of the circuit consists of six OR gates, each of which has up to
50 inputs, corresponding to the 50 outputs of the AND gates. Again here, a user-
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Figure 3-13. A 3-to-8 decoder circuit.

supplied (50 x 6) matrix tells which of the potential connections actually exist.
The chip has 12 input pins, 6 output pins, power, and ground, for a total of 20.

As an example of how a PLA can be used, let us reconsider the circuit of
Fig. 3-3(b) again. It has three inputs, four AND gates, one OR gate, and three
inverters. With the appropriate internal connections made, our PLA can compute
the same function using three of its 12 inputs, four of its 50 AND gates, and one of
its six OR gates. (The four AND gates should compute ABC, ABC, ABC, and ABC,
respectively; the OR gate takes these four product terms as input.) In fact, the
same PLA could be wired up to compute simultaneously a total of four functions
of similar complexity. For these simple functions the number of input variables is
the limiting factor; for more complicated ones it might be the AND or OR gates.

Although the field-programmable PLAs described above are still in use, for
many applications custom-made PLAs are preferable. These are designed by the
(large-volume) customer and fabricated by the manufacturer to the customer’s
specifications. Such PLAs are cheaper than field-programmable ones.

We can now compare the three different ways we have discussed for imple-
menting the truth table of Fig. 3-3(a). Using SSI components, we need four chips.
Alternatively, we could suffice with one MSI multiplexer chip, as shown in
Fig. 3-12(b). Finally, we could use a quarter of one PLA chip. Obviously, if
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Figure 3-14. A simple 4-bit comparator.

many functions are needed, the PLA is more efficient than the other two methods.
For simple circuits, the cheaper SSI and MSI chips may be preferable.

3.2.3 Arithmetic Circuits

It is now time to move on from the general-purpose MSI circuits discussed
above to MSI combinational circuits used for doing arithmetic. We will begin
with a simple 8-bit shifter, then look at how adders are constructed, and finally
examine arithmetic logic units, which play a central role in any computer.

Shifters

Our first arithmetic MSI circuit is an eight-input, eight-output shifter (see
Fig. 3-16). Eight bits of input are presented on lines Dy, ..., D;. The output,
which is just the input shifted 1 bit, is available on lines Sy, ..., S7. The control
line, C, determines the direction of the shift, O for left and 1 for right. On a left
shift, a 0 is inserted into bit 7. Similarly, on a right shift, a 1 is inserted into bit 0.

To see how the circuit works, notice the pairs of AND gates for all the bits
except the gates on the end. When C = 1, the right member of each pair is turned
on, passing the corresponding input bit to output. Because the right AND gate is
wired to the input of the OR gate to its right, a right shift is performed. When
C =0, it is the left member of the AND gate pair that turns on, doing a left shift.
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Figure 3-15. A 12-input, 6-output programmable logic array. The little squares
represent fuses that can be burned out to determine the function to be computed.
The fuses are arranged in two matrices: the upper one for the anp gates and the
lower one for the or gates.

Adders

A computer that cannot add integers is almost unthinkable. Consequently, a
hardware circuit for performing addition is an essential part of every CPU. The
truth table for addition on 1-bit integers is shown in Fig. 3-17(a). Two outputs are
present: the sum of the inputs, A and B, and the carry to the next (leftward) posi-
tion. A circuit for computing both the sum bit and the carry bit is illustrated in
Fig. 3-17(b). This simple circuit is generally known as a half adder.
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Figure 3-16. A 1-bit left/right shifter.
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Figure 3-17. (a) Truth table for 1-bit addition. (b) A circuit for a half adder.

Although a half adder is adequate for summing the low-order bits of two mul-
tibit input words, it will not do for a bit position in the middle of the word because
it does not handle the carry into the position from the right. Instead, the full
adder of Fig. 3-18 is needed. From inspection of the circuit it should be clear that
a full adder is built up from two half adders. The Sum output line is 1 if an odd
number of A, B, and the Carry in are 1. The Carry out is 1 if either A and B are
both 1 (left input to the OR gate) or exactly one of them is 1 and the Carry in bit is
also 1. Together the two half adders generate both the sum and the carry bits.
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Figure 3-18. (a) Truth table for full adder. (b) Circuit for a full adder.

To build an adder for, say, two 16-bit words, one just replicates the circuit of
Fig. 3-18(b) 16 times. The carry out of a bit is used as the carry into its left neigh-
bor. The carry into the rightmost bit is wired to 0. This type of adder is called a
ripple carry adder, because in the worst case, adding 1 to 111...111 (binary), the
addition cannot complete until the carry has rippled all the way from the rightmost
bit to the leftmost bit. Adders that do not have this delay, and hence are faster,
also exist and are usually preferred.

As a simple example of a faster adder, consider breaking a 32-bit adder up
into a 16-bit lower half and a 16-bit upper half. When the addition starts, the
upper adder cannot yet get to work because it will not know the carry into it for 16
addition times.

However, consider this modification. Instead of having a single upper half,
give the adder two upper halves in parallel by duplicating the upper half’s
hardware. Thus the circuit now consists of three 16-bit adders: a lower half and
two upper halves, U0 and U/ that run in parallel. A O is fed into U0 as a carry; a
1 is fed into U/ as a carry. Now both of these can start at the same time the lower
half starts, but only one will be correct. After 16 bit-addition times, it will be
known what the carry into the upper half is, so the correct upper half can now be
selected from the two available answers. This trick reduces the addition time by a
factor of two. Such an adder is called a carry select adder. This trick can then
be repeated to build each 16-bit adder out of replicated 8-bit adders, and so on.
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Arithmetic Logic Units

Most computers contain a single circuit for performing the AND, OR, and sum
of two machine words. Typically, such a circuit for n-bit words is built up of n
identical circuits for the individual bit positions. Figure 3-19 is a simple example
of such a circuit, called an Arithmetic Logic Unit or ALU. It can compute any
one of four functions—namely, A AND B, A OR B, B, or A + B, depending on
whether the function-select input lines F and F; contain 00, 01, 10, or 11
(binary). Note that here A + B means the arithmetic sum of A and B, not the
Boolean OR.

Logic‘al unit Carry in
Y
AB
INVA— :D —|
A — A+B ) — Output
A OID T J = -+ oup
B +— B
ENB ——D o _D_
Sum
)
Enable
lines X\
q | | | |
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Fo >0_—| ) Full
1 adder
[\
F1 {>O—|_/
—
Decoder
Carry out

Figure 3-19. A 1-bit ALU.

The lower left-hand corner of our ALU contains a 2-bit decoder to generate
enable signals for the four operations, based on the control signals F and F.
Depending on the values of Fy and F'; exactly one of the four enable lines is
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selected. Setting this line allows the output for the selected function to pass
through to the final OR gate for output.

_ The upper left-hand corner has the logic to compute A AND B, A OR B, and
B, but at most one of these results is passed onto the final OR gate, depending on
the enable lines coming out of the decoder. Because exactly one of the decoder
outputs will be 1, exactly one of the four AND gates driving the OR gate will be
enabled; the other three will output 0, independent of A and B.

In addition to being able to use A and B as inputs for logical or arithmetic
operations, it is also possible to force either one to 0 by negating ENA or ENB,
respectively. It is also possible to get A, by setting INVA. We will see uses for
INVA, ENA, and ENB in Chap. 4. Under normal conditions, ENA and ENB are both 1
to enable both inputs and INVA is 0. In this case, A and B are just fed into the
logic unit unmodified.

The lower right-hand corner of the ALU contains a full adder for computing
the sum of A and B, including handling the carries, because it is likely that several
of these circuits will eventually be wired together to perform full-word operations.
Circuits like Fig. 3-19 are actually available and are known as bit slices. They
allow the computer designer to build an ALU of any desired width. Figure 3-20
shows an 8-bit ALU built up of eight 1-bit ALU slices. The INC signal is only
useful for addition operations. When present, it increments (i.e., adds 1 to) the
result, making it possible to compute sums like A + 1 and A + B + 1.

F A7 B7 AG BG A5 85 A4 B4 A3 Ba A2 Bz A1 B1 Ao Bo
Fy 0\_ | | | | | | | | | | | | | | | |
NS 1-bit | 1-bit [T 1-bit [T 1-bit [T 1-bit [ T 1-bit [T 1-bit [T 1-bit INC
ALU ALU ALU ALU ALU ALU ALU ALU
I I I I I I I I
Oy Og Os Oy O3 0O, 04 Op

Carry Carry
in out

Figure 3-20. Eight 1-bit ALU slices connected to make an 8-bit ALU. The en-
ables and invert signals are not shown for simplicity.

3.2.4 Clocks

In many digital circuits the order in which events happen is critical. Some-
times one event must precede another, sometimes two events must occur simul-
taneously. To allow designers to achieve the required timing relations, many digi-
tal circuits use clocks to provide synchronization. A clock in this context is a cir-
cuit that emits a series of pulses with a precise pulse width and precise interval
between consecutive pulses. The time interval between the corresponding edges
of two consecutive pulses is known as the clock cycle time. Pulse frequencies are
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commonly between 1 and 500 MHz, corresponding to clock cycles of 1000 nsec
to 2 nsec. To achieve high accuracy, the clock frequency is usually controlled by
a crystal oscillator.

In a computer, many events may happen during a single clock cycle. If these
events must occur in a specific order, the clock cycle must be divided into subcy-
cles. A common way of providing finer resolution than the basic clock is to tap
the primary clock line and insert a circuit with a known delay in it, thus generat-
ing a secondary clock signal that is phase-shifted from the primary, as shown in
Fig. 3-21(a). The timing diagram of Fig. 3-21(b) provides four time references for
discrete events:

1. Rising edge of C1.
2. Falling edge of C1.
3. Rising edge of C2.
4. Falling edge of C2.
By tying different events to the various edges, the required sequencing can be

achieved. If more than four time references are needed within a clock cycle, more
secondary lines can be tapped from the primary, with different delays.

IO cid L1 L1 |
_CZ||||||_
(a) (b)
LT
o

Figure 3-21. (a) A clock. (b) The timing diagram for the clock. (c) Generation
of an asymmetric clock.

In some circuits, one is interested in time intervals rather than discrete instants
of time. For example, some event may be allowed to happen any time Cl1 is high,
rather than precisely at the rising edge. Another event may only happen when C2
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is high. If more than two different intervals are needed, more clock lines can be
provided or the high states of the two clocks can be made to overlap partially in
time. In the latter case four distinct intervals can be distinguished: C1 AND C2,
C1 AND C2, C1 AND C2, and C1 AND C2.

As an aside, clocks are symmetric, with time spent in the high state equal to
the time spent in the low state, as shown in Fig. 3-21(b). To generate an asym-
metric pulse train, the basic clock is shifted using a delay circuit and ANDed with
the original signal, as shown in Fig. 3-21(c) as C.

3.3 MEMORY

An essential component of every computer is its memory. Without memory
there could be no computers as we now know them. Memory is used for storing
both instructions to be executed and data. In the following sections we will exam-
ine the basic components of a memory system starting at the gate level to see how
they work and how they are combined to produce large memories.

3.3.1 Latches

To create a 1-bit memory, we need a circuit that somehow “remembers’’ pre-
vious input values. Such a circuit can be constructed from two NOR gates, as
illustrated in Fig. 3-22(a). Analogous circuits can be built from NAND gates. We
will not mention these further, however, because they are conceptually identical
to the NOR versions.

A B |NOR
0 1
0 1 0
1 0 0
1 1 0

©

Figure 3-22. (a) NOR latch in state 0. (b) NOR latch in state 1. (c) Truth table for
NOR.

The circuit of Fig. 3-22(a) is called an SR latch. It has two inputs, S, for Set-
ting the latch, and R, for Resetting (i.e., clearing) it. It also has two outputs, Q
and Q, which are complementary, as we will see shortly. Unlike a combinational
circuit, the outputs of the latch are not uniquely determined by the current inputs.
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To see how this comes about, let us assume that both S and R are 0, which
they are most of the time. For argument’s sake, let us further assume that Q = 0.
Because Q is fed back into the upper NOR gate, both of its inputs are 0, so its out-
put, Q, is 1. The 1 is fed back into the lower gate, which then has inputs 1 and 0,
yielding Q = 0. This state is at least consistent and is depicted in Fig. 3-22(a).

Now let us imagine that Q is not 0 but 1, with R and § still 0. The upper gate
has inputs of 0 and 1, and an output, Q, of 0, which is fed back to the lower gate.
This state, shown in Fig. 3-22(b), is also consistent. A state with both outputs
equal to O is inconsistent, because it forces both gates to have two Os as input,
which, if true, would produce 1, not 0, as output. Similarly, it is impossible to
have both outputs equal to 1, because that would force the inputs to 0 and 1,
which yields 0, not 1. Our conclusion is simple: for R =S =0, the latch has two
stable states, which we will refer to as 0 and 1, depending on Q.

Now let us examine the effect of the inputs on the state of the latch. Suppose
that § becomes 1 while Q =0. The inputs to the upper gate are then 1 and 0, forc-
ing the Q output to 0. This change makes both inputs to the lower gate 0, forcing
the output to 1. Thus setting S (i.e., making it 1) switches the state from O to 1.
Setting R to 1 when the latch is in state 0 has no effect because the output of the
lower NOR gate is O for inputs of 10 and inputs of 11.

Using similar reasoning, it is easy to see that setting S to 1 when in state
0O =1 has no effect but that setting R drives the latch to state Q =0. In summary,
when § is set to 1 momentarily, the latch ends up in state Q =1, regardless of
what state it was previously in. Likewise, setting R to 1 momentarily forces the
latch to state Q = 0. The circuit “remembers’” whether S or R was last on. Using
this property we can build computer memories.

Clocked SR Latches

It is often convenient to prevent the latch from changing state except at cer-
tain specified times. To achieve this goal, we modify the basic circuit slightly, as
shown in Fig. 3-23, to get a clocked SR latch.

S
Q

Clock J1L
Q

R

Figure 3-23. A clocked SR latch.

This circuit has an additional input, the clock, which is normally 0. With the
clock 0, both AND gates output 0, independent of S and R, and the latch does not
change state. When the clock is 1, the effect of the AND gates vanishes and the
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latch becomes sensitive to S and R. Despite its name, the clock signal need not be
driven by a clock. The terms enable and strobe are also widely used to mean that
the clock input is 1; that is, the circuit is sensitive to the state of S and R.

Up until now we have carefully swept the problem of what happens when
both S and R are 1 under the rug. And for good reason: the circuit becomes non-
deterministic when both R and § finally return to 0. The only consistent state for
S=R=1is Q =0 =0, but as soon as both inputs return to 0, the latch must jump
to one of its two stable states. If either input drops back to O before the other, the
one remaining 1 longest wins, because when just one input is 1, it forces the state.
If both inputs return to O simultaneously (which is very unlikely), the latch jumps
to one of its stable states at random.

Clocked D Latches

A good way to resolve the SR latch’s ambiguity (caused when S =R =1) is to
prevent it from occurring. Figure 3-24 gives a latch circuit with only one input,
D. Because the input to the lower AND gate is always the complement of the input
to the upper one, the problem of both inputs being 1 never arises. When D =1
and the clock is 1, the latch is driven into state Q = 1. When D =0 and the clock
is 1, it is driven into state Q = 0. In other words, when the clock is 1, the current
value of D is sampled and stored in the latch. This circuit, called a clocked D
latch, is a true 1-bit memory. The value stored is always available at Q. To load
the current value of D into the memory, a positive pulse is put on the clock line.

D

J'L_

~Do—

Figure 3-24. A clocked D latch.

This circuit requires 11 transistors. More sophisticated (but less obvious) cir-
cuits can store 1 bit with as few a six transistors. In practice, such designs are
normally used.

3.3.2 Flip-Flops

In many circuits it is necessary to sample the value on a certain line at a par-
ticular instant in time and store it. In this variant, called a flip-flop, the state tran-
sition does not occur when the clock is 1 but during the clock transition from O to
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1 (rising edge) or from 1 to O (falling edge) instead. Thus the length of the clock
pulse is unimportant, as long as the transitions occur fast.

For emphasis, we will repeat the difference between a flip-flop and a latch. A
flip-flop is edge triggered, whereas a latch is level triggered. Be warned, how-
ever, that in the literature these terms are often confused. Many authors use
“flip-flop”” when they are referring to a latch, and vice versa.

There are various approaches to designing a flip-flop. For example, if there
were some way to generate a very short pulse on the rising edge of the clock sig-
nal, that pulse could be fed into a D latch. There is, in fact, such a way, and the
circuit for it is shown in Fig. 3-25(a).

Time ——
(b)

Figure 3-25. (a) A pulse generator. (b) Timing at four points in the circuit.

At first glance, it might appear that the output of the AND gate would always
be zero, since the AND of any signal with its inverse is zero, but the situation is a
bit more subtle than that. The inverter has a small, but nonzero propagation delay
through it, and that delay is what makes the circuit work. Suppose that we meas-
ure the voltage at the four measuring points a, b, ¢, and d. The input signal, meas-
ured at a, is a long clock pulse, as shown in Fig. 3-25(b) on the bottom. The sig-
nal at b is shown above it. Notice that it is both inverted and delayed slightly, typ-
ically a few nanoseconds depending on the kind of inverter used.

The signal at c is delayed, too, but only by the signal propagation time (at the
speed of light). If the physical distance between a and c is, for example, 20
microns, then the propagation delay is 0.0001 nsec, which is certainly negligible
compared to the time for the signal to propagate through the inverter. Thus for all
intents and purposes, the signal at c is as good as identical to the signal at a.
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When the inputs to the AND gate, b and c, are ANDed together, the result is a
short pulse, as shown in Fig. 3-25(b), where the width of the pulse, A, is equal to
the gate delay of the inverter, typically 5 nsec or less. The output of the AND gate
is just this pulse shifted by the delay of the AND gate, as shown at the top of
Fig. 3-25(b). This time shifting just means that the D latch will be activated at a
fixed delay after the rising edge of the clock, but it has no effect on the pulse
width. In a memory with a 50-nsec cycle time, a 5-nsec pulse telling it when to
sample the D line may be short enough, in which case the full circuit can be the
one of Fig. 3-26. It is worth noting that this flip-flop design is nice because it is
easy to understand, but in practice more sophisticated flip-flops are normally
used.

D

i acann D

o] )

Figure 3-26. A D flip-flop.

The standard symbols for latches and flip-flops are shown in Fig. 3-27. Fig-
ure 3-27(a) is a latch whose state is loaded when the clock, CK, is 1, in contrast to
Fig. 3-27(b) which is a latch whose clock is normally 1 but which drops to 0
momentarily to load the state from D. Figure 3-27(c) and (d) are flip-flops rather
than latches, which is indicated by the pointy symbol on the clock inputs. Figure
3-27(c) changes state on the rising edge of the clock pulse (0 to 1 transition),
whereas Fig. 3-27(d) changes state on the falling edge (1 to O transition). Many,
but not all, latches and flip-flops also have Q as an output, and some have two
additional inputs Set or Preset (force state to Q =1) and Reset or Clear (force
state to Q =0).

3.3.3 Registers

Flip-flops are available in a variety of configurations. A simple one, contain-
ing two independent D flip-flops with clear and preset signals, is illustrated in
Fig. 3-28(a). Although packaged together in the same 14-pin chip, the two flip-
flops are unrelated. A quite different arrangement is the octal flip-flop of Fig. 3-
28(b). Here the eight (hence the term “octal’”) D flip-flops are not only missing
the Q and preset lines, but all the clock lines are ganged together and driven by
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Figure 3-27. D latches and flip-flops.

pin 11. The flip-flops themselves are of the Fig. 3-27(d) type, but the inversion
bubbles on the flip-flops are canceled by the inverter tied to pin 11, so the flip-
flops are loaded on the rising transition. All eight clear signals are also ganged, so
when pin 1 goes to 0, all the flip-flops are forced to their O state. In case you are
wondering why pin 11 is inverted at the input and then inverted again at each CK
signal, an input signal may not have enough current to drive all eight flip-flops;
the input inverter is really being used as an amplifier.

While one reason for ganging the clock and clear lines of Fig. 3-28(b) is to
save pins, in this configuration the chip is used in a different way from eight unre-
lated flip-flops. It is used as a single 8-bit register. Alternatively, two such chips
can be used in parallel to form a 16-bit register by tying their respective pins 1
and 11 together. We will look at registers and their uses more closely in Chap. 4.

3.3.4 Memory Organization

Although we have now progressed from the simple 1-bit memory of Fig. 3-24
to the 8-bit memory of Fig. 3-28(b) to build large memories a different organiza-
tion is required, one in which individual words can be addressed. A widely-used
memory organization that meets this criterion is shown in Fig. 3-29. This exam-
ple illustrates a memory with four 3-bit words. Each operation reads or writes a
full 3-bit word. While the total memory capacity of 12 bits is hardly more than
our octal flip-flop, it requires fewer pins and most important, the design extends
easily to large memories.

While the memory of Fig. 3-29 may look complicated at first, it is really quite
simple due to its regular structure. It has eight input lines and three output lines.
Three inputs are data: I, I;, and I,; two are for the address: Ay and A;; and three
are for control: CS for Chip Select, RD for distinguishing between read and write,
and OE for Output Enable. The three outputs are for data: Oy, Oy, and O,. In
principle this memory could be put into a 14-pin package, including power and
ground versus 20 pins for the octal flip-flop.

To select this memory chip, external logic must set CS high and also set RD
high (logical 1) for read and low (logical 0) for write. The two address lines must
be set to indicate which of the four 3-bit words is to be read or written. For a read
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Figure 3-28. (a) Dual D flip-flop. (b) Octal flip-flop.
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Figure 3-29. Logic diagram for a 4 X 3 memory. Each row is one of the four
3-bit words. A read or write operation always reads or writes a complete word.

operation, the data input lines are not used, but the word selected is placed on the
data output lines. For a write operation, the bits present on the data input lines are
loaded into the selected memory word; the data output lines are not used.
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Now let us look at Fig. 3-29 closely to see how it works. The four word-
select AND gates at the left of the memory form a decoder. The input inverters
have been placed so that each gate is enabled (output is high) by a different
address. Each gate drives a word select line, from top to bottom, for words 0, 1,
2, and 3. When the chip has been selected for a write, the vertical line labeled
CS - RD will be high, enabling one of the four write gates, depending on which
word select line is high. The output of the write gate drives all the CK signals for
the selected word, loading the input data into the flip-flops for that word. A write
is only done if CS is high and RD is low, and even then only the word selected by
Ag and A; is written; the other words are not changed.

Read is similar to write. The address decoding is exactly the same as for
write. But now the CS - RD line is low, so all the write gates are disabled and none
of the flip-flops is modified. Instead, the word select line that is chosen enables
the AND gates tied to the Q bits of the selected word. Thus the selected word out-
puts its data into the four-input OR gates at the bottom of the figure, while the
other three words output Os. Consequently, the output of the OR gates is identical
to the value stored in the word selected. The three words not selected make no
contribution to the output.

Although we could have designed a circuit in which the three OR gates were
just fed into the three output data lines, doing so sometimes causes problems. In
particular, we have shown the data input lines and the data output lines as being
different, but in actual memories the same lines are used. If we had tied the OR
gates to the data output lines, the chip would try to output data, that is, force each
line to a specific value, even on writes, thus interfering with the input data. For
this reason, it is desirable to have a way to connect the OR gates to the data output
lines on reads but disconnect them completely on writes. What we need is an
electronic switch that can make or break a connection in a few nanoseconds.

Fortunately, such switches exist. Figure 3-30(a) shows the symbol for what is
called a noninverting buffer. It has a data input, a data output, and a control
input. When the control input is high, the buffer acts like a wire, as shown in
Fig. 3-30(b). When the control input is low, the buffer acts like an open circuit, as
shown in Fig. 3-30(c); it is as though someone detached the data output from the
rest of the circuit with a wirecutter. However, in contrast to the wirecutter
approach, the connection can be subsequently restored in a few nanoseconds by
just making the control signal high again.

Figure 3-30(d) shows an inverting buffer, which acts like a normal inverter
when control is high and disconnects the output from the circuit when control is
low. Both kinds of buffers are tri-state devices, because they can output 0, 1, or
none of the above (open circuit). Buffers also amplify signals, so they can drive
many inputs simultaneously. They are sometimes used in circuits for this reason,
even when their switching properties are not needed.

Getting back to the memory circuit, it should now be clear what the three
noninverting buffers on the data output lines are for. When CS, RD, and OE are all
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Figure 3-30. (a) A noninverting buffer. (b) Effect of (a) when control is high.
(c) Effect of (a) when control is low. (d) An inverting buffer.

high, the output enable signal is also high, enabling the buffers and putting a word
onto the output lines. When any one of CS, RD, or OE is low, the data outputs are
disconnected from the rest of the circuit.

3.3.5 Memory Chips

The nice thing about the memory of Fig. 3-29 is that it extends easily to larger
sizes. As we drew it, the memory is 4 X 3, that is, four words of 3 bits each. To
extend it to 4 X 8 we need only add five more columns of four flip-flops each, as
well as five more input lines and five more output lines. To go from 4 X 3 to 8 X 3
we must add four more rows of three flip-flops each, as well as an address line
A,. With this kind of structure, the number of words in the memory should be a
power of 2 for maximum efficiency, but the number of bits in a word can be any-
thing.

Because integrated circuit technology is well suited to making chips whose
internal structure is a repetitive two-dimensional pattern, memory chips are an
ideal application for it. As the technology improves, the number of bits that can
be put on a chip keeps increasing, typically by a factor of two every 18 months
(Moore’s law). The larger chips do not always render the smaller ones obsolete
due to different trade-offs in capacity, speed, power, price, and interfacing con-
venience. Commonly, the largest chips currently available sell at a premium and
thus are more expensive per bit than older, smaller ones.

For any given memory size, there are various ways of organizing the chip.
Figure 3-31 shows two possible organizations for an older memory chip of size
4-Mbit: 512K x 8 and 4096K x 1. (As an aside, memory chip sizes are usually
quoted in bits, rather than in bytes, so we will stick to that convention here.) In
Fig. 3-31(a), 19 address lines are needed to address one of the 2!° bytes, and eight
data lines are needed for loading or storing the byte selected.

A note on terminology is in order here. On some pins, the high voltage causes
an action to happen. On others, the low voltage causes the action. To avoid con-
fusion, we will consistently say that a signal is asserted (rather than saying it goes
high or goes low) to mean that it is set to cause some action. Thus for some pins,
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Figure 3-31. Two ways of organizing a 4-Mbit memory chip.

asserting it means setting it high. For others, it means setting the pin low. Pins
that are asserted low are given signal names containing an overbar. Thus a signal
named CS is asserted high, but one named CS is asserted low. The opposite of
asserted is negated. When nothing special is happening, pins are negated.

Now let us get back to our memory chip. Since a computer normally has
many memory chips, a signal is needed to select the chip that is currently needed
so that it responds and all the others do not. The CS (Chip Select) signal is pro-
vided for this purpose. It is asserted to enable the chip. Also, a way is needed to
distinguish reads from writes. The WE signal (Write Enable) is used to indicate
that data are being written rather than being read. Finally, the OE (Output Enable)
signal is asserted to drive the output signals. When it is not asserted, the chip out-
put is disconnected from the circuit.

In Fig. 3-31(b), a different addressing scheme is used. Internally, this chip is
organized as a 2048 x 2048 matrix of 1-bit cells, which gives 4 Mbits. To address
the chip, first a row is selected by putting its 11-bit number on the address pins.
Then the RAS (Row Address Strobe) is asserted. After that, a column number is
put on the address pins and CAS (Column Address Strobe) is asserted. The chip
responds by accepting or outputting one data bit.

Large memory chips are often constructed as »n Xn matrices that are
addressed by row and column. This organization reduces the number of pins
required but also makes addressing the chip slower, since two addressing cycles
are needed, one for the row and one for the column. To win back some of the
speed lost by this design, some memory chips can be given a row address fol-
lowed by a sequence of column addresses to access consecutive bits in a row.



170 THE DIGITAL LOGIC LEVEL CHAP. 3

Years ago, the largest memory chips were often organized like Fig. 3-31(b).
As memory words have grown from 8 bits to 32 bits and beyond, 1-bit wide chips
began to be inconvenient. To build a memory with a 32-bit word from 4096K x 1
chips requires 32 chips in parallel. These 32 chips have a total capacity of at least
16 MB, whereas using 512K x 8 chips requires only four chips in parallel and
allows memories as small as 2 MB. To avoid having 32 chips for memory, most
chip manufacturers now have chip families with 4-, 8-, and 16-bit widths. And
the situation with 64-bit words is even worse, of course.

Two examples of modern 512-Mbit chips are given in Fig. 3-32. These chips
have four internal memory banks of 128 Mbit each, requiring two bank select
lines to choose a bank. The design of Fig. 3-32(a) is a 32M x 16 design, with 13
lines for the RAS signal, 10 lines for the CAS signal, and 2 lines for the bank select.
Together, these 25 signals allow each of the 2%° internal 16-bit cells to be ad-
dressed. In contrast, Fig. 3-32(b) is a 128M X 4 design, with 13 lines for the RAS
signal, 12 lines for the CAS signal, and 2 lines for the bank select. Here, 27 signals
can select any of the 227 internal 4-bit cells to be addressed. The decision about
how many rows and how many columns a chip has is made for engineering rea-
sons. The matrix need not be square.

ﬁ? —_— l«— DO ﬁ? —]
A2 — | ~—> D1 A2 —]
A3 —> l—> D2 A3 —
A5 —] ~— D3 s —~]
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CAS — —~—> D12 CAS —
Bank 0 — D13 Bank 0 —
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Figure 3-32. Two ways of organizing a 512-Mbit memory chip.

These examples demonstrate two separate and independent issues for memory
chip design. First is the output width (in bits): does the chip deliver 1, 4, 8, 16, or
some other number of bits at once? Second, are all the address bits presented on
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separate pins at once or are the row and columns presented sequentially as in the
examples of Fig. 3-327 A memory chip designer has to answer both questions
before starting the chip design.

3.3.6 RAMs and ROMs

The memories we have studied so far can all be read and written. Such
memories are called RAMs (Random Access Memories), which is a misnomer
because all memory chips are randomly accessible, but the term is too well esta-
blished to get rid of now. RAMs come in two varieties, static and dynamic.
Static RAMs (SRAMs), are constructed internally using circuits similar to our
basic D flip-flop. These memories have the property that their contents are
retained as long as the power is kept on: seconds, minutes, hours, even days.
Static RAMs are very fast. A typical access times is a few nsec. For this reason,
static RAMS are popular as level 2 cache memory.

Dynamic RAMs (DRAMs), in contrast, do not use flip-flops. Instead, a
dynamic RAM is an array of cells, each cell containing one transistor and a tiny
capacitor. The capacitors can be charged or discharged, allowing Os and 1s to be
stored. Because the electric charge tends to leak out, each bit in a dynamic RAM
must be refreshed (reloaded) every few milliseconds to prevent the data from
leaking away. Because external logic must take care of the refreshing, dynamic
RAMs require more complex interfacing than static ones, although in many appli-
cations this disadvantage is compensated for by their larger capacities.

Since dynamic RAMs need only one transistor and one capacitor per bit (vs.
six transistors per bit for the best static RAM), dynamic RAMs have a very high
density (many bits per chip). For this reason, main memories are nearly always
built out of dynamic RAMs. However, this large capacity has a price: dynamic
RAMs are slow (tens of nanoseconds). Thus the combination of a static RAM
cache and a dynamic RAM main memory attempts to combine the good properties
of each.

Several types of dynamic RAM chips exist. The oldest type still around (in
elderly computers) is FPM (Fast Page Mode) DRAM. Internally it is organized
as a matrix of bits and it works by having the hardware present a row address and
then step through the column addresses, as we described with RAS and CAS in the
context of Fig. 3-31. Explicit signals tell the memory when it is time to respond,
so the memory runs asynchronously from the main system clock.

FPM DRAM was replaced with EDO (Extended Data Output) DRAM,
which allows a second memory reference to begin before the previous memory
reference has been completed. This simple pipelining did not make a single
memory reference go faster but did improve the memory bandwidth, giving more
words per second.

FPM and EDO worked reasonably well when memory chips had cycle times
of 12 nsec and slower. When processors got so fast that faster memories were
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really needed, FPM and EDO were replaced by SDRAM (Synchronous DRAM),
which is a hybrid of static and dynamic RAM and is driven by the main system
clock. The big advantage of SDRAM is that the clock eliminates the need for
control signals to tell the memory chip when to respond. Instead, the CPU tells
the memory how many cycles it should run, then starts it. On each subsequent
cycle, the memory outputs 4, 8, or 16 bits, depending on how many output lines it
has. Eliminating the need for control signals increases the data rate between CPU
and memory.

The next improvement over SDRAM was DDR (Double Data Rate)
SDRAM. With this kind of memory, the memory chip produces output on both
the rising edge of the clock and the falling edge, doubling the data rate. Thus an
8-bit wide DDR chip running at 200 MHz outputs two 8-bit values 200 million
times a second (for a short interval, of course), giving a theoretical burst rate of
3.2 Gbps.

Nonvolatile Memory Chips

RAMs are not the only kind of memory chips. In many applications, such as
toys, appliances, and cars, the program and some of the data must remain stored
even when the power is turned off. Furthermore, once installed, neither the pro-
gram nor the data are ever changed. These requirements have led to the develop-
ment of ROMs (Read-Only Memories), which cannot be changed or erased,
intentionally or otherwise. The data in a ROM are inserted during its manufac-
ture, essentially by exposing a photosensitive material through a mask containing
the desired bit pattern and then etching away the exposed (or unexposed) surface.
The only way to change the program in a ROM is to replace the entire chip.

ROMs are much cheaper than RAMs when ordered in large enough volumes
to defray the cost of making the mask. However, they are inflexible, because they
cannot be changed after manufacture, and the turnaround time between placing an
order and receiving the ROMs may be weeks. To make it easier for companies to
develop new ROM-based products, the PROM (Programmable ROM) was
invented. A PROM is like a ROM, except that it can be programmed (once) in
the field, eliminating the turnaround time. Many PROMs contain an array of tiny
fuses inside. A specific fuse can be blown out by selecting its row and column
and then applying a high voltage to a special pin on the chip.

The next development in this line was the EPROM (Erasable PROM), which
can be not only field-programmed but also field-erased. When the quartz window
in an EPROM is exposed to a strong ultraviolet light for 15 minutes, all the bits
are set to 1. If many changes are expected during the design cycle, EPROMs are
far more economical than PROMs because they can be reused. EPROMs usually
have the same organization as static RAMs. The 4-Mbit 27C040 EPROM, for
example, uses the organization of Fig. 3-32(a), which is typical of a static RAM.
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Even better than the EPROM is the EEPROM which can be erased by apply-
ing pulses to it instead of requiring it to be put in a special chamber for exposure
to ultraviolet light. In addition, an EEPROM can be reprogrammed in place
whereas an EPROM has to be inserted in a special EPROM programming device
to be programmed. On the minus side, the biggest EEPROMs are typically only
1/64 as large as common EPROMs and they are only half as fast. EEPROMs can-
not compete with DRAMs or SRAMs because they are 10 times slower, 100 times
smaller in capacity, and much more expensive. They are only used in situations
where their nonvolatility is crucial.

A more recent kind of EEPROM is flash memory. Unlike EPROM, which is
erased by exposure to ultraviolet light, and EEPROM, which is byte erasable,
flash memory is block erasable and rewritable. Like EEPROM, flash memory can
be erased without removing it from the circuit. Various manufacturers produce
small printed circuit cards with up to 1 GB of flash memory on them for use as
“film” for storing pictures in digital cameras and many other purposes. Someday
flash memories may be used to replace disks, which would be an enormous
improvement, given their 50-nsec access times. The main engineering problem at
present is that they wear out after about 100,000 erasures, whereas disks last for
many years, no matter how often they are rewritten. A summary of the various
kinds of memory is given in Fig. 3-33.

Byte

Type Category Erasure al¥erable Volatile Typical use
SRAM Read/write Electrical Yes Yes Level 2 cache
DRAM Read/write Electrical Yes Yes Main memory (old)
SDRAM | Read/write Electrical Yes Yes Main memory (new)
ROM Read-only Not possible | No No Large volume appliances
PROM Read-only Not possible | No No Small volume equipment
EPROM | Read-mostly | UV light No No Device prototyping
EEPROM| Read-mostly | Electrical Yes No Device prototyping
Flash Read/write Electrical No No Film for digital camera

Figure 3-33. A comparison of various memory types.

3.4 CPU CHIPS AND BUSES

Armed with information about SSI chips, MSI chips, and memory chips, we
can now start to put all the pieces together to look at complete systems. In this
section, we will first look at some general aspects of CPUs as viewed from the
digital logic level, including pinout (what the signals on the various pins mean).
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Since CPUs are so closely intertwined with the design of the buses they use, we
will also provide an introduction to bus design in this section. In succeeding sec-
tions we will give detailed examples of both CPUs and their buses and how they
are interfaced.

3.4.1 CPU Chips

All modern CPUs are contained on a single chip. This makes their interaction
with the rest of the system well defined. Each CPU chip has a set of pins, through
which all its communication with the outside world must take place. Some pins
output signals from the CPU to the outside world; others accept signals from the
outside world; some can do both. By understanding the function of all the pins,
we can learn how the CPU interacts with the memory and I/O devices at the digi-
tal logic level.

The pins on a CPU chip can be divided into three types: address, data, and
control. These pins are connected to similar pins on the memory and I/O chips via
a collection of parallel wires called a bus. To fetch an instruction, the CPU first
puts the memory address of that instruction on its address pins. Then it asserts
one or more control lines to inform the memory that it wants to read (for example)
a word. The memory replies by putting the requested word on the CPU’s data
pins and asserting a signal saying that it is done. When the CPU sees this signal,
it accepts the word and carries out the instruction.

The instruction may require reading or writing data words, in which case the
whole process is repeated for each additional word. We will go into the detail of
how reading and writing works below. For the time being, the important thing to
understand is that the CPU communicates with the memory and I/O devices by
presenting signals on its pins and accepting signals on its pins. No other commun-
ication is possible.

Two of the key parameters that determine the performance of a CPU are the
number of address pins and the number of data pins. A chip with m address pins
can address up to 2" memory locations. Common values of m are 16, 20, 32 and
64. Similarly, a chip with n data pins can read or write an n-bit word in a single
operation. Common values of n are 8, 16, 32, 36, and 64. A CPU with 8 data pins
will take four operations to read a 32-bit word, whereas one with 32 data pins can
do the same job in one operation. Thus the chip with 32 data pins is much faster,
but is invariably more expensive as well.

In addition to address and data pins, each CPU has some control pins. The
control pins regulate the flow and timing of data to and from the CPU and have
other miscellaneous uses. All CPUs have pins for power (usually +3.3 volts or +5
volts), ground, and a clock signal (a square wave at some well-defined frequency),
but the other pins vary greatly from chip to chip. Nevertheless, the control pins
can be roughly grouped into the following major categories:
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Bus control.
Interrupts.
Bus arbitration.

Coprocessor signaling.

A S e

Status.
6. Miscellaneous.

We will briefly describe each of these categories below. When we look at the
Pentium 4, UltraSPARC 1II, and 8051 chips later, we will provide more detail. A
generic CPU chip using these signal groups is shown in Fig. 3-34.

Addressing —+— < Bus arbitration

| —ro
Data —+> ~—— Coprocessor

Typical
Micro-
Bus control ———] Processor ——> giatys

Interrupts ——_ < Miscellaneous
L
Symbol for
® +5v electrical ground
Symbol f
for clock .
signal Power is 5volts

Figure 3-34. The logical pinout of a generic CPU. The arrows indicate input
signals and output signals. The short diagonal lines indicate that multiple pins
are used. For a specific CPU, a number will be given to tell how many.

The bus control pins are mostly outputs from the CPU to the bus (thus inputs
to the memory and I/O chips) telling whether the CPU wants to read or write
memory or do something else. The CPU uses these pins to control the rest of the
system and tell it what it wants to do.

The interrupt pins are inputs from I/O devices to the CPU. In most systems,
the CPU can tell an I/O device to start an operation and then go off and do some-
thing else while the I/O device is doing its work. When the I/O has been com-
pleted, the I/O controller chip asserts a signal on one of these pins to interrupt the
CPU and have it service the I/O device, for example to check to see if I/O errors
occurred. Some CPUs have an output pin to acknowledge the interrupt signal.

The bus arbitration pins are needed to regulate traffic on the bus, in order to
prevent two devices from trying to use it at the same time. For arbitration pur-
poses, the CPU counts as a device and has to request it like any other device.
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Some CPU chips are designed to operate with coprocessors such as floating-
point chips, but sometimes graphics or other chips as well. To facilitate commun-
ication between CPU and coprocessor, special pins are provided for making and
granting various requests.

In addition to these signals, there are various miscellaneous pins that some
CPUs have. Some of these provide or accept status information, others are useful
for resetting the computer, and still others are present to assure compatibility with
older I/O chips.

3.4.2 Computer Buses

A bus is a common electrical pathway between multiple devices. Buses can
be categorized by their function. They can be used internal to the CPU to trans-
port data to and from the ALU, or external to the CPU, to connect it to memory or
to I/O devices. Each type of bus has its own requirements and properties. In this
section and the following ones, we will focus on buses that connect the CPU to
the memory and I/O devices. In the next chapter we will examine the buses inside
the CPU more closely.

Early personal computers had a single external bus or system bus. It con-
sisted of 50 to 100 parallel copper wires etched onto the motherboard, with con-
nectors spaced at regular intervals for plugging in memory and I/O boards.
Modern personal computers generally have a special-purpose bus between the
CPU and memory and (at least) one other bus for the I/O devices. A minimal sys-
tem, with one memory bus and one I/O bus, is illustrated in Fig. 3-35.

CPU chip

Buses

Registers { Bus Memory bus
<:> controller <:> Memory

v ) S

Disk Modem Printer

On-chip bus

Figure 3-35. A computer system with multiple buses.

In the literature, buses are sometimes drawn as “fat” arrows, as in this figure.
The distinction between a fat arrow and a single line with a diagonal line through
it and a bit count next to it is subtle. When all the bits are the same type, say, all
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address bits or all data bits, then the short diagonal line approach is commonly
used. When there are address, data, and control lines involved, a fat arrow is
more common.

While the designers of the CPU are free to use any kind of bus they want
inside the chip, in order to make it possible for boards designed by third parties to
attach to the system bus, there must be well-defined rules about how the bus
works, and which all devices attached to it must obey. These rules are called the
bus protocol. In addition, there must be mechanical and electrical specifications,
so that third-party boards will fit in the card cage and have connectors that match
those on the motherboard mechanically and in terms of voltages, timing, etc.

A number of buses are in widespread use in the computer world. A few of the
better known ones, historical and current, (with examples) are the Omnibus
(PDP-8), Unibus (PDP-11), Multibus (8086), VME bus (physics lab equipment),
IBM PC bus (PC/XT), ISA bus (PC/AT), EISA bus (80386), Microchannel
(PS/2), Nubus (Macintosh), PCI bus (many PCs), SCSI bus (many PCs and
workstations), Universal Serial Bus (modern PCs), and FireWire (consumer elec-
tronics). The world would probably be a better place if all but one would sud-
denly vanish from the face of the earth (well, all right, how about all but two?).
Unfortunately, standardization in this area seems very unlikely as there is already
too much invested in all these incompatible systems.

Let us now begin our study of how buses work. Some devices that attach to a
bus are active and can initiate bus transfers, whereas others are passive and wait
for requests. The active ones are called masters; the passive ones are called
slaves. When the CPU orders a disk controller to read or write a block, the CPU
is acting as a master and the disk controller is acting as a slave. However, later
on, the disk controller may act as a master when it commands the memory to
accept the words it is reading from the disk drive. Several typical combinations of
master and slave are listed in Fig. 3-36. Under no circumstances can memory
ever be a master.

Master Slave Example
CPU Memory Fetching instructions and data
CPU I/O device Initiating data transfer
CPU Coprocessor CPU handing instruction off to coprocessor
1/0 Memory DMA (Direct Memory Access)
Coprocessor CPU Coprocessor fetching operands from CPU

Figure 3-36. Examples of bus masters and slaves.

The binary signals that computer devices output are frequently too weak to
power a bus, especially if it is relatively long or has many devices on it. For this
reason, most bus masters are connected to the bus by a chip called a bus driver,
which is essentially a digital amplifier. Similarly, most slaves are connected to
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the bus by a bus receiver. For devices that can act as both master and slave, a
combined chip called a bus transceiver is used. These bus interface chips are
often tri-state devices, to allow them to float (disconnect) when they are not
needed, or are hooked up in a somewhat different way, called open collector, that
achieves a similar effect. When two or more devices on an open collector line
assert the line at the same time, the result is the Boolean OR of all the signals.
This arrangement is often called wired-OR. On most buses, some of the lines are
tri-state and others, which need the wired-OR property, are open collector.

Like a CPU, a bus also has address, data, and control lines. However, there is
not necessarily a one-to-one mapping between the CPU pins and the bus signals.
For example, some CPUs have three pins that encode whether it is doing a
memory read, memory write, I/O read, I/O write, or some other operation. A typi-
cal bus might have one line for memory read, a second for memory write, a third
for 1/O read, a fourth for I/O write, and so on. A decoder chip would then be
needed between the CPU and such a bus to match the two sides up, that is, to con-
vert the 3-bit encoded signal into separate signals that can drive the bus lines.

Bus design and operation are sufficiently complex subjects that a number of
entire books have been written about them (Anderson et al., 2004; Solari and
Willse, 2004). The principal bus design issues are bus width, bus clocking, bus
arbitration, and bus operations. Each of these issues has a substantial impact on
the speed and bandwidth of the bus. We will now examine each of these in the
next four sections.

3.4.3 Bus Width

Bus width is the most obvious design parameter. The more address lines a
bus has, the more memory the CPU can address directly. If a bus has n address
lines, then a CPU can use it to address 2" different memory locations. To allow
large memories, buses need many address lines. That sounds simple enough.

The problem is that wide buses need more wires than narrow ones. They also
take up more physical space (e.g., on the motherboard) and need bigger connec-
tors. All of these factors make the bus more expensive. Thus there is a trade-off
between maximum memory size and system cost. A system with a 64-line ad-
dress bus and 23? bytes of memory will cost more than one with 32 address lines
and the same 2% bytes of memory. The possibility of expansion later is not free.

The result of this observation is that many system designers tend to be short-
sighted, with unfortunate consequences later. The original IBM PC contained an
8088 CPU and a 20-bit address bus, as shown in Fig. 3-37(a). Having 20 bits
allowed the PC to address 1 MB of memory.

When the next CPU chip (the 80286) came out, Intel decided to increase the
address space to 16 MB, so four more bus lines had to be added (without disturb-
ing the original 20, for reasons of backward compatibility), as illustrated in
Fig. 3-37(b). Unfortunately, more control lines had to be added to deal with the
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Figure 3-37. Growth of an address bus over time.

new address lines. When the 80386 came out, another eight address lines were
added, along with still more control lines, as shown in Fig. 3-37(c). The resulting
design (the EISA bus) is much messier than it would have been had the bus been
given 32 lines at the start.

Not only does the number of address lines tend to grow over time, but so does
the number of data lines, but for a somewhat different reason. There are two ways
to increase the data bandwidth of a bus: decrease the bus cycle time (more
transfers/sec) or increase the data bus width (more bits/transfer). Speeding the
bus up is possible, but difficult because the signals on different lines travel at
slightly different speeds, a problem known as bus skew. The faster the bus, the
more serious bus skew becomes.

Another problem with speeding up the bus is that doing this will not be back-
ward compatible. Old boards designed for the slower bus will not work with the
new one. Invalidating old boards makes both the owners of the old boards and the
manufacturers of the old boards unhappy. Therefore the usual approach to
improving performance is to add more data lines, analogous to Fig. 3-37. As you
might expect, however, this incremental growth does not lead to a clean design in
the end. The IBM PC and its successors, for example, went from eight data lines
to 16 and then 32 on essentially the same bus.

To get around the problem of very wide buses, sometimes designers opt for a
multiplexed bus. In this design, instead of having the address and data lines be
separate, there are, say, 32 lines for address and data together. At the start of a
bus operation, the lines are used for the address. Later on, they are used for data.
For a write to memory, for example, this means that the address lines must be set
up and propagated to the memory before the data can be put on the bus. With
separate lines, the address and data can be put on together. Multiplexing the lines
reduces bus width (and cost), but results in a slower system. Bus designers have
to carefully weigh all these options when making choices.
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3.4.4 Bus Clocking

Buses can be divided into two distinct categories depending on their clocking.
A synchronous bus has a line driven by a crystal oscillator. The signal on this
line consists of a square wave with a frequency generally between 5 MHz and 100
MHz. All bus activities take an integral number of these cycles, called bus
cycles. The other kind of bus, the asynchronous bus, does not have a master
clock. Bus cycles can be of any length required and need not be the same
between all pairs of devices. Below we will examine each bus type.

Synchronous Buses

As an example of how a synchronous bus works, consider the timing of
Fig. 3-38(a). In this example, we will use a 100-MHz clock, which gives a bus
cycle of 10 nsec. While this may seem a bit slow compared to CPU speeds of 3
GHz and more, few existing PC buses are much faster. For example, the popular
PCI bus usually runs at either 33 MHz or 66 MHz. The reasons current buses are
slow were given above: technical design problems such as bus skew and the need
for backward compatibility.

In our example, we will further assume that reading from memory takes 15-
nsec from the time the address is stable. As we will see shortly, with these param-
eters, it will take three bus cycles to read a word. The first cycle starts at the ris-
ing edge of T and the third one ends at the rising edge of T4, as shown in the fig-
ure. Note that none of the rising or falling edges has been drawn vertically,
because no electrical signal can change its value in zero time. In this example we
will assume that it takes 1 nsec for a signal to change. The clock, ADDRESS,
DATA, MREQ, RD, and WAIT lines are all shown on the same time scale.

The start of T, is defined by the rising edge of the clock. Part way through T}
the CPU puts the address of the word it wants on the address lines. Because the
address is not a single value, like the clock, we cannot show it as a single line in
the figure; instead, it is shown as two lines, with a crossing at the time that the
address changes. Furthermore, the shading prior to the crossing indicates that the
shaded value is not important. Using the same shading convention, we see that
the contents of the data lines are not significant until well into T;.

After the address lines have had a chance to settle down to their new values,
MREQ and RD are asserted. The former indicates that memory (as opposed to an
I/O device) is being accessed, and the latter is asserted for reads and negated for
writes. Since the memory takes 15 nsec after the address is stable (part way into
the first clock cycle), it cannot provide the requested data during T,. To tell the
CPU not to expect it, the memory asserts the WAIT line at the start of T,. This
action will insert wait states (extra bus cycles) until the memory is finished and
negates WAIT. In our example, one wait state (T,) has been inserted because the
memory is too slow. At the start of T3, when it is sure it will have the data during
the current cycle, the memory negates WAIT.
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Symbol Parameter Min Max Unit
Tap Address output delay 4 nsec
Tme Address stable prior to MREQ 2 nsec
Tm MREQ delay from falling edge of ® in T, nsec
TR RD delay from falling edge of ® in T, nsec
Tos Data setup time prior to falling edge of ® 2 nsec
TuH MREQ delay from falling edge of @ in T 3 nsec
T RD delay from falling edge of @ in T, 3 nsec
Ton Data hold time from negation of RD 0 nsec

Figure 3-38. (a) Read timing on a synchronous bus. (b) Specification of some

(b)

critical times.

During the first half of T;, the memory puts the data onto the data lines. At
the falling edge of T3 the CPU strobes (i.e., reads) the data lines, latching (i.e.,
storing) the value in an internal register. Having read the data, the CPU negates
MREQ and RD. If need be, another memory cycle can begin at the next rising edge
of the clock. This sequence can be repeatedly indefinitely.
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In the timing specification of Fig. 3-38(b), eight symbols that occur in the tim-
ing diagram are further clarified. T,p, for example, is the time interval between
the rising edge of the T clock and the address lines being set. According to the
timing specification, Tpop <4 nsec. This means that the CPU manufacturer guar-
antees that during any read cycle, the CPU will output the address to be read
within 11 nsec of the midpoint of the rising edge of T;.

The timing specifications also require that the data be available on the data
lines at least Tpg (2 nsec) before the falling edge of Ts, to give it time to settle
down before the CPU strobes it in. The combination of constraints on Tap and
Tps means that, in the worst case, the memory will have only 25-4-2=19
nsec from the time the address appears until it must produce the data. Because 10
nsec is enough, even in the worst case, a 10-nsec memory can always respond
during T5. A 20-nsec memory, however, would just miss and have to insert a
second wait state and respond during Ty.

The timing specification further guarantees that the address will be set up at
least 2 nsec prior to MREQ being asserted. This time can be important if MREQ
drives chip select on the memory chip because some memories require an address
setup time prior to chip select. Clearly, the system designer should not choose a
memory chip that needs a 3-nsec setup time.

The constraints on Ty; and Tg;, mean that MREQ and RD will both be asserted
within 3 nsec from the T, falling clock. In the worst case, the memory chip will
have only 10 + 10 — 3 — 2 = 15 nsec after the assertion of MREQ and RD to get its
data onto the bus. This constraint is in addition to (and independent of) the 15-
nsec interval needed after the address is stable.

Tymu and Try tell how long it takes MREQ and RD to be negated after the data
have been strobed in. Finally, Tpy tells how long the memory must hold the data
on the bus after RD has been negated. As far as our example CPU is concerned,
the memory can remove the data from the bus as soon as RD has been negated; on
some actual CPUs, however, the data must be kept stable a little longer.

We would like to point out that Fig. 3-38 is a highly simplified version of real
timing constraints. In reality, many more critical times are always specified.
Nevertheless, it gives a good flavor for how a synchronous bus works.

A last point worth making is that control signals can be asserted high or low.
It is up to the bus designers to determine which is more convenient, but the choice
is essentially arbitrary. One can regard it as the hardware equivalent of a
programmer’s choice to represent free disk blocks in a bit map as Os versus Is.

Asynchronous Buses

Although synchronous buses are easy to work with due to their discrete time
intervals, they also have some problems. For example, everything works in multi-
ples of the bus clock. If a CPU and memory are able to complete a transfer in 3.1
cycles, they have to stretch it to 4.0 because fractional cycles are forbidden.
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Worse yet, once a bus cycle has been chosen, and memory and I/O cards have
been built for it, it is difficult to take advantage of future improvements in tech-
nology. For example, suppose a few years after the system of Fig. 3-38 was built,
new memories became available with access times of 8 nsec instead of 15 nsec.
These would get rid of the wait state, speeding up the machine. Then suppose 4-
nsec memories became available. There would be no further gain in performance
because the minimum time for a read is two cycles with this design.

Putting this fact in slightly different terms, if a synchronous bus has a hetero-
geneous collection of devices, some fast and some slow, the bus has to be geared
to the slowest one and the fast ones cannot use their full potential.

Mixed technology can be handled by going to an asynchronous bus, that is,
one with no master clock, as shown in Fig. 3-39. Instead of tying everything to
the clock, when the bus master has asserted the address, MREQ, RD, and anything
else it needs to, it then asserts a special signal that we will call MSYN (Master
SYNchronization). When the slave sees this, it performs the work as fast as it
can. When it is done, it asserts SSYN (Slave SYNchronization).

ADDRESS X Memory address to be read x

MREQ —\ F
RD

— \ 2

T V '
DATA ~—X Data X

SSYN Lw

Figure 3-39. Operation of an asynchronous bus.

As soon as the master sees SSYN asserted, it knows that the data are available,
so it latches them, and then negates the address lines, along with MREQ, RD, and
MSYN. When the slave sees the negation of MSYN, it knows that the cycle has
been completed, so it negates SSYN, and we are back in the original situation, with
all signals negated, waiting for the next master.

Timing diagrams of asynchronous buses (and sometimes synchronous buses
as well) use arrows to show cause and effect, as in Fig. 3-39. The assertion of
MSYN causes the data lines to be asserted and also causes the slave to assert SSYN.
The assertion of SSYN, in turn, causes the negation of the address lines, MREQ, RD,
and MSYN. Finally, the negation of MSYN causes the negation of SSYN, which
ends the read and returns the system to its original state.
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A set of signals that interlocks this way is called a full handshake. The
essential part consists of four events:

1. MSYN is asserted.

2. SSYN is asserted in response to MSYN.
3. MSYN is negated in response to SSYN.
4

SSYN is negated in response to the negation of MSYN.

It should be clear that full handshakes are timing independent. Each event is
caused by a prior event, not by a clock pulse. If a particular master-slave pair is
slow, that in no way affects a subsequent master-slave pair that is much faster.

The advantage of an asynchronous bus should now be clear, but the fact is
that most buses are synchronous. The reason is that it is easier to build a synchro-
nous system. The CPU just asserts its signals, and the memory just reacts. There
is no feedback (cause and effect), but if the components have been chosen prop-
erly, everything will work without handshaking. Also, there is a lot of investment
in synchronous bus technology.

3.4.5 Bus Arbitration

Up until now, we have tacitly assumed that there is only one bus master, the
CPU. In reality, I/O chips have to become bus master to read and write memory,
and also to cause interrupts. Coprocessors may also need to become bus master.
The question then arises: “What happens if two or more devices all want to
become bus master at the same time?”” The answer is that some bus arbitration
mechanism is needed to prevent chaos.

Arbitration mechanisms can be centralized or decentralized. Let us first con-
sider centralized arbitration. One particularly simple form of centralized arbitra-
tion is shown in Fig. 3-40(a). In this scheme, a single bus arbiter determines who
goes next. Many CPUs have the arbiter built into the CPU chip, but sometimes a
separate chip is needed. The bus contains a single wired-OR request line that can
be asserted by one or more devices at any time. There is no way for the arbiter to
tell how many devices have requested the bus. The only categories it can distin-
guish are some requests and no requests.

When the arbiter sees a bus request, it issues a grant by asserting the bus grant
line. This line is wired through all the I/O devices in series, like a cheap string of
Christmas tree lamps. When the device physically closest to the arbiter sees the
grant, it checks to see if it made a request. If so, it takes over the bus but does not
propagate the grant further down the line. If it has not made a request, it pro-
pagates the grant to the next device in line, which behaves the same way, and so
on until some device accepts the grant and takes the bus. This scheme is called
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Figure 3-40. (a) A centralized one-level bus arbiter using daisy chaining.
(b) The same arbiter, but with two levels.

daisy chaining. It has the property that devices are effectively assigned priorities
depending on how close to the arbiter they are. The closest device wins.

To get around the implicit priorities based on distance from the arbiter, many
buses have multiple priority levels. For each priority level there is a bus request
line and a bus grant line. The one of Fig. 3-40(b) has two levels, 1 and 2 (real
buses often have 4, 8, or 16 levels). Each device attaches to one of the bus
request levels, with more time-critical devices attaching to the higher priority
ones. In Fig. 3-40(b) devices, 1, 2, and 4 use priority 1 while devices 3 and 5 use
priority 2.

If multiple priority levels are requested at the same time, the arbiter issues a
grant only on the highest priority one. Among devices of the same priority, daisy
chaining is used. In Fig. 3-40(b), in the event of conflicts, device 2 beats device
4, which beats 3. Device 5 has the lowest priority because it is at the end of the
lowest priority daisy chain.

As an aside, it is not technically necessary to wire the level 2 bus grant line
serially through devices 1 and 2, since they cannot make requests on it. However,
as an implementation convenience, it is easier to wire all the grant lines through
all the devices, rather than making special wiring that depends on which device
has which priority.

Some arbiters have a third line that a device asserts when it has accepted a
grant and seized the bus. As soon as it has asserted this acknowledgement line,
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the request and grant lines can be negated. As a result, other devices can request
the bus while the first device is using the bus. By the time the current transfer is
finished, the next bus master will have already been selected. It can start as soon
as the acknowledgement line has been negated, at which time the following round
of arbitration can begin. This scheme requires an extra bus line and more logic in
each device, but it makes better use of bus cycles.

In systems in which memory is on the main bus, the CPU must compete with
all the I/O devices for the bus on nearly every cycle. One common solution for
this situation is to give the CPU the lowest priority, so it gets the bus only when
nobody else wants it. The idea here is that the CPU can always wait, but I/O
devices frequently must acquire the bus quickly or lose incoming data. Disks
rotating at high speed cannot wait. This problem is avoided in many modern com-
puter systems by putting the memory on a separate bus from the I/O devices so
they do not have to compete for access to the bus.

Decentralized bus arbitration is also possible. For example, a computer could
have 16 prioritized bus request lines. When a device wants to use the bus, it
asserts its request line. All devices monitor all the request lines, so at the end of
each bus cycle, each device knows whether it was the highest priority requester,
and thus whether it is permitted to use the bus during the next cycle. Compared to
centralized arbitration, this arbitration method requires more bus lines but avoids
the potential cost of the arbiter. It also limits the number of devices to the number
of request lines.

Another kind of decentralized bus arbitration, shown in Fig. 3-41, only uses
three lines, no matter how many devices are present. The first bus line is a
wired-OR line for requesting the bus. The second bus line is called BUSY and is
asserted by the current bus master. The third line is used to arbitrate the bus. It is
daisy chained through all the devices. The head of this chain is held asserted by
tying it to the 5-volt power supply.

Bus request
Busy
+5v
Arbitration
line | In Out In Out In Out In Out In Out
1 1 1 1 1 1 1 1
\ \ / \ /

/
- N_~

1 2 3 4 5

Figure 3-41. Decentralized bus arbitration.

When no device wants the bus, the asserted arbitration line is propagated
through to all devices. To acquire the bus, a device first checks to see if the bus is
idle and the arbitration signal it is receiving, IN, is asserted. If IN is negated, it
may not become bus master, and it negates OUT. If IN is asserted, however, the
device negates OUT, which causes its downstream neighbor to see IN negated and
to negate its OUT. Hence, downstream devices all see IN negated and correspond-



SEC. 34 CPU CHIPS AND BUSES 187

ingly negate OUT. When the dust settles, only one device will have IN asserted
and OUT negated. This device becomes bus master, asserts BUSY and OUT, and
begins its transfer.

Some thought will reveal that the leftmost device that wants the bus gets it.
Thus this scheme is similar to the original daisy chain arbitration, except without
having the arbiter, so it is cheaper, faster, and not subject to arbiter failure.

3.4.6 Bus Operations

Up until now, we have only discussed ordinary bus cycles, with a master (typ-
ically the CPU) reading from a slave (typically the memory) or writing to one. In
fact, several other kinds of bus cycles exist. We will now look at some of these.

Normally, one word at a time is transferred. However, when caching is used,
it is desirable to fetch an entire cache line (e.g., 16 consecutive 32-bit words) at
once. Often block transfers can be made more efficient than successive individual
transfers. When a block read is started, the bus master tells the slave how many
words are to be transferred, for example, by putting the word count on the data
lines during T;. Instead of just returning one word, the slave outputs one word
during each cycle until the count has been exhausted. Figure 3-42 shows a modi-
fied version of Fig. 3-38(a), but now with an extra signal BLOCK that is asserted to
indicate that a block transfer is requested. In this example, a block read of 4
words takes 6 cycles instead of 12.

Other kinds of bus cycles also exist. For example, on a multiprocessor system
with two or more CPUs on the same bus, it is often necessary to make sure that
only one CPU at a time uses some critical data structure in memory. A typical
way to arrange this is to have a variable in memory that is O when no CPU is
using the data structure and 1 when it is in use. If a CPU wants to gain access to
the data structure, it must read the variable, and if it is O, set it to 1. The trouble
is, with some bad luck, two CPUs might read it on consecutive bus cycles. If each
one sees that the variable is O then each one sets it to 1 and thinks that it is the
only CPU using the data structure. This sequence of events leads to chaos.

To prevent this situation, multiprocessor systems often have a special read-
modify-write bus cycle that allows any CPU to read a word from memory, inspect
and modify it, and write it back to memory, all without releasing the bus. This
type of cycle prevents competing CPUs from being able to use the bus and thus
interfere with the first CPU’s operation.

Another important kind of bus cycle is for handling interrupts. When the
CPU commands an I/O device to do something, it usually expects an interrupt
when the work is done. The interrupt signaling requires the bus.

Since multiple devices may want to cause an interrupt simultaneously, the
same kind of arbitration problems are present here that we had with ordinary bus
cycles. The usual solution is to assign priorities to devices, and use a centralized
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Figure 3-42. A block transfer.

arbiter to give priority to the most time-critical devices. Standard interrupt con-
troller chips exist and are widely used. The IBM PC and all its successors use the
Intel 8259A chip, illustrated in Fig. 3-43.
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Figure 3-43. Use of the 8259A interrupt controller.

Up to eight I/O controller chips can be directly connected to the eight IRx
(Interrupt Request) inputs to the 8259A. When any of these devices wants to
cause an interrupt, it asserts its input line. When one or more inputs are asserted,
the 8259A asserts INT (INTerrupt), which directly drives the interrupt pin on the
CPU. When the CPU is able to handle the interrupt, it sends a pulse back to the
8259A on INTA (INTerrupt Acknowledge). At that point the 8259A must specify
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which input caused the interrupt by outputting that input’s number on the data bus.
This operation requires a special bus cycle. The CPU hardware then uses that
number to index into a table of pointers, called interrupt vectors, to find the
address of the procedure to run to service the interrupt.

The 8259A has several registers inside of it that the CPU can read and write
using ordinary bus cycles and the RD (ReaD), WR (WRite), CS (Chip Select), and
A0 pins. When the software has handled the interrupt and is ready to take the next
one, it writes a special code into one of the registers, which causes the 8259A to
negate INT, unless it has another interrupt pending. These registers can also be
written to put the 8259A in one of several modes, mask out a set of interrupts, and
enable other features.

When more than eight I/O devices are present, the 8259As can be cascaded.
In the most extreme case, all eight inputs can be connected to the outputs of eight
more 8259As, allowing for up to 64 1/0 devices in a two-stage interrupt network.
The 8259A has a few pins devoted for handling this cascading, which we have
omitted for the sake of simplicity.

While we have by no means exhausted the subject of bus design, the material
above should give enough background to understand the essentials of how a bus
works, and how CPUs and buses interact. Let us now move from the general to
the specific and take a look at some examples of actual CPUs and their buses.

3.5 EXAMPLE CPU CHIPS

In this section we will examine the Pentium 4, the UltraSPARC III, and the
8051 chips in some detail at the hardware level.

3.5.1 The Pentium 4

The Pentium 4 is a direct descendant of the 8088 CPU used in the original
IBM PC. The first Pentium 4 was introduced in Nov. 2000 as a 42-million
transistor CPU running at 1.5 GHz with a line width of 0.18 micron. The line
width is how wide the wires between transistors are (as well as being a measure of
the size of the transistors themselves). The narrower the line width, the more
transistors can fit on the chip. Moore’s law is fundamentally about the ability of
process engineers to keep reducing the line widths. Smaller line widths also allow
higher clock speeds. For comparison purposes, human hairs range from 20
microns to 100 microns in diameter, with blonde hair being finer than black hair.

During the course of the next three years, as Intel gained experience with the
manufacturing process, it evolved to having 55 million transistors running at
speeds up to 3.2 GHz with line widths of 0.09 micron. Although the Pentium 4 is
a far cry from the 29,000-transistor 8088, it is fully backward compatible with the
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8088 and can run unmodified 8088 binary programs (not to mention programs for
all the intermediate processors as well).

From a software point of view, the Pentium 4 is a full 32-bit machine. It has
all the same user-level ISA features as the 80386, 80486, Pentium, Pentium II,
Pentium Pro, and Pentium III, including the same registers, same instructions, and
a full on-chip implementation of the IEEE 754 floating-point standard. In addi-
tion, though, it has some new instructions intended primarily for multimedia
applications.

However, from a hardware perspective, Pentium 4 is partially a 64-bit ma-
chine since it can transfer data to and from memory in units of 64 bits. Although
the programmer cannot observe these 64-bit transfers, they do make the machine
faster than a pure 32-bit machine would be.

Internally, at the microarchitecture level, the Pentium 4 is radically different
from all its predecessors. Its immediate predecessors— the Pentium II, the Pen-
tium Pro, and the Pentium III—all used the same internal microarchitecture
(called P6), differing only in speed and in a few minor ways. In contrast, the Pen-
tium 4 uses a new microarchitecture (called NetBurst), which is significantly dif-
ferent from the P6. It has a deeper pipeline, two ALUs (each of which runs at
twice the clock frequency to allow two operations per cycle), and supports
hyperthreading. The latter feature provides two sets of registers and some other
internal resources, allowing the Pentium 4 to switch between two programs very
quickly, as though the computer contained two physical CPUs. We will examine
the microarchitecture in Chap. 4. However, like its predecessors, the Pentium 4
can carry out multiple instructions at once, making it a superscalar machine.

Some models of the Pentium 4 have a two-level cache and some have a
three-level cache. All models have an 8-KB on-chip SRAM level-one (L1) cache.
Unlike Pentium III L1 cache, which just holds raw bytes from the memory, the
Pentium 4 goes further. When instructions are fetched from memory, they are
converted to micro-operations for actual execution in the Pentium 4 RISC core.
The L1 cache on the Pentium 4 holds up to 12,000 decoded micro-operations,
eliminating the need to decode them repeatedly. The second level cache holds up
to 256 KB of memory in the older models and up to 1 MB of bytes in the newer
ones. Nothing is decoded; pure bytes from memory are stored in the L2 cache. It
can hold a mixture of code and data. The Pentium 4 Extreme Edition also has a
2-MB level 3 cache, to raise the performance even more.

Since all Pentium 4 chips have at least two levels of cache, a problem arises
in a multiprocessor system when one CPU has modified a word in its cache. If
another CPU tries to read that word from memory, it will get a stale value since
modified cache words are not written back to memory immediately. To maintain
memory consistency, each CPU in a multiprocessor system snoops on the
memory bus looking for references to words it has cached. When it sees such a
reference, it jumps in and supplies the required data before the memory gets a
chance to do so. We will study snooping in Chap. 8.
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Two primary external buses are used in Pentium 4 systems, both of them syn-
chronous. The memory bus is used to access the main (S)DRAM,; the PCI bus is
used for talking to I/O devices. Sometimes a legacy (i.e., ancient) bus is attached
to the PCI bus to allow old peripheral devices to be plugged in.

One substantial difference between the Pentium 4 and all of its predecessors is
its packaging. A problem with all modern chips is the amount of power they con-
sume and heat they produce. The Pentium 4 consumes between 63 watts and 82
watts, depending on the frequency. Consequently, Intel is constantly searching
for ways to manage the heat produced by the CPU chips. The Pentium 4 comes in
a square package 35 mm on edge. It contains 478 pins on the bottom, 85 of which
are for power and 180 of which are grounded to reduce noise. The pins are
arranged as a 26 X 26 square, with the middle 14 x 14 missing. Two pins in one
corner are also missing, to prevent the chip from being inserted incorrectly in its
socket. The physical pinout is shown in Fig. 3-44.

35 mm

Figure 3-44. The Pentium 4 physical pinout.

The chip is outfitted with a mounting bracket for a heat sink to distribute the
heat and a fan to cool it. To get some idea of what the problem is, turn on a 60-
watt light bulb, let it warm up, and then put your hands around it (but do not touch
it). This amount of heat must be dissipated continuously. Consequently, when a
Pentium 4 has outlived its usefulness as a CPU, it can always be used as a camp
stove.

According to the laws of physics, anything that puts out a lot of heat must
suck in a lot of energy. In a portable computer with a limited battery charge,
using a lot of energy is not desirable because it drains the battery quickly. To
address this issue, Intel has provided a way to put the CPU to sleep when it is idle
and to put it into a deep sleep when it is likely to be that way for a while. There
are five states provided, ranging from fully active to deep sleep. In the intermedi-
ate states, some functionality (such as cache snooping and interrupt handling) is
enabled, but other functions are disabled. When in deep sleep state, the cache and
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register values are preserved, but the clock and all the internal units are turned off.
When in deep sleep, a hardware signal is required to wake it up. It is not known
whether a Pentium 4 can dream when it is in deep sleep.

The Pentium 4’s Logical Pinout

The 478 pins on the Pentium 4 are used for 198 signals, 85 power connections
(at several different voltages), 180 grounds, and 15 spares for future use. Some of
the logical signals use two or more pins (such as the memory address requested),
so there are only 56 different signals. A somewhat simplified logical pinout is
given in Fig. 3-45. On the left side of the figure are five major groups of memory
bus signals; on the right side are various miscellaneous signals. The names given
entirely in uppercase are the actual Intel signal names. The ones given in mixed
case are collective names for multiple related signals.

Intel uses a naming convention that is important to understand. Because all
chips are designed using computers these days, there is a need to be able to
represent signal names as ASCII text. Using overbars to indicate signals that are
asserted low is too difficult, so Intel puts the # symbol after the name instead.
Thus BPRI is expressed as BPRI#. As can be seen from the figure, most Pentium 4
signals are asserted low.

Let us examine the signals, starting with the bus signals. The first group of
signals is used to request the bus (i.e., do bus arbitration). BRO is used to request
the bus. BPRI# allows a device to make a high priority request, which takes pre-
cedence over a regular one. LOCK# allows a CPU to lock the bus, to prevent other
devices from getting in until it is done.

Once bus ownership has been acquired, a CPU or other bus master can make a
bus request using the next group of signals. Addresses are 36 bits, but the low-
order 3 bits must always be 0 and therefore do not have pins assigned, so A# has
only 33 pins. All transfers are 8 bytes, aligned on an 8-byte boundary. With 36
address bits, the maximum addressable memory is 236, which is 64 GB.

When an address is put onto the bus, the ADS# signal is asserted to tell the tar-
get (e.g., the memory) that the address lines are valid. The type of bus cycle (e.g.,
read one word or write a block) goes on the REQ# lines. The two parity lines pro-
tect A# and REQ#.

The five error lines are used to report floating-point errors, internal errors,
machine check (i.e., hardware) errors, and certain other errors.

The Response group contains signals used by the slave to report back to the
master. RS# contains the status code. TRDY# indicates that the slave (the target) is
ready to accept data from the master. These signals are also parity checked. BNR
is used to assert a wait state when the target addressed cannot respond on time.

The last bus group is for the actual data transfer. D# is used to put 8 data bytes
onto the bus. When they are placed there, DRDY# is asserted to announce their
presence. DBSY# is used to tell the world that the bus is currently busy. Parity is
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Figure 3-45. Logical pinout of the Pentium 4. Names in uppercase are the offi-
cial Intel names for individual signals. Names in mixed case are groups of relat-
ed signals or signal descriptions.

also used here to check the data. The miscellaneous data signals deal with latch-
ing values and similar things.

RESET# is used to reset the CPU in the event of a calamity or when the user
presses the reset button on the front of the PC.

The Pentium 4 can be configured to use the interrupts the same way as on the
8088 (for purposes of backward compatibility) or it can also use a new interrupt
system using a device called an APIC (Advanced Programmable Interrupt
Controller).

The Pentium 4 can run at any one of several predefined voltages, but it has to
know which one. The power management signals are used for automatic power
supply voltage selection, telling the CPU that power is stable, and other power-
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related matters. Managing the various sleep states is also done here since sleeping
is done for reasons of power management.

Despite sophisticated power management, the Pentium 4 can get very hot.
The Heat management group deals with thermal management, allowing the CPU
to indicate to its environment that it is in danger of overheating. One of the pins is
asserted by the CPU if its internal temperature reaches 130°C (266°F). If a CPU
ever hits this temperature, it is probably dreaming about retirement and becoming
a camp stove.

The Clock frequency group has to do with determining the frequency of the
system bus. The Diagnostics group contains signals for testing and debugging
systems in conformance with the IEEE 1149.1 JTAG test standard. The Initializa-
tion group deals with booting (starting) the system.

Finally, the miscellaneous group is a hodge-podge of signals including one
that indicates if the CPU socket is occupied, one that relates to 8088 emulation,
and other signals that have various special purposes.

Pipelining on the Pentium 4’s Memory Bus

Modern CPUs like the Pentium 4 are much faster than modern DRAM
memories. To keep the CPU from starving for lack of data, it is essential to get
the maximum possible throughput from the memory. For this reason, the Pentium
4 memory bus is highly pipelined, with as many as eight bus transactions going on
at the same time. We saw the concept of pipelining in Chap. 2 in the context of a
pipelined CPU (see Fig. 2-4), but memories can also be pipelined.

To allow pipelining, Pentium 4 memory requests, called transactions, have
Six stages:

The bus arbitration phase.
The request phase.
The error-reporting phase.

The snoop phase.

A e

The response phase.
6. The data phase.

Not all phases are needed on all transactions. The bus arbitration phase deter-
mines which of the potential bus masters goes next. The request phase allows the
address to be put onto the bus and the request made. The error-reporting phase
allows the slave to announce that the address had a parity error or that something
else is wrong. The snoop phase allows one CPU to snoop on the other one, some-
thing only needed in a multiprocessor system. The response phase is where the
master learns about whether it is about to get the data it wants. Finally, the data
phase allows the data to be sent back to the CPU requesting it.
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The secret to the Pentium 4’s pipelined memory bus is that each phase uses
different bus signals, so that each one is completely independent of the other ones.
The six groups of signals needed are the ones shown in Fig. 3-45 on the left. For
example, one CPU can try to get the bus using the arbitration signals. Once it has
acquired the right to go next, it releases these bus lines and starts using the
Request group’s lines. Meanwhile, the other CPU or some I/O device can enter
the bus arbitration phase, and so on. Figure 3-46 shows how multiple bus transac-
tions can be outstanding at the same time.

Bus cycle
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Figure 3-46. Pipelining requests on the Pentium 4’s memory bus.

In Fig. 3-46 the bus arbitration phase is not shown because it is not always
needed. For example, if the current bus owner (often the CPU) wants to run
another transaction, it does not have to reacquire the bus. It only has to ask for the
bus again after it passes bus ownership to another requesting device. Transactions
1 and 2 are straightforward: five phases in five bus cycles. Transaction 3 intro-
duces a longer data phase, for example, because it is a block transfer or because
the memory addressed inserted a wait state. As a consequence, transaction 4 can-
not start its data phase when it would like to. It observes that the DBSY# signal is
still asserted and just waits for it to be negated. In transaction 5 we see that the
response phase can also take multiple bus cycles, thus delaying transaction 6.
Finally, in transaction 7, we notice that once a bubble has been introduced into the
pipeline it remains there if new transactions keep starting consecutively. In actual
practice, however, it is unlikely that the CPU will attempt to start a new transac-
tion on every single bus cycle, so bubbles do not last so long.
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3.5.2 The UltraSPARC II1

As our second example of a CPU chip, we will now examine the Sun
UltraSPARC family. The UltraSPARC family is Sun’s line of 64-bit SPARC
CPUs. These CPUs fully conform to the Version 9 SPARC architecture, which is
also for 64-bit CPUs. They are used in Sun workstations and servers, as well as
various other applications. This family includes the UltraSPARC I, UltraSPARC
II, and UltraSPARC III, which are architecturally very similar, differing primarily
in introduction date, clock speed, and a few extra instructions introduced with
each model. For the sake of concreteness, we will refer to the UltraSPARC 111
below, but most of the architectural (i.e., technology-independent) discussion
holds for the other UltraSPARCs as well.

The UltraSPARC 1II is a traditional RISC machine and is fully binary compa-
tible with the 32-bit SPARC V8 architecture. It can run 32-bit SPARC V8 binary
programs without modification because the SPARC V9 architecture is backward
compatible with the SPARC V8 architecture. The only place where the Ultra-
SPARC III deviates from the SPARC V9 architecture is the addition of the VIS
2.0 instruction set, which is designed for 3D graphical applications, real-time
MPEG decoding, data compression, signal processing, running Java programs,
and networking.

Although the UltraSPARC III is also used in workstations, it was really
designed to be used in Sun’s core business, large shared-memory multiprocessor
servers used on the Internet and on corporate intranets. Specifically, much of the
“glue” needed to build a multiprocessor is included inside each UltraSPARC III
chip, making it easier to connect large numbers of them together.

The first UltraSPARC III was introduced in 2000 at 600 MHz using 0.18
micron aluminum lines. The chips contain 29 million transistors. Because Sun’s
volume is too small to warrant building a state-of-the-art chip fabrication plant, it
prefers to concentrate on chip design and software and contract CPU manufac-
turing out to chip vendors. In the case of the UltraSPARC III, the chips are
manufactured by Texas Instruments. In 2001, TI improved its technology and
began making 900 MHz 0.15 micron chips using copper instead of aluminum
wires. In 2002, the line width dropped to 0.13 microns and the clock was raised to
1.2 GHz. These chips require 50 watts of power and thus have about the same
heat dissipation problems as the Pentium 4.

It is difficult to compare a CISC chip (like the Pentium 4) and a RISC chip
(like the UltraSPARC III) based on clock speed alone. For example, the
UltraSPARC III can continuously issue four instructions per clock cycle, giving it
almost the same execution rate as a single-issue CPU running at 4.8 GHz. The
UltraSPARC also has six internal pipelines, including two 14-stage pipelines for
integer operations, two for floating-point operations, one for load/store operations,
and one for branches. It also has a different approach to caching, wider buses,
and other factors that improve performance. The Pentium 4 also has its particular
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strengths. The point here is that just comparing two very different chips based on
their relative clock speeds says very little about relative performance at some
specific task.

The UltraSPARC III comes in a 1368-pin Land Grid Array, as shown in
Fig. 3-47. This package consists of a square array of 37 X 37 = 1369 pins on the
bottom of the chip, with the pin in the lower left-hand corner missing. The socket
exactly matches the chip to prevent the chip from being inserted incorrectly in the
socket.

Figure 3-47. The UltraSPARC III CPU chip.

The UltraSPARC III has two main internal L1 caches: 32 KB for instructions
and 64 KB for data. There is also a 2-KB prefetch cache and a 2-KB write cache
used to collect writes to the level 2 cache so they can be done in large bursts to
improve bandwidth usage. Like the Pentium 4, it also uses an off-chip level 2
cache, but unlike the Pentium 4, the UltraSPARC III is not packaged with the
level 2 cache on chip. The cache controller and logic for locating cache blocks is
on chip, but the actual SRAM memory is not. Instead, system designers are free
to choose any commercially-available cache chips they want for the level 2 cache.

The decision to integrate the level 2 cache on the Pentium 4 and separate it on
the UltraSPARC 1II is partly due to technical issues and partly due to different
business models used by Intel and Sun. On the technical side, an external cache is
larger and more flexible (UltraSPARC III L2 caches can range from 1 MB to 8
MB; Pentium 4 L2 caches are fixed at 512 KB). However, it may be slower due
to its greater distance from the CPU. It also requires more visible signals to
address the cache. In particular, the connection between the UltraSPARC III and
its L2 caches is 256 bits wide, allowing for an entire 32-byte cache block to be
transferred in one cycles.

On the business side, Intel is a semiconductor vendor and has the capability to
design and manufacture its own level 2 cache chip and connect it to the CPU via a
high-performance proprietary interface. Sun, in contrast, makes computers, not
chips. It does design some of its own chips (like the UltraSPARCs), but farms out
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the manufacturing to semiconductor manufacturers. When it can, Sun prefers to
use commercially available chips that have been keenly honed by the competitive
marketplace. The SRAMs used for level 2 caches are available from numerous
chip vendors, so there was no special need for Sun to design its own. This deci-
sion implies making the level 2 cache independent of the CPU chip.

The UltraSPARC III uses a 43-bit wide address bus, allowing it to have up to
8 TB of main memory. The data bus is 128 bits wide, allowing 16 bytes at a time
to be transferred between the CPU and memory. The bus speed is 150 MHz, giv-
ing a memory bandwidth of 2.4 GB/sec, much faster than the 528 MB/sec of the
PCI bus.

To connect (multiple) UltraSPARC CPUs to communicate with (multiple)
memories, Sun developed the UPA (Ultra Port Architecture). The UPA can be
implemented as a bus, a switch, or a combination of the two. Different worksta-
tion and server models use different UPA implementations. The UPA implemen-
tation does not matter to the CPU because the interface to the UPA is precisely
defined, and it is this interface that the CPU chip must (and does) support.

In Fig. 3-48 we see the core of an UltraSPARC III system, showing the CPU
chip, UPA interface, and level 2 cache (two commodity SRAMs). The figure also
contains a UDB 1II (UltraSPARC Data Buffer II) chip, whose function will be
discussed below. When the CPU needs a memory word, it first looks in one of its
(internal) level 1 caches for it. If it finds the word, it continues execution at full
speed. If it does not find the word in the level 1 cache, it tries the level 2 cache.

While we will discuss caching in detail in Chap. 4, a few words about it here
will be useful. All of main memory is divided up into cache lines (blocks) of 64
bytes. The 256 most heavily used instruction lines and the 256 most heavily used
data lines are in the level 1 cache. Cache lines that are heavily used but which do
not fit in the level 1 cache are kept in the level 2 cache. This cache contains both
data lines and instruction lines mixed at random. These are stored in the rectangle
labeled “Level 2 cache data.”” The system has to keep track of which lines are in
the level 2 cache. This information is kept in a second SRAM, labeled “Level 2
cache tags.”

On a level 1 cache miss, the CPU sends the identifier of the line it is looking
for (Tag address) to the level 2 cache. The reply (Tag data) provides the informa-
tion for the CPU to tell whether the line is in the level 2 cache, and if so, what
state it is in. If the line is cached there, the CPU goes and gets it. The data
transfers are 16 bytes wide, so four cycles are needed to fetch an entire line into
the level 1 cache.

If the cache line is not in the level 2 cache, it must be fetched from main
memory via the UPA interface. The UltraSPARC III UPA is implemented with a
centralized controller. The address and control signals from the CPU (all the
CPUs if there are more than one of them) go there. To access memory, the CPU
must first use the bus arbitration pins to acquire permission to go next. Once per-
mission has been granted, the CPU outputs the memory address pins, specifies the
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Figure 3-48. The main features of the core of an UltraSPARC III system.

request type, and asserts the address valid pin. (These pins are bidirectional since
other CPUs in a UltraSPARC III multiprocessor need access to remote caches to
keep all the caches consistent.) The address and bus cycle type are put out in two
cycles on the Address pins, with the row going out in the first cycle and the
column going out in the second cycle, as we saw in Fig. 3-31.

While waiting for the results, the CPU may well be able to continue with
other work. For example, a cache miss while prefetching an instruction does not
inhibit the execution of one or more instructions already fetched, each of which
may refer to data not in any cache. Thus multiple transactions to the UPA may be
outstanding at once. The UPA can handle two independent transaction streams
(typically reads and writes), each with multiple transactions pending. It is up to
the centralized controller to keep track of all this and to make actual memory
requests in the most efficient order.

When data finally arrives from the memory, it can come in 8 bytes at a time,
and with a 16-bit error-correcting code for greater reliability. A transaction may
ask for an entire cache block, a quadword (8 bytes), or even fewer bytes. All
incoming data go to the UDB, which buffers them. The purpose of the UDB is to
further decouple the CPU from the memory system, so they can work asynchro-
nously. For example, if the CPU has to write a word or cache line to memory, in-
stead of waiting to access the UPA, it can write the data to the UDB immediately
and let the UDB handle getting them to memory later. The UDB also generates
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and checks the error-correcting code. Just for the record, the description of the
UltraSPARC 1II given above, like the one of the Pentium 4 before it, has been
highly simplified, but the essence of its operation has been described.

3.5.3 The 8051

Both the Pentium 4 and the UltraSPARC III are examples of high-
performance CPUs designed for building extremely fast PCs and servers. When
many people think about computers, this is the kind of system they tend to focus
on. However, there is another whole world of computers that is actually far
larger: embedded systems. In this section we will take a brief look at that world.

It is probably only a slight exaggeration to say that every electrical device
costing more than 100 dollars has a computer in it. Certainly televisions, cell
phones, electronic personal organizers, microwave ovens, camcorders, VCRs,
laser printers, burglar alarms, hearing aids, electronic games, and other devices
too numerous to mention are all computer controlled these days. The computers
inside these things tend to be optimized for low price rather than for high perfor-
mance, which leads to different trade-offs than the high-end CPUs we have been
studying so far.

As we mentioned in Chap. 1, the 8051 is probably the most popular microcon-
troller in current use, mostly due to its very low cost. As we will see shortly, it is
also a simple chip, which makes interfacing to it simple and inexpensive. So let
us now examine the 8051 chip, whose physical pinout is shown in Fig. 3-49.

Pl.og1  \_J 4o VCC
P1.1> 39|32 P0.0 / ADO
P1.23 383 P0.1 /AD1
P1.3 4 373 P0.2 / AD2
P1.4 s 36[3 P0.3 / AD3
P1.5 e 35[3 P0.4 / AD4
P1.6 7 343 P0.5 / AD5
P1.7 s 33[3 P0.6 / AD6
RST9 32[3 P0.7 / AD7
RXD/ P3.0 (10 313 EA/VPP
TXD/ P3.1 (11 303 ALE
INTO / P3.2 (] 12 29[ PSEN
INT1/ P3.3 13 28 P2.7 /A15
TO/ P3.4 ] 14 2702 P2.6 /Al14
T1/P3515 26 P2.5 /A13
WR/ P3.6 ] 16 2501 P2.4 /A12
RD/ P3.7 17 2402 P2.3 / A11
XTAL2 ] 18 3@ P22 /A10
XTAL1 ] 19 22 p2.1 /A9
vss[20 211 P2.0 /A8

Figure 3-49. Physical pinout of the 8051.

As can be seen from the figure, the 8051 normally comes in a standard 40-pin
package (although other packages are available for special uses). It has 16
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address lines, so it can address up to 64 KB of memory. The data bus is 8 bits
wide, so data transfers between the CPU and memory are done one byte at a time
(versus 8 bytes at a time on the Pentium 4 and 16 bytes at a time on the
UltraSPARC III). It has a variety of control lines, described below, but the
greatest contrast with the Pentium 4 and UltraSPARC, which are pure CPUs, is
the presence of 32 I/O lines, arranged in four groups of 8 bits each. Each of these
I/O lines can be attached to a button, switch, LED (Light Emitting Diode), or
other real-world device to provide input to the 8051 or output from the 8051. For
example, in a clock radio, each of the buttons and switches could be wired to a
different I/O line, with other I/O lines controlling the display. In this way, most,
if not all, the functions of the clock radio could be controlled in software, elim-
inating the need for costly discrete logic.

The logical pinout of the 8051 is shown in Fig. 3-50. The 8051 comes with 4
KB of internal ROM (8 KB on the 8052). If that is insufficient for the application,
up to 64 KB of external memory may be connected to the 8051 over a bus. The
first seven signals on the left-hand side of Fig. 3-50 are used to interface to exter-
nal memories, if present. The first signal, A, contains 16 address lines to address
the byte of external memory to be read or written. The eight D lines are used for
data transport. The low-order eight address lines are multiplexed onto the same
pins as the data lines to reduce pin count. On a bus transaction, these pins output
the address on the first clock cycle and carry the data on subsequent cycles.

8
RD —=— ~——>Port 0

8
PSEN ~—— +—Port 1
EA—> 8051

. 2
Timers ——— 8
- 2 —~———Port 2
Interrupts —+——

TXD —— 8
RXD — ———>Port 3

RST —

||

@ power =

Figure 3-50. Logical pinout of the 8051.

When an external memory is used, the 8051 has to indicate whether it is read-
ing or writing memory by asserting either RD or WR, respectively. The ALE
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(Address Latch Enable) signal is used when an external memory is present. The
CPU asserts this signal to indicate that the address is valid. External memories
typically use it to latch the address lines, since they will be released shortly
thereafter so the pins can be reused for the data.

The PSEN and EA# signals also relate to external memory. The PSEN (Program
Store ENable) signal is asserted to indicate that the 8051 wants to read from the
program memory. Typically, it would be connected to the memory’s OE signal, as
illustrated in Fig. 3-29.

The EA# (External Access) signal is usually wired high or low so it always has
the same value. If it is wired high, the internal 4 KB (8 KB on the 8052) memory
is used for addresses within range and external memory is used for addresses
above 4 KB (8 KB on the 8052). If it is wired low, the external memory is used
for all addresses and the on-chip memory is effectively bypassed. On the 8031
and 8032, EA# must be wired low because there is no on-chip memory.

The two timer lines allow external timers to be input to the CPU. The two
interrupt lines allow two different external devices to interrupt the CPU. The TXD
and RXD lines are to allow serial I/O to a terminal or modem. Finally, the RST line
allows the user or external hardware device to reset the 8051. This line is typi-
cally asserted when something has gone wrong and the system has to be rebooted.

So, far the 8051 is similar to most other 8-bit CPUs, except for the presence of
the serial I/O lines. What sets the 8051 apart is the presence of 32 I/O lines,
organized as four ports and shown on the right-hand side of Fig. 3-50. Each of
these lines is bidirectional and can be read or written under program control. This
is the primary way the 8051 interacts with the outside world and what makes it so
valuable: a single chip is all that is needed for CPU, memory, and I/O capability.

3.6 EXAMPLE BUSES

Buses are the glue that hold computer systems together. In this section we
will take a close look at some popular buses: the ISA bus, the PCI bus, and the
Universal Serial Bus. The ISA bus is a slight expansion of the original IBM PC
bus. For reasons of backward compatibility, it was still present in all Intel-based
PCS until a few years ago when Intel and Microsoft agreed to eliminate it. How-
ever, these machines invariably have a second, faster bus as well: the PCI bus.
The PCI bus is wider than the ISA bus and runs at a higher clock rate. Conse-
quently it can carry more data per second than the ISA bus. It is the workhorse
for most current PCs, although a successor is already in sight. The Universal
Serial Bus is an increasingly popular I/O bus for low-speed peripherals such as
mice and keyboards. A second version of the USB bus runs at much higher
speeds. In the following sections, we will look at each of these buses in turn to
see how they work.
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3.6.1 The ISA Bus

The IBM PC bus was the de facto standard on 8088-based systems because
nearly all PC clone vendors copied it in order to allow the many existing third-
party I/O boards to be used with their systems. It had 62 signal lines, including 20
for a memory address, 8 for data, and one each for asserting memory read,
memory write, /O read, and I/O write. There were also signals for requesting and
granting interrupts and using DMA, and that was about it. It was a very simple
bus.

Physically, the bus was etched onto the PC’s motherboard, with about half a
dozen connectors spaced 2 cm apart into which cards could be inserted. Each
card had a tab on it that fit in the connector. The tab had 31 gold-plated strips on
each side that made electrical contact with the connector.

When IBM introduced the 80286-based PC/AT, it had a major problem on its
hands. If it had started from scratch and designed an entirely new 16-bit bus,
many potential customers would have hesitated to buy it because none of the vast
number of PC plug-in boards available from third-party vendors would have
worked using the new machine. On the other hand, sticking with the PC bus and
its 20 address lines and 8 data lines would not have taken advantage of the
80286’s ability to address 16 MB of memory and transfer 16-bit words.

The solution chosen was to extend the PC bus. PC plug-in cards have an edge
connector with 62 contacts, but this edge connector does not run the full length of
the board. The PC/AT solution was to put a second edge connector on the bottom
of the board, adjacent to the main one, and design the AT circuitry to work with
both types of boards. The general idea is illustrated in Fig. 3-51.

The second connector on the PC/AT bus contains 36 lines. Of these, 31 are
provided for more address lines, more data lines, more interrupt lines, and more
DMA channels, as well as power and ground. The rest deal with differences
between 8-bit and 16-bit transfers.

When IBM brought out the PS/2 series as the successor to the PC and PC/AT,
it decided that it was time to start again. Part of this decision may have been
technical (the PC bus was by this time really obsolete), but part was, no doubt,
caused by a desire to put an obstacle in the way of companies making PC clones,
which had taken over an uncomfortably large part of the market. Thus the mid-
and upper-range PS/2 machines were equipped with a bus, the Microchannel, that
was completely new, and which was protected by a wall of patents backed by an
army of lawyers.

The rest of the personal computer industry reacted to this development by
adopting its own standard, the ISA (Industry Standard Architecture) bus,
which was basically the PC/AT bus running at 8.33 MHz. The big advantage of
this approach was that it retained compatibility with existing machines and cards.
It also was based on a bus that IBM had liberally licensed to many companies in
order to ensure that as many third parties as possible produced cards for the
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Figure 3-51. The PC/AT bus has two components, the original PC part and the new part.

original PC, something that came back to haunt IBM and ultimately drive it from
the PC business. Until a few years ago, most Intel-based PCs still had this bus
present, although with one or more other buses as well.

Later, the ISA bus was extended to 32 bits with some new features thrown in
(e.g., for multiprocessing).The new bus was called the EISA (Extended ISA) bus.

3.6.2 The PCI Bus

On the original IBM PC, most applications were text based. Gradually, with
the introduction of Windows, graphical user interfaces came into use. None of
these applications put much of a strain on the ISA bus. However, as time went on
and many applications, especially multimedia games, began to use computers to
display full-screen, full-motion video, the situation changed radically.

Let us make a simple calculation. Consider a 1024 x 768 screen used for true
color (3 bytes/pixel) moving images. One screen contains 2.25 MB of data. For
smooth motion, at least 30 screens/sec are needed, for a data rate of 67.5 MB/sec.
In fact, it is worse than this, since to display a video from a hard disk, CD-ROM,
or DVD, the data must pass from the disk drive over the bus to the memory. Then
for the display, the data must travel over the bus again to the graphics adapter.
Thus we need a bus bandwidth of 135 MB/sec for the video alone, not counting
the bandwidth the CPU and other devices need.
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The ISA bus ran at a maximum rate of 8.33 MHz, and could transfer 2 bytes
per cycle, for a maximum bandwidth of 16.7 MB/sec. The EISA bus could move
4 bytes per cycle, to achieve 33.3 MB/sec. Clearly, neither of these was even
close to what is needed for full-screen video.

In 1990, Intel saw this coming and designed a new bus with a much higher
bandwidth than even the EISA bus. It was called the PCI bus (Peripheral Com-
ponent Interconnect bus). To encourage its use, Intel patented the PCI bus and
then put all the patents into the public domain, so any company could build peri-
pherals for it without having to pay royalties. Intel also formed an industry con-
sortium, the PCI Special Interest Group, to manage the future of the PCI bus. As
a result of these actions, the PCI bus became extremely popular. Virtually every
Intel-based computer since the Pentium has a PCI bus, and many other computers
do, too. Sun even has a version of the UltraSPARC that uses the PCI bus, the
UltraSPARC IlIi. The PCI bus is covered in gory detail in Shanley and Anderson
(1999) and Solari and Willse (2004).

The original PCI bus transferred 32 bits per cycle and ran at 33 MHz (30 nsec
cycle time) for a total bandwidth of 133 MB/sec. In 1993, PCI 2.0 was intro-
duced, and in 1995, PCI 2.1 came out. PCI 2.2 has features for mobile computers
(mostly for saving battery power). The PCI bus runs at up to 66 MHz and can
handle 64-bit transfers, for a total bandwidth of 528 MB/sec. With this kind of
capacity, full-screen, full-motion video is doable (assuming the disk and the rest
of the system are up to the job). In any event, the PCI bus will not be the bottle-
neck.

Even though 528 MB/sec sounds pretty fast, it still had two problems. First, it
was not good enough for a memory bus. Second, it was not compatible with all
those old ISA cards out there. The solution Intel thought of was to design com-
puters with three or more buses, as shown in Fig. 3-52. Here we see that the CPU
can talk to the main memory on a special memory bus, and that an ISA bus can be
connected to the PCI bus. This arrangement met all requirements, and as a conse-
quence was widely used in the 1990s.

Two key components in this architecture are the two bridge chips (which Intel
manufactures—hence its interest in this whole project). The PCI bridge connects
the CPU, memory and PCI bus. The ISA bridge connects the PCI bus to the ISA
bus and also supports one or two IDE disks. Nearly all Pentium 4 systems come
with one or more free PCI slots for adding new high-speed peripherals, and one or
more ISA slots, for adding low-speed peripherals.

The big advantage of the design of Fig. 3-52 is that the CPU has an extremely
high bandwidth to memory using a proprietary memory bus; the PCI bus offers
high bandwidth for fast peripherals such as SCSI disks, graphics adaptors, etc.;
and old ISA cards can still be used. The USB box in the figure refers to the
Universal Serial Bus, which will be discussed later in this chapter.

It would have been nice had there been only one kind of PCI card. Unfortun-
ately, such is not the case. Options are provided for voltage, width, and timing.
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Figure 3-52. Architecture of an early Pentium system. The thicker buses have
more bandwidth than the thinner ones but the figure is not to scale.

Older computers often use 5 volts and newer ones tend to use 3.3 volts, so the PCI
bus supports both. The connectors are the same except for two bits of plastic that
are there to prevent people from inserting a 5-volt card in a 3.3-volt PCI bus or
vice versa. Fortunately, universal cards, which support both voltages and can
plug into either kind of slot, exist. In addition to the voltage option, cards come in
32-bit and 64-bit versions. The 32-bit cards have 120 pins; the 64-bit cards have
the same 120 pins plus an additional 64 pins, analogous to the way the IBM PC
bus was extended to 16 bits (see Fig. 3-51). A PCI bus system that supports 64-
bit cards can also take 32-bit cards, but the reverse is not true. Finally, PCI buses
and cards can run at either 33 MHz or 66 MHz. The choice is made by having
one pin wired either to the power supply or wired to ground. The connectors are
identical for both speeds.

By the late 1990s, pretty much everyone agreed that the ISA bus was dead, so
new designs excluded it. However, by then, monitor resolution had increased in
some cases to 1600 x 1200 and the demand for full-screen full motion video had
also increased, especially in the context of highly interactive games, so Intel
added yet another bus just to drive the graphics card. This bus was called the
AGP bus (Accelerated Graphics Port bus). The initial version, AGP 1.0, ran at
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264 MB/sec, which was defined as 1x. While slower than the PCI bus, it was
dedicated to driving the graphics card. Over the years, new versions came out,
with AGP 3.0 running at 2.1 GB/sec (8x). A modern Pentium 4 system is illus-
trated in Fig. 3-53.
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Figure 3-53. The bus structure of a modern Pentium 4.

In this design, the bridge chip is now central. It connects the five major
pieces of the system: the CPU, memory, the graphics card, the ATAPI controller,
and the PCI bus. In some variations, it also has support for Ethernet and other
high-speed devices. The lower-speed devices are attached to the PCI bus.

Internally, the bridge chip is divided into two parts: the memory bridge and
the I/O bridge. The memory bridge connects the CPU to the memory and to the
graphics adaptor. The I/O bridge connects the ATAPI controller, PCI bus, and
(optionally) other fast I/O devices with a direct bridge connection to each other.
The two bridges are connected by a very high speed interconnect.

The PCI bus is synchronous, like all PC buses going back to the original IBM
PC. All transactions on the PCI bus are between a master, officially called the
initiator, and a slave, officially called the target. To keep the PCI pin count
down, the address and data lines are multiplexed. In this way, only 64 pins are
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needed on PCI cards for address plus data signals, even though PCI supports 64-
bit addresses and 64-bit data.

The multiplexed address and data pins work as follows. On a read operation,
during cycle 1, the master puts the address onto the bus. On cycle 2, the master
removes the address and the bus is turned around so the slave can use it. On cycle
3, the slave outputs the data requested. On write operations, the bus does not have
to be turned around because the master puts on both the address and the data.
Nevertheless, the minimum transaction is still three cycles. If the slave is not able
to respond in three cycles, it can insert wait states. Block transfers of unlimited
size are also allowed, as well as several other kinds of bus cycles.

PCI Bus Arbitration

To use the PCI bus, a device must first acquire it. PCI bus arbitration uses a
centralized bus arbiter, as shown in Fig. 3-54. In most designs, the bus arbiter is
built into one of the bridge chips. Every PCI device has two dedicated lines run-
ning from it to the arbiter. One line, REQ#, is used to request the bus. The other
line, GNT#, is used to receive bus grants.

REQ#
GNT#
REQ#
GNT#
REQ#
GNT#
REQ#
GNT#

PCI
arbiter
PCI PCI PCI PCI
device device device device

Figure 3-54. The PCI bus uses a centralized bus arbiter.

To request the bus, a PCI device (including the CPU), asserts REQ# and waits
until it sees its GNT# line asserted by the arbiter. When that event happens, the
device can use the bus on the next cycle. The algorithm used by the arbiter is not
defined by the PCI specification. Round-robin arbitration, priority arbitration, and
other schemes are all allowed. Clearly, a good arbiter will be fair, so as not to let
some devices wait forever.

A bus grant is for only one transaction, although the length of this transaction
is theoretically unbounded. If a device wants to run a second transaction and no
other device is requesting the bus, it can go again, although often one idle cycle
between transactions has to be inserted. However, under special circumstances, in
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the absence of competition for the bus, a device can make back-to-back transac-
tions without having to insert an idle cycle. If a bus master is making a very long
transfer and some other device has requested the bus, the arbiter can negate the
GNT# line. The current bus master is expected to monitor the GNT# line, so when
it sees the negation, it must release the bus on the next cycle. This scheme allows
very long transfers (which are efficient) when there is only one candidate bus
master but still gives fast response to competing devices.

PCI Bus Signals

The PCI bus has a number of mandatory signals, shown in Fig. 3-55(a), and a
number of optional signals, shown in Fig. 3-55(b). The remainder of the 120 or
184 pins are used for power, ground, and related miscellaneous functions and are
not listed here. The Master (initiator) and Slave (target) columns tell who asserts
the signal on a normal transaction. If the signal is asserted by a different device
(e.g., CLK), both columns are left blank.

Let us now look at each of the PCI bus signals briefly. We will start with the
mandatory (32-bit) signals; then we will move on to the optional (64-bit) signals.
The CLK signal drives the bus. Most of the other signals are synchronous with it.
In contrast to the ISA bus, a PCI bus transaction begins at the falling edge of CLK,
which is in the middle of the cycle, rather than at the start.

The 32 AD signals are for the address and data (for 32-bit transactions). Gen-
erally, during cycle 1 the address is asserted and during cycle 3 the data are
asserted. The PAR signal is a parity bit for AD. The C/BE# signal is used for two
different things. On cycle 1, it contains the bus command (read 1 word, block
read, etc.). On cycle 2 it contains a bit map of 4 bits, telling which bytes of the
32-bit word are valid. Using C/BE# it is possible to read or write any 1, 2, or 3
bytes, as well as an entire word.

The FRAME# signal is asserted by the bus master to start a bus transaction. It
tells the slave that the address and bus commands are now valid. On a read, usu-
ally IRDY# is asserted at the same time as FRAME#. It says the master is ready to
accept incoming data. On a write, IRDY# is asserted later, when the data are on
the bus.

The IDSEL signal relates to the fact that every PCI device must have a 256-
byte configuration space that other devices can read (by asserting IDSEL). This
configuration space contains properties of the device. The Plug-and-Play feature
of some operating systems uses the configuration space to find out what devices
are on the bus.

Now we come to signals asserted by the slave. The first of these, DEVSEL#,
announces that the slave has detected its address on the AD lines and is prepared to
engage in the transaction. If DEVSEL# is not asserted within a certain time limit,
the master times out and assumes the device addressed is either absent or broken.
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Signal Lines | Master | Slave Description
CLK 1 Clock (33 MHz or 66 MHz)
AD 32 X X Multiplexed address and data lines
PAR 1 X Address or data parity bit
C/BE 4 X Bus command/bit map for bytes enabled
FRAME# 1 X Indicates that AD and C/BE are asserted
IRDY# 1 X Read: master will accept; write: data present
IDSEL 1 X Select configuration space instead of memory
DEVSEL# 1 Slave has decoded its address and is listening
TRDY# 1 Read: data present; write: slave will accept
STOP# 1 Slave wants to stop transaction immediately
PERR# 1 Data parity error detected by receiver
SERR# 1 Address parity error or system error detected
REQ# 1 Bus arbitration: request for bus ownership
GNT# 1 Bus arbitration: grant of bus ownership
RST# 1 Reset the system and all devices
(a)
Signal Lines | Master | Slave Description
REQ64# 1 X Request to run a 64-bit transaction
ACK64# 1 X Permission is granted for a 64-bit transaction
AD 32 X Additional 32 bits of address or data
PAR64 1 X Parity for the extra 32 address/data bits
C/BE# 4 X Additional 4 bits for byte enables
LOCK 1 X Lock the bus to allow multiple transactions
SBO# 1 Hit on a remote cache (for a multiprocessor)
SDONE 1 Snooping done (for a multiprocessor)
INTx 4 Request an interrupt
JTAG 5 IEEE 1149.1 JTAG test signals
M66EN 1 Wired to power or ground (66 MHz or 33 MHz)

(b)

Figure 3-55. (a) Mandatory PCI bus signals. (b) Optional PCI bus signals.

The second slave signal is TRDY#, which the slave asserts on reads to
announce that the data are on the AD lines and on writes to announce that it is
prepared to accept data.

The next three signals are for error reporting. The first of these is STOP#,
which the slave asserts if something disastrous happens and it wants to abort the
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current transaction. The next one, PERR#, is used to report a data parity error on
the previous cycle. For a read, it is asserted by the master; for a write it is
asserted by the slave. It is up to the receiver to take the appropriate action.
Finally, SERR# is for reporting address errors and system errors.

The REQ# and GNT# signals are for doing bus arbitration. These are not
asserted by the current bus master, but rather by a device that wants to become
bus master. The last mandatory signal is RST#, used for resetting the system,
either due to the user pushing the RESET button or some system device noticing a
fatal error. Asserting this signal resets all devices and reboots the computer.

Now we come to the optional signals, most of which relate to the expansion
from 32 bits to 64 bits. The REQ64# and ACK644# signals allow the master to ask
permission to conduct a 64-bit transaction and allow the slave to accept, respec-
tively. The AD, PAR64, and C/BE# signals are just extensions of the corresponding
32-bit signals.

The next three signals are not related to 32 bits versus 64 bits, but to multipro-
cessor systems, something that PCI boards are not required to support. The LOCK
signal allows the bus to be locked for multiple transactions. The next two relate
to bus snooping to maintain cache coherence.

The INTx signals are for requesting interrupts. A PCI card can have up to four
separate logical devices on it, and each one can have its own interrupt request
line. The JTAG signals are for the IEEE 1149.1 JTAG testing procedure. Finally,
the M66EN signal is either wired high or wired low, to set the clock speed. It must
not change during system operation.

PCI Bus Transactions

The PCI bus is really very simple (as buses go). To get a better feel for it,
consider the timing diagram of Fig. 3-56. Here we see a read transaction, fol-
lowed by an idle cycle, followed by a write transaction by the same bus master.

When the falling edge of the clock happens during T;, the master puts the
memory address on AD and the bus command on C/BE#. It then asserts FRAME# to
start the bus transaction.

During T, the master floats the address bus to let it turn around in preparation
for the slave to drive it during T;. The master also changes C/BE# to indicate
which bytes in the word addressed it wants to enable (i.e., read in).

In Tj, the slave asserts DEVSEL# so the master knows it got the address and is
planning to respond. It also puts the data on the AD lines and asserts TRDY# to tell
the master that it has done so. If the slave was not able to respond so quickly, it
would still assert DEVSEL# to announce its presence but keep TRDY# negated until
it could get the data out there. This procedure would introduce one or more wait
states.

In this example (and often in reality), the next cycle is idle. Starting in T5 we
see the same master initiating a write. It starts out by putting the address and
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Bus cycle
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Figure 3-56. Examples of 32-bit PCI bus transactions. The first three cycles
are used for a read operation, then an idle cycle, and then three cycles for a write
operation.

command onto the bus, as usual. Only now, in the second cycle it asserts the data.
Since the same device is driving the AD lines, there is no need for a turnaround
cycle. In T, the memory accepts the data.

3.6.3 PCI Express

Although the PCI bus works adequately for most current applications, the
need for greater I/O bandwidth is making a mess of the once-clean internal PC
architecture. In Fig. 3-53, it is clear that the PCI bus is no longer the central ele-
ment that holds the parts of the PC together. The bridge chip has taken over part
of that role.

The essence of the problem is that there are increasingly many I/O devices
that are too fast for the PCI bus. Cranking up the clock frequency on the bus is
not a good solution because then problems with bus skew, crosstalk between the
wires, and capacitance effects just get worse. Every time an I/O device gets too

e
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fast for the PCI bus (like the graphics card, hard disk, network, etc.), Intel adds a
new special port to the bridge chip to allow that device to bypass the PCI bus.
Clearly, this is not a long-term solution either.

Another problem with the PCI bus is that the cards are quite large. They do
not fit in laptop computers and palmtop computers and manufacturers would like
to produce even smaller devices. Also, some manufacturers would like to reparti-
tion the PC, with the CPU and memory in a tiny sealed box and the hard disk
inside the monitor. With PCI cards, doing this is impossible.

Several solutions have been proposed, but the one most likely to win out (in
no small part because Intel is behind it) is called PCI Express. It has little to do
with the PCI bus, and in fact, is not a bus at all, but the marketing folks did not
like letting go of the well-known PCI name. PCs containing it have been on the
market for some time already. Let us now see how it works.

The PCI Express Architecture

The heart of the PCI Express solution is to get rid of the parallel bus with its
many masters and slaves and go to a design based on high-speed point-to-point
serial connections. This solution represents a radical break with the
ISA/EISA/PCI bus tradition, and borrows many ideas from the world of local area
networking, especially switched Ethernet. The basic idea comes down to this:
deep inside, a PC is a collection of CPU, memory, and I/O controller chips that
need to be interconnected. What PC Express does is provide a general-purpose
switch for connecting chips using serial links. A typical configuration is illus-
trated in Fig. 3-57.

As shown in Fig. 3-57, the CPU, memory, and cache are connected to the
bridge chip in the traditional way. What is new here is a switch connected to the
bridge (possibly part of the bridge chip itself). Each of the I/O chips has a dedi-
cated point-to-point connection to the switch. Each connection consists of a pair
of unidirectional channels, one to the switch and one from it. Each channel is
made up of two wires, one for the signal and one for ground, to provide high noise
immunity during high-speed transmission. This architecture will replace the
current one with a much more uniform model, in which all devices are treated
equally.

The PCI Express architecture differs from the old PCI bus architecture in
three key ways. We have already seen two of them: a centralized switch versus a
multidrop bus and a the use of narrow serial point-to-point connections versus a
wide parallel bus. The third one is more subtle. The conceptual model behind the
PCI bus is that of a bus master issuing a command to a slave to read a word or a
block of words. The PCI Express model is that of a device sending a data packet
to another device. The concept of a packet, which consists of a header and a pay-
load, is taken from the networking world. The header contains control informa-
tion, thus eliminating the need for the many control signals present on the PCI
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Figure 3-57. A typical PCI Express system.

bus. The payload contains the data to be transferred. In effect, a PC with PCI
Express is a miniature packet-switching network.

In addition to these three major breaks with the past, there are also several
minor differences as well. Fourth, an error-detecting code is used on the packets,
providing a higher degree of reliability than on the PCI bus. Fifth, the connection
between a chip and the switch is longer than it was, up to 50 cm, to allow system
partitioning. Sixth, the system is expandable because a device may actually be
another switch, allowing a tree of switches. Seventh, devices are hot pluggable,
meaning that they can be added or removed from the system while it is running.
Finally, since the serial connectors are much smaller than the old PCI connectors,
devices and computers can be made much smaller. All in all, a major departure
from the PCI bus.

The PCI Express Protocol Stack

In keeping with the model of a packet-switching network, the PCI Express
system has a layered protocol stack. A protocol is a set of rules governing the
conversation between two parties. A protocol stack is a hierarchy of protocols
that deal with different issues at different layers. For example, consider a busi-
ness letter. It has certain conventions about the placement and content of the
letterhead, the recipient’s address, the date, the salutation, the body, the signature,
and so on. This might be thought of as the letter protocol. In addition, there is
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another set of conventions about the envelope, such as its size, where the sender’s
address goes and its format, where the receiver’s address goes and its format,
where the stamp goes, and so on. These two layers and their protocols are
independent. For example, it is possible to completely reformat the letter but use
the same envelope or vice versa. Layered protocols make for a modular flexible
design, and have been widely used in the world of network software for decades.
What is new here is building them into the “bus” hardware.

The PCI Express protocol stack is shown in Fig. 3-58(a).

Software layer
Transaction layer | Header | Payload |
Link layer | Seq# | Header | Payload | CRC |
Physical layer | Frame | Seq# | Header | Payload | CRC [ Frame |

(a) (b)
Figure 3-58. (a) The PCI Express protocol stack. (b) The format of a packet.

Let us examine the layers from the bottom up. The lowest layer is the physi-
cal layer. It deals with moving bits from a sender to a receiver over a point-to-
point connection. Each point-to-point connection consists of one or more pairs of
simplex (i.e., unidirectional) links. In the simplest case, there is one pair in each
direction, but having 2, 4, 8, 16, or 32 pairs is also allowed. Each link is called a
lane. The number of lanes in each direction must be the same. First-generation
products must support a data rate each way of at least 2.5 Gbps, but the speed is
expected to migrate to 10 Gbps each way fairly soon.

Unlike the ISA/EISA/PCI buses, PCI Express does not have a master clock.
Devices are free to start transmitting as soon as they have data to send. This free-
dom makes the system faster, but also leads to a problem. Suppose that a 1 bit is
encoded as +3 volts and a 0 bit is encoded as 0 volts. If the first few bytes are all
0Os, how does the receiver know data is being transmitted? After all a run of 0 bits
looks the same as an idle link. The problem is solved using what is called 8b/10b
encoding. In this scheme, 10 bits are used to encode 1 byte of actual data in a
10-bit symbol. Of the 1024 possible 10-bit symbols, the legal ones have been
chosen to have enough clock transitions to keep the sender and receiver synchron-
ized on the bit boundaries even without a master clock. A consequence of 8b/10b
encoding is that a link with a gross capacity of 2.5 Gbps can carry only 2 Gbps of
(net) user data.

Whereas the physical layer deals with bit transmission, the link layer deals
with packet transmission. It takes the header and payload given to it by the tran-
saction layer and adds to them a sequence number and a error-correcting code
called a CRC (Cyclic Redundancy Check). The CRC is generated by running a
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certain algorithm on the header and payload data. When a packet is received, the
receiver performs the same computation on the header and data and compares the
result with the CRC attached to the packet. If they agree, it sends back a short
acknowledgment packet affirming its correct arrival. If they disagree, the
receiver asks for a retransmission. In this way, data integrity is greatly improved
over the PCI bus system, which does not have any provision for verification and
retransmission of data sent over the bus.

To prevent having a fast receiver bury a slow receiver in packets it cannot
handle, a flow control mechanism is used. The mechanism used that the receiver
gives the transmitter a certain number of credits, basically corresponding to the
amount of buffer space it has available to store incoming packets. When the
credits are used up, the transmitter has to stop sending until it is giving more
credits. This scheme, which is widely used in all networks, prevents losing data
due to a mismatch of transmitter and receiver speeds.

The transaction layer handles bus actions. Reading a word from memory
requires two transactions: one initiated by the CPU or DMA channel requesting
some data and one initiated by the target supplying the data. But the transaction
layer does more than handle pure reads and writes. It adds value to the raw
packet transmission offered by the link layer. To start with, it can divide each
lane into up to eight virtual circuits, each handling a different class of traffic.
The transaction layer can tag packets according to their traffic class, which may
include attributes such as high priority, low priority, do not snoop, may be
delivered out of order, and more. The switch may use these tags when deciding
which packet to handle next.

Each transaction uses one of four address spaces:

1. Memory space (for ordinary reads and writes).

2. 1/O space (for addressing device registers).

3. Configuration space (for system initialization, etc.).
4

Message space (for signaling, interrupts, etc.).

The memory and I/O spaces are similar to what current systems have. The confi-
guration space can be used to implement features such as plug-and-play. The
message space takes over the role of many of the existing control signals. Some-
thing like this space is needed because none of the PCI bus’ control lines exist in
PCI express.

The software layer interfaces the PCI Express system to the operating sys-
tem. It can emulate the PCI bus, making it possible to run existing operating sys-
tems unmodified on PCI Express systems. Of course, operating like this will not
exploit the full power of PCI Express, but backward compatibility is a necessary
evil that is needed until operating systems have been modified to fully utilize PCI
Express. Experience shows that can take a while.
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The flow of information is illustrated in Fig. 3-58(b). When a command is
given to the software layer, it hands it to the transaction layer, which formulates it
in terms of a header and a payload. These two parts are then passed to the link
layer, which attaches a sequence number to the front and a CRC to the back. This
enlarged packet is then given to the physical layer, which adds framing informa-
tion on each end to form the physical packet that is actually transmitted. At the
receiving end, the reverse process takes place, with the link header and trailer
being stripped and the result being given to the transaction layer.

The concept of each layer adding additional information to the data as it
works its way down the protocol has been used for decades in the networking
world with great success. The big difference between a network and PCI Express
is that in the networking world the code in the various layers is nearly always
software that is part of the operating system. With PCI Express it is all part of the
device hardware.

PCI Express is a complicated subject. For more information see (Mayhew
and Krishnan, 2003; and Solari and Congdon, 2005).

3.6.4 The Universal Serial Bus

The PCI bus and PCI Express are fine for attaching high-speed peripherals to
a computer, but they are too expensive for low-speed I/O devices such as key-
boards and mice. Historically, each standard I/O device was connected to the
computer in a special way, with some free ISA and PCI slots for adding new
devices. Unfortunately, this scheme has been fraught with problems from the
beginning.

For example, each new 1/O device often comes with its own ISA or PCI card.
The user is often responsible for setting switches and jumpers on the card and
making sure the settings do not conflict with other cards. Then the user must open
up the case, carefully insert the card, close the case, and reboot the computer. For
many users, this process is difficult and error prone. In addition, the number of
ISA and PCI slots is very limited (two or three typically). Plug-and-play cards
eliminate the jumper settings, but the user still has to open the computer to insert
the card and bus slots are still limited.

To deal with this problem, in 1993, representatives from seven companies
(Compaq, DEC, IBM, Intel, Microsoft, NEC, and Northern Telecom) got together
to design a better way to attach low-speed I/O devices to a computer. Since then,
hundreds of other companies have joined them. The resulting standard, officially
released in 1998, is called USB (Universal Serial Bus) and it is being widely
implemented in personal computers. It is described further in Anderson (1997)
and Tan (1997).

Some of the goals of the companies that originally conceived of the USB and
started the project were as follows:
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Users must not have to set switches or jumpers on boards or devices.
Users must not have to open the case to install new I/O devices.

There should be only one kind of cable, good for connecting all devices.
I/O devices should get their power from the cable.

Up to 127 devices should be attachable to a single computer.

The system should support real-time devices (e.g., sound, telephone).
Devices should be installable while the computer is running.

No reboot should be needed after installing a new device.

e A AR o A

The new bus and its I/O devices should be inexpensive to manufacture.

USB meets all these goals. It is designed for low-speed devices such as key-
boards, mice, still cameras, snapshot scanners, digital telephones, and so on. Ver-
sion 1.0 has a bandwidth of 1.5 Mbps, which is enough for keyboards and mice.
Version 1.1 runs at 12 Mbps, which is enough for printers, digital cameras, and
many other devices. These low limits were chosen to keep the cost down.

A USB system consists of a root hub that plugs into the main bus (see
Fig. 3-52). This hub has sockets for cables that can connect to I/O devices or to
expansion hubs, to provide more sockets, so the topology of a USB system is a
tree with its root at the root hub, inside the computer. The cables have different
connectors on the hub end and on the device end, to prevent people from acciden-
tally connecting two hub sockets together.

The cable consists of four wires: two for data, one for power (+5 volts), and
one for ground. The signaling system transmits a O as a voltage transition and a 1
as the absence of a voltage transition, so long runs of Os generate a regular pulse
stream.

When a new I/O device is plugged in, the root hub detects this event and
interrupts the operating system. The operating system then queries the device to
find out what it is and how much USB bandwidth it needs. If the operating sys-
tem decides that there is enough bandwidth for the device, it assigns the new
device a unique address (1 — 127) and downloads this address and other informa-
tion to configuration registers inside the device. In this way, new devices can be
added on-the-fly, without any user configuration required and without having to
install new ISA or PCI cards. Uninitialized cards start out with address 0, so they
can be addressed. To make the cabling simpler, many USB devices contain
built-in hubs to accept additional USB devices. For example, a monitor might
have two hub sockets to accommodate the left and right speakers.

Logically, the USB system can be viewed as a set of bit pipes from the root
hub to the I/O devices. Each device can split its bit pipe up into at most 16 sub-
pipes for different types of data (e.g., audio and video). Within each pipe or sub-
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pipe, data flows from the root hub to the device or the other way. There is no
traffic between two I/O devices.

Precisely every 1.00 + 0.05 msec, the root hub broadcasts a new frame to keep
all the devices synchronized in time. A frame is associated with a bit pipe, and
consists of packets, the first of which is from the root hub to the device. Subse-
quent packets in the frame may also be in this direction, or they may be back from
the device to the root hub. A sequence of four frames is shown in Fig. 3-59.

Time (msecy}——

Frame O Frame 1 Frame 2 Frame 3

’ \ \ / ’ \

N\ / /' Packets N\ / / Packets \
\ I,’ / from root \\ \ I,’ / from root \
\ / LT AN \ / A B \
@ |SOF|| IN || DATA|ACK| @ |SOF||OUT|| DATA||ACK|
/'/ \\\ /'/ From\ e
i \\ /,/ device \\
?r?nﬁ Z‘;g:‘;‘ —»|SYN| PID | PAYLOAD |CRC| |SYN| PID | PAYLOAD |CRC|

Figure 3-59. The USB root hub sends out frames every 1.00 msec.

In Fig. 3-59 there is no work to be done in frames 0 and 2, so all that is needed is
one SOF (Start of Frame) packet. This packet is always broadcast to all devices.
Frame 1 is a poll, for example, a request to a scanner to return the bits it has found
on the image it is scanning. Frame 3 consists of delivering data to some device,
for example to a printer.

USB supports four kinds of frames: control, isochronous, bulk, and interrupt.
Control frames are used to configure devices, give them commands, and inquire
about their status. Isochronous frames are for real-time devices such as micro-
phones, loudspeakers, and telephones that need to send or accept data at precise
time intervals. They have a highly-predictable delay but provide no retransmis-
sions in the event of errors. Bulk frames are for large transfers to or from devices
with no real-time requirements such as printers. Finally, interrupt frames are
needed because USB does not support interrupts. For example, instead of having
the keyboard cause an interrupt whenever a key is struck, the operating system
can poll it every 50 msec to collect any pending keystrokes.

A frame consists of one or more packets, possibly some in each direction.
Four kinds of packets exist: token, data, handshake, and special. Token packets
are from the root to a device and are for system control. The SOF, IN, and OUT
packets in Fig. 3-59 are token packets. The SOF (Start of Frame) packet is the
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first one in each frame and marks the beginning of the frame. If there is no work
to do, the SOF packet is the only one in the frame. The IN token packet is a poll,
asking the device to return certain data. Fields in the IN packet tell which bit pipe
is being polled so the device knows which data to return (if it has multiple
streams). The OUT token packet announces that data for the device will follow.
A fourth type of token packet, SETUP (not shown in the figure), is used for confi-
guration.

Besides the token packet, three other kinds exist. These are DATA (used to
transmit up to 64 bytes of information either way), handshake, and special pack-
ets. The format of a data packet is shown in Fig. 3-59. It consists of an 8-bit syn-
chronization field, an 8-bit packet type (PID), the payload, and a 16-bit CRC
(Cyclic Redundancy Check) to detect errors. Three kinds of handshake packets
are defined: ACK (the previous data packet was correctly received), NAK (a CRC
error was detected), and STALL (please wait—I am busy right now).

Now let us look at Fig. 3-59 again. Every 1.00 msec a frame must be sent
from the root hub, even if there is no work. Frames 0 and 2 consist of just an SOF
packet, indicating that there was no work. Frame 1 is a poll, so it starts out with
SOF and IN packets from the computer to the I/O device, followed by a DATA
packet from the device to the computer. The ACK packet tells the device that the
data were received correctly. In case of an error, a NAK would be sent back to the
device and the packet would be retransmitted for bulk data (but not for isochro-
nous data). Frame 3 is similar in structure to frame 1, except that now the flow of
data are from the computer to the device.

After the USB standard was finalized in 1998, the people designing USB had
nothing to do so they began working on a new high-speed version of USB, called
USB 2.0. This standard is similar to the older USB 1.1 and backward compatible
with it, except that it adds a third speed, 480 Mbps, to the two existing speeds.
There are also some minor differences, such as the interface between the root hub
and the controller. With USB 1.1 there were two interfaces available. The first
one, UHCI (Universal Host Controller Interface), was designed by Intel and
put most of the burden on the software designers (read: Microsoft). The second
one, OHCI (Open Host Controller Interface), was designed by Microsoft and
put most of the burden on the hardware designers (read: Intel). In USB 2.0 every-
one agreed to a single new interface called EHCI (Enhanced Host Controller
Interface).

With USB now operating at 480 Mbps, it clearly competes with the IEEE
1394 serial bus popularly called FireWire, which runs at 400 Mbps. Although vir-
tually every new Pentium system now comes with USB 2.0, 1394 is not likely to
vanish because it has the backing of the consumer electronics industry. Camcord-
ers, DVD players and similar devices will continue to be equipped with 1394
interfaces for the foreseeable future because the makers of these devices do not
want to go to the expense of switching to a different standard that is hardly better
than what they have now. Consumers, also, do not like changing standards.
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3.7 INTERFACING

A typical small- to medium-sized computer system consists of a CPU chip,
memory chips, and some I/O controllers, all connected by a bus. We have already
studied memories, CPUs, and buses in some detail. Now it is time to look at the
last part of the puzzle, the I/O chips. It is through these chips that the computer
communicates with the external world.

3.7.1 1/0 Chips

Numerous I/O chips are already available and new ones are being introduced
all the time. Common chips include UARTs, USARTs, CRT controllers, disk
controllers, and PIOs. A UART (Universal Asynchronous Receiver Trans-
mitter) is a chip that can read a byte from the data bus and output it a bit at a time
on a serial line for a terminal, or input data from a terminal. UARTSs usually
allow various speeds from 50 to 19,200 bps; character widths from 5 to 8 bits; 1,
1.5, or 2 stop bits; and provide even, odd, or no parity, all under program control.
USARTSs (Universal Synchronous Asynchronous Receiver Transmitters) can
handle synchronous transmission using a variety of protocols as well as perform-
ing all the UART functions. Since we already looked at UARTS in Chap. 2, let us
now study the parallel interface as an example of an I/O chip.

PIO Chips

A typical PIO (Parallel Input/Output) chip is the Intel 8255A, shown in
Fig. 3-60. It has 24 I/O lines that can interface to any TTL-compatible device, for
example, keyboards, switches, lights, or printers. In a nutshell, the CPU program
can write a 0 or 1 to any line, or read the input status of any line, providing great
flexibility. A small CPU-based system using a PIO can often replace a complete
board full of SSI or MSI chips, especially in embedded systems.

CS — »| 8
Cs 2 «—+—> Port A
AO-A1 ——+—>]

== 8255A
WR > Parallel 8 Port B
BRD —— 110

chip

RESET ———>

8
DO-D7 <_§_> |~—+— Port C

Figure 3-60. An 8255A PIO chip.

Although the CPU can configure the 8255A in many ways by loading status
registers within the chip, we will concentrate on some of the simpler modes of
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operation. The simplest way of using the 8255A is as three independent 8-bit
ports, A, B, and C. Associated with each port is an 8-bit latch register. To set the
lines on a port, the CPU just writes an 8-bit number into the corresponding regis-
ter, and the 8-bit number appears on the output lines and stays there until the
register is rewritten. To use a port for input, the CPU just reads the corresponding
register.

Other operating modes provide for handshaking with external devices. For
example, to output to a device that is not always ready to accept data, the 8255A
can present data on an output port and wait for the device to send a pulse back
saying that it has accepted the data and wants more. The necessary logic for
latching such pulses and making them available to the CPU is included in the
8255A hardware.

From the functional diagram of the 8255A we can see that in addition to 24
pins for the three ports, it has eight lines that connect directly to the data bus, a
chip select line, read and write lines, two address lines, and a line for resetting the
chip. The two address lines select one of the four internal registers, corresponding
to ports A, B, C, and the status register, which has bits determining which ports
are for input and which for output, and other functions. Normally, the two address
lines are connected to the low-order bits of the address bus.

3.7.2 Address Decoding

Up until now we have been deliberately vague about how chip select is
asserted on the memory and I/O chips we have looked at. It is now time to look
more carefully at how this is done. Let us consider a simple 16-bit embedded
computer consisting of a CPU, a 2KB x 8 byte EPROM for the program, a
2KB x 8 byte RAM for the data, and a PIO. This small system might be used as a
prototype for the brain of a cheap toy or simple appliance. Once in production,
the EPROM might be replaced by a ROM.

The PIO can be selected in one of two ways: as a true I/O device or as part of
memory. If we choose to use it as an I/O device, then we must select it using an
explicit bus line that indicates that an I/O device is being referenced, rather than
memory. If we use the other approach, memory-mapped 1/O, then we must as-
sign it 4 bytes of the memory space for the three ports and the control register.
The choice is somewhat arbitrary. We will choose memory-mapped 1/O because
it illustrates some interesting issues in I/O interfacing.

The EPROM needs 2 KB of address space, the RAM also needs 2K of address
space, and the PIO needs 4 bytes. Because our example address space is 64K, we
must make a choice about where to put the three devices. One possible choice is
shown in Fig. 3-61. The EPROM occupies addresses to 2K, the RAM occupies
addresses 32 KB to 34 KB, and the PIO occupies the highest 4 bytes of the
address space, 65532 to 65535. From the programmer’s point of view, it makes
no difference which addresses are used; however, for interfacing it does matter. If
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we had chosen to address the PIO via the I/O space, it would not need any
memory addresses (but it would need four I/O space addresses).

EPROM at address O RAM at address 8000H PI1O at FFFCH

| | | | | | | | | | | | | |
0 4K 8K 12K 16K 20K 24K 28K 32K 36K 40K 44K 48K 52K 56K 60K 64K

Figure 3-61. Location of the EPROM, RAM, and PIO in our 64 KB address space.

With the address assignments of Fig. 3-61, the EPROM should be selected by
any 16-bit memory address of the form 00000xxxxxxxxxxx (binary). In other
words, any address whose 5 high-order bits are all Os falls in the bottom 2 KB of
memory, hence in the EPROM. Thus the EPROM’s chip select could be wired to
a 5-bit comparator, one of whose inputs was permanently wired to 00000.

A better way to achieve the same effect is to use a five-input OR gate, with the
five inputs attached to address lines A1l to A15. If and only if all five lines are 0
will the output be 0, thus asserting CS (which is asserted low). Unfortunately, no
five-input OR gate exists in the standard SSI series. The closest we can come is an
eight-input NOR gate. By grounding three inputs and inverting the output we can
nevertheless produce the correct signal, as shown in Fig. 3-61(a). SSI chips are so
cheap that except in exceptional circumstances, using one inefficiently is not an
issue. By convention, unused inputs are not shown in circuit diagrams.

The same principle can be used for the RAM. However, the RAM should
respond to binary addresses of the form 10000xxxxxxxxxxx, so an additional
inverter is needed as shown in the figure. The PIO address decoding is somewhat
more complicated, because it is selected by the four addresses of the form
I1111111111111xx. A possible circuit that asserts CS only when the correct
address appears on the address bus is shown in the figure. It uses two eight-input
NAND gates to feed an OR gate. To build the address decoding logic of Fig. 3-
62(a) using SSI requires six chips—the four eight-input chips, an OR gate, and a
chip with three inverters.

However, if the computer really consists of only the CPU, two memory chips,
and the PIO, we can use a trick to simplify greatly the address decoding. The
trick is based on the fact that all EPROM addresses, and only EPROM addresses,
have a 0 in the high-order bit, A15. Therefore, we can just wire CS to A15 directly,
as shown in Fig. 3-62(b).

At this point the decision to put the RAM at 8000H may seem much less arbi-
trary. The RAM decoding can be done by noting that the only valid addresses of
the form 10xxxxxxxxxxxxxx are in the RAM, so 2 bits of decoding are sufficient.
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Ao
Address bus
Ais I
L |CS L |CS CS
2K38 2K 38 PIO
EPROM RAM
(@)
Ao
Address bus
A15 h d
CS CS CS
2K 38 2K 38 PIO
EPROM RAM

Figure 3-62. (a) Full address decoding. (b) Partial address decoding.
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Similarly, any address starting with 11 must be a PIO address. The complete
decoding logic is now two NAND gates and an inverter. Because an inverter can
be made from a NAND gate by just tying the two inputs together, a single quad
NAND chip is now more than sufficient.

The address decoding logic of Fig. 3-62(b) is called partial address decod-
ing, because the full addresses are not used. It has the property that a read from
addresses 0001000000000000, 0001100000000000, or 0010000000000000 will
give the same result. In fact, every address in the bottom half of the address space
will select the EPROM. Because the extra addresses are not used, no harm is
done, but if one is designing a computer that may be expanded in the future (an
unlikely occurrence in a toy), partial decoding should be avoided because it ties
up too much address space.

Another common address decoding technique is to use a decoder, such as that
shown in Fig. 3-13. By connecting the three inputs to the three high-order address
lines, we get eight outputs, corresponding to addresses in the first 8K, second 8K,
and so on. For a computer with eight RAMs, each 8K X 8, one such chip provides
the complete decoding. For a computer with eight 2K X 8 memory chips, a single
decoder is also sufficient, provided that the memory chips are each located in dis-
tinct 8-KB chunks of address space. (Remember our earlier remark that the posi-
tion of the memory and I/O chips within the address space matters.)

3.8 SUMMARY

Computers are constructed from integrated circuit chips containing tiny
switching elements called gates. The most common gates are AND, OR, NAND,
NOR, and NOT. Simple circuits can be built up by directly combining individual
gates.

More complex circuits are multiplexers, demultiplexers, encoders, decoders,
shifters, and ALUs. Arbitrary Boolean functions can be programmed using a
PLA. If many Boolean functions are needed, PLAs are often more efficient. The
laws of Boolean algebra can be used to transform circuits from one form to
another. In many cases more economical circuits can be produced this way.

Computer arithmetic is done by adders. A single-bit full adder can be con-
structed from two half adders. An adder for a multibit word can be built by con-
necting multiple full adders in such a way as to allow the carry out of each one
feed into its left-hand neighbor.

The components of (static) memories are latches and flip-flops, each of which
can store one bit of information. These can be combined linearly into octal
latches and flip-flops or logarithmically into full-scale word-oriented memories.
Memories are available as RAM, ROM, PROM, EPROM, EEPROM, and flash.
Static RAMs need not be refreshed; they keep their stored values as long as the
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power remains on. Dynamic RAMs, on the other hand, must be refreshed periodi-
cally to compensate for leakage from the little capacitors on the chip.

The components of a computer system are connected by buses. Many, but not
all, of the pins on a typical CPU chip directly drive one bus line. The bus lines
can be divided into address, data, and control lines. Synchronous buses are driven
by a master clock. Asynchronous buses use full handshaking to synchronize the
slave to the master.

The Pentium 4 is an example of a modern CPU. Modern systems using it
have a memory bus, a PCI bus, an ISA bus, and a USB bus. The PCI bus can
transfer 64 bits at a time at a rate of 66 MHz, which makes it fast enough for
nearly all peripherals, but not fast enough for memory.

Switches, lights, printers, and many other I/O devices can be interfaced to
computers using parallel I/O chips such as the 8255A. These chips can be config-
ured to be part of the I/O space or the memory space, as needed. They can be
fully decoded or partially decoded, depending on the application.

PROBLEMS

1. A logician drives into a drive-in restaurant and says, “I want a hamburger or a hot dog
and french fries.” Unfortunately, the cook flunked out of sixth grade and does not
know (or care) whether “and” has precedence over “or.” As far as he is concerned,
one interpretation is as good as the other. Which of the following cases are valid
interpretations of the order? (Note that in English “or” means “exclusive or.”)

a. Just a hamburger.

b. Just a hot dog.

c. Just french fries.

d. A hot dog and french fries.

e. A hamburger and french fries.

f. A hot dog and a hamburger.

g. All three.

h. Nothing—the logician goes hungry for being a wiseguy.

2. A missionary lost in Southern California stops at a fork in the road. He knows that
two motorcycle gangs inhabit the area, one of which always tells the truth and one of
which always lies. He wants to know which road leads to Disneyland. What question
should he ask?

3. Use a truth table to show that X = (X AND Y) OR (X AND NOT Y).

4. There exist four Boolean functions of a single variable and 16 functions of two vari-
ables. How many functions of three variables are there? Of n variables?
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S.
6.

10.

11.

12.

13.

14.

Show how the AND function can be constructed from two NAND gates.

Using the three-variable multiplexer chip of Fig. 3-12, implement a function whose
output is the parity of the inputs, that is, the output is 1 if and only if an even number
of inputs are 1.

Put on your thinking cap. The three-variable multiplexer chip of Fig. 3-12 is actually
capable of computing an arbitrary function of four Boolean variables. Describe how,
and as an example, draw the logic diagram for the function that is O if the English
word for the truth table row has an even number of letters, 1 if it has an odd number of
letters (e.g., 0000 = zero = four letters — 0; 0111 = seven = five letters — 1; 1101 =
thirteen = eight letters — 0). Hint: If we call the fourth input variable D, the eight
input lines may be wired to V..., ground, D, or D.

Draw the logic diagram of a 2-bit encoder, a circuit with four input lines, exactly one
of which is high at any instant, and two output lines whose 2-bit binary value tells
which input is high.

Draw the logic diagram of a 2-bit demultiplexer, a circuit whose single input line is
steered to one of the four output lines depending on the state of the two control lines.

Redraw the PLA of Fig. 3-15 in enough detail to show how the majority logic function
of Fig. 3-3 can be implemented. In particular, be sure to show which connections are
present in both matrices.

‘What does this circuit do?

>

[>o D

-

A common MSI chip is a 4-bit adder. Four of these chips can be hooked up to form a
16-bit adder. How many pins would you expect the 4-bit adder chip to have? Why?

An n-bit adder can be constructed by cascading n full adders in series, with the carry
into stage i, C;, coming from the output of stage i — 1. The carry into stage 0, Cy, is
0. If each stage takes T nsec to produce its sum and carry, the carry into stage i will
not be valid until iT nsec after the start of the addition. For large n the time required
for the carry to ripple through to the high-order stage may be unacceptably long.
Design an adder that works faster. Hint: Each C; can be expressed in terms of the
operand bits A; _; and B;_; as well as the carry C;_;. Using this relation it is possible
to express C; as a function of the inputs to stages 0 to i — 1, so all the carries can be
generated simultaneously.

If all the gates in Fig. 3-19 have a propagation delay of 1 nsec, and all other delays can
be ignored, what is the earliest time a circuit using this design can be sure of having a
valid output bit?
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

The ALU of Fig. 3-20 is capable of doing 8-bit 2’s complement additions. Is it also
capable of doing 2’s complement subtractions? If so, explain how. If not, modify it to
be able to do subtractions.

A 16-bit ALU is built up of 16 1-bit ALUs, each one having an add time of 10 nsec. If
there is an additional 1 nsec delay for propagation from one ALU to the next, how
long does it take for the result of a 16-bit add to appear?

Sometimes it is useful for an 8-bit ALU such as Fig. 3-20 to generate the constant —1
as output. Give two different ways this can be done. For each way, specify the values
of the six control signals.

What is the quiescent state of the S and R inputs to an SR latch built of two NAND
gates?

The circuit of Fig. 3-26 is a flip-flop that is triggered on the rising edge of the clock.
Modify this circuit to produce a flip-flop that is triggered on the falling edge of the
clock.

The 4 X 3 memory of Fig. 3-29 uses 22 AND gates and three OR gates. If the circuit
were to be expanded to 256 x 8, how many of each would be needed?

To help meet the payments on your new personal computer, you have taken up con-
sulting for fledgling SSI chip manufacturers. One of your clients is thinking about
putting out a chip containing four D flip-flops, each containing both Q and Q, on
request of a potentially important customer. The proposed design has all four clock
signals ganged together, also on request. Neither preset nor clear is present. Your
assignment is to give a professional evaluation of the design.

As more and more memory is squeezed onto a single chip, the number of pins needed
to address it also increases. It is often inconvenient to have large numbers of address
pins on a chip. Devise a way to address 2" words of memory using fewer than » pins.

A computer with a 32-bit wide data bus uses 1M X 1 dynamic RAM memory chips.
What is the smallest memory (in bytes) that this computer can have?

Referring to the timing diagram of Fig. 3-38, suppose that you slowed the clock down
to a period of 20 nsec instead of 10 nsec as shown but the timing constraints remained
unchanged. How much time would the memory have to get the data onto the bus dur-
ing T; after MREQ was asserted, in the worst case?

Again referring to Fig. 3-38, suppose that the clock remained at 100 MHz, but Tpg
was increased to 4 nsec. Could 10-nsec memory chips be used?

In Fig. 3-38(b), Ty, is specified to be at least 3 nsec. Can you envision a chip in
which it is negative? Specifically, could the CPU assert MREQ before the address was
stable? Why or why not?

Assume that the block transfer of Fig. 3-42 were done on the bus of Fig. 3-38. How
much more bandwidth is obtained by using a block transfer over individual transfers
for long blocks? Now assume that the bus is 32 bits wide instead of 8 bits wide.
Answer the question again.
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28.

29.

30.
31.

32.

33.

34.

35.
36.

37.
38.
39.

40.

41.

42,

Denote the transition times of the address lines of Fig. 3-39 as T,»; and Ty,, and the
transition times of MREQ as Tyrpq; and Tygreqo, and so on. Write down all the ine-
qualities implied by the full handshake.

Most 32-bit buses permit 16-bit reads and writes. Is there any ambiguity about where
to place the data? Discuss.

Many CPUs have a special bus cycle type for interrupt acknowledge. Why?

A 64-bit computer with a 200-MHz bus requires four cycles to read a 64-bit word.
How much bus bandwidth does the CPU consume in the worst case?

A 32-bit CPU with address lines A2-A31 requires all memory references to be
aligned. That is, words have to be addressed at multiples of 4 bytes, and half-words
have to be addressed at even bytes. Bytes can be anywhere. How many legal combi-
nations are there for memory reads, and how many pins are needed to express them?
Give two answers and make a case for each one.

Why is it impossible for the Pentium 4 to work on a 32-bit PCI bus without losing any
functionality? After all, other computers with a 64-bit data bus can do 32-bit, 16-bit,
and even 8-bit wide transfers.

Suppose that a CPU has a level 1 cache and a level 2 cache, with access times of 1
nsec and 2 nsec, respectively. The main memory access time is 10 nsec. If 20% of
the accesses are level 1 cache hits and 60% are level 2 cache hits, what is the average
access time?

Is it likely that an 8051-based embedded system would include an 8255A chip?

Calculate the bus bandwidth needed to display a VGA (640 x 480) true-color movie at
30 frames/sec. Assume that the data must pass over the bus twice, once from the CD-
ROM to the memory and once from the memory to the screen.

Which Pentium 4 signal do you think drives the PCI bus FRAME# line?
Which of the signals of Fig. 3-56 is not strictly necessary for the bus protocol to work?

A PCI Express system has 5 Mbps links (gross capacity). How many signal wires are
needed in each direction for 8x operation? What is the gross capacity each way?
What is the net capacity each way?

A computer has instructions that each require two bus cycles, one to fetch the instruc-
tion and one to fetch the data. Each bus cycle takes 10 nsec and each instruction takes
20 nsec (i.e., the internal processing time is negligible). The computer also has a disk
with 2048 512-byte sectors per track. Disk rotation time is 5 msec. To what percent
of its normal speed is the computer reduced during a DMA transfer if each 32-bit
DMA transfer takes one bus cycle?

The maximum payload of an isochronous data packet on the USB bus is 1023 bytes.
Assuming that a device may send only one data packet per frame, what is the max-
imum bandwidth for a single isochronous device?

What would the effect be of adding a third input line to the NAND gate selecting the
PIO of Fig. 3-62(b) if this new line were connected to A13?
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43. Write a program to simulate the behavior of an m X n array of two-input NAND gates.
This circuit, contained on a chip, has j input pins and k output pins. The values of j, &,
m, and n are compile-time parameters of the simulation. The program should start off
by reading in a “wiring list,”” each wire of which specifies an input and an output. An
input is either one of the j input pins or the output of some NAND gate. An output is
either one of the k output pins or an input to some NAND gate. Unused inputs are logi-
cal 1. After reading in the wiring list, the program should print the output for each of
the 2/ possible inputs. Gate array chips like this one are widely used for putting cus-
tom circuits on a chip because most of the work (depositing the gate array on the chip)
is independent of the circuit to be implemented. Only the wiring is specific to each
design.

44. Write a program to read in two arbitrary Boolean expressions and see if they represent
the same function. The input language should include single letters, as Boolean vari-
ables, the operands AND, OR, and NOT, and parentheses. Each expression should fit on
one input line. The program should compute the truth tables for both functions and
compare them.

45. Write a program to read in a collection of Boolean expressions and compute the
24 x 50 and 50 x 6 matrices needed to implement them with the PLA of Fig. 3-15.
The input language should be the same as the previous problem. Print the matrices on
the line printer.



THE MICROARCHITECTURE LEVEL

The level above the digital logic level is the microarchitecture level. Its job is
to implement the ISA (Instruction Set Architecture) level above it, as illustrated in
Fig. 1-2. The design of the microarchitecture level depends on the ISA being
implemented, as well as the cost and performance goals of the computer. Many
modern ISAs, particularly RISC designs, have simple instructions that can usually
be executed in a single clock cycle. More complex ISAs, such as the Pentium 4,
may require many cycles to execute a single instruction. Executing an instruction
may require locating the operands in memory, reading them, and storing results
back into memory. The sequencing of operations within a single instruction often
leads to a different approach to control than that for simple ISAs.

4.1 AN EXAMPLE MICROARCHITECTURE

Ideally, we would like to introduce this subject by explaining the general prin-
ciples of microarchitecture design. Unfortunately, there are no general principles;
every one is a special case. Consequently, we will discuss a detailed example
instead. For our example ISA, we have chosen a subset of the Java Virtual
Machine, as we promised in Chap. 1. This subset contains only integer instruc-
tions, so we have named it IJVM. We will discuss the full JVM in Chap. 5.

We will start out by describing the microarchitecture on top of which we will
implement IJVM. IJVM has some complex instructions. Many such architectures

231
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have often been implemented through microprogramming, as discussed in Chap.
1. Although IJVM is small, it is a good starting point for describing the control
and sequencing of instructions.

Our microarchitecture will contain a microprogram (in ROM), whose job is to
fetch, decode, and execute IJVM instructions. We cannot use the Sun JVM inter-
preter for the microprogram because we need a tiny microprogram that drives the
individual gates in the actual hardware efficiently. In contrast, the Sun JVM
interpreter was written in C for portability, and cannot control the hardware at the
level of detail we need. Since the actual hardware used consists only of the basic
components described in Chap. 3, in theory, after fully understanding this chapter,
the reader should be able to go out and buy a large bag full of transistors and build
this subset of the JVM machine. Students who successfully accomplish this task
will be given extra credit (and a complete psychiatric examination).

A convenient model for the design of the microarchitecture is to think of the
design as a programming problem, where each instruction at the ISA level is a
function to be called by a master program. In this model, the master program is a
simple, endless loop that determines a function to be invoked, calls the function,
then starts over, very much like Fig. 2-3.

The microprogram has a set of variables, called the state of the computer,
which can be accessed by all the functions. Each function changes at least some
of the variables making up the state. For example, the Program Counter (PC) is
part of the state. It indicates the memory location containing the next function
(i.e., ISA instruction) to be executed. During the execution of each instruction,
the PC is advanced to point to the next instruction to be executed.

IJVM instructions are short and sweet. Each instruction has a few fields, usu-
ally one or two, each of which has some specific purpose. The first field of every
instruction is the opcode (short for operation code), which identifies the instruc-
tion, telling whether it is an ADD or a BRANCH, or something else. Many instruc-
tions have an additional field, which specifies the operand. For example, instruc-
tions that access a local variable need a field to tell which variable.

This model of execution, sometimes called the fetch-execute cycle, is useful
in the abstract and may also be the basis for implementation for ISAs like IJVM
that have complex instructions. Below we will describe how it works, what the
microarchitecture looks like, and how it is controlled by the microinstructions,
each of which controls the data path for one cycle. Together, the list of microin-
structions forms the microprogram, which we will present and discuss in detail.

4.1.1 The Data Path

The data path is that part of the CPU containing the ALU, its inputs, and its
outputs. The data path of our example microarchitecture is shown in Fig. 4-1.
While it has been carefully optimized for interpreting IJVM programs, it is fairly
similar to the data path used in most machines. It contains a number of 32-bit
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Figure 4-1. The data path of the example microarchitecture used in this chapter.

registers, to which we have assigned symbolic names such as PC, SP, and MDR.
Though some of these names are familiar, it is important to understand that these
registers are accessible only at the microarchitecture level (by the microprogram).
They are given these names because they usually hold a value corresponding to
the variable of the same name in the ISA level architecture. Most registers can
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drive their contents onto the B bus. The output of the ALU drives the shifter and
then the C bus, whose value can be written into one or more registers at the same
time. There is no A bus for the moment; we will add one later.

The ALU is identical to the one shown in Fig. 3-19 and Fig. 3-20. Its function
is determined by six control lines. The short diagonal line labeled “6” in Fig. 4-1
indicates that there are six ALU control lines. These are Fg and Fy for determin-
ing the ALU operation, ENA and ENB for individually enabling the inputs, INVA for
inverting the left input, and INC for forcing a carry into the low-order bit, effec-
tively adding 1 to the result. However, not all 64 combinations of ALU control
lines do something useful.

Some of the more interesting combinations are shown in Fig. 4-2. Not all of
these functions are needed for IJVM, but for the full JVM many of them would
come in handy. In many cases, there are multiple possibilities for achieving the
same result. In this table, + means arithmetic plus and — means arithmetic minus,
so, for example —A means the two’s complement of A.

-
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Figure 4-2. Useful combinations of ALU signals and the function performed.

The ALU of Fig. 4-1 needs two data inputs: a left input (A) and a right input
(B). Attached to the left input is a holding register, H. Attached to the right input
is the B bus, which can be loaded from any one of nine sources, indicated by the
nine gray arrows touching it. An alternative design, with two full buses, has a dif-
ferent set of trade-offs and will be discussed later in this chapter.
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H can be loaded by choosing an ALU function that just passes the right input
(from the B bus) through to the ALU output. One such function is adding the
ALU inputs, only with ENA negated so the left input is forced to zero. Adding
zero to the value on the B bus just yields the value on the B bus. This result can
then be passed through the shifter unmodified and stored in H.

In addition to the above functions, two other control lines can be used
independently to control the output from the ALU. SLL8 (Shift Left Logical)
shifts the contents left by 1 byte, filling the 8 least significant bits with zeros.
SRA1 (Shift Right Arithmetic) shifts the contents right by 1 bit, leaving the most
significant bit unchanged.

It is explicitly possible to read and write the same register on one cycle. For
example, it is allowed to put SP onto the B bus, disable the ALU’s left input,
enable the INC signal, and store the result in SP, thus incrementing SP by 1 (see
the eighth line in Fig. 4-2). How can a register be read and written on the same
cycle without producing garbage? The solution is that reading and writing are
actually performed at different times within the cycle. When a register is selected
as the ALU’s right input, its value is put onto the B bus early in the cycle and kept
there continuously throughout the entire cycle. The ALU then does its work, pro-
ducing a result that passes through the shifter onto the C bus. Near the end of the
cycle, when the ALU and shifter outputs are known to be stable, a clock signal
triggers the store of the contents of the C bus into one or more of the registers.
One of these registers may well be the one that supplied the B bus with its input.
The precise timing of the data path makes it possible to read and write the same
register on one cycle, as described below.

Data Path Timing

The timing of these events is shown in Fig. 4-3. Here a short pulse is pro-
duced at the start of each clock cycle. It can be derived from the main clock, as
shown in Fig. 3-21(c). On the falling edge of the pulse, the bits that will drive all
the gates are set up. This takes a finite and known time, Aw. Then the register
needed on the B bus is selected and driven onto the B bus. It takes Ax before the
value is stable. Then the ALU and shifter begin to operate on valid data. After
another Ay, the ALU and shifter outputs are stable. After an additional Az, the
results have propagated along the C bus to the registers, where they can be loaded
on the rising edge of the next pulse. The load should be edge triggered and fast,
so that even if some of the input registers are changed, the effects will not be felt
on the C bus until long after the registers have been loaded. Also on the rising
edge of the pulse, the register driving the B bus stops doing so, in preparation for
the next cycle. MPC, MIR, and the memory are mentioned in the figure; their roles
will be discussed shortly.

It is important to realize that even though there are no storage elements in the
data path, there is a finite propagation time through it. Changing the value on the
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Figure 4-3. Timing diagram of one data path cycle.

B bus does not cause the C bus to change until a finite time later (due to the finite
delays of each step). Consequently, even if a store changes one of the input regis-
ters, the value will be safely tucked away in the register long before the (now-
incorrect) value being put on the B bus (or H) can reach the ALU.

Making this design work requires rigid timing, a long clock cycle, a known
minimum propagation time through the ALU, and a fast load of the registers from
the C bus. However, with careful engineering, the data path can be designed so
that it functions correctly all the time. Actual machines work this way.

A somewhat different way to look at the data path cycle is to think of it as
broken up into implicit subcycles. The start of subcycle 1 is triggered by the fal-
ling edge of the clock. The activities that go on during the subcycles are shown
below along with the subcycle lengths (in parentheses).

1. The control signals are set up (Aw).
The registers are loaded onto the B bus (Ax).
The ALU and shifter operate (Ay).

S

The results propagate along the C bus back to the registers (Az).

At the rising edge of the next clock cycle, the results are stored in the registers.
We said that the subcycles can be best thought of as being implicit. By this
we mean there are no clock pulses or other explicit signals to tell the ALU when
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to operate or tell the results to enter the C bus. In reality, the ALU and shifter run
all the time. However, their inputs are garbage until a time Aw + Ax after the fal-
ling edge of the clock. Likewise, their outputs are garbage until Aw + Ax + Ay
has elapsed after the falling edge of the clock. The only explicit signals that drive
the data path are the falling edge of the clock, which starts the data path cycle,
and the rising edge of the clock, which loads the registers from the C bus. The
other subcycle boundaries are implicitly determined by the inherent propagation
times of the circuits involved. It is the responsibility of the design engineers to
make sure that the time Aw + Ax + Ay + Az comes sufficiently in advance of the
rising edge of the clock to have the register loads work all the time.

Memory Operation

Our machine has two different ways to communicate with memory: a 32-bit,
word-addressable memory port and an 8-bit, byte-addressable memory port. The
32-bit port is controlled by two registers, MAR (Memory Address Register), and
MDR (Memory Data Register), as shown in Fig. 4-1. The 8-bit port is controlled
by one register, PC, which reads 1 byte into the low-order 8 bits of MBR. This port
can only read data from memory; it cannot write data to memory.

Each of these registers (and all the other registers in Fig. 4-1) are driven by
one or two control signals. An open arrow under a register indicates a control
signal that enables the register’s output onto the B bus. Since MAR does not have
a connection to the B bus, it does not have an enable signal. H does not have one
either because it is always enabled, it being the only possible left ALU input.

A solid black arrow under a register indicates a control signal that writes (i.e.,
loads) the register from the C bus. Since MBR cannot be loaded from the C bus, it
does not have a write signal (although it does have two other enable signals,
described below). To initiate a memory read or write, the appropriate memory
registers must be loaded, then a read or write signal issued to the memory (not
shown in Fig. 4-1).

MAR contains word addresses, so that the values O, 1, 2, etc., refer to consecu-
tive words. PC contains byte addresses, so that the values 0, 1, 2, etc. refer to con-
secutive bytes. Thus putting a 2 in PC and starting a memory read will read out
byte 2 from memory and put it in the low-order 8 bits of MBR. Putting a 2 in MAR
and starting a memory read will read out bytes 8—11 (i.e., word 2) from memory
and put them in MDR.

This difference in functionality is needed because MAR and PC will be used to
reference two different parts of memory. The need for this distinction will
become clearer later. For the moment, suffice it to say that the MAR/MDR combi-
nation is used to read and write ISA-level data words and the PC/MBR combina-
tion is used to read the executable ISA-level program, which consists of a byte
stream. All other registers that contain addresses use word addresses, like MAR.
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In the actual physical implementation, there is only one real memory and it is
byte oriented. Allowing MAR to count in words (needed due to the way JVM is
defined) while the physical memory counts in bytes is handled by a simple trick.
When MAR is placed on the address bus, its 32 bits do not map onto the 32 address
lines, 0 — 31, directly. Instead MAR bit O is wired to address bus line 2, MAR bit 1
is wired to address bus line 3, and so on. The upper 2 bits of MAR are discarded
since they are only needed for word addresses above 2°2, none of which are legal
for our 4-GB machine. Using this mapping, when MAR is 1, address 4 is put onto
the bus; when MAR is 2, address 8 is put onto the bus, and so forth. This trick is
illustrated in Fig. 4-4.

32-Bit MAR (counts in words)
Discarded
r—)H

////////////////////////////////

32-Bit address bus (counts in bytes)

Figure 4-4. Mapping of the bits in MAR to the address bus.

As mentioned above, data read from memory through the 8-bit memory port
are returned in MBR, an 8-bit register. MBR can be gated (i.e., copied) onto the B
bus in one of two ways: unsigned or signed. When the unsigned value is needed,
the 32-bit word put onto the B bus contains the MBR value in the low-order 8 bits
and zeros in the upper 24 bits. Unsigned values are useful for indexing into a
table, or when a 16-bit integer has to be assembled from 2 consecutive (unsigned)
bytes in the instruction stream.

The other option for converting the 8-bit MBR to a 32-bit word is to treat it as
a signed value between —128 and +127 and use this value to generate a 32-bit
word with the same numerical value. This conversion is done by duplicating the
MBR sign bit (leftmost bit) into the upper 24 bit positions of the B bus, a process
known as sign extension. When this option is chosen, the upper 24 bits will
either be all Os or all 1s, depending on whether the leftmost bit of the 8-bit MBR is
aQoral.

The choice of whether the 8-bit MBR is converted to an unsigned or a signed
32-bit value on the B bus is determined by which of the two control signals (open
arrows below MBR in Fig. 4-1) is asserted. The need for these two options is why
two arrows are present. The ability to have the 8-bit MBR act like a 32-bit source
to the B bus is indicated by the dashed box to the left of MBR in the figure.



SEC. 4.1 AN EXAMPLE MICROARCHITECTURE 239
4.1.2 Microinstructions

To control the data path of Fig. 4-1, we need 29 signals. These can be divided
into five functional groups, as described below.

9 Signals to control writing data from the C bus into registers.

9 Signals to control enabling registers onto the B bus for ALU input.
8 Signals to control the ALU and shifter functions.

2 Signals (not shown) to indicate memory read/write via MAR/MDR.

1 Signal (not shown) to indicate memory fetch via PC/MBR.

The values of these 29 control signals specify the operations for one cycle of the
data path. A cycle consists of gating values out of registers and onto the B bus,
propagating the signals through the ALU and shifter, driving them onto the C bus,
and finally writing the results in the appropriate register or registers. In addition,
if a memory read data signal is asserted, the memory operation is started at the
end of the data path cycle, after MAR has been loaded. The memory data are
available at the very end of the following cycle in MBR or MDR and can be used in
the cycle after that. In other words, a memory read on either port initiated at the
end of cycle k delivers data that cannot be used in cycle k + 1, but only in cycle
k + 2 or later.

This seemingly counterintuitive behavior is explained by Fig. 4-3. The mem-
ory control signals are not generated in clock cycle 1 until just after MAR and PC
are loaded at the rising edge of the clock, toward the end of clock cycle 1. We
will assume the memory puts its results on the memory buses within one cycle so
that MBR and/or MDR can be loaded on the next rising clock edge, along with the
other registers.

Put in other words, we load MAR at the end of a data path cycle and start the
memory shortly thereafter. Consequently, we cannot really expect the results of a
read operation to be in MDR at the start of the next cycle, especially if the width of
the clock pulse is short. There is just not enough time if the memory takes one
clock cycle. One data path cycle must intervene between starting a memory read
and using the result. Of course, other operations can be performed during that
cycle, just not ones that need the memory word.

The assumption that the memory takes one cycle to operate is equivalent to
assuming that the level 1 cache hit rate is 100%. This assumption is never true,
but the complexity introduced by a variable-length memory cycle time is more
than we want to deal with here.

Since MBR and MDR are loaded on the rising edge of the clock, along with all
the other registers, they may be read during cycles when a new memory read is
being performed. They return the old values since the read has not yet had time to
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overwrite them. There is no ambiguity here; until new values are loaded into MBR
and MDR at the rising edge of the clock, the previous values are still there and
usable. Note that it is possible to perform back-to-back reads on two consecutive
cycles since a read only takes 1 cycle. Also, both memories may operate at the
same time. However, trying to read and write the same byte simultaneously gives
undefined results.

While it may be desirable to write the output on the C bus into more than one
register, it is never desirable to enable more than one register onto the B bus at a
time. (In fact, some real implementations will suffer physical damage if this is
done.) With a small increase in circuitry, we can reduce the number of bits
needed to select among the possible sources for driving the B bus. There are only
nine possible input registers that can drive the B bus (where the signed and
unsigned versions of MBR each count separately). Therefore, we can encode the B
bus information in 4 bits and use a decoder to generate the 16 control signals, 7 of
which are not needed. In a commercial design, the architects would experience an
overwhelming urge to get rid of one of the registers so that 3 bits would do the
job. As academics, we have the enormous luxury of being able to waste 1 bit to
give a cleaner and simpler design.

Bits 9 3 8 9 3 4
JIJJIs|s|FolFs[EE| 1| 1|H|O|T|C|L|s|P|M|[M|W|R|E
M[A|AJL([R N|N[N[N POPVPCDAﬁ*E% B
NEXT_ADDRESS |P|Mm[M|L]|A AlB|v|c| |c|s|p RIT|AlC] &
C(N|Z]|8]1 A EID|H us
y — y y -
Addr JAM ALU C Mem B

B bus registers

0 =MDR 5=LV
1=PC 6 =CPP
2 =MBR 7=TOS
3=MBRU 8=0PC
4 = SP 9-15 none

Figure 4-5. The microinstruction format for the Mic-1.

At this point we can control the data path with 9 +4 + 8 4+ 2 4+ 1 = 24 signals,
hence 24 bits. However, these 24 bits only control the data path for one cycle.
The second part of the control is to determine what is to be done on the following
cycle. To include this in the design of the controller, we will create a format for
describing the operations to be performed using the 24 control bits plus two addi-
tional fields: the NEXT_ADDRESS field and the JAM field. The contents of each of
these fields will be discussed shortly. Figure 4-5 shows a possible format, divided
into the six groups, and containing the following 36 signals:
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Addr — Contains the address of a potential next microinstruction.
JAM — Determines how the next microinstruction is selected.
ALU — ALU and shifter functions.

C — Selects which registers are written from the C bus.

Mem — Memory functions.

B — Selects the B bus source; it is encoded as shown.

The ordering of the groups is, in principle, arbitrary although we have actually
chosen it very carefully to minimize line crossings in Fig. 4-6. Line crossings in
schematic diagrams like Fig. 4-6 often correspond to wire crossings on chips,
which cause trouble in two-dimensional designs and are best minimized.

4.1.3 Microinstruction Control: The Mic-1

So far we have described how the data path is controlled, but we have not yet
described how it is decided which of the control signals should be enabled on each
cycle. This is determined by a sequencer that is responsible for stepping through
the sequence of operations necessary for the execution of a single ISA instruction.

The sequencer must produce two kinds of information each cycle:

1. The state of every control signal in the system.

2. The address of the microinstruction that is to be executed next.

Figure 4-6 is a detailed block diagram of the complete microarchitecture of
our example machine, which we will call the Mic-1. It may look imposing ini-
tially but it is worth studying carefully. When you fully understand every box and
every line in this figure, you will be well on your way to understanding the
microarchitecture level. The block diagram has two parts: the data path, on the
left, which we have already discussed in detail, and the control section, on the
right, which we will now look at.

The largest and most important item in the control portion of the machine is a
memory called the control store. It is convenient to think of it as a memory that
holds the complete microprogram, although it is sometimes implemented as a set
of logic gates. In general, we will refer to it as the control store, to avoid confu-
sion with the main memory, accessed through MBR and MDR. However, function-
ally, the control store is a memory that simply holds microinstructions instead of
ISA instructions. For our example machine, it contains 512 words, each word
consisting of one 36-bit microinstruction of the kind illustrated in Fig. 4-5. Actu-
ally, not all of these words are needed, but (for reasons to be explained shortly)
we need addresses for 512 distinct words.

In one important way, the control store is quite different from the main mem-
ory: instructions in main memory are always executed in address order (except for
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Figure 4-6. The complete block diagram of our example microarchitecture, the Mic-1.

branches); microinstructions are not.

The act of incrementing the program

counter in Fig. 2-3 expresses the fact that the default instruction to execute after
the current one is the instruction following the current one in memory. Micropro-
grams need more flexibility (because microinstruction sequences tend to be short),
so they usually do not have this property. Instead, each microinstruction expli-

citly specifies its successor.
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Since the control store is functionally a (read-only) memory, it needs its own
memory address register and its own memory data register. It does not need read
and write signals, because it is continuously being read. We will call the control
store’s memory address register MPC (MicroProgram Counter). This name is
ironic since the locations in it are explicitly not ordered, so the concept of count-
ing is not useful (but who are we to argue with tradition?). The memory data reg-
ister is called MIR (Microlnstruction Register). Its function is to hold the
current microinstruction, whose bits drive the control signals that operate the data
path.

The MIR register in Fig. 4-6 holds the same six groups as Fig. 4-5. The Addr
and J (for JAM) groups control the selection of the next microinstruction and will
be discussed shortly. The ALU group contains the 8 bits that select the ALU func-
tion and drive the shifter. The C bits cause individual registers to load the ALU
output from the C bus. The M bits control memory operations.

Finally, the last 4 bits drive the decoder that determines what goes onto the B
bus. In this case we have chosen to use a standard 4-to-16 decoder, even though
only nine possibilities are required. In a more finely-tuned design, a 4-to-9
decoder could be used. The trade-off here is using a standard circuit taken from a
library of circuits versus designing a custom one. Using the standard circuit is
simpler and is unlikely to introduce any bugs. Rolling your own uses less chip
area but takes longer to design and you might get it wrong.

The operation of Fig. 4-6 is as follows. At the start of each clock cycle (the
falling edge of the clock in Fig. 4-3), MIR is loaded from the word in the control
store pointed to by MPC. The MIR load time is indicated in the figure by Aw. If
one thinks in terms of subcycles, MIR is loaded during the first one.

Once the microinstruction is set up in MIR, the various signals propagate out
into the data path. A register is put out onto the B bus, the ALU knows which
operation to perform, and there is lots of activity out there. This is the second
subcycle. After an interval Aw + Ax from the start of the cycle, the ALU inputs
are stable.

Another Ay later, everything has settled down and the ALU, N, Z, and shifter
outputs are stable. The N and Z values are then saved in a pair of 1-bit flip-flops.
These bits, like all the registers that are loaded from the C bus and from memory,
are saved on the rising edge of the clock, near the end of the data path cycle. The
ALU output is not latched but just fed into the shifter. The ALU and shifter
activity occurs during subcycle 3.

After an additional interval, Az, the shifter output has reached the registers via
the C bus. Then the registers can be loaded near the end of the cycle (at the rising
edge of the clock pulse in Fig. 4-3). Subcycle 4 consists of loading the registers
and N and Z flip-flops. It terminates a little after the rising edge of the clock,
when all the results have been saved and the results of the previous memory
operations are available and MPC has been loaded. This process goes on and on
until somebody gets bored with it and turns the machine off.
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In parallel with driving the data path, the microprogram has to determine
which microinstruction to execute next, as they need not be run in the order they
appear in the control store. The calculation of the address of the next microin-
struction begins after MIR has been loaded and is stable. First, the 9-bit
NEXT_ADDRESS field is copied to MPC. While this copy is taking place, the JAM
field is inspected. If it has the value 000, nothing else is done; when the copy of
NEXT_ADDRESS completes, MPC will point to the next microinstruction.

If one or more of the JAM bits are 1, more work is needed. If JAMN is set, the
1-bit N flip-flop is ORed into the high-order bit of MPC. Similarly, if JAMZ is set,
the 1-bit Z flip-flop is ORed there. If both are set, both are ORed there. The rea-
son that the N and Z flip-flops are needed is that after the rising edge of the clock
(while the clock is high), the B bus is no longer being driven, so the ALU outputs
can no longer be assumed to be correct. Saving the ALU status flags in N and Z
makes the correct values available and stable for the MPC computation, no matter
what is going on around the ALU.

In Fig. 4-6, the logic that does this computation is labeled “High bit.”” The
Boolean function it computes is

F = (JAMZ AND Z) OR (JAMN AND N) OR NEXT_ADDRESS[8§]

Note that in all cases, MPC can take on only one of two possible values:
1. The value of NEXT_ADDRESS.
2. The value of NEXT_ADDRESS with the high-order bit ORed with 1.

No other possibilities exist. If the high-order bit of NEXT_ADDRESS was already
1, using JAMN or JAMZ makes no sense.

Note that when the JAM bits are all zeros, the address of the next microinstruc-
tion to be executed is simply the 9-bit number in its NEXT_ADDRESS field. When
either JAMN or JAMZ are 1, there are two potential successors: NEXT_ADDRESS
and NEXT_ADDRESS ORed with 0x100 (assuming that NEXT_ADDRESS < OxFF).
(Note that Ox indicates that the number following it is in hexadecimal.) This point
is illustrated in Fig. 4-7. The current microinstruction, at location 0x75, has
NEXT_ADDRESS = 0x92 and JAMZ set to 1. Consequently, the next address of the
microinstruction depends on the Z bit stored on the previous ALU operation. If
the Z bit is 0, the next microinstruction comes from 0x92. If the Z bit is 1, the next
microinstruction comes from 0x192.

The third bit in the JAM field is JMPC. If it is set, the 8 MBR bits are bitwise
ORed with the 8 low-order bits of the NEXT_ADDRESS field coming from the
current microinstruction. The result is sent to MPC. The box with the label “O”
in Fig. 4-6 does an OR of MBR with NEXT_ADDRESS if JMPC is 1 but just passes
NEXT_ADDRESS through to MPC if JMPC is 0. When JMPC is 1, the low-order 8
bits of NEXT_ADDRESS are normally zero. The high-order bit can be 0 or 1, so the
NEXT_ADDRESS value used with JMPC is normally 0x000 or 0x100. The reason
for sometimes using 0x000 and sometimes using 0x100 will be discussed later.
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Address Addr JAM Data path control bits
0x75 0x92 001 JAMZ bit set
0x92 One of
these
will follow
0x75
depending
0x192 onZ

Figure 4-7. A microinstruction with JAMZ set to 1 has two potential successors.

The ability to OR MBR together with NEXT_ADDRESS and store the result in
MPC allows an efficient implementation of a multiway branch (jump). Notice that
any of 256 addresses can be specified, determined solely by the bits present in
MBR. In a typical use, MBR contains an opcode, so the use of JMPC will result in a
unique selection for the next microinstruction to be executed for every possible
opcode. This method is useful for quickly branching directly to the function
corresponding to the just-fetched opcode.

Understanding the timing of the machine is critical to what will follow, so it is
perhaps worth repeating it again. We will do it in terms of subcycles, since this is
easy to visualize, but the only real clock events are the falling edge, which starts
the cycle, and the rising edge, which loads the registers and the N and Z flip-flops.
Please refer to Fig. 4-3 once more.

During subcycle 1, initiated by the falling edge of the clock, MIR is loaded
from the address currently held in MPC. During subcycle 2, the signals from MIR
propagate out and the B bus is loaded from the selected register. During subcycle
3, the ALU and shifter operate and produce a stable result. During subcycle 4, the
C bus, memory buses, and ALU values become stable. At the rising edge of the
clock, the registers are loaded from the C bus, N and Z flip-flops are loaded, and
MBR and MDR get their results from the memory operation started at the end of the
previous data path cycle (if any). As soon as MBR is available, MPC is loaded in
preparation for the next microinstruction. Thus MPC gets its value sometime dur-
ing the middle of the interval when the clock is high but after MBR/MDR are ready.
It could be either level triggered (rather than edge triggered), or edge trigger a
fixed delay after the rising edge of the clock. All that matters is that MPC is not
loaded until the registers it depends on (MBR, N, and Z) are ready. As soon as the
clock falls, MPC can address the control store and a new cycle can begin.

Note that each cycle is self contained. It specifies what goes onto the B bus,
what the ALU and shifter are to do, where the C bus is to be stored, and finally,
what the next MPC value should be.

One final note about Fig. 4-6 is worth making. We have been treating MPC as
a proper register, with 9 bits of storage capacity that is loaded while the clock is
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high. In reality, there is no need to have a register there at all. All of its inputs
can be fed directly through to the control store. As long as they are present at the
control store at the falling edge of the clock when MIR is selected and read out,
that is sufficient. There is no need to actually store them in MPC. For this reason,
MPC might well be implemented as a virtual register, which is just a gathering
place for signals, more like an electronic patch panel, than a real register. Making
MPC a virtual register simplifies the timing: now events only happen on the falling
and rising edges of the clock and nowhere else. But if it is easier for you to think
of MPC as a real register, that is also a valid viewpoint.

4.2 AN EXAMPLE ISA: IJVM

Let us continue our example by introducing the ISA level of the machine to
be interpreted by the microprogram running on the microarchitecture of Fig. 4-6
(IJVM). For convenience, we will sometimes refer to the Instruction Set Archi-
tecture as the macroarchitecture, to contrast it with the microarchitecture.
Before we describe IJVM, however, we will digress slightly to motivate it.

4.2.1 Stacks

Virtually all programming languages support the concept of procedures
(methods), which have local variables. These variables can be accessed from
inside the procedure but cease to be accessible once the procedure has returned.
The question thus arises: “Where should these variables be kept in memory?”’

The simplest solution, to give each variable an absolute memory address, does
not work. The problem is that a procedure may call itself. We will study these
recursive procedures in Chap. 5. For the moment, suffice it to say that if a pro-
cedure is active (i.e., called) twice, it is impossible to store its variables in abso-
lute memory locations because the second invocation will interfere with the first.

Instead, a different strategy is used. An area of memory, called the stack, is
reserved for variables, but individual variables do not get absolute addresses in it.
Instead, a register, say, LV, is set to point to the base of the local variables for the
current procedure. In Fig. 4-8(a), a procedure A, which has local variables al, a2,
and a3, has been called, so storage for its local variables has been reserved start-
ing at the memory location pointed to by LV. Another register, SP, points to the
highest word of A’s local variables. If LV is 100 and words are 4 bytes, then SP
will be 108. Variables are referred to by giving their offset (distance) from LV.
The data structure between LV and SP (and including both words pointed to) is
called A’s local variable frame.

Now let us consider what happens if A calls another procedure, B. Where
should B’s four local variables (b1, b2, b3, b4) be stored? Answer: On the stack,
on top of A’s, as shown in Fig. 4-8(b). Notice that LV has been adjusted by the
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SP — c2
LV — ci SP — d5
SP — b4 b4 d4
b3 b3 d3
b2 b2 d2
LV — b1 b1 LV — di
SP — a3 108 a3 a3 a3
a2 104 a2 a2 a2
LV — ai 100 al ai al

(a) (b) () (d)

Figure 4-8. Use of a stack for storing local variables. (a) While A is active.
(b) After A calls B. (c) After B calls C. (d) After C and B return and A calls D.

procedure call to point to B’s local variables instead of A’s. B’s local variables
can be referred to by giving their offset from LV. Similarly, if B calls C, LV and SP
are adjusted again to allocate space for C’s two variables, as shown in Fig. 4-8(c).

When C returns, B becomes active again, and the stack is adjusted back to
Fig. 4-8(b) so that LV now points to B’s local variables again. Likewise, when B
returns, we get back to the situation of Fig. 4-8(a). Under all conditions, LV points
to the base of the stack frame for the currently active procedure, and SP points to
the top of the stack frame.

Now suppose that A calls D, which has five local variables. We get the situa-
tion of Fig. 4-8(d), in which D’s local variables use the same memory that B’s did,
as well as part of C’s. With this memory organization, memory is only allocated
for procedures that are currently active. When a procedure returns, the memory
used by its local variables is released.

Stacks have another use, in addition to holding local variables. They can be
used for holding operands during the computation of an arithmetic expression.
When used this way, the stack is referred to as the operand stack. Suppose, for
example, that before calling B, A has to do the computation

al =a2 + a3;

One way of doing this sum is to push a2 onto the stack, as shown in Fig. 4-9(a).
Here SP has been incremented by the number of bytes in a word, say, 4, and the
first operand stored at the address now pointed to by SP. Next, a3 is pushed onto
the stack, as shown in Fig. 4-9(b). As an aside on notation, we will typeset all
program fragments in Helvetica, as above. We will also use this font for assembly
language opcodes and machine registers, but in running text, program variables
and procedures will be given in italics. The difference is that variables and pro-
cedure names are chosen by the user; opcodes and register names are built in.

The actual computation can be done by now executing an instruction that pops
two words off the stack, adds them together, and pushes the result back onto the
stack, as shown in Fig. 4-9(c). Finally, the top word can be popped off the stack
and stored back in local variable al, as illustrated in Fig. 4-9(d).
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SP — a3
SP — a2 a2 SP—>{ a2+a3
a3 a3 a3 SP — a3
a2 a2 a2 a2
LV — ai LV — EY LV — al LV — a2 + a3

(a) (b) (c) (d)

Figure 4-9. Use of an operand stack for doing an arithmetic computation.

The local variable frames and the operand stacks can be intermixed. For ex-
ample, when computing an expression like x% + f(x) part of the expression (e.g.,
x?) may be on the operand stack when a function f is called. The result of the
function is left on the stack, on top of x2, so the next instruction can add them.

It is worth noting that while all machines use a stack for storing local vari-
ables, not all use an operand stack like this for doing arithmetic. In fact, most of
them do not, but JVM and IJVM work like this, which is why we have introduced
stack operations here. We will study them in more detail in Chap. 5.

4.2.2 The IJVM Memory Model

We are now ready to look at the IIVM’s architecture. Basically, it consists of
a memory that can be viewed in either of two ways: an array of 4,294,967,296
bytes (4 GB) or an array of 1,073,741,824 words, each consisting of 4 bytes.
Unlike most ISAs, the Java Virtual Machine makes no absolute memory addresses
directly visible at the ISA level, but there are several implicit addresses that pro-
vide the base for a pointer. IJVM instructions can only access memory by index-
ing from these pointers. At any time, the following areas of memory are defined:

1. The Constant Pool. This area cannot be written by an IJVM program
and consists of constants, strings, and pointers to other areas of mem-
ory that can be referenced. It is loaded when the program is brought
into memory and not changed afterward. There is an implicit regis-
ter, CPP, that contains the address of the first word of the constant
pool.

2. The Local Variable Frame. For each invocation of a method, an area
is allocated for storing variables during the lifetime of the invocation.
It is called the local variable frame. At the beginning of this frame
reside the parameters (also called arguments) with which the method
was invoked. The local variable frame does not include the operand
stack, which is separate. However, for efficiency reasons, our imple-
mentation chooses to implement the operand stack immediately
above the local variable frame. There is an implicit register that con-
tains the address of the first location in the local variable frame. We
will call this register LV. The parameters passed at the invocation of
the method are stored at the beginning of the local variable frame.
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The Operand Stack. The stack frame is guaranteed not to exceed a
certain size, computed in advance by the Java compiler. The oper-
and stack space is allocated directly above the local variable frame,
as illustrated in Fig. 4-10. In our implementation, it is convenient to
think of the operand stack as part of the local variable frame. In any
case, there is an implicit register that contains the address of the top
word of the stack. Notice that, unlike CPP and LV, this pointer, SP,
changes during the execution of the method as operands are pushed
onto the stack or popped from it.

The Method Area. Finally, there is a region of memory containing
the program, referred to as the “text” area in a UNIX process. There
is an implicit register that contains the address of the instruction to
be fetched next. This pointer is referred to as the Program Counter,
or PC. Unlike the other regions of memory, the Method Area is
treated as a byte array.

Current SP
Operand
Stack 3

249

Current
Local
Variable
Frame 3

Constant
Pool

Local
Variable
Frame 2

Local Method
Variable Area
Frame 1

~——CPP

~— PC

Figure 4-10. The various parts of the IJVM memory.

One point needs to be made regarding the pointers. The CPP, LV, and SP reg-
isters are all pointers to words, not bytes, and are offset by the number of words.
For the integer subset we have chosen, all references to items in the constant pool,
the local variables frame, and the stack are words, and all offsets used to index
into these frames are word offsets. For example, LV, LV + 1, and LV + 2 refer to
the first three words of the local variables frame. In contrast, LV, LV + 4, and LV +
8 refer to words at intervals of four words (16 bytes).

In contrast, PC contains a byte address, and an addition or subtraction to PC
changes the address by a number of bytes, not a number of words. Addressing for
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PC is different from the others, and this fact is apparent in the special memory
port provided for PC on the Mic-1. Remember that it is only 1 byte wide. Incre-
menting PC by one and initiating a read results in a fetch of the next byte. Incre-
menting SP by one and initiating a read results in a fetch of the next word.

4.2.3 The IJVM Instruction Set

The IJVM instruction set is shown in Fig. 4-11. Each instruction consists of
an opcode and sometimes an operand, such as a memory offset or a constant. The
first column gives the hexadecimal encoding of the instruction. The second gives
its assembly language mnemonic. The third gives a brief description of its effect.

Hex Mnemonic Meaning

0x10 | BIPUSH byte Push byte onto stack

0x59 | DUP Copy top word on stack and push onto stack
0xA7 | GOTO offset Unconditional branch

0x60 IADD Pop two words from stack; push their sum
Ox7E | IAND Pop two words from stack; push Boolean AND
0x99 | IFEQ offset Pop word from stack and branch if it is zero
0x9B | IFLT offset Pop word from stack and branch if it is less than zero
0x9F | IF_ICMPEQ offset Pop two words from stack; branch if equal
0x84 IINC varnum const Add a constant to a local variable

0x15 ILOAD varnum Push local variable onto stack

0xB6 | INVOKEVIRTUAL disp | Invoke a method

0x80 | IOR Pop two words from stack; push Boolean OR
O0xAC | IRETURN Return from method with integer value

0x36 | ISTORE varnum Pop word from stack and store in local variable
0x64 | ISUB Pop two words from stack; push their difference
0x13 | LDC_W index Push constant from constant pool onto stack
0x00 | NOP Do nothing
0x57 | POP Delete word on top of stack
Ox5F | SWAP Swap the two top words on the stack
0xC4 | WIDE Prefix instruction; next instruction has a 16-bit index

Figure 4-11. The IJVM instruction set. The operands byte, const, and varnum
are 1 byte. The operands disp, index, and offset are 2 bytes.

Instructions are provided to push a word from various sources onto the stack.
These sources include the constant pool (LDC_W), the local variable frame
(ILOAD), and the instruction itself (BIPUSH). A variable can also be popped from
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the stack and stored into the local variable frame (ISTORE). Two arithmetic
operations (IADD and ISUB) as well as two logical (Boolean) operations (IAND and
IOR) can be performed using the two top words on the stack as operands. In all
the arithmetic and logical operations, two words are popped from the stack and
the result pushed back onto it. Four branch instructions are provided, one uncon-
ditional (GOTO) and three conditional ones (IFEQ, IFLT, and IF_ICMPEQ). All the
branch instructions, if taken, adjust the value of PC by the size of their (16-bit
signed) offset, which follows the opcode in the instruction. This offset is added to
the address of the opcode. There are also IJVM instructions for swapping the top
two words on the stack (SWAP), duplicating the top word (DUP), and removing it
(POP).

Some instructions have multiple formats, allowing a short form for
commonly-used versions. In IJVM we have included two of the various mechan-
isms JVM uses to accomplish this. In one case we have skipped the short form in
favor of the more general one. In another case we show how the prefix instruction
WIDE can be used to modify the ensuing instruction.

Finally, there is an instruction (INVOKEVIRTUAL) for invoking another method,
and another instruction (IRETURN) for exiting the method and returning control to
the method that invoked it. Due to the complexity of the mechanism we have
slightly simplified the definition, making it possible to produce a straightforward
mechanism for invoking a call and return. The restriction is that, unlike Java, we
only allow a method to invoke a method existing within its own object. This res-
triction severely cripples the object orientation but allows us to present a much
simpler mechanism, by avoiding the requirement to locate the method dynami-
cally. (If you are not familiar with object-oriented programming, you can safely
ignore this remark. What we have done is turn Java back into a nonobject-
oriented language, such as C or Pascal.) On all computers except JVM, the
address of the procedure to call is determined directly by the CALL instruction, so
our approach is actually the normal case, not the exception.

The mechanism for invoking a method is as follows. First, the caller pushes
onto the stack a reference (pointer) to the object to be called. (This reference is
not needed in IJVM since no other object may be specified, but it is retained for
consistency with JVM.) In Fig. 4-12(a) this reference is indicated by OBJREF.
Then the caller pushes the method’s parameters onto the stack, in this example,
Parameter 1, Parameter 2, and Parameter 3. Finally, INVOKEVIRTUAL is exe-
cuted.

The INVOKEVIRTUAL instruction includes a displacement which indicates the
position in the constant pool that contains the start address within the Method
Area for the method being invoked. However, while the method code resides at
the location pointed to by this pointer, the first 4 bytes in the method area contain
special data. The first 2 bytes are interpreted as a 16-bit integer indicating the
number of parameters for the method (the parameters themselves have previously
been pushed onto the stack). For this count, OBJREF is counted as a parameter:
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parameter 0. This 16-bit integer, together with the value of SP, provides the loca-
tion of OBJREF. Note that LV points to OBJREF rather than the first real parame-
ter. The choice where LV points is somewhat arbitrary.

The second 2 bytes in the method area are interpreted as another 16-bit
integer indicating the size of the local variable area for the method being invoked.
This is necessary because a new stack will be established for the method, begin-
ning immediately above the local variable frame. Finally, the fifth byte in the
method area contains the first opcode to be executed.

Stack after
INVOKEVIRTUAL

Caller's LV ~—SP
> Caller's PC
Space for
Stack before caller's local
INVOKEVIRTUAL variables
Parameter 3 |<—SP Stactjt base Parameter 3
after
Pushed Parameter 2 INVOKEVIRTUAL Parameter 2
parameters Parameter 1 Parameter 1
OBJREF [ L ___________ — Link ptr ~— LV
Previous LV Previous LV
Previous PC ™| Previous PC
Caller's Caller's Caller's
local J chal chal
variable variables Stack base variables
frame Parameter 2 before Parameter 2
Parameter 1 INVOKEVIRTUAL Parameter 1
— Link ptr ~—Lwv vy 0 —1 Link ptr

(a) (b)

Figure 4-12. (a) Memory before executing INVOKEVIRTUAL. (b) After executing it.

The actual sequence that occurs for INVOKEVIRTUAL is as follows and is dep-
icted in Fig. 4-12. The two unsigned index bytes that follow the opcode are used
to construct an index into the constant pool table (the first byte is the high-order
byte). The instruction computes the base address of the new local variable frame
by subtracting off the number of parameters from the stack pointer and setting LV
to point to OBJREF. At this location, overwriting OBJREF, the implementation
stores the address of the location where the old PC is to be stored. This address is
computed by adding the size of the local variable frame (parameters + local vari-
ables) to the address contained in LV. Immediately above the address where the
old PC is to be stored is the address where the old LV is to be stored. Immediately
above that address is the beginning of the stack for the newly-called procedure.
SP is set to point to the old LV, which is the address immediately below the first
empty location on the stack. Remember that SP always points to the top word on
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the stack. If the stack is empty, it points to the first location below the end of the
stack because our stacks grow upward, toward higher addresses. In our figures,
stacks always grow upward, toward the higher address at the top of the page.

The last operation needed to carry out INVOKEVIRTUAL is to set PC to point to
the fifth byte in the method code space.

Stack before

IRETURN
Return value |<—SP
Previous LV
™| Previous PC
Caller's
local
variables
Parameter 3 Stic‘; base
Parameter 2 etore Stack after
IRETURN
Parameter 1 IRETURN
— Link ptr ~—wv ; ________ Return value [<—SP
Previous LV Previous LV
™ Previous PC Previous PC
Caller's Caller's Caller's
local local local
variable variables Stack base variables
frame Parameter 2 after Parameter 2
Parameter 1 IRETURN Parameter 1
— Linkptr | L_ ___________ — Link ptr ~— LV

(a) (b)

Figure 4-13. (a) Memory before executing IRETURN. (b) After executing it.

The IRETURN instruction reverses the operations of the INVOKEVIRTUAL
instruction, as shown in Fig. 4-13. It deallocates the space used by the returning
method. It also restores the stack to its former state, except that (1) the (now
overwritten) OBJREF word and all the parameters have been popped from the
stack, and (2) the returned value has been placed at the top of the stack, at the
location formerly occupied by OBJREF. To restore the old state, the IRETURN
instruction must be able to restore the PC and LV pointers to their old values. It
does this by accessing the link pointer (which is the word identified by the current
LV pointer). In this location, remember, where the OBJREF was originally stored,
the INVOKEVIRTUAL instruction stored the address containing the old PC. This
word and the word above it are retrieved to restore PC and LV, respectively, to
their old values. The return value, which is stored at the top of the stack of the
terminating method, is copied to the location where the OBJREF was originally
stored, and SP is restored to point to this location. Control is therefore returned to
the instruction immediately following the INVOKEVIRTUAL instruction.
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So far, our machine does not have any input/output instructions. Nor are we
going to add any. It does not need them any more than the Java Virtual Machine
needs them, and the official specification for JVM never even mentions I/O. The
theory is that a machine that does no input or output is “safe.”” (Reading and writ-
ing are performed in JVM by means of calls to special I/O methods.

4.2.4 Compiling Java to IJVM

Let us now see how Java and IJVM relate to one another. In Fig. 4-14(a) we
show a simple fragment of Java code. When fed to a Java compiler, the compiler
would probably produce the [JVM assembly language shown in Fig. 4-14(b). The
line numbers from 1 to 15 at the left of the assembly language program are not
part of the compiler output. Nor are the comments (starting with //). They are
there to help explain a subsequent figure. The Java assembler would then
translate the assembly program into the binary program shown in Fig. 4-14(c).
(Actually, the Java compiler does its own assembly and produces the binary pro-
gram directly.) For this example, we have assumed that i is local variable 1, j is
local variable 2, and % is local variable 3.

i=j+k 1 ILOAD j Ni=j+k 0x15 0x02
if (i == 3) 2 ILOAD k 0x15 0x03
k=0; 3 IADD 0x60
else 4 ISTORE i 0x36 0x01
j=j-1; 5 ILOAD i /1 (i == 3) 0x15 0x01
6 BIPUSH 3 0x10 0x03
7 IF_ICMPEQ L1 0x9F 0x00 0xOD
8 ILOAD Ni=j-1 0x15 0x02
9 BIPUSH 1 0x10 0x01
10 ISUB 0x64
11 ISTORE j 0x36 0x02
12 GOTO L2 OXA7 0x00 0x07
13 L1: BIPUSH 0 k=0 0x10 0x00
14 ISTORE k 0x36 0x03
15 L2:

(a) (b) (©

Figure 4-14. (a) A Java fragment. (b) The corresponding Java assembly
language. (c) The IJVM program in hexadecimal.

The compiled code is straightforward. First j and k are pushed onto the stack,
added, and the result stored in i. Then i and the constant 3 are pushed onto the
stack and compared. If they are equal, a branch is taken to L/, where k is set to 0.
If they are unequal, the compare fails and code following IF_ICMPEQ is executed.
When it is done, it branches to L2, where the then and else parts merge.
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The operand stack for the IIVM program of Fig. 4-14(b) is shown in Fig. 4-
15. Before the code starts executing, the stack is empty, indicated by the horizon-
tal line above the 0. After the first ILOAD, j is on the stack, as indicated by the
boxed j above the 1 (meaning instruction 1 has executed). After the second
ILOAD, two words are on the stack, as shown above the 2. After the IADD, there is
only one word on the stack, and it contains the sum j + k. When the top word is
popped from the stack and stored in i, the stack is empty, as shown above the 4.

K 3
L | j Lj+k | L i | i
0 1 2 3 4 5 6 7
i
L | i =1 | 0
8 9 10 11 12 13 14 15

Figure 4-15. The stack after each instruction of Fig. 4-14(b).

Instruction 5 (ILOAD) starts the if statement by pushing i onto the stack (in 5)
Next comes the constant 3 (in 6). After the comparison, the stack is empty again
(7). Instruction 8 is the start of the else part of the Java program fragment. The
else part continues until instruction 12, at which time it branches over the then
part and goes to label L2.

4.3 AN EXAMPLE IMPLEMENTATION

Having specified both the microarchitecture and the macroarchitecture in
detail, the remaining issue is the implementation. In other words, what does a
program running on the former and interpreting the latter look like, and how does
it work? Before we can answer these questions, we must carefully consider the
notation we will use to describe the implementation.

4.3.1 Microinstructions and Notation

In principle, we could describe the control store in binary, 36 bits per word.
But as in conventional programming languages, there is great benefit in introduc-
ing notation that conveys the essence of the issues we need to deal with while
obscuring the details that can be ignored, or can be better handled automatically.
It is important to realize here that the language we have chosen is intended to
illustrate the concepts rather than to facilitate efficient designs. If the latter were
our goal, we would use a different notation to maximize the flexibility available to
the designer. One aspect where this issue is important is the choice of addresses.
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Since the memory is not logically ordered, there is no natural “next instruction™
to be implied as we specify a sequence of operations. Much of the power of this
control organization derives from the ability of the designer (or the assembler) to
select addresses efficiently. We therefore begin by introducing a simple symbolic
language that fully describes each operation without explaining fully how all
addresses may have been determined.

Our notation specifies all the activities that occur in a single clock cycle in a
single line. We could, in theory, use a high-level language to describe the opera-
tions. However, cycle-by-cycle control is very important because it gives the op-
portunity to perform multiple operations concurrently, and it is necessary to be
able to analyze each cycle to understand and verify the operations. If the goal is a
fast, efficient implementation (other things being equal, fast and efficient is al-
ways better than slow and inefficient), then every cycle counts. In a real imple-
mentation, many subtle tricks are hidden in the program, using obscure sequences
or operations in order to save a single cycle. There is a high payoff for saving
cycles: a four-cycle instruction that can be reduced by two cycles now runs twice
as fast. And this speedup is obtained every time we execute the instruction.

One possible approach is simply to list the signals that should be activated
each clock cycle. Suppose that in one cycle we want to increment the value of
SP. We also want to initiate a read operation, and we want the next instruction to
be the one residing at location 122 in the control store. We might write

ReadRegister = SP, ALU = INC, WSP, Read, NEXT_ADDRESS = 122

where WSP means “write the SP register.”” This notation is complete, but hard to
understand. Instead we will combine the operations in a natural and intuitive way
to capture the effect of what is happening:

SP=SP+1;rd

Let us call our high-level Micro Assembly Language “MAL” (French for
“sick,” something you become if you have to write too much code in it). MAL is
tailored to reflect the characteristics of the microarchitecture. During each cycle,
any of the registers can be written, but typically only one is. Only one register
can be gated to the B side of the ALU. On the A side, the choices are +1, 0, —1,
and the register H. Thus we can use a simple assignment statement, as in Java, to
indicate the operation to be performed. For example, to copy something from SP
to MDR, we can say

MDR = SP

To indicate the use of the ALU functions other than passing through the B
bus, we can write, for example,

MDR =H + SP

which adds the contents of the H register to SP and writes the result into MDR.
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The + operator is commutative (which means that the order of the operands does
not matter), so the above statement can also be written as

MDR = SP + H

and generate the same 36-bit microinstruction, even though strictly speaking H
must be the left ALU operand.

We have to be careful to use only legal operations. The most important legal
operations are shown in the Fig. 4-16, where SOURCE can be any of MDR, PC,
MBR, MBRU, SP, LV, CPP, TOS, or OPC (MBRU implies the unsigned version of
MBR). These registers can all act as sources to the ALU on the B bus. Similarly,
DEST can be any of MAR, MDR, PC, SP, LV, CPP, TOS, OPC, or H, all of which are
possible destinations for the ALU output on the C bus. This format is deceptive
because many seemingly reasonable statements are illegal. For example,

MDR = SP + MDR

looks perfectly reasonable, but there is no way to execute it on the data path of
Fig. 4-6 in one cycle. This restriction exists because for an addition (other than
increment or decrement) one of the operands must be the H register. Likewise,

H=H - MDR

might be useful, but it, too, is impossible, because the only possible source of a
subtrahend (the value being subtracted) is the H register. It is up to the assembler
to reject statements that look valid but are, in fact, illegal.

We extend the notation to permit multiple assignments by the use of multiple
equal signs. For example, adding 1 to SP and storing it back into SP as well as
writing it into MDR can be accomplished by

SP=MDR =SP +1

To indicate memory reads and writes of 4-byte data words, we will just put rd
and wr in the microinstruction. Fetching a byte through the 1-byte port is indi-
cated by fetch. Assignments and memory operations can occur in the same cycle.
This is indicated by writing them on the same line.

To avoid any confusion, let us repeat the fact that the Mic-1 has two ways of
accessing memory. Reads and writes of 4-byte data words use MAR/MDR and are
indicated in the microinstructions by rd and wr, respectively. Reads of 1-byte
opcodes from the instruction stream use PC/MBR and are indicated by fetch in the
microinstructions. Both kinds of memory operations can proceed simultaneously.

However, the same register may not receive a value from memory and the
data path in the same cycle. Consider the code

MAR = SP; rd
MDR =H

The effect of the first microinstruction is to assign a value from memory to MDR at
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DEST =H
DEST = SOURCE
DEST =H

DEST = SOURCE

DEST = H + SOURCE
DEST = H + SOURCE + 1
DEST=H + 1

DEST = SOURCE + 1
DEST = SOURCE - H
DEST = SOURCE - 1
DEST =-H

DEST = H AND SOURCE
DEST = H OR SOURCE

DEST =0
DEST =1
DEST = -1

Figure 4-16. All permitted operations. Any of the above operations may be ex-
tended by adding “<< 8” to them to shift the result left by 1 byte. For example,
a common operation isH=MBR < < 8

the end of the second microinstruction. However, the second microinstruction
also assigns a value to MDR at the same time. These two assignments are in con-
flict and are not permitted as the results are undefined.

Remember that each microinstruction must explicitly supply the address of
the next microinstruction to be executed. However, it commonly occurs that a
microinstruction is invoked only by one other microinstruction, namely, by the
one on the line immediately above it. To ease the microprogrammer’s job, the
microassembler normally assigns an address to each microinstruction (not neces-
sarily consecutive in the control store), and fills in the NEXT_ADDRESS field so
that microinstructions written on consecutive lines are executed consecutively.

However, sometimes the microprogrammer wants to branch away, either
unconditionally or conditionally. The notation for unconditional branches is easy:

goto label
can be included in any microinstruction to explicitly name its successor. For
example, most microinstruction sequences end with a return to the first instruction
of the main loop, so the last instruction in each such sequence typically includes

goto Main1

Note that the data path is available for normal operations even during a microin-
struction that contains a goto. After all, every single microinstruction contains a
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NEXT_ADDRESS field. All goto does is instruct the microassembler to put a
specific value there instead of the address where it has decided to place the
microinstruction on the next line. In principle, every line should have a goto
statement, only as a convenience to the microprogrammer, when the target
address is the next line, it may be omitted.

For conditional branches, we need a different notation. Remember that JAMN
and JAMZ use the N and Z bits, which are set based on the ALU output. Some-
times it is needed to test a register to see if it is zero, for example. One way to do
this would be to run it through the ALU and store it back in itself. Writing

TOS =TOS

looks peculiar, although it does the job (setting the Z flip-flop based on TOS).
However, to make microprograms look nicer, we now extend MAL, adding two
new imaginary registers, N and Z, which can be assigned to. For example,

Z=TOS

runs TOS through the ALU, thus setting the Z (and N) flip-flops, but it does not do
a store into any register. What using Z or N as a destination really does is tell the
microassembler to set all the bits in the C field of Fig. 4-5 to 0. The data path exe-
cutes a normal cycle, with all normal operations allowed, but no registers are writ-
ten to. Note that it does not matter whether the destination is N or Z; the microin-
struction generated by the microassembler is identical. Programmers who inten-
tionally choose the “wrong” one should be forced to work on a 4.77 MHz original
IBM PC for a week as punishment.
The syntax for telling the microassembler to set the JAMZ bit is

if (Z) goto L1; else goto L2

Since the hardware requires these two addresses to be identical in their low-order
8 bits, it is up to the microassembler to assign them such addresses. On the other
hand, since L2 can be anywhere in the bottom 256 words of the control store, the
microassembler has a lot of freedom in finding an available pair.

Normally, these two statements will be combined, for example,

Z =TOS; if (Z) goto L1; else goto L2

The effect of this statement is that MAL generates a microinstruction in which
TOS is run through the ALU (but not stored anywhere) so that its value sets the Z
bit. Shortly after Z has been loaded from the ALU condition bit, it is ORed into
the high-order bit of MPC, forcing the address of the next microinstruction to be
fetched from either L2 or L/ (which must be exactly 256 more than L2). MPC will
be stable and ready to use for fetching the next microinstruction.

Finally, we need a notation for using the JMPC bit. The one we will use is

goto (MBR OR value)
This syntax tells the microassembler to use value for NEXT_ADDRESS and set the
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JMPC bit so that MBR is ORed into MPC along with NEXT_ADDRESS. If value is 0,
which is the normal case, it is sufficient to just write

goto (MBR)

Note that only the low-order 8 bits of MBR are wired to MPC (see Fig. 4-6), so the
issue of sign extension (i.e., MBR versus MBRU) does not arise here. Also note that
the MBR available at the end of the current cycle is the one used. A fetch started
in this microinstruction is too late to affect the choice of the next microinstruction.

4.3.2 Implementation of IJVM Using the Mic-1

We have finally reached the point where we can put all the pieces together.
Figure 4-17 is the microprogram that runs on Mic-1 and interprets [JIVM. It is a
surprisingly short program—only 112 microinstructions total. Three columns are
given for each microinstruction: the symbolic label, the actual microcode, and a
comment. Note that consecutive microinstructions are not necessarily located in
consecutive addresses in the control store, as we have already pointed out.

By now the choice of names for most of the registers in Fig. 4-1 should be
obvious: CPP, LV, and SP are used to hold the pointers to the constant pool, local
variables, and the top of the stack, respectively, while PC holds the address of the
next byte to be fetched from the instruction stream. MBR is a 1-byte register that
sequentially holds the bytes of the instruction stream as they come in from mem-
ory to be interpreted. TOS and OPC are extra registers. Their use is described
below.

At certain times, each of these registers is guaranteed to hold a certain value,
but each can be used as a temporary register if needed. At the beginning and end
of each instruction, TOS contains the value of the memory location pointed to by
SP, the top word on the stack. This value is redundant since it can always be read
from memory, but having it in a register often saves a memory reference. For a
few instructions maintaining TOS means more memory operations. For example,
the POP instruction throws away the top word, and therefore must fetch the new
top-of-stack word from the memory into TOS.

The OPC register is a temporary (i.e., scratch) register. It has no preassigned
use. It is used, for example, to save the address of the opcode for a branch
instruction while PC is incremented to access parameters. It is also used as a tem-
porary register in the IJVM conditional branch instructions.

Like all interpreters, the microprogram of Fig.4-17 has a main loop that
fetches, decodes, and executes instructions from the program being interpreted, in
this case, IJVM instructions. Its main loop begins on the line labeled Main1. It
starts with the invariant that PC has previously been loaded with an address of a
memory location containing an opcode. Furthermore, that opcode has already
been fetched into MBR. Note this implies however, that when we get back to this
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location, we must ensure that PC has been updated to point to the next opcode to
be interpreted and the opcode byte itself has already been fetched into MBR.

This initial instruction sequence is executed at the beginning of every instruc-
tion, so it is important that it be as short as possible. Through very careful design
of the Mic-1 hardware and software, we have managed to reduce the main loop to
a single microinstruction. Once the machine has started, every time this microin-
struction is executed, the IJVM opcode to execute is already present in MBR.
What the microinstruction does is branch to the microcode for executing this
IJVM instruction and also begin fetching the byte following the opcode, which
may be either an operand byte or the next opcode.

Now we can reveal the real reason each microinstruction explicitly names its
successor, instead of having them be executed sequentially. All the control store
addresses corresponding to opcodes must be reserved for the first word of the
corresponding instruction interpreter. Thus from Fig. 4-11 we see that the code
that interprets POP starts at 0x57 and the code that interprets DUP starts at 0x59.
(How MAL knows to put POP at 0x57 is one of the mysteries of the universe—
presumably there is a file somewhere that tells it.)

Unfortunately, the code for POP is three microinstructions long, so if placed in
consecutive words, it would interfere with the start of DUP. Since all the control
store addresses corresponding to opcodes are effectively reserved, the microin-
structions other than the initial one in each sequence must be stuffed away in the
holes between reserved addresses. For this reason, there is a great deal of jump-
ing around, so having an explicit microbranch (a microinstruction that branches)
every few microinstructions to hop from hole to hole would be very wasteful.

To see how the interpreter works, let us assume, for example, that MBR con-
tains the value 0x60, that is, the opcode for IADD (see Fig.4-11). In the one-
microinstruction main loop we accomplish three things:

1. Increment the PC, leaving it containing the address of the first byte
after the opcode.

2. Initiate a fetch of the next byte into MBR. This byte will always be
needed sooner or later, either as an operand for the current IJVM
instruction or as the next opcode (as in the case of the IADD instruc-
tion, which has no operand bytes).

3. Perform a multiway branch to the address contained in MBR at the
start of Main1. This address is equal to the numerical value of the
opcode currently being executed. It was placed there by the previous
microinstruction. Note carefully that the value being fetched in this
microinstruction does not play any role in the multiway branch.

The fetch of the next byte is started here so it will be available by the start of the
third microinstruction. It may or may not be needed then, but it will be needed
eventually, so starting the fetch now cannot do any harm in any case.
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Label Operations Comments

Main1 PC = PC + 1; fetch; goto (MBR) MBR holds opcode; get next byte; dispatch
nop1 goto Main1 Do nothing

jadd1 MAR=SP=SP-1;rd Read in next-to-top word on stack

iadd2 H=TOS H = top of stack

iadd3 MDR = TOS = MDR + H; wr; goto Main1 Add top two words; write to top of stack
isub1 MAR=SP=SP-1;rd Read in next-to-top word on stack

isub2 H=TOS H = top of stack

isub3 MDR = TOS = MDR - H; wr; goto Main1 Do subtraction; write to top of stack

jand1 MAR=SP=SP-1;rd Read in next-to-top word on stack

iand2 H=TOS H = top of stack

iand3 MDR =TOS =MDR AND H; wr; goto Main1 Do AND; write to new top of stack

ior1 MAR=SP=SP-1;rd Read in next-to-top word on stack

ior2 H=TOS H = top of stack

ior3 MDR = TOS = MDR OR H; wr; goto Main1 Do OR; write to new top of stack

dup1 MAR =SP =SP + 1 Increment SP and copy to MAR

dup2 MDR = TOS; wr; goto Main1 Write new stack word

pop1 MAR =SP =SP - 1; rd Read in next-to-top word on stack

pop2 Wait for new TOS to be read from memory
pop3 TOS = MDR; goto Main1 Copy new word to TOS

swap1 MAR =SP - 1; rd Set MAR to SP - 1; read 2nd word from stack
swap2 MAR = SP Set MAR to top word

swap3 H = MDR; wr Save TOS in H; write 2nd word to top of stack
swap4 MDR =TOS Copy old TOS to MDR

swap5 MAR = SP — 1; wr Set MAR to SP — 1; write as 2nd word on stack
swap6 TOS = H; goto Main1 Update TOS

bipush1 SP =MAR =SP + 1 MBR = the byte to push onto stack

bipush2 PC = PC + 1; fetch Increment PC, fetch next opcode

bipush3 MDR = TOS = MBR; wr; goto Main1 Sign-extend constant and push on stack
iload1 H=LV MBR contains index; copy LV to H

iload2 MAR = MBRU + H; rd MAR = address of local variable to push
iload3 MAR =SP =SP + 1 SP points to new top of stack; prepare write
iload4 PC = PC + 1; fetch; wr Inc PC; get next opcode; write top of stack
iload5 TOS = MDR; goto Main1 Update TOS

istore1 H=LV MBR contains index; Copy LV to H

istore2 MAR = MBRU + H MAR = address of local variable to store into
istore3 MDR = TOS; wr Copy TOS to MDR; write word

istore4 SP=MAR=SP -1;rd Read in next-to-top word on stack

istoreb PC = PC + 1; fetch Increment PC; fetch next opcode

istore6 TOS = MDR; goto Main1 Update TOS

wide1 PC = PC + 1; fetch; Fetch operand byte or next opcode

wide2 goto (MBR OR 0x100) Multiway branch with high bit set
wide_iload1 PC = PC + 1; fetch MBR contains 1st index byte; fetch 2nd
wide_iload2 H=MBRU << 8 H = 1st index byte shifted left 8 bits
wide_iload3 H=MBRU ORH H = 16-bit index of local variable
wide_iload4 MAR =LV + H; rd; goto iload3 MAR = address of local variable to push
wide_istore1 PC = PC + 1; fetch MBR contains 1st index byte; fetch 2nd
wide_istore2 H=MBRU << 8 H = 1st index byte shifted left 8 bits
wide_istore3 H=MBRU ORH H = 16-bit index of local variable
wide_istore4 MAR =LV + H; goto istore3 MAR = address of local variable to store into
ldc_w1 PC = PC + 1; fetch MBR contains 1st index byte; fetch 2nd
ldc_w2 H=MBRU << 8 H = 1st index byte << 8

ldc_w3 H=MBRU ORH H = 16-bit index into constant pool

ldc_w4 MAR = H + CPP; rd; goto iload3 MAR = address of constant in pool
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Label Operations Comments

iinct H=LV MBR contains index; Copy LV to H

iinc2 MAR = MBRU + H; rd Copy LV + index to MAR; Read variable
iinc3 PC = PC + 1; fetch Fetch constant

iinc4 H = MDR Copy variable to H

iincs PC = PC + 1; fetch Fetch next opcode

iincé MDR = MBR + H; wr; goto Main1 Put sum in MDR; update variable

goto1 OPC=PC-1 Save address of opcode.

goto2 PC = PC + 1; fetch MBR = 1st byte of offset; fetch 2nd byte
goto3 H=MBR << 8 Shift and save signed first byte in H

goto4 H=MBRU ORH H = 16-bit branch offset

goto5 PC = OPC + H; fetch Add offset to OPC

goto6 goto Main1 Wait for fetch of next opcode

iflt1 MAR=SP=SP-1;rd Read in next-to-top word on stack

iflt2 OPC =TOS Save TOS in OPC temporarily

iflt3 TOS = MDR Put new top of stack in TOS

iflt4 N = OPC; if (N) goto T; else goto F Branch on N bit

ifeq1 MAR =SP =SP -1; rd Read in next-to-top word of stack

ifeq2 OPC =TOS Save TOS in OPC temporarily

ifeq3 TOS = MDR Put new top of stack in TOS

ifeq4 Z = OPG; if (Z) goto T; else goto F Branch on Z bit

if_icmpeq1 MAR =SP =SP - 1; rd Read in next-to-top word of stack
if_icmpeq2 MAR = SP = SP -1 Set MAR to read in new top-of-stack
if_icmpeq3 H = MDR; rd Copy second stack word to H

if_icmpeq4 OPC =TOS Save TOS in OPC temporarily

if_icmpeqg5 TOS = MDR Put new top of stack in TOS

if_icmpeq6 Z =0PC - H; if (Z) goto T; else goto F  If top 2 words are equal, goto T, else goto F
T OPC = PC - 1; goto goto2 Same as goto1; needed for target address
F PC =PC +1 Skip first offset byte

F2 PC = PC + 1; fetch PC now points to next opcode

F3 goto Main1 Wait for fetch of opcode

invokevirtuall PC = PC + 1; fetch MBR = index byte 1; inc. PC, get 2nd byte
invokevirtual2 H=MBRU << 8 Shift and save first byte in H
invokevirtual3 H=MBRU ORH H = offset of method pointer from CPP
invokevirtual4 MAR = CPP + H; rd Get pointer to method from CPP area
invokevirtual5 OPC =PC +1 Save Return PC in OPC temporarily

invokevirtualé

invokevirtual7

invokevirtual8

invokevirtual9

invokevirtual10
invokevirtual11
invokevirtual12
invokevirtual13
invokevirtual14
invokevirtual15
invokevirtual16
invokevirtual17
invokevirtual18
invokevirtual19
invokevirtual20
invokevirtual21
invokevirtual22

PC = MDR,; fetch

PC = PC + 1; fetch
H=MBRU << 8
H=MBRU ORH

PC = PC + 1; fetch
TOS=SP-H

TOS =MAR=TOS +1
PC = PC + 1; fetch
H=MBRU << 8
H=MBRU ORH
MDR =SP + H + 1; wr
MAR = SP = MDR;
MDR = OPC; wr

MAR =SP =SP + 1
MDR = LV; wr

PC = PC + 1; fetch

LV = TOS; goto Main1

PC points to new method; get param count
Fetch 2nd byte of parameter count
Shift and save first byte in H

H = number of parameters

Fetch first byte of # locals

TOS = address of OBJREF - 1

TOS = address of OBJREF (new LV)
Fetch second byte of # locals

Shift and save first byte in H

H = # locals

Overwrite OBJREF with link pointer
Set SP, MAR to location to hold old PC
Save old PC above the local variables
SP points to location to hold old LV
Save old LV above saved PC

Fetch first opcode of new method.

Set LV to point to LV Frame

Figure 4-17. The microprogram for the Mic-1 (part 1 on facing page, part 2 above).
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Label Operations Comments

ireturnt  MAR=SP =LV; rd Reset SP, MAR to get link pointer
ireturn2 Wait for read

ireturn3 LV = MAR = MDR; rd Set LV to link ptr; get old PC
ireturnd  MAR =LV +1 Set MAR to read old LV

ireturn5  PC = MDR,; rd; fetch Restore PC; fetch next opcode
ireturné MAR = SP Set MAR to write TOS

ireturn7 LV = MDR Restore LV

ireturn8 MDR = TOS; wr; goto Main1 Save return value on original top of stack

Figure 4-17. The microprogram for the Mic-1 (part 3 of 3).

If the byte in MBR happens to be all zeros, the opcode for a NOP instruction,
the next microinstruction is the one labeled nop1, fetched from location 0. Since
this instruction does nothing, it simply branches back to the beginning of the main
loop, where the sequence is repeated, but with a new opcode having been fetched
into MBR.

Once again we emphasize that the microinstructions in Fig. 4-17 are not con-
secutive in memory and that Main1 is not at control store address 0 (because nop1
must be at address 0). It is up to the microassembler to place each microinstruc-
tion at a suitable address and link them together in short sequences using the
NEXT_ADDRESS field. Each sequence starts at the address corresponding to the
numerical value of the IJVM opcode it interprets (e.g., POP starts at 0x57), but the
rest of the sequence can be anywhere in the control store, and not necessarily at
consecutive addresses.

Now consider the IJVM IADD instruction. The microinstruction branched to
by the main loop is the one labeled iadd1. This instruction starts the work specific
to IADD:

1. The TOS is already present, but the next-to-top word of the stack
must be fetched from memory.

2. The TOS must be added to the next-to-top word fetched from memory.

3. The result, which is to be pushed on the stack, must be stored back
into memory, as well as stored in the TOS register.

In order to fetch the operand from memory, it is necessary to decrement the
stack pointer and write it into MAR. Note that, conveniently, this address is also
the address that will be used for the subsequent write. Furthermore, since this
location will be the new top of stack, SP should be assigned this value. Therefore,
a single operation can determine the new value of SP and MAR, decrement SP, and
write it into both registers.

These things are accomplished in the first cycle, iadd1, and the read operation
is initiated. In addition, MPC gets the value from iadd1’s NEXT_ADDRESS field,
which is the address of iadd2, wherever it may be. Then iadd2 is read from the
control store. During the second cycle, while waiting for the operand to be read in
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from memory, we copy the top word of the stack from TOS into H, where it will be
available for the addition when the read completes.

At the beginning of the third cycle, iadd3, MDR contains the addend fetched
from memory. In this cycle it is added to the contents of H, and the result is stored
back to MDR, as well as back into TOS. A write operation is also initiated, storing
the new top-of-stack word back into memory. In this cycle the goto has the effect
of assigning the address of Main1 to MPC, returning us to the starting point for the
execution of the next instruction.

If the subsequent IJVM opcode, now contained in MBR, is 0x64 (ISUB), almost
exactly the same sequence of events occurs again. After Main1 is executed, con-
trol is transferred to the microinstruction at 0x64 (isub1). This microinstruction is
followed by isub2 and isub3, and then Main1 again. The only difference between
this sequence and the previous one is that in isub3, the contents of H are sub-
tracted from MDR rather than added to it.

The interpretation of IAND is almost identical to IADD and ISUB, except that the
two top words of the stack are bitwise ANDed together instead of being added or
subtracted. Something similar happens for IOR.

If the IJVC opcode is DUP, POP, or SWAP, the stack must be adjusted. The
DUP instruction simply replicates the top word of the stack. Since value of this
word is already stored in TOS, the operation is as simple as incrementing SP to
point to the new location, and storing TOS to that location. The POP instruction is
almost as simple, just decrementing SP to discard the top word on the stack.
However, in order to maintain the top word in TOS it is now necessary to read the
new top word in from memory and write it into TOS. Finally, the SWAP instruc-
tion involves swapping the values in two memory locations: the top two words on
the stack. This is made somewhat easier by the fact that TOS already contains one
of those values, so it need not be read from memory. This instruction will be dis-
cussed in more detail later.

The BIPUSH instruction is a little more complicated because the opcode is fol-
lowed by a single byte, as shown in Fig. 4-18. The byte is to be interpreted as a
signed integer. This byte, which has already been fetched into MBR in Maint,
must be sign-extended to 32 bits and pushed onto the top of the stack. This
sequence, therefore, must sign-extend the byte in MBR to 32 bits, and copy it to
MDR. Finally, SP is incremented and copied to MAR, permitting the operand to be
written out to the top of stack. Along the way, this operand must also be copied to
TOS. Also, before returning to the main program, note that PC must be incre-
mented so that the next opcode will be available in Main1.

BIPUSH

(0x10) BYTE

Figure 4-18. The BIPUSH instruction format.
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Next consider the ILOAD instruction. ILOAD also has a byte following the
opcode, as shown in Fig. 4-19(a), but this byte is an (unsigned) index to identify
the word in the local variable space that is to be pushed onto the stack. Since
there is only 1 byte, only 28=256 words can be distinguished, namely, the first 256
words in the local variable space. The ILOAD instruction requires both a read (to
obtain the word) and a write (to push it onto the top of the stack). In order to
determine the address for reading, however, the offset, contained in MBR, must be
added to the contents of LV. Since both MBR and LV can only be accessed through
the B bus, LV is first copied into H (in iload1), then MBR is added. The result of
this addition is copied into MAR and a read initiated (in iload2).

ILOAD INDEX WIDE ILOAD INDEX INDEX
(0x15) (0xC4) (0x15) BYTE 1 BYTE 2
(a) (0)

Figure 4-19. (a) ILOAD with a 1-byte index. (b) WIDE ILOAD with a 2-byte index.

However, the use of MBR for an index is slightly different than in BIPUSH,
where it was sign-extended. In the case of an index, the offset is always positive,
so the byte offset must be interpreted as an unsigned integer, unlike in BIPUSH,
where it was interpreted as a signed 8-bit integer. The interface from MBR to the
B bus is carefully designed to make both operations possible. In the case of
BIPUSH (signed 8-bit integer), the proper operation is sign-extension, that is, the
leftmost bit in the 1-byte MBR is copied into the upper 24 bits on the B bus. In the
case of ILOAD (unsigned 8-bit integer), the proper operation is zero-fill. Here the
upper 24 bits of the B bus are simply supplied with zeros. These two operations
are distinguished by separate signals indicating which operation should be per-
formed (see Fig. 4-6). In the microcode, this is indicated by MBR (sign-extended,
as in BIPUSH 3) or MBRU (unsigned, as in iload2).

While waiting for memory to supply the operand (in iload3), SP is incre-
mented to contain the value for storing the result, the new top of stack. This value
is also copied to MAR in preparation for writing the operand out to the top of stack.
PC again must be incremented to fetch the next opcode (in iload4). Finally, MDR
is copied to TOS to reflect the new top of stack (in iload5).

ISTORE is the inverse operation of ILOAD, that is, a word is removed from the
top of the stack and stored at the location specified by the sum of LV and the index
contained in the instruction. It uses the same format as ILOAD, shown in Fig. 4-
19(a), except with opcode 0x36 instead of opcode 0x15. This instruction is some-
what different than might be expected because the top word on the stack is
already known (in TOS), so it can be stored away immediately. However, the new
top of stack word must be fetched. So both a read and a write are required, but
they can be performed in any order (or even in parallel, if that were possible).

Both ILOAD and ISTORE are restricted in that they can only access the first 256
local variables. While for most programs this may be all the local variable space
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needed, it is, of course, necessary to be able to access a variable wherever it is
located in the local variable space. To achieve this, [IVM uses the same mechan-
ism employed in JVM to achieve this: a special opcode WIDE, known as a prefix
byte, followed by the ILOAD or ISTORE opcode. When this sequence occurs, the
definitions of ILOAD and ISTORE are modified, with a 16-bit index following the
opcode rather than an 8-bit index, as shown in Fig. 4-19(b).

WIDE is decoded in the usual way, leading to a branch to wide1 which handles
the WIDE opcode. Although the opcode to widen is already available in MBR,
wide1 fetches the first byte after the opcode, because the microprogram logic
always expects that to be there. Then a second multiway branch is done in wide2
this time using the byte following WIDE for dispatching. However, since WIDE
ILOAD requires different microcode than ILOAD, and WIDE ISTORE requires differ-
ent microcode than ISTORE, etc., the second multiway branch cannot just use the
opcode as the target address, the way Main1 does.

Address Control store
Ox1FF
Microinstruction
execution order
WIDE
ILOAD ILOAD
0x115 wide_iload1 3
0x100 Main1 1 1
0xC4 widel 2
ox15 iload1 2
0x00

Figure 4-20. The initial microinstruction sequence for ILOAD and WIDE ILOAD.
The addresses are examples.

Instead, wide2 ORs 0x100 with the opcode while putting it into MPC. As a
result, the interpretation of WIDE ILOAD starts at 0x115 (instead of 0x15), the
interpretation of WIDE ISTORE starts at 0x136 (instead of 0x36), and so on. In this
way, every WIDE opcode starts at an address 256 (i.e., 0x100) words higher in the
control store higher than the corresponding regular opcode. The initial sequence
of microinstructions for both ILOAD and WIDE ILOAD is shown in Fig. 4-20.



268 THE MICROARCHITECTURE LEVEL CHAP. 4

Once the code is reached for implementing WIDE ILOAD (0x115), the code
differs from normal ILOAD only in that the index must be constructed by con-
catenating 2 index bytes instead of simply sign-extending a single byte. The con-
catenation and subsequent addition must be accomplished in stages, first copying
INDEX BYTE 1 into H shifted left by 8 bits. Since the index is an unsigned integer,
MBR is zero-extended using MBRU. Now the second byte of the index is added
(the addition operation is identical to concatenation since the low-order byte of H
is now zero, guaranteeing that there will be no carry between the bytes), with the
result again stored in H. From here on, the operation can proceed exactly as if it
were a standard ILOAD. Rather than duplicate the final instructions of ILOAD
(iload3 to iload5), we simply branch from wide_iload4 to iload3. Note, however,
that PC must be incremented twice during the execution of the instruction in order
to leave it pointing to the next opcode. The ILOAD instruction increments it once;
the WIDE_ILOAD sequence also increments it once.

The same situation occurs for WIDE_ISTORE: after the first four microinstruc-
tions are executed (wide_istore1 to wide_istore4), the sequence is the same as the
sequence for ISTORE after the first two instructions, so wide_istore4 branches to
istore3.

The next example we consider is a LDC_W instruction. This opcode is differ-
ent from ILOAD in two ways. First, it has a 16-bit unsigned offset (like the wide
version of ILOAD). Second, it is indexed off CPP rather than LV, since its function
is to read from the constant pool rather than the local variable frame. (Actually,
there is a short form of LDC_W (LDC), but we did not include it in IJVM, since the
long form incorporates all possible variations of the short form, but takes 3 bytes
instead of 2.)

The IINC instruction is the only IJVM instruction other than ISTORE that can
modify a local variable. It does so by including two operands, each 1 byte long,
as shown in Fig. 4-21.

IINC

(0x84) INDEX CONST

Figure 4-21. The IINC instruction has two different operand fields.

The IINC instruction uses INDEX to specify the offset from the beginning of the
local variable frame. It reads that variable, incrementing it by CONST, a value
contained in the instruction, and stores it back in the same location. Note that this
instruction can increment by a negative amount, that is, CONST is a signed 8-bit
constant, in the range —128 to +127. The full JVM includes a wide version of IINC
where each operand is 2 bytes long.

We now come to the first [JVM branch instruction: GOTO. The sole function
of this instruction is to change the value of PC, so that the next IJVM instruction
executed is the one at the address computed by adding the (signed) 16-bit offset to
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the address of the branch opcode. A complication here is that the offset is relative
to the value that PC had at the start of the instruction decoding, not the value it has
after the 2 offset bytes have been fetched.

To make this point clear, in Fig. 4-22(a) we see the situation at the start of
Main1. The opcode is already in MBR, but PC has not yet been incremented. In
Fig. 4-22(b) we see the situation at the start of goto1. By now PC has been incre-
mented but the first offset byte has not yet been fetched into MBR. One microin-
struction later, we have Fig. 4-22(c), in which the old PC, which points to the
opcode, has been saved in OPC and the first offset byte is in MBR. This value is
needed because the offset of the IJVM GOTO instruction is relative to it, not to the
current value of PC. In fact, this is the reason we needed the OPC register in the
first place.

Memory ~—1Byte—>
n+3
n+2 |OFFSET BYTE 2| |OFFSET BYTE 2| |OFFSET BYTE 2| |OFFSET BYTE 2| [OFFSET BYTE 2
n+1 |OFFSET BYTE 1| |OFFSET BYTE 1| |OFFSET BYTE 1| |OFFSET BYTE 1| [OFFSET BYTE 1
n| GOTO (0xA7) GOTO (0xA7) GOTO (0xA7) GOTO (0xA7) GOTO (0xA7)
Registers
PC| n || n+1 || n+1 || n+2 || n+2 |
OPC | | Lo JL 0 JL ]
MBR | OXA7 | | OXA7 | |OFFSET BYTE 1 | |OFFSET BYTE 1 | |OFFSET BYTE 2|
H| || || || ||OFFSET1<<8|

(@) (b) (© (d)

Figure 4-22. The situation at the start of various microinstructions. (a) Main1.
(b) goto1. (c) goto2. (d) goto3. (e) goto4.

The microinstruction at goto2 starts the fetch of the second offset byte, lead-
ing to Fig. 4-22(d) at the start of goto3. After the first offset byte has been shifted
left 8 bits and copied to H, we arrive at goto4 and Fig. 4-22(e). Now we have the
first offset byte shifted left in H, the second offset byte in MBR, and the base in
OPC. By constructing the full 16-bit offset in H and then adding it to the base, we
get the new address to put in PC, in goto5. Note carefully that we use MBRU in
goto4 instead of MBR because we do not want sign extension of the second byte.
The 16-bit offset is constructed, in fact, by ORing the two halves together.
Finally, we have to fetch the next opcode before going back to Main1 because the
code there expects the next opcode in MBR. The last cycle, goto6, is necessary
because the memory data must be fetched in time to appear in MBR during Main1.

()
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The offsets used in the goto IJVM instruction are signed 16-bit values, with a
minimum of —32768 and a maximum of +32767. This means that branches either
way to labels more distant than these values are not possible. This property can
be regarded as either a bug or a feature in IJVM (and also in JVM). The bug-
camp would say that the JVM definition should not restrict their programming
style. The feature-camp would say that the work of many programmers would be
radically improved if they had nightmares about the dreaded compiler message

Program is too big and hairy. You must rewrite it. Compilation aborted.

Unfortunately (in our view) this message only appears when a then or else clause
exceeds 32 KB, typically at least 50 pages of Java.

Now consider the three IJVM conditional branch instructions: IFLT, IFEQ, and
IF_ICMPEQ. The first two pop the top word from the stack, branching if the word
is less than zero or equal to zero, respectively. IF_ICMPEQ pops the top two words
off the stack and branches if and only if they are equal. In all three cases, it is
necessary to read in a new top-of-stack word to store in TOS.

The control for these three instructions is similar: the operand or operands are
first put in registers, then the new top-of-stack value is read into TOS, finally the
test and branch are made. Consider IFLT first. The word to test is already in TOS,
but since IFLT pops a word off the stack the new top of stack must be read in to
store in TOS. This read is started in iflt1. In iflt2, the word to be tested is saved in
OPC for the moment so the new value can be put in TOS shortly without losing the
current one. In iflt3 the new top-of-stack word is available in MDR so it is copied
to TOS. Finally, in iflt4 the word to be tested, now saved in OPC is run through the
ALU without being stored and the N bit latched and tested. This microinstruction
also contains a branch, choosing either T if the test was successful or F otherwise.

If successful, the remainder of the operation is essentially the same as at the
beginning of the GOTO instruction, and the sequence simply continues in the mid-
dle of the GOTO sequence, with goto2. If unsuccessful, a short sequence (F, F2,
and F3) is necessary to skip over the rest of the instruction (the offset) before
returning to Main1 to continue with the next instruction.

The code in ifeq2 and ifeq3 follows the same logic, only using the Z bit instead
of the N bit. In both cases, it is up to the assembler for MAL to recognize that the
addresses T and F are special and to make sure that their addresses are placed at
control store addresses that differ only in the leftmost bit.

The logic for IF_ICMPEQ is roughly similar to IFEQ except that here we need to
read in the second operand as well. The second operand is stored in H in
if_icmpeq3, where the read of the new top-of-stack word is started. Again the
current top-of-stack word is saved in OPC and the new one installed in TOS.
Finally, the test in if_icmpeq6 is similar to ifeq4.

Now, we consider the implementation of INVOKEVIRTUAL and IRETURN, the
instructions for invoking a procedure call and return, as described in Sec. 4.2.3.
INVOKEVIRTUAL is a sequence of 22 microinstructions, and is the most complex
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IJVM instruction implemented. Its operation was shown in Fig 4-12. The instruc-
tion uses its 16-bit offset to determine the address of the method to be invoked. In
our implementation, the offset is simply an offset into the Constant Pool. This
location in the Constant Pool points to the method to be invoked. Remember,
however, that the first 4 bytes of each method are not instructions. Instead they
are two 16-bit pointers. The first one gives the number of parameter words
(including OBJREF—see Fig. 4-12). The second one gives the size of the local
variable area in words. These fields are fetched through the 8-bit port and assem-
bled just as if they were two 16-bit offsets within an instruction.

Then, the linkage information necessary to restore the machine to its previous
state—the address of the start of the old local variable area and the old PC—is
stored immediately above the newly-created local variable area and below the
new stack. Finally, the opcode of the next instruction is fetched and PC is incre-
mented before returning to Main1 to begin the next instruction.

IRETURN is a simple instruction containing no operands. It simply uses the
address stored in the first word of the local variable area to retrieve the linkage
information. Then it restores SP, LV, and PC to their previous values and copies
the return value from the top of the current stack onto the top of the original stack,
as shown in Fig 4-13.

4.4 DESIGN OF THE MICROARCHITECTURE LEVEL

Like just about everything else in computer science, the design of the microar-
chitecture level is full of trade-offs. Computers have many desirable characteris-
tics, including speed, cost, reliability, ease of use, energy requirements, and physi-
cal size. However, one trade-off drives the most important choices the CPU
designer must make: speed versus cost. In this section we will look at this issue in
detail to see what can be traded off against what, how high performance can be
achieved, and at what price in hardware and complexity.

4.4.1 Speed versus Cost

While faster technology has resulted in the greatest speedup over any period
of time, that is beyond the scope of this text. Speed improvements due to organi-
zation, while less amazing than that due to faster circuits, have nevertheless been
impressive. Speed can be measured in a variety of ways, but given a circuit tech-
nology and an ISA, there are three basic approaches for increasing the speed of
execution:

1. Reduce the number of clock cycles needed to execute an instruction.
2. Simplify the organization so that the clock cycle can be shorter.

3. Opverlap the execution of instructions.

The first two are obvious, but there is a surprising variety of design opportunities
that can dramatically affect either the number of clock cycles, the clock period,



272 THE MICROARCHITECTURE LEVEL CHAP. 4

or—most often—both. In this section, we will give an example of how the encod-
ing and decoding of an operation can affect the clock cycle.

The number of clock cycles needed to execute a set of operations is known as
the path length. Sometimes the path length can be shortened by adding special-
ized hardware. For example, by adding an incrementer (conceptually, an adder
with one side permanently wired to add 1) to PC, we no longer have to use the
ALU to advance PC, eliminating cycles. The price paid is more hardware. How-
ever, this capability does not help as much as might be expected. For most
instructions, the cycles consumed incrementing the PC are also cycles where a
read operation is being performed. The following instruction could not be exe-
cuted earlier anyway because it depends on the data coming from the memory.

Reducing the number of instruction cycles necessary for fetching instructions
requires more than just an additional circuit to increment the PC. In order to
speed up the instruction fetching to any significant degree, the third technique—
overlapping the execution of instructions—must be exploited. Separating out the
circuitry for fetching the instructions—the 8-bit memory port, and the MBR and PC
registers— is most effective if the unit is made functionally independent of the
main data path. In this way, it can fetch the next opcode or operand on its own,
perhaps even performing asynchronously with respect to the rest of the CPU and
fetching one or more instructions ahead.

One of the most time-consuming phases of the execution of many instructions
is fetching a 2-byte offset, extending it appropriately, and accumulating it in the H
register in preparation for an addition, for example, in a branch to PC % n bytes.
One potential solution—making the memory port 16 bits wide—greatly compli-
cates the operation, because the memory is actually 32 bits wide. The 16 bits
needed might span word boundaries, so that even a single read of 32 bits will not
necessarily fetch both bytes needed.

Overlapping the execution of instructions is by far the most interesting and
offers the most opportunity for dramatic increases in speed. Simple overlap of
instruction fetch and execution is surprisingly effective. More sophisticated tech-
niques go much further, however, overlapping execution of many instructions. In
fact this idea is at the heart of modern computer design. We will discuss some of
the basic techniques for overlapping instruction execution below and motivate
some of the more sophisticated ones.

Speed is half the picture; cost is the other half. Cost can also be measured in
a variety of ways, but a precise definition of cost is problematic. Some measures
are as simple as a count of the number of components. This was particularly true
in the days when processors were built of discrete components that were pur-
chased and assembled. Today, the entire processor exists on a single chip, but
bigger, more complex chips are much more expensive than smaller, simpler ones.
Individual components—for example, transistors, gates, or functional units—can
be counted, but often the count is not as important as the amount of area required
on the integrated circuit. The more area required for the functions included, the
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larger the chip. And the manufacturing cost of the chip grows much faster than its
area. For this reason, designers often speak of cost in terms of “real estate,”” that
is, the area required for a circuit (presumably measured in pico-acres).

One of the most thoroughly studied circuits in history is the binary adder.
There have been thousands of designs, and the fastest ones are much quicker than
the slowest ones. They are also far more complex. The system designer has to
decide whether the greater speed is worth the real estate.

Adders are not the only component with many choices. Nearly every com-
ponent in the system can be designed to run faster or slower, with a cost differen-
tial. The challenge to the designer is to identify the components in the system that
can improve the system the most by speeding them up. Interestingly enough,
many an individual component can be replaced with a much faster component
with little or no effect on speed. In the following sections we will look at some of
the design issues and the corresponding trade-offs.

One of the key factors in determining how fast the clock can run is the amount
of work that must be done on each clock cycle. Obviously, the more work to be
done, the longer the clock cycle. It’s not quite that simple, of course, because the
hardware is quite good at doing things in parallel, so it’s actually the sequence of
operations that must be performed serially in a single clock cycle that determines
how long the clock cycle must be.

One aspect that can be controlled is the amount of decoding that must be per-
formed. Recall, for example, that in Fig. 4-6 we saw that while any of nine regis-
ters could be read into the ALU from the B bus, we required only 4 bits in the
microinstruction word to specify which register was to be selected. Unfor-
tunately, these savings come at a price. The decode circuit adds delay in the criti-
cal path. It means that whichever register is to enable its data onto the B bus will
receive that command slightly later and will get its data on the bus slightly later.
This effect cascades, with the ALU receiving its inputs a little later and producing
its results a little later. Finally, the result is available on the C bus to be written to
the registers a little later. Since this delay often is the factor that determines how
long the clock cycle must be, this may mean that the clock cannot run quite as
fast, and the entire computer must run a little slower. Thus there is a trade-off
between speed and cost. Reducing the control store by 5 bits per word comes at
the cost of slowing down the clock. The design engineer must take the design
objectives into account when deciding which is the right choice. For a high-
performance implementation, using a decoder is probably not a good idea; for a
low-cost one, it might be.

4.4.2 Reducing the Execution Path Length

The Mic-1 was designed to be both moderately simple and moderately fast
although there is admittedly an enormous tension between these two goals.
Briefly stated, simple machines are not fast and fast machines are not simple. The
Mic-1 CPU also uses a minimum amount of hardware: 10 registers, the simple
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ALU of Fig. 3-19 replicated 32 times, a shifter, a decoder, a control store, and a
bit of glue here and there. The whole system could be built with fewer than 5000
transistors plus whatever control store (ROM) and the main memory (RAM) take.

Having seen how IJVM can be implemented in a straightforward way in
microcode with little hardware, it is now time to look at alternative, faster imple-
mentations. We will next look at ways to reduce the number of microinstructions
per ISA instruction (i.e., reducing the execution path length). After that, we will
consider other approaches.

Merging the Interpreter Loop with the Microcode

In the Mic-1, the main loop consists of one microinstruction that must be exe-
cuted at the beginning of every IJVM instruction. In some cases it is possible to
overlap it with the previous instruction. In fact, this has already been partially
accomplished. Notice that when Main1 is executed, the opcode to be interpreted
is already in MBR. The opcode is there because it was either fetched by the previ-
ous main loop (if the previous instruction had no operands), or during the execu-
tion of the previous instruction.

This concept of overlapping the beginning of the instruction can be carried
further, and in fact, the main loop can in some cases be reduced to nothing. This
can occur in the following way. Consider each sequence of microinstructions that
terminates by branching to Main1. At each of these places, the main loop
microinstruction can be tacked on to the end of the sequence (rather than at the
beginning of the following sequence), with the multiway branch now replicated
many places (but always with the same set of targets). In some cases the Main1
microinstruction can be merged with previous microinstructions, since those
instructions are not always fully utilized.

In Fig. 4-23, the dynamic sequence of instructions is shown for a POP instruc-
tion. The main loop occurs before and after every instruction; in the figure we
show only the occurrence after the POP instruction. Notice that the execution of
this instruction takes four clock cycles: three for the specific microinstructions for
POP and one for the main loop.

Label Operations Comments

pop1 MAR =SP =SP - 1; rd Read in next-to-top word on stack

pop2 Wait for new TOS to be read from memory
pop3 TOS = MDR; goto Main1 Copy new word to TOS

Main1 PC = PC + 1; fetch; goto (MBR) MBR holds opcode; get next byte; dispatch

Figure 4-23. Original microprogram sequence for executing POP.

In Fig. 4-24 the sequence has been reduced to three instructions by merging
the main loop instructions, taking advantage of a clock cycle when the ALU is not
used in pop2 to save a cycle and again in Main1. Be sure to note that the end of
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this sequence branches directly to the specific code for the subsequent instruction,
so only three cycles are required total. This little trick reduces the execution time
of the next microinstruction by one cycle, so for example, a subsequent IADD goes
from four cycles to three. It is thus equivalent to speeding up the clock from 250
MHz (4 nsec microinstructions) to 333 MHz (3 nsec microinstructions) for free.

Label Operations Comments

pop1 MAR =SP =SP - 1; rd Read in next-to-top word on stack
Main1.pop PC =PC + 1; fetch MBR holds opcode; fetch next byte

pop3 TOS = MDR; goto (MBR) Copy new word to TOS; dispatch on opcode

Figure 4-24. Enhanced microprogram sequence for executing POP.

The POP instruction is particularly well suited for this treatment, because it
has a dead cycle in the middle that does not use the ALU. The main loop, how-
ever, does use the ALU. Thus to reduce the instruction length by one within an
instruction requires finding a cycle in the instruction where the ALU is not in use.
Such dead cycles are not common, but they do occur, so merging Main1 into the
end of each microinstruction sequence is worth doing. All it costs is a little con-
trol store. Thus we have our first technique for reducing path length:

Merge the interpreter loop into the end of each microcode sequence.
A Three-Bus Architecture

What else can we do to reduce execution path length? Another easy fix is to
have two full input buses to the ALU, an A bus and a B bus, giving three buses in
all. All (or at least most) of the registers should have access to both input buses.
The advantage of having two input buses is that it then becomes possible to add
any register to any other register in one cycle. To see the value of this feature,
consider the Mic-1 implementation of ILOAD, shown again in Fig. 4-25.

Label Operations Comments

iload1 H=LV MBR contains index; Copy LV to H

iload2 MAR =MBRU + H; rd MAR = address of local variable to push
iload3 MAR=SP=SP +1 SP points to new top of stack; prepare write
iloadd PC =PC + 1; fetch; wr Inc PC; get next opcode; write top of stack
iload5 TOS = MDR; goto Main1 Update TOS

Main1  PC = PC + 1; fetch; goto (MBR) MBR holds opcode; get next byte; dispatch

Figure 4-25. Mic-1 code for executing ILOAD.

We see here that in iload1 LV is copied into H. The only reason it is copied
into H is so it can be added to MBRU in iload2. In our original two-bus design,
there is no way to add two arbitrary registers, so one of them first has to be copied
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to H. With our new three-bus design, we can save a cycle, as shown in Fig. 4-26.
We have added the interpreter loop to ILOAD here, but doing so neither increases
nor decreases the execution path length. Still, the additional bus has reduced the
total execution time of ILOAD from six cycles to five cycles. Now we have our
second technique for reducing path length:

Go from a two-bus design to a three-bus design.

Label Operations Comments

iload1 MAR = MBRU + LV; rd MAR = address of local variable to push
ilobad2 MAR=SP=SP +1 SP points to new top of stack; prepare write
iload3 PC =PC + 1; fetch; wr Inc PC; get next opcode; write top of stack
iload4 TOS = MDR Update TOS

iload5 PC =PC + 1; fetch; goto (MBR) MBR already holds opcode; fetch index byte

Figure 4-26. Three-bus code for executing ILOAD.

An Instruction Fetch Unit

Both of these techniques are worth using, but to get a dramatic improvement
we need something much more radical. Let us step back and look at the common
parts of every instruction: the fetching and decoding of the fields of the instruc-
tion. Notice that for every instruction the following operations may occur:

1. The PC is passed through the ALU and incremented.

2. The PC is used to fetch the next byte in the instruction stream.
3. Operands are read from memory.

4. Operands are written to memory.

5. The ALU does a computation and the results are stored back.

If an instruction has additional fields (for operands), each field must be expli-
citly fetched, 1 byte at a time, and assembled before it can be used. Fetching and
assembling a field ties up the ALU for at least one cycle per byte to increment the
PC, and then again to assemble the resulting index or offset. The ALU is used
nearly every cycle for a variety of operations having to do with fetching the
instruction and assembling the fields within the instruction, in addition to the real
“work™ of the instruction.

In order to overlap the main loop, it is necessary to free up the ALU from
some of these tasks. This might be done by introducing a second ALU, though a
full ALU is not necessary for much of the activity. Notice that in many cases the
ALU is simply used as a path to copy a value from one register to another. These
cycles might be eliminated by introducing additional data paths not going through
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the ALU. Some benefit may be derived, for example, by creating a path from
TOS to MDR, or from MDR to TOS, since the top word of stack is frequently copied
between those two registers.

In the Mic-1, much of the load can be removed from the ALU by creating an
independent unit to fetch and process the instructions. This unit, called an IFU
(Instruction Fetch Unit), can independently increment PC and fetch bytes from
the byte stream before they are needed. This unit requires only an incrementer, a
circuit far simpler than a full adder. Carrying this idea further, the IFU can also
assemble 8- and 16-bit operands so that they are ready for immediate use when-
ever needed. There are at least two ways this can be accomplished:

1. The IFU can actually interpret each opcode, determining how many
additional fields must be fetched, and assemble them into a register
ready for use by the main execution unit.

2. The IFU can take advantage of the stream nature of the instructions,
and make available at all times the next 8- and 16-bit pieces whether
or not doing so makes any sense. The main execution unit can then
ask for whatever it needs.

MBR2
Fmmm e
[ I— Lo
Shift register
From memory ———"> | [ [ | [ [ |
< IMAR 1 T N B =15
i
C bus 2 low-order bits B bus
_|=>| PC ? H
o, v
Write PC

Figure 4-27. A fetch unit for the Mic-1.

We show the rudiments of the second scheme in Fig. 4-27. Rather than a single
8-bit MBR, there are now two MBRs: the 8-bit MBR1 and the 16-bit MBR2. The IFU
keeps track of the most recent byte or bytes consumed by the main execution unit.
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It also makes available in MBR1 the next byte, just as in the Mic-1, except that it
automatically senses when the MBR1 is read, prefetches the next byte, and loads it
into MBR1 immediately. As in the Mic-1, it has two interfaces to the B bus: MBR1
and MBR1U. The former is sign-extended to 32 bits; the latter is zero-extended.

Similarly, MBR2 provides the same functionality but holds the next 2 bytes. It
also has two interfaces to the B bus: MBR2 and MBR2U, gating the 32-bit sign-
extended and zero-extended values, respectively.

The IFU is responsible for fetching a stream of bytes. It does this by using a
conventional 4-byte memory port, fetching entire 4-byte words ahead of time and
loading the consecutive bytes into a shift register that supplies them one or two at
a time, in the order fetched. The function of the shift register is to maintain a
queue of bytes from memory, to feed MBR1 and MBR2.

At all times, MBR1 holds the oldest byte in the shift register and MBR2 holds
the oldest 2 bytes (oldest byte on the left), to form a 16-bit integer [see Fig. 4-
19(b)]. The 2 bytes in MBR2 may be from different memory words, because IJVM
instructions do not align on word boundaries in memory.

Whenever MBR1 is read, the shift register shifts right 1 byte. Whenever MBR2
is read, it shifts right 2 bytes. Then MBR1 and MBR2 are reloaded from the oldest
byte and pair of bytes, respectively. If there is now sufficient room left in the
shift register for another whole word, the IFU starts a memory cycle to read it.
We assume that when any of the MBR registers is read, it is refilled by the start of
the next cycle, so it can be read out on consecutive cycles.

The design of the IFU can be modeled by an FSM (Finite State Machine) as
shown in Fig. 4-28. All FSMs consist of two parts: states, shown as circles, and
transitions, shown as arcs from one state to another. Each state represents one
possible situation the FSM can be in. This particular FSM has seven states,
corresponding to the seven states of the shift register of Fig. 4-27. The seven
states correspond to how many bytes are currently in the shift register, a number
between 0 and 6, inclusive.

Each arc represents an event that can occur. Three different events can occur
here. The first event is 1 byte being read from MBR1. This event causes the shift
register to be activated and 1 byte shifted off the right-hand end, reducing the state
by 1. The second event is 2 bytes being read from MBR2, which reduces the state
by two. Both of these transitions cause MBR1 and MBR2 to be reloaded. When the
FSM moves into states 0, 1, or 2, a memory reference is started to fetch a new
word (assuming that the memory is not already busy reading a word). The arrival
of the word advances the state by 4.

To work correctly, the IFU must block when it is asked to do something it
cannot do, such as supply the value of MBR2 when there is only 1 byte in the shift
register and the memory is still busy fetching a new word. Also, it can do only
one thing at a time, so incoming events must be serialized. Finally, whenever PC
is changed, the IFU must be updated. Such details make it more complicated than
we have shown. Still, many hardware devices are constructed as FSMs.
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MBR2: Occurs when MBR2 is read
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Figure 4-28. A finite state machine for implementing the IFU.

The IFU has its own memory address register, called IMAR, which is used to
address memory when a new word has to be fetched. This register has its own
dedicated incrementer so that the main ALU is not needed to increment it to get
the next word. The IFU must monitor the C bus so that whenever PC is loaded,
the new PC value is also copied into IMAR. Since the new value in PC may not be
on a word boundary, the IFU has to fetch the necessary word and adjust the shift
register appropriately.

With the IFU, the main execution unit writes to PC only when it is necessary
to change the sequential nature of the instruction byte stream. It writes on a suc-
cessful branch instruction and on INVOKEVIRTUAL and IRETURN.

Since the microprogram no longer explicitly increments PC as opcodes are
fetched, the IFU must keep PC current. It does this by sensing when a byte from
the instruction stream has been consumed, that is, when MBR1 or MBR2 (or the
unsigned versions) have been read. Associated with PC is a separate incrementer,
capable of incrementing by 1 or 2, depending on how many bytes have been con-
sumed. Thus the PC always contains the address of the first byte that has not been
consumed. At the beginning of each instruction, MBR contains the address of the
opcode for that instruction.

Note that there are two separate incrementers and they perform different func-
tions. PC counts byfes and increments by 1 or 2. IMAR counts words, and incre-
ments only by 1 (for 4 new bytes). Like MAR, IMAR is wired to the address bus
skew, with IMAR bit O connected to address line 2, and so on, to perform an impli-
cit conversion of word addresses to byte addresses.

As we will see shortly in detail, not having to increment PC in the main loop
is a big win, because the microinstruction in which PC is incremented often does
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Figure 4-29. The datapath for Mic-2.

l

little else except increment PC. If this microinstruction can be eliminated, the
execution path can be reduced. The trade-off here is more hardware for a faster
machine, so our third technique for reducing path length is

Have instructions fetched from memory by a specialized functional unit.
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4.4.3 A Design with Prefetching: The Mic-2

The IFU can greatly reduce the path length of the average instruction. First, it
eliminates the main loop entirely, since the end of each instruction simply
branches directly to the next instruction. Second, it avoids tying up the ALU
incrementing PC. Third, it reduces the path length whenever a 16-bit index or
offset is calculated, because it assembles the 16-bit value and supplies it directly
to the ALU as a 32-bit value, avoiding the need for assembly in H. Figure Fig. 4-
29 shows the Mic-2, an enhanced version of the Mic-1 where the IFU of Fig. 4-27
has been added. The microcode for the enhanced machine is shown in figure
Fig. 4-30.

As an example of how the Mic-2 works, look at IADD. It fetches the second
word on the stack and does the addition as before, only now it does not have to go
to Main1 when it is done to increment PC and dispatch to the next microinstruc-
tion. When the IFU sees that MBR1 has been referenced in iadd3, its internal shift
register pushes everything to the right and reloads MBR1 and MBR2. It also makes
a transition to a state one lower than its current one. If the new state is 2, the IFU
starts fetching a word from memory. All of this is in hardware. The micropro-
gram does not have to do anything. That is why IADD can be reduced from four
microinstructions to three microinstructions.

The Mic-2 improves some instructions more than others. LDC_W goes from
nine microinstructions to only three, cutting its execution time by a factor of three.
On the other hand, SWAP only goes from eight to six microinstructions. For
overall performance, the gain for the more common instructions is what really
counts. These include ILOAD (was 6, now 3), IADD (was 4, now 3), and IF_ICMPEQ
(was 13, now 10 for the taken case; was 10, now 8 for the not taken case). To
measure the improvement, one would have to choose and run some benchmarks,
but it is clear there is a major gain here.

4.4.4 A Pipelined Design: The Mic-3

The Mic-2 is clearly an improvement over the Mic-1. It is faster and uses less
control store, although the cost of the IFU will undoubtedly more than offset the
real estate won by having a smaller control store. Thus it is a considerably faster
machine at a marginally higher price. Let us see if we can make it faster still.

How about trying to decrease the cycle time? To a considerable extent, the
cycle time is determined by the underlying technology. The smaller the transis-
tors and the smaller the physical distances between them, the faster the clock can
be run. For a given technology, the time required to perform a full data path
operation is fixed (at least from our point of view). Nevertheless, we do have
some freedom and we will exploit it to the fullest shortly.

Our other option is to introduce more parallelism into the machine. At the
moment, the Mic-2 is highly sequential. It puts registers onto its buses, waits for
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Label Operations Comments

nop1 goto (MBR) Branch to next instruction

jadd1 MAR=SP=SP-1;rd Read in next-to-top word on stack

iadd2 H=TOS H = top of stack

iadd3 MDR = TOS = MDR+H; wr; goto (MBR1) Add top two words; write to new top of stack
isub1 MAR=SP=SP-1;rd Read in next-to-top word on stack

isub2 H=TOS H = top of stack

isub3 MDR = TOS = MDR—H; wr; goto (MBR1) Subtract TOS from Fetched TOS-1

iand1 MAR=SP=SP-1;rd Read in next-to-top word on stack

iand2 H=TOS H = top of stack

iand3 MDR =TOS =MDR AND H; wr; goto (MBR1) AND Fetched TOS-1 with TOS

jor1 MAR=SP=SP-1;rd Read in next-to-top word on stack

ior2 H=TOS H = top of stack

ior3 MDR=TOS =MDR OR H; wr; goto (MBR1) OR Fetched TOS-1 with TOS

dup1 MAR =SP =SP + 1 Increment SP; copy to MAR

dup2 MDR = TOS; wr; goto (MBR1) Write new stack word

pop1 MAR=SP=SP-1;rd Read in next-to-top word on stack

pop2 Wait for read

pop3 TOS = MDR; goto (MBR1) Copy new word to TOS

swap1 MAR =SP -1; rd Read 2nd word from stack; set MAR to SP
swap2 MAR = SP Prepare to write new 2nd word

swap3 H = MDR; wr Save new TOS; write 2nd word to stack
swap4 MDR = TOS Copy old TOS to MDR

swap5 MAR = SP —1; wr Write old TOS to 2nd place on stack
swap6 TOS = H; goto (MBR1) Update TOS

bipush1 SP=MAR =SP + 1 Set up MAR for writing to new top of stack
bipush2 MDR = TOS = MBR1; wr; goto (MBR1) Update stack in TOS and memory

iload1 MAR =LV + MBR1U; rd Move LV + index to MAR; read operand
iload2 MAR =SP =SP +1 Increment SP; Move new SP to MAR
iload3 TOS = MDR; wr; goto (MBR1) Update stack in TOS and memory

istore1 MAR =LV + MBR1U Set MAR to LV + index

istore2 MDR = TOS; wr Copy TOS for storing

istore3 MAR=SP=SP-1;rd Decrement SP; read new TOS

istore4 Wait for read

istore5 TOS = MDR; goto (MBR1) Update TOS

wide1 goto (MBR1 OR 0x100) Next address is 0x100 Ored with opcode
wide_iload1  MAR =LV + MBR2U; rd; goto iload2 Identical to iload1 but using 2-byte index
wide_istore1 MAR = LV + MBR2U; goto istore2 Identical to istore1 but using 2-byte index
Idc_w1 MAR = CPP + MBR2U; rd; goto iload2 Same as wide_iload1 but indexing off CPP
iinct MAR =LV + MBR1U; rd Set MAR to LV + index for read

iinc2 H = MBR1 Set H to constant

iinc3 MDR = MDR + H; wr; goto (MBR1) Increment by constant and update

goto1 H=PC-1 Copy PCtoH

goto2 PC =H + MBR2 Add offset and update PC

goto3 Have to wait for IFU to fetch new opcode
goto4 goto (MBR1) Dispatch to next instruction

iflt1 MAR=SP=SP-1;rd Read in next-to-top word on stack

iflt2 OPC =TOS Save TOS in OPC temporarily

iflt3 TOS = MDR Put new top of stack in TOS

iflt4 N = OPC; if (N) goto T; else goto F Branch on N bit

Figure 4-30. The microprogram for the Mic-2 (part 1 of 2).
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Label Operations Comments

ifeq1 MAR =SP =SP - 1; rd Read in next-to-top word of stack

ifeq2 OPC =TOS Save TOS in OPC temporarily

ifeq3 TOS = MDR Put new top of stack in TOS

ifeq4 Z = OPCG; if (Z) goto T; else goto F Branch on Z bit

if_icmpeq1 MAR =SP =SP - 1; rd Read in next-to-top word of stack
if_icmpeq2 MAR =SP =SP -1 Set MAR to read in new top-of-stack
if_icmpeq3 H = MDR; rd Copy second stack word to H

if_icmpeq4 OPC =TOS Save TOS in OPC temporarily

if_icmpeqg5 TOS = MDR Put new top of stack in TOS

if_icmpeq6 Z =H - OPG; if (Z) goto T; else goto F If top 2 words are equal, goto T, else goto F
T H = PC — 1, goto goto2 Same as goto1

F H = MBR2 Touch bytes in MBR2 to discard

F2 goto (MBR1)

invokevirtuall
invokevirtual2
invokevirtual3
invokevirtual4
invokevirtual5
invokevirtualé
invokevirtual7
invokevirtual8
invokevirtual9
invokevirtual10
invokevirtual11

MAR = CPP + MBR2U; rd
OPC =PC

PC = MDR

TOS = SP - MBR2U
TOS=MAR=H=TOS +1
MDR = SP + MBR2U + 1; wr
MAR = SP = MDR

MDR = OPC; wr
MAR=SP =SP + 1

MDR = LV; wr

LV = TOS; goto (MBR1)

Put address of method pointer in MAR
Save Return PC in OPC

Set PC to 1st byte of method code.
TOS = address of OBJREF — 1

TOS = address of OBJREF

Overwrite OBJREF with link pointer
Set SP, MAR to location to hold old PC
Prepare to save old PC

Inc. SP to point to location to hold old LV
Save old LV

Set LV to point to zeroth parameter.

ireturn1
ireturn2
ireturn3
ireturn4
ireturn5
ireturn6
ireturn7
ireturn8

MAR =SP =LV; rd

LV = MAR = MDR; rd

MAR =LV +1

PC = MDR; rd

MAR = SP

LV = MDR

MDR = TOS; wr; goto (MBR1)

Reset SP, MAR to read Link ptr

Wait for link ptr

Set LV, MAR to link ptr; read old PC
Set MAR to point to old LV; read old LV
Restore PC

Restore LV
Save return value on original top of stack

Figure 4-30. The microprogram for the Mic-2 (part 2 of 2).

the ALU and shifter to process them, and then writes the results back to the regis-
ters. Except for the IFU, little parallelism is present. Adding parallelism is a real
opportunity.

As mentioned earlier, the clock cycle is limited by the time needed for the sig-
nals to propagate through the data path. Figure 4-3 shows a breakdown of the
delay through the various components during each cycle. There are three major
components to the actual data path cycle:

1. The time to drive the selected registers onto the A and B buses.
2. The time for the ALU and shifter to do their work.
3. The time for the results to get back to the registers and be stored.

In Fig. 4-31 we show a new three-bus architecture, including the IFU, but
with three additional latches (registers), one inserted in the middle of each bus.
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The latches are written on every cycle. In effect, the registers partition the data
path into distinct parts that can now operate independently of one another. We
will refer to this as Mic-3, or the pipelined model.

To
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Figure 4-31. The three-bus data path used in the Mic-3.

How can these extra registers possibly help? Now it takes three clock cycles
to use the data path: one for loading the A and B latches, one for running the ALU
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and shifter and loading the C latch, and one for storing the C latch back into the
registers. Are we crazy? (Hint: No.) The point of inserting the latches is twofold:

1. We can speed up the clock because the maximum delay is now shorter.

2. We can use all parts of the data path during every cycle.

By breaking up the data path into three parts, the maximum delay is reduced,
with the result that the clock frequency can be higher. Let us suppose that by
breaking the data path cycle into three time intervals, each one is about 1/3 as
long as the original, so we can triple the clock speed. (This is not totally realistic
since we have also added two more registers into the data path, but as a first
approximation it will do.)

Because we have been assuming that all memory reads and writes can be
satisfied out of the level 1 cache, and this cache is made out of the same material
as the registers, we will continue to assume that a memory operation takes one
cycle. In practice this may not be so easy to achieve, though.

The second point deals with throughput rather than the speed of an individual
instruction. In the Mic-2, during the first and third parts of each clock cycle the
ALU is idle. By breaking the data path up into three pieces, we will be able to use
the ALU on every cycle, getting three times as much work out of the machine.

Let us now see how the Mic-3 data path works. Before starting, we need a
notation for dealing with the latches. The obvious one is to call the latches A, B,
and C and treat them like registers, keeping in mind the constraints of the data
path. Figure 4-32 shows an example code sequence, the implementation of SWAP
for the Mic-2.

Label Operations Comments

swap! MAR=SP-1;rd Read 2nd word from stack; set MAR to SP
swap2 MAR =SP Prepare to write new 2nd word

swap3 H = MDR; wr Save new TOS; write 2nd word to stack
swap4 MDR =TOS Copy old TOS to MDR

swap5 MAR=SP-1;wr Write old TOS to 2nd place on stack
swap6 TOS = H; goto (MBR1) Update TOS

Figure 4-32. The Mic-2 code for SWAP.

Now let us reimplement this sequence on the Mic-3. Remember that the data
path now requires three cycles to operate: one to load A and B, one to perform the
operation and load C, and one to write the results back to the registers. We will
call each of these pieces a microstep.

The implementation of SWAP for the Mic-3 is shown in Fig. 4-33. In cycle 1,
we start on swap1 by copying SP to B. It does not matter what goes in A because
to subtract 1 from B ENA is negated (see Fig. 4-2). For simplicity, we will not
show assignments that are not used. In cycle 2 we do the subtraction. In cycle 3
the result is stored in MAR and the read operation is started at the end of cycle 3
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(after MAR has been stored). Since memory reads now take one cycle, this one
will not complete until the end of cycle 4, indicated by showing the assignment to
MDR in cycle 4. The value in MDR may be read no earlier than cycle 5.

Swap1 Swap?2 Swap3 Swap4 Swap5 Swap6
Cy [ MAR=SP-1;rd | MAR=SP |H=MDR;wr |MDR=TOS |MAR=SP-1;wr | TOS=H;goto (MBR1)
1 |B=SP
2 |C=B-1 B=SP
3 |MAR=C;rd |C=B
4 IMDR=Mem |MAR=C
5 B=MDR
6 C=B B=TOS
7 H=C; wr C=B B=SP
8 Mem=MDR|MDR=C |C=B-1 B=H
9 MAR=C; wr |C=B
10 Mem=MDR |TOS=C
11 goto (MBR1)

Figure 4-33. The implementation of SWAP on the Mic-3.

Now let us go back to cycle 2. We can now begin breaking up swap?2 into
microsteps and starting them too. In cycle 2, we can copy SP to B, then run it
through the ALU in cycle 3 and finally store it in MAR in cycle 4. So far, so good.
It should be clear that if we can keep going at this rate, starting a new microin-
struction every cycle, we have tripled the speed of the machine. This gain comes
from the fact that we can issue a new microinstruction on every clock cycle, and
the Mic-3 has three times as many clock cycles per second as the Mic-2 has. In
fact, we have built a pipelined CPU.

Unfortunately, we hit a snag in cycle 3. We would like to start working on
swap3, but the first thing it does is run MDR through the ALU, and MDR will not
be available from memory until the start of cycle 5. The situation that a microstep
cannot start because it is waiting for a result that a previous microstep has not yet
produced is called a true dependence or a RAW dependence. Dependences are
often referred to as hazards. RAW stands for Read After Write and indicates that
a microstep wants to read a register that has not yet been written. The only sensi-
ble thing to do here is delay the start of swap3 until MDR is available, in cycle 5.
Stopping to wait for a needed value is called stalling. After that, we can continue
starting microinstructions every cycle as there are no more dependences, although
swap6 just barely makes it, since it reads H in the cycle after swap3 writes it. If
swapb5 had tried to read H, it would have stalled for one cycle.

Although the Mic-3 program takes more cycles than the Mic-2 program, it
still runs faster. If we call the Mic-3 cycle time AT nsec, then the Mic-3 requires
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Instruction

Figure 4-34. Graphical illustration of how a pipeline works.

11AT nsec to execute SWAP. In contrast, the Mic-2 takes 6 cycles at 3AT each, for
a total of 18AT. Pipelining has made the machine faster, even though we had to
stall once to avoid a dependence.

Pipelining is a key technique in all modern CPUs, so it is important to under-
stand it well. In Fig. 4-34 we see the data path of Fig. 4-31 graphically illustrated
as a pipeline. The first column represents what is going on during cycle 1, the
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second column represents cycle 2, and so on (assuming no stalls). The shaded
region in cycle 1 for instruction 1 indicates that the IFU is busy fetching instruc-
tion 1. One clock tick later, during cycle 2, the registers required by instruction 1
are being loaded into the A and B latches while at the same time the IFU is busy
fetching instruction 2, again shown by the two shaded rectangles in cycle 2.

During cycle 3, instruction 1 is using the ALU and shifter to do its operation,
the A and B latches are being loaded for instruction 2, and instruction 3 is being
fetched. Finally, during cycle 4, four instructions are being worked on at the same
time. The results from instruction 1 are being stored, the ALU work for instruc-
tion 2 is being performed, the A and B latches for instruction 3 are being loaded,
and instruction 4 is being fetched.

If we had shown cycle 5 and subsequent cycles, the pattern would have been
the same as in cycle 4: all four parts of the data path that can run independently
would be doing so. This design represents a 4-stage pipeline, with stages for
instruction fetching, operand access, ALU operations, and writeback to the regis-
ters. It is similar to the pipeline of Fig. 2-4(a), except without the decode stage.
The important point to pick up here is that although a single instruction takes four
clock cycles to carry out, on every clock cycle, one new instruction is started and
one old instruction completes.

Another way to look at Fig. 4-34 is to follow each instruction horizontally
across the page. For instruction 1, in cycle 1 the IFU is working on it. In cycle 2,
its registers are being put onto the A and B buses. In cycle 3, the ALU and shifter
are working for it. Finally, in cycle 4, its results are being stored back into the
registers. The thing to note here is that there are four sections of the hardware
available, and during each cycle, a given instruction uses only one of them, free-
ing up the other sections for different instructions.

A useful analogy to our pipelined design is an assembly line in a factory that
assembles cars. To abstract out the essentials of this model, imagine that a big
gong is struck every minute, at which time all cars move one station further down
the line. At each station, the workers there perform some operation on the car
currently in front of them, like adding the steering wheel or installing the brakes.
At each beat of the gong (1 cycle), one new car is injected into the start of the
assembly line and one finished car drives off the end. Thus even though it may
take hundreds of cycles to complete a car, on every cycle a whole car is com-
pleted. The factory can produce one car per minute, independent of how long it
actually takes to assemble a car. This is the power of pipelining, and it applies
equally well to CPUs as to car factories.

4.4.5 A Seven-Stage Pipeline: The Mic-4

One point that we have glossed over is the fact that every microinstruction
selects its own successor. Most of them just select the next one in the current
sequence, but the last one, such as swap6, often does a multiway branch, which
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gums up the pipeline since continuing to prefetch after it is impossible. We need
a better way of dealing with this point.

Our next (and last) microarchitecture is the Mic-4. The main parts of it are
illustrated in Fig. 4-35, but a substantial amount of detail has been suppressed for
clarity. Like the Mic-3, it has an IFU that prefetches words from memory and
maintains the various MBRs.

Micro-op Final
@ g \ @ inc}ex Queueing unit @
From \ J vy Micro-operation ROM
memory < H IADD
|:|'> Instruction ———\ —:> ISUB
fetch unit v B ILOAD
Decoding unit == IFLT
Queue
of pending
micro-ops
To/from M ]
memory
<:> @ Drives stage 4 [ALU] C | M[A] Bj¢— MIR1
g I 1 " ]
Registers
@ 9 > Drives stage 5 [ALU[ _C | M[A] Bl¢— MIR2
«—

Drives stage 6 [ ALU] c [ M[A] Ble— MIR3

Drives stage 7 [ALU] _C | M[A] Bj¢— MIR4

Figure 4-35. The main components of the Mic-4.

The IFU also feeds the incoming byte stream to a new component, the decod-
ing unit. This unit has an internal ROM indexed by IJVM opcode. Each entry
(row) contains two parts: the length of that IJVM instruction and an index into
another ROM, the micro-operation ROM. The IJVM instruction length is used to
allow the decoding unit to parse the incoming byte stream into instructions, so it
always knows which bytes are opcodes and which are operands. If the current
instruction length is 1 byte (e.g., POP), then the decoding unit knows that the next
byte is an opcode. If, however, the current instruction length is 2 bytes, the
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decoding unit knows that the next byte is an operand, followed immediately by
another opcode. When the WIDE prefix is seen, the following byte is transformed
into a special wide opcode, for example, WIDE + ILOAD becomes WIDE_ILOAD.

The decoding unit ships the index into the micro-operation ROM that it found
in its table to the next component, the queueing unit. This unit contains some
logic plus two internal tables, one in ROM and one in RAM. The ROM contains
the microprogram, with each IJVM instruction having some number of consecu-
tive entries, called micro-operations. The entries must be in order, so tricks like
wide_iload2 branching to iload2 in Mic-2 are not allowed. Each IJVM sequence
must be spelled out in full, duplicating sequences in some cases.

The micro-operations are similar to the microinstructions of Fig. 4-5 except
that the NEXT_ADDRESS and JAM fields are absent, and a new encoded field is
needed to specify the A bus input. Two new bits are also provided: Final and
Goto. The Final bit is set on the last micro-operation of each IJVM micro-
operation sequence to mark it. The Goto bit is set to mark micro-operations that
are conditional microbranches. They have a different format from the normal
micro-operations, consisting of the JAM bits and an index into the micro-operation
ROM. Microinstructions that previously did something with the data path and
also performed a conditional microbranch (e.g., iflt4) now have to be split up into
two micro-operations.

The queueing unit works as follows. It receives a micro-operation ROM
index from the decoding unit. It then looks up the micro-operation and copies it
into an internal queue. Then it copies the following micro-operation into the
queue as well, and the one after it too. It keeps going until it hits one with the
Final bit one. It copies that one, too, and stops. Assuming that it has not hit a
micro-operation with the Goto bit on and still has ample room left in the queue,
the queueing unit then sends an acknowledgement signal back to the decoding
unit. When the decoding unit sees the acknowledgement, it sends the index of the
next IJVM instruction to the queueing unit.

In this way, the sequence of IJVM instructions in memory are ultimately con-
verted into a sequence of micro-operations in a queue. These micro-operations
feed the MIRs, which send the signals out to control the data path. However, there
is another factor we now have to consider: the fields on each micro-operation are
not active at the same time. The A and B fields are active during the first cycle,
the ALU field is active during the second cycle, the C field is active during the
third cycle, and any memory operations take place in the fourth cycle.

To make this work properly, we have introduced four independent MIRs into
Fig. 4-35. At the start of each clock cycle (the Aw time in Fig. 4-3), MIR3 is
copied to MIR4, MIR2 is copied to MIR3, MIR1 is copied to MIR2, and MIR1 is loaded
with a fresh micro-operation from the micro-operation queue. Then each MIR puts
out its control signals, but only some of them are used. The A and B fields from
MIR1 are used to select the registers that drive the A and B latches, but the ALU
field in MIR1 is not used and is not connected to anything else in the data path.



SEC. 44 DESIGN OF THE MICROARCHITECTURE LEVEL 291

One clock cycle later, this micro-operation has moved on to MIR2 and the reg-
isters that it selected are now safely sitting in the A and B latches waiting for the
adventures to come. Its ALU field is now used to drive the ALU. In the next
cycle, its C field will write the results back into the registers. After that, it will
move on to MIR4 and initiate any memory operations needed using the now-loaded
MAR (and MDR, for a write).

One last aspect of the Mic-4 needs some discussion now: microbranches.
Some IJVM instructions, such as IFLT, need to conditionally branch based on, say,
the N bit. When a microbranch occurs, the pipeline cannot continue. To deal with
that, we have added the Goto bit to the micro-operation. When the queueing unit
hits a micro-operation with this bit set while copying it to the queue, it realizes
that there is trouble ahead and refrains from sending an acknowledgement to the
decoding unit. As a result, the machine will stall at this point until the micro-
branch has been resolved.

Conceivably, some IJVM instructions beyond the branch have already been
fed into the decoding unit (but not into the queueing unit), since it does not send
back an acknowledge (i.e., continue) signal when it hits a micro-operation with
the Goto bit on. Special hardware and mechanisms are needed to clean up the
mess and get back on track, but they are beyond the scope of this book. When
Edsger Dijkstra wrote his famous letter “GOTO Statement Considered Harmful,”
(Dijkstra, 1968a), he had no idea how right he was.

We have come a long way since the Mic-1. The Mic-1 was a very simple
piece of hardware, with nearly all the control in software. The Mic-4 is a highly
pipelined design, with seven stages and far more complex hardware. The pipeline
is shown schematically in Fig. 4-36, with the circled numbers keyed back to com-
ponents in Fig. 4-35. The Mic-4 automatically prefetches a stream of bytes from
memory, decodes them into IJVM instructions, converts them to a sequence of
micro-operations using a ROM, and queues them for use as needed. The first
three stages of the pipeline can be tied to the data path clock if desired, but there
will not always be work to do. For example, the IFU can certainly not feed a new
IJVM opcode to the decoding unit on every clock cycle because IJVM instruc-
tions take several cycles to execute and the queue would rapidly overflow.

® ® ® ® ® ® @

IFU > Decoder (| Queue [>|Operandsf>{ Exec [>| \évgglf ——{ Memory

Figure 4-36. The Mic-4 pipeline.

On each clock cycle, the MIRs are shifted forward and the micro-operation at
the bottom of the queue is copied into MIR1 to start its execution. The control
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signals from the four MIRs then spread out through the data path causing actions to
occur. Each MIR controls a different portion of the data path and thus different
microsteps.

In this design we have a deeply pipelined CPU, which allows the individual
steps to be very short and thus the clock frequency high. Many CPUs are
designed in essentially this way, especially those that have to implement an older
(CISC) instruction set. For example, the Pentium II implementation is conceptu-
ally similar to the Mic-4 in some ways, as we will see later in this chapter.

4.5 IMPROVING PERFORMANCE

All computer manufacturers want their systems to run as fast as possible. In
this section, we will look at a number of advanced techniques currently being
investigated to improve system (primarily CPU and memory) performance. Due
to the highly competitive nature of the computer industry, the lag between new
research ideas that can make a computer faster and their incorporation into pro-
ducts is surprisingly short. Consequently, most of the ideas we will discuss are
already in use in a wide variety of existing products.

The ideas to be discussed fall into roughly two categories: implementation im-
provements and architectural improvements. Implementation improvements are
ways of building a new CPU or memory to make the system run faster without
changing the architecture. Modifying the implementation without changing the
architecture means that old programs will run on the new machine, a major selling
point. One way to improve the implementation is to use a faster clock, but this is
not the only way. The performance gains from the 80386 through the 80486, Pen-
tium, and Pentium Pro, to the Pentium II are due to better implementations, as the
architecture has remained essentially the same through all of them.

Some kinds of improvements can be made only by changing the architecture.
Sometimes these changes are incremental, such as adding new instructions or reg-
isters, so that old programs will continue to run on the new models. In this case,
to get the full performance, the software must be changed, or at least recompiled
with a new compiler that takes advantage of the new features.

However, once in a few decades, designers realize that the old architecture
has outlived its usefulness and that the only way to make progress is start all over
again. The RISC revolution in the 1980s was one such breakthrough; another one
is in the air now. We will look at one example (the Intel IA-64) in Chap. 5.

In the rest of this section we will look at four different techniques for improv-
ing CPU performance. We will start with three well-established implementation
improvements and then move on to one that needs a little architectural support to
work best. These techniques are cache memory, branch prediction, out-of-order
execution with register renaming, and speculative execution.
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4.5.1 Cache Memory

One of the most challenging aspects of computer design throughout history
has been to provide a memory system able to provide operands to the processor at
the speed it can process them. The recent high rate of growth in processor speed
has not been accompanied by a corresponding speedup in memories. Relative to
CPUs, memories have been getting slower for decades. Given the enormous
importance of primary memory, this situation has greatly limited the development
of high-performance systems, and has stimulated research on ways to get around
the problem of memory speeds that are much slower than CPU speeds, and rela-
tively speaking, getting worse every year.

Modern processors place overwhelming demands on a memory system, both
in terms of latency (the delay in supplying an operand) and bandwidth (the
amount of data supplied per unit of time). Unfortunately, these two aspects of a
memory system are largely at odds. Many techniques for increasing bandwidth do
so only by increasing latency. For example, the pipelining techniques used in the
Mic-3 can be applied to a memory system, with multiple, overlapping memory
requests handled efficiently. Unfortunately, as with the Mic-3, this results in
greater latency for individual memory operations. As processor clock speeds get
faster, it becomes more and more difficult to provide a memory system capable of
supplying operands in one or two clock cycles.

One way to attack this problem is by providing caches. As we saw in Sec.
2.2.5, a cache holds the most recently used memory words in a small, fast mem-
ory, speeding up access to them. If a large enough percentage of the memory
words needed are in the cache, the effective memory latency can be reduced enor-
mously.

One of the most effective techniques for improving both bandwidth and
latency comes from the use of multiple caches. A basic technique that works very
effectively is to introduce a separate cache for instructions and data. There are
several benefits from having separate caches for instructions and data, often called
a split cache. First, memory operations can be initiated independently in each
cache, effectively doubling the bandwidth of the memory system. This is the rea-
son that it makes sense to provide two separate memory ports, as we did in the
Mic-1: each port has its own cache. Note that each cache has independent access
to the main memory.

Today, many memory systems are more complicated than this, and an addi-
tional cache, called a level 2 cache, may reside between the instruction and data
caches and main memory. In fact, there may be three or more levels of cache as
more sophisticated memory systems are required. In Fig. 4-37 we see a system
with three levels of cache. The CPU chip itself contains a small instruction cache
and a small data cache, typically 16 KB to 64 KB. Then there is the level 2 cache,
which is not on the CPU chip, but may be included in the CPU package, next to
the CPU chip and connected to it by a high-speed path. This cache is generally
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unified, containing a mix of data and instructions. A typical size for the L2 cache
is 512 KB to 1 MB. The third-level cache is on the processor board and consists
of a few megabytes of SRAM, which is much faster than the main DRAM mem-
ory. Caches are generally inclusive, with the full contents of the level 1 cache
being in the level 2 cache and the full contents of the level 2 cache being in the
level 3 cache.

CPU
ackage ;
packag CPU chip Unified
- Unified
[4] [p)| Leache L3 cache Main
h\ bl memory
(DRAM)
Processor _
board Keyboard Graphics Disk
controller controller controller
Split L1 instruction and data caches Board-level cache (SRAM)

Figure 4-37. A system with three levels of cache.

Caches depend on two kinds of address locality to achieve their goal. Spatial
locality is the observation that memory locations with addresses numerically simi-
lar to a recently accessed memory location are likely to be accessed in the near
future. Caches exploit this property by bringing in more data than have been
requested, with the expectation that future requests can be anticipated. Temporal
locality occurs when recently accessed memory locations are accessed again.
This may occur, for example, to memory locations near the top of the stack, or
instructions inside a loop. Temporal locality is exploited in cache designs pri-
marily by the choice of what to discard on a cache miss. Many cache replacement
algorithms exploit temporal locality by discarding those entries that have not been
recently accessed.

All caches use the following model. Main memory is divided up into fixed-
size blocks called cache lines. A cache line typically consists of 4 to 64 consecu-
tive bytes. Lines are numbered consecutively starting at 0, so with a 32-byte line
size, line O is bytes O to 31, line 1 is bytes 32 to 63, and so on. At any instant,
some lines are in the cache. When memory is referenced, the cache controller cir-
cuit checks to see if the word referenced is currently in the cache. If so, the value
there can be used, saving a trip to main memory. If the word is not there, some
line entry is removed from the cache and the line needed is fetched from memory
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or lower level cache to replace it. Many variations on this scheme exist, but in all
of them the idea is to keep the most heavily-used lines in the cache as much as
possible, to maximize the number of memory references satisfied out of the cache.

Direct-Mapped Caches

The simplest cache is known as a direct-mapped cache. An example
single-level direct-mapped cache is shown in Fig. 4-38(a). This example cache
contains 2048 entries. Each entry (row) in the cache can hold exactly one cache
line from main memory. With a 32-byte cache line size (for this example), the
cache can hold 64 KB. Each cache entry consists of three parts:

1. The Valid bit indicates whether there is any valid data in this entry or
not. When the system is booted (started), all entries are marked as
invalid.

2. The Tag field consists of a unique, 16-bit value identifying the
corresponding line of memory from which the data came.

3. The Data field contains a copy of the data in memory. This field
holds one cache line of 32 bytes.

Vali
alid Addresses that use this entry
Entry Tag Data
2047 65504-65535, 131040-131071, ...
7
6
5
4
3 96-127, 65632-65663, 131168-131199
2 64-95, 65600-65631, 131136-131167, ...
1 32-63, 65568-65599, 131104-131135, ...
0 0-31, 65536-65567, 131072-131108, ...
(a)
Bits 16 11 3 2

TAG LINE WORD [BYTE

(b)
Figure 4-38. (a) A direct-mapped cache. (b) A 32-bit virtual address.

In a direct-mapped cache, a given memory word can be stored in exactly one
place within the cache. Given a memory address, there is only one place to look
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for it in the cache. If it is not there, then it is not in the cache. For storing and
retrieving data from the cache, the address is broken into four components, as
shown in Fig. 4-38(b):

1. The TAG field corresponds to the Tag bits stored in a cache entry.

2. The LINE field indicates which cache entry holds the corresponding
data, if they are present.

The WORD field tells which word within a line is referenced.

4. The BYTE field is usually not used, but if only a single byte is
requested, it tells which byte within the word is needed. For a cache
supplying only 32-bit words, this field will always be 0.

When the CPU produces a memory address, the hardware extracts the 11 LINE
bits from the address and uses these to index into the cache to find one of the 2048
entries. If that entry is valid, the TAG field of the memory address and the Tag
field in cache entry are compared. If they agree, the cache entry holds the word
being requested, a situation called a cache hit. On a hit, a word being read can be
taken from the cache, eliminating the need to go to memory. Only the word actu-
ally needed is extracted from the cache entry. The rest of the entry is not used. If
the cache entry is invalid or the tags do not match, the needed entry is not present
in the cache, a situation called a cache miss. In this case, the 32-byte cache line
is fetched from memory and stored in the cache entry, replacing what was there.
However, if the existing cache entry has been modified since being loaded, it must
be written back to main memory before being discarded.

Despite the complexity of the decision, access to a needed word can be re-
markably fast. As soon as the address is known, the exact location of the word is
known if it is present in the cache. This means that it is possible to read the word
out of the cache and deliver it to the processor at the same time that it is being
determined if this is the correct word (by comparing tags). So the processor actu-
ally receives a word from the cache simultaneously, or possibly even before it
knows whether the word is the requested one.

This mapping scheme puts consecutive memory lines in consecutive cache
entries, In fact, up to 64 KB bytes of contiguous data can be stored in the cache.
However, two lines that differ in their address by precisely 64 KB (65,536 bytes)
or any integral multiple of that number cannot be stored in the cache at the same
time (because they have the same LINE value). For example, if a program
accesses data at location X and next executes an instruction that needs data at
location X + 65,536 (or any of the other location within the same line), the second
instruction will force the cache entry to be reloaded, overwriting what was there.
If this happens often enough, it can result in poor behavior. In fact, the worst-case
behavior of a cache is worse than if there were no cache at all, since each memory
operation involves reading in an entire cache line instead of just one word.
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Direct-mapped caches are the most common kind of cache, and they perform
quite effectively, because collisions such as the one described above can be made
to occur only rarely, or not at all. For example, a very clever compiler can take
cache collisions into account when placing instructions and data in memory.
Notice that the particular case described would not occur in a system with sep-
arate instruction and data caches, because the colliding requests would be serviced
by different caches. Thus we see a second benefit of two caches rather than one:
more flexibility in dealing with conflicting memory patterns.

Set-Associative Caches

As mentioned above, many different lines in memory compete for the same
cache slots. If a program using the cache of Fig. 4-38(a) heavily uses words at
addresses 0 and at 65,536, there will be constant conflicts, with each reference
potentially evicting the other one from the cache. A solution to this problem is to
allow two or more lines in each cache entry. A cache with n possible entries for
each address is called an n-way set-associative cache. A four-way set-
associative cache is illustrated in Fig. 4-39.

Valid Valid Valid Valid
L Tag Data i Tag Data L Tag Data L Tag Data

2047

7

6

5

4

3

2

1

0

Entry A Entry B Entry C Entry D

Figure 4-39. A four-way set-associative cache.

A set-associative cache is inherently more complicated than a direct-mapped
cache because although the correct cache entry to examine can be computed from
the memory address being referenced, a set of n cache entries must be checked to
see if the needed line is present. Nevertheless, experience shows that two-way
and four-way caches perform well enough to make this extra circuitry worthwhile.

The use of a set-associative cache presents the designer with a choice. When
a new entry is to be brought into the cache, which of the present items should be
discarded? The optimal decision, of course, requires a peek into the future, but a
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pretty good algorithm for most purposes is LRU (Least Recently Used). This
algorithm keeps an ordering of each set of locations that could be accessed from a
given memory location. Whenever any of the present lines are accessed, it
updates the list, marking that entry the most recently accessed. When it comes
time to replace an entry, the one at the end of the list—the least recently
accessed—is the one discarded.

Carried to the extreme, a 2048-way cache containing a single set of 2048 line
entries is also possible. Here all memory addresses map onto the single set, so the
lookup requires comparing the address against all 2048 tags in the cache. Note
that each entry must now have tag-matching logic. Since the LINE field is of 0
length, the TAG field is the entire address except for the WORD and BYTE fields.
Furthermore, when a cache line is replaced, all 2048 locations are possible candi-
dates for replacement. Maintaining an ordered list of 2048 entries requires a great
deal of bookkeeping, making LRU replacement infeasible. (Remember that this
list has to be updated on every memory operation, not just on a miss). Surpris-
ingly, high-associativity caches do not improve performance much over low-
associativity caches under most circumstances, and in some cases actually per-
form worse. For these reasons, set associativity beyond four-way is relatively
unusual.

Finally, writes pose a special problem for caches. When a processor writes a
word, and the word is in the cache, it obviously must either update the word or
discard the cache entry. Nearly all designs update the cache. But what about
updating the copy in main memory? This operation can be deferred until later,
when the cache line is ready to be replaced by the LRU algorithm. This choice is
difficult, and neither option is clearly preferable. Immediately updating the entry
in main memory is referred to as write through. This approach is generally sim-
pler to implement and more reliable, since the memory is always up to date—
helpful, for example, if an error occurs and it is necessary to recover the state of
the memory. Unfortunately, it also usually requires more write traffic to memory,
so more sophisticated implementations tend to employ the alternative, known as
write deferred, or write back.

A related problem must be addressed for writes: what if a write occurs to a
location that is not currently cached? Should the data be brought into the cache,
or just written out to memory? Again, neither answer is always best. Most de-
signs that defer writes to memory tend to bring data into the cache on a write
miss, a technique known as write allocation. Most designs employing write
through, on the other hand, tend not to allocate an entry on a write because this
option complicates an otherwise simple design. Write allocation wins only if
there are repeated writes to the same or different words within a cache line.

Cache performance is critical to system performance because the gap between
CPU speed and memory speed is very large. Consequently, research on better
caching strategies is still a hot topic (Alameldeen and Wood, 2004; Huh et al.,
2004; Min et al., 2004; Nesbit and Smith, 2004; and Suh et al., 2004).



SEC. 4.5 IMPROVING PERFORMANCE 299

4.5.2 Branch Prediction

Modern computers are highly pipelined. The pipeline of Fig. 4-35 has seven
stages; high-end computers sometimes have 10-stage pipelines or even more.
Pipelining works best on linear code, so the fetch unit can just read in consecutive
words from memory and send them off to the decode unit in advance of their
being needed.

The only minor problem with this wonderful model is that it is not the slight-
est bit realistic. Programs are not linear code sequences. They are full of branch
instructions. Consider the simple statements of Fig. 4-40(a). A variable, i, is
compared to 0 (probably the most common test in practice). Depending on the
result, another variable, k, gets assigned one of two possible values.

if (i==0) CMP i,0 ; compareito0
=1; BNE Else ; branch to Else if not equal
else Then: MOV k1 ;move 1tok
k=2; BR Next ; unconditional branch to Next
Else: MOV k,2 ; move 2 to k
Next:

(a) (b)

Figure 4-40. (a) A program fragment. (b) Its translation to a generic assembly
language.

A possible translation to assembly language is shown in Fig. 4-40(b). We will
study assembly language later in this book, and the details are not important now,
but depending on the machine and the compiler, code more-or-less like that of
Fig. 4-40(b) is likely. The first instruction compares i to 0. The second one
branches to the label Else (the start of the else clause) if i is not 0. The third
instruction assigns 1 to k. The fourth instruction branches to the code for the next
statement. The compiler has conveniently planted a label, Next, there, so there is
a place to branch to. The fifth instruction assigns 2 to k.

The thing to observe here is that two of the five instructions are branches.
Furthermore, one of these, BNE, is a conditional branch (a branch that is taken if
and only if some condition is met, in this case, that the two operands in the previ-
ous CMP are unequal). The longest linear code sequence here is two instructions.
As a consequence, fetching instructions at a high rate to feed the pipeline is very
difficult.

At first glance, it might appear that unconditional branches, such as the
instruction BR Next in Fig. 4-40(b), are not a problem. After all, there is no ambi-
guity about where to go. Why can the fetch unit not just continue to read instruc-
tions from the target address (the place that will be branched to)?

The trouble lies in the nature of pipelining. In Fig. 4-35, for example, we see
that instruction decoding occurs in the second stage. Thus the fetch unit has to
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decide where to fetch from next before it knows what kind of instruction it just
got. Only one cycle later can it learn that it just picked up an unconditional
branch, and by then it has already started to fetch the instruction following the
unconditional branch. As a consequence, a substantial number of pipelined
machines (such as the UltraSPARC III) have the property that the instruction fol-
lowing an unconditional branch is executed, even though logically it should not
be. The position after a branch is called a delay slot. The Pentium II [and the
machine used in Fig. 4-40(b)] do not have this property, but the internal complex-
ity to get around this problem is often enormous. An optimizing compiler will try
to find some useful instruction to put in the delay slot, but frequently there is noth-
ing available, so it is forced to insert a NOP instruction there. Doing so keeps the
program correct, but makes it bigger and slower.

Annoying as unconditional branches are, conditional branches are worse. Not
only do they also have delay slots, but now the fetch unit does not know where to
read from until much later in the pipeline. Early pipelined machines just stalled
until it was known whether the branch would be taken or not. Stalling for three or
four cycles on every conditional branch, especially if 20% of the instructions are
conditional branches, wreaks havoc with the performance.

Consequently, what most machines do when they hit a conditional branch is
predict whether it is going to be taken or not. It would be nice if we could just
plug a crystal ball into a free PCI slot to help out with the prediction, but so far
this approach has not borne fruit.

Lacking such a peripheral, various ways have been devised to do the predic-
tion. One very simple way is as follows: assume that all backward conditional
branches will be taken and that all forward ones will not be taken. The reasoning
behind the first part is that backward branches are frequently located at the end of
a loop. Most loops are executed multiple times, so guessing that a branch back to
the top of the loop will be taken is generally a good bet.

The second part is shakier. Some forward branches occur when error condi-
tions are detected in software (e.g., a file cannot be opened). Errors are rare, so
most of the branches associated with them are not taken. Of course, there are
plenty of forward branches not related to error handling, so the success rate is not
nearly as good as with backward branches. While not fantastic, this rule is at least
better than nothing.

If a branch is correctly predicted, there is nothing special to do. Execution
just continues at the target address. The trouble comes when a branch is predicted
wrongly. Figuring out where to go and going there is not difficult. The hard part
is undoing instructions that have already been executed and should not have been.

There are two ways of going about this. The first way is to allow instructions
fetched after a predicted conditional branch to execute until they try to change the
machine’s state (e.g., storing into a register). Instead of overwriting the register,
the value computed is put into a (secret) scratch register and only copied to the
real register after it is known that the prediction was correct. The second way is
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to record the value of any register about to be overwritten (e.g., in a secret scratch
register), so the machine can be rolled back to the state it had at the time of the
mispredicted branch. Both solutions are complex and require industrial-strength
bookkeeping to get them right. And if a second conditional branch is hit before it
is known whether the first one was predicted right, things can get really messy.

Dynamic Branch Prediction

Clearly, having the predictions be accurate is of great value, since it allows
the CPU to proceed at full speed. As a consequence, much ongoing research aims
at improving branch prediction algorithms (Chen et al., 2003; Falcon et al., 2004;
Jimenez, 2003; and Parikh et al., 2004). One approach is for the CPU to maintain
a history table (in special hardware), in which it logs conditional branches as they
occur, so they can be looked up when they occur again. The simplest version of
this scheme is shown in Fig. 4-41(a). Here the history table contains one entry for
each conditional branch instruction. The entry contains the address of the branch
instruction along with a bit telling whether it was taken the last time it was exe-
cuted. Using this scheme, the prediction is simply that the branch will go the
same way it went last time. If the prediction is wrong, the bit in the history table
is changed.

Branch/ Prediction
Valid no branch Valid i Valid bits
Branch Branch Pretc)llltctlon Branch Target
Slotl address/tag l Sloti address/tag 2o Slotl address/tag i address
6 6 6
5 5 5
4 4 4
3 3 3
2 2 2
1 1 1
0 0 0

(@) (b) (©)

Figure 4-41. (a) A 1-bit branch history. (b) A 2-bit branch history. (c) A map-
ping between branch instruction address and target address.

There are several ways to organize the history table. In fact, these are pre-
cisely the same ways used to organize a cache. Consider a machine with 32-bit
instructions that are word aligned so that the low-order 2 bits of each memory
address are 00. With a direct-mapped history table containing 2" entries, the
low-order n + 2 bits of a branch instruction can be extracted and shifted right 2
bits. This n-bit number can be used as an index into the history table where a
check is made to see if the address stored there matches the address of the branch.
As with a cache, there is no need to store the low-order n + 2 bits, so they can be
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omitted (i.e., just the upper address bits—the tag—are stored). If there is a hit, the
prediction bit is used to predict the branch. If the wrong tag is present or the entry
is invalid, a miss occurs, just as with a cache. In this case, the forward/backward
branch rule can be used.

If the branch history table has, say, 4096 entries, then branches at addresses 0,
16384, 32768, ... will conflict, analogous to the same problem with a cache. The
same solution is possible: a two-way, four-way, or n-way associative entry. As
with a cache, the limiting case is a single n-way associative entry, which requires
full associativity of lookup.

Given a large enough table size and enough associativity, this scheme works
well in most situations. However, one systematic problem always occurs. When
a loop is finally exited, the branch at the end will be mispredicted, and worse yet,
the misprediction will change the bit in the history table to indicate a future pred-
iction of “no branch.” The next time the loop is entered, the branch at the end of
the first iteration will be predicted wrong. If the loop is inside an outer loop, or in
a frequently-called procedure, this error can occur often.

To eliminate this misprediction, we can give the table entry a second chance.
With this method, the prediction is only changed after two consecutive incorrect
predictions. This approach requires having two prediction bits in the history table,
one for what the branch is “supposed” to do, and one for what it did last time, as
shown in Fig. 4-41(b).

A slightly different way of looking at this algorithm is to see it as a finite-state
machine with four states, as depicted in Fig. 4-42. After a series of consecutive
successful “no branch’ predictions, the FSM will be in state 00 and will predict
“no branch’ next time. If that prediction is wrong, it will move to state 01, but
predict “no branch’ next time as well. Only if this prediction is wrong will it
now move to state 11 and predict branches all the time. In effect, the leftmost bit
of the state is the prediction and the rightmost bit is what the branch did last time.
While this design uses only 2 bits of history, a design that keeps track of 4 or 8
bits of history is also possible.

This is not our first FSM. Fig. 4-28 was also an FSM. In fact, all of our
microprograms can be regarded as FSMs, since each line represents a specific
state the machine can be in, with well-defined transitions to a finite set of other
states. FSMs are very widely used in all aspects of hardware design.

So far, we have assumed that the target of each conditional branch was
known, typically either as an explicit address to branch to (contained within the
instruction itself), or as a relative offset from the current instruction (i.e., a signed
number to add to the program counter). Often this assumption is valid, but some
conditional branch instructions compute the target address by doing arithmetic on
registers, and then going there. Even if the FSM of Fig. 4-42 accurately predicts
the branch will be taken, such a prediction is of no use if the target address is
unknown. One way of dealing with this situation is to store the actual address
branched to last time in the history table, as shown in Fig. 4-41(c). In this way, if
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Branch

No branch Branch

01 10

11

) Predict Predict )
Predict no branch branch Predict
no branch No one more one more branch

branch time time

No branch

Figure 4-42. A 2-bit finite-state machine for branch prediction.

the table says that the last time the branch at address 516 was taken it went to
address 4000, if the prediction is now for “branch,” the working assumption will
be a branch to 4000 again.

A different approach to branch prediction is to keep track of whether the last k
conditional branches encountered were taken, irrespective of which instructions
they were. This k-bit number, kept in the branch history shift register, is then
compared in parallel to all the entries of a history table with a k-bit key and if a hit
occurs, the prediction found there used. Somewhat surprisingly, this technique
works quite well.

Static Branch Prediction

All of the branch prediction techniques discussed so far are dynamic, that is,
carried out at run time while the program is running. They also adapt to the
program’s current behavior, which is good. The down side is that they require
specialized and expensive hardware and a great deal of chip complexity.

A different way to go is to have the compiler help out. When the compiler
sees a statement like

for (i=0; i < 1000000; i++) { ... }

it knows very well that the branch at the end of the loop will be taken nearly all
the time. If only there were a way for it to tell the hardware, a lot of effort could
be saved.

Although this is an architectural change (and not just an implementation
issue), some machines, such as the UltraSPARC III, have a second set of condi-
tional branch instructions, in addition to the regular ones (which are needed for
backward compatibility). The new ones contain a bit in which the compiler can
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specify that it thinks the branch will be taken (or not taken). When one of these is
encountered, the fetch unit just does what it has been told. Furthermore, there is
no need to waste precious space in the branch history table for these instructions,
thus reducing conflicts there.

Finally, our last branch prediction technique is based on profiling (Fisher and
Freudenberger, 1992). This, too, is a static technique, but instead of having the
compiler try to figure out which branches will be taken and which will not, the
program is actually run (typically on a simulator), and the branch behavior cap-
tured. This information is fed into the compiler, which then uses the special con-
ditional branch instructions to tell the hardware what to do.

4.5.3 Out-of-Order Execution and Register Renaming

Most modern CPUs are both pipelined and superscalar, as shown in Fig. 2-6.
What this generally means is that there is a fetch unit that pulls instruction words
out of memory before they are needed in order to feed a decode unit. The decode
unit issues the decoded instructions to the proper functional units for execution.
In some cases it may break individual instructions into micro-ops before issuing
them to the functional units, depending on what the functional units can do.

Clearly, the machine design is simplest if all instructions are executed in the
order they are fetched (assuming for the moment that the branch prediction algo-
rithm never guesses wrong). However, in-order execution does not always give
optimal performance due to dependences between instructions. If an instruction
needs a value computed by the previous instruction, the second one cannot begin
executing until the first one has produced the needed value. In this situation (a
RAW dependence), the second instruction has to wait. Other kinds of depen-
dences also exist, as we will soon see.

In an attempt to get around these problems and produce better performance,
some CPUs allow dependent instructions to be skipped over, to get to future
instructions that are not dependent. Needless to say, the internal instruction
scheduling algorithm used must deliver the same effect as if the program were
executed in the order written. We will now demonstrate how instruction reorder-
ing works using a detailed example.

To illustrate the nature of the problem, we will start with a machine that
always issues instructions in program order and also requires them to complete
execution in program order. The significance of the latter will become clear later.

Our example machine has eight registers visible to the programmer, RO
through R7. All arithmetic instructions use three registers: two for the operands
and one for the result, the same as the Mic-4. We will assume that if an instruc-
tion is decoded in cycle n, execution starts in cycle n + 1. For a simple instruc-
tion, such as an addition or subtraction, the writeback to the destination register
occurs at the end of cycle n +2. For a more complicated instruction, such as a
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multiplication, the writeback occurs at the end of cycle n + 3. To make the exam-
ple realistic, we will allow the decode unit to issue up to two instructions per
clock cycle. Commercial superscalar CPUs often can issue four or even six
instructions per clock cycle.

Our example execution sequence is shown in Fig. 4-43. Here the first column
gives the number of the cycle and the second one gives the instruction number.
The third column lists the instruction decoded. The fourth one tells which instruc-
tion is being issued (with a maximum of two per clock cycle). The fifth one tells
which instruction has been retired (completed). Remember that in this example
we are requiring both in-order issue and in-order completion, so instruction k + 1
cannot be issued until instruction k has been issued, and instruction k + 1 cannot
be retired (meaning the writeback to the destination register is performed) until
instruction k has been retired. The other 16 columns are discussed below.

After decoding an instruction, the decode unit has to decide whether or not it
can be issued immediately. To make this decision, the decode unit needs to know
the status of all the registers. If, for example, the current instruction needs a regis-
ter whose value has not yet been computed, the current instruction cannot be
issued and the CPU must stall.

We will keep track of register use with a device called a scoreboard, which
was first present in the CDC 6600. The scoreboard has a small counter for each
register telling how many times that register is in use as a source by currently-
executing instructions. If a maximum of, say, 15 instructions may be executing at
once, then a 4-bit counter will do. When an instruction is issued, the scoreboard
entries for its operand registers are incremented. When an instruction is retired,
the entries are decremented.

The scoreboard also has a counters to keep track of registers being used as
destinations. Since only one write at a time is allowed, these counters can be 1-bit
wide. The rightmost 16 columns in Fig. 4-43 show the scoreboard.

In real machines, the scoreboard also keeps track of functional unit usage, to
avoid issuing an instruction for which no functional unit is available. For simpli-
city, we will assume there is always a suitable functional unit available, so we
will not show the functional units on the scoreboard.

The first line of Fig. 4-43 shows I1 (instruction 1), which multiplies RO by R1
and puts the result in R3. Since none of these registers are in use yet, the instruc-
tion is issued and the scoreboard is updated to reflect that RO and R1 are being
read and R3 is being written. No subsequent instruction can write into any of
these or can read R3 until I1 has been retired. Since this instruction is a multipli-
cation, it will be finished at the end of cycle 4. The scoreboard values shown on
each line reflect their state after the instruction on that line has been issued.
Blank entries are Os.

Since our example is a superscalar machine that can issue two instructions per
cycle, a second instruction (I2) is issued during cycle 1. It adds RO and R2, storing
the result in R4. To see if this instruction can be issued, these rules are applied:
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Registers being read | Registers being written
Cy | # | Decoded Iss | Ret||0(1|/2|/3/4|5(6|7|0/1|2|3|4/5/6|7
1 | 1| R3=RO*R1 | 1 11 1
2 | R4=R0+R2 | 2 2111 101
2 | 3| R5=RO+R1 | 3 3121 1011
4 | R6=R1+R4 | - 3|21 1011
3 3|21 1011
4 1 (2]1|1 11
2 |11 1
3
5 4 1 1 1
5 | R7=R1*R2 | 5 2|1 1 101
6 | 6 | RlI=R0-R2 | — 21 1 101
7 4 171 1
8 5
9 6 1 1 1
7 | R3=R3*R1 | — 1 1 1
10 1 1 1
11 6
12 7 1 1 1
8 | R1=R4+R4 | - 1 1 1
13 1 1 1
14 1 1 1
15 7
16 8 2 1
17 2 1
18 8

Figure 4-43. A superscalar CPU with in-order issue and in-order completion.

1. If any operand is being written, do not issue (RAW dependence).
2. If the result register is being read, do not issue (WAR dependence).

3. 1If the result register is being written, do not issue (WAW dependence).

We have already seen RAW dependences, which occur when an instruction needs
to use as a source a result that a previous instruction has not yet produced. The
other two dependences are less serious. They are essentially resource conflicts.
In a WAR dependence (Write After Read), one instruction is trying to overwrite
a register that a previous instruction may not yet have finished reading. A WAW
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dependence (Write After Write) is similar. These can often be avoided by having
the second instruction put its results somewhere else (perhaps temporarily). If
none of the above three dependences exist, and the functional unit it needs is
available, the instruction is issued. In this case, 12 uses a register (RO) that is
being read by a pending instruction, but this overlap is permitted so 12 is issued.
Similarly, I3 is issued during cycle 2.

Now we come to I4, which needs to use R4. Unfortunately, we see from line
3 that R4 is being written. Here we have a RAW dependence, so the decode unit
stalls until R4 becomes available. While stalled, it stops pulling instructions from
the fetch unit. When the fetch unit’s internal buffers fill up, it stops prefetching.

It is worth noting that the next instruction in program order, IS5, does not have
conflicts with any of the pending instructions. It could have been decoded and
issued were it not for the fact that this design requires issuing instructions in
order.

Now let us look at what happens during cycle 3. 12, being an addition (two
cycles), finishes at the end of cycle 3. Unfortunately, it cannot be retired (thus
freeing up R4 for I14). Why not? The reason is that this design also requires in-
order retirement. Why? What harm could possibly come from doing the store
into R4 now and marking it as available?

The answer is subtle, but important. Suppose that instructions could complete
out of order. Then if an interrupt occurred, it would be very difficult to save the
state of the machine so it could be restored later. In particular, it would not be
possible to say that all instructions up to some address had been executed and all
instructions beyond it had not. This is called a precise interrupt and is a desir-
able characteristic in a CPU (Moudgill and Vassiliadis, 1996). Out-of-order
retirement makes interrupts imprecise, which is why some machines require in-
order instruction completion.

Getting back to our example, at the end of cycle 4, all three pending instruc-
tions can be retired, so in cycle 5 14 can finally be issued, along with the newly
decoded I5. Whenever an instruction is retired, the decode unit has to check to
see if there is a stalled instruction that can now be issued.

In cycle 6, 16 stalls because it needs to write into R1 and R1 is busy. It is
finally started in cycle 9. The entire sequence of eight instructions takes 18 cycles
to complete due to many dependences, even though the hardware is capable of
issuing two instructions on every cycle. Notice, however, that when reading
down the Iss column of Fig. 4-43, all the instructions have been issued in order.
Likewise, the Ret column shows that they have been retired in order as well.

Now let us consider an alternative design: out-of-order execution. In this
design, instructions may be issued out of order and may be retired out of order as
well. The same sequence of eight instructions is shown in Fig. 4-44, only now
with out-of-order issue and out-of-order retirement permitted.

The first difference occurs in cycle 3. Even though I4 has stalled, we are
allowed to decode and issue IS5 since it does not conflict with any pending
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Registers being read | Registers being written
Cy | # | Decoded Iss | Ret|0(1|/2|/3/4|5(6|7|0/1|2|3|4/5/6|7
1 1 | R3=R0*R1 | 1 101 1
2 | R4=R0+R2 | 2 2111 101
2 3 | R5=R0+R1 | 3 3|12 |1 1011
4 | R6=R1+R4 | - 321 1111
3 | 5| R7=R1*R2 3|13|2 1011 1
6 | S1=R0-R2 | 6 41313 1111 1
2 3/3|2 1 1 1
4 4 3|42 1 1 1111
7 | R3=R3*S1 | — 3|42 1 1 1111
8 | S2=R4+R4 | 8 3|42 3 1 11111
1 21312 3 1111
3 1122 3 11
5 6 21 3 1 101
6 7 211113 1 1 101
4 1]1]11]2 1 1 1
5 12 1 1
8 1 1
7 1 1
8 1 1
9 7

Figure 4-44. Operation of a superscalar CPU with out-of-order issue and out-
of-order completion.

instruction. However, skipping over instructions causes a new problem. Suppose
that 15 had used an operand computed by the skipped instruction, 4. With the
current scoreboard, we would not have noticed this. As a consequence, we have
to extend the scoreboard to keep track of stores done by skipped-over instructions.
This can be done by adding a second bit map, 1 bit per register, to keep track of
stores done by stalled instructions. (These counters are not shown in the figure.)
The rule for issuing instructions now has to be extended to prevent the issue of
any instruction with an operand scheduled to be stored into by an instruction that
came before it but was skipped over.

Now let us look back at 16, 17, and I8 in Fig. 4-43. Here we see that I6 com-
putes a value in R1 that is used by I7. However, we also see that the value is
never used again because I8 overwrites R1. There is no real reason to use R1 as
the place to hold the result of I6. Worse yet, R1 is a terrible choice of intermedi-
ate register, although a perfectly reasonable one for a compiler or programmer
used to the idea of sequential execution with no instruction overlap.
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In Fig. 4-44 we introduce a new technique for solving this problem: register
renaming. The wise decode unit changes the use of R1 in 16 (cycle 3) and 17
(cycle 4) to a secret register, S1, not visible to the programmer. Now I6 can be
issued concurrently with I5. Modern CPUs often have dozens of secret registers
for use with register renaming. This technique can often eliminate WAR and
WAW dependences.

At I8, we use register renaming again. This time R1 is renamed into S2 so the
addition can be started before R1 is free, at the end of cycle 6. If it turns out that
the result really has to be in R1 this time, the contents of S2 can always be copied
back there just in time. Even better, all future instructions needing it can have
their sources renamed to the register where it really is stored. In any case, the I8
addition got to start earlier this way.

On many real machines, renaming is deeply embedded in the way the regis-
ters are organized. There are many secret registers and a table that maps the reg-
isters visible to the programmer onto the secret registers. Thus the real register
being used for, say, RO is located by looking at entry O of this mapping table. In
this way, there is no real register RO, just a binding between the name RO and one
of the secret registers. This binding changes frequently during execution to avoid
dependences.

Notice that in Fig. 4-44 when reading down the fourth column, the instruc-
tions have not been issued in order. Nor they have been retired in order. The con-
clusion of this example is simple: using out-of-order execution and register
renaming, we were able to speed up the computation by a factor of two.

4.5.4 Speculative Execution

In the previous section we introduced the concept of reordering instructions in
order to improve performance. Although we did not mention it explicitly, the
focus there was on reordering instructions within a single basic block. It is now
time to look at this point more closely.

Computer programs can be broken up into basic blocks, with each basic
block consisting of a linear sequence of code with one entry point on top and one
exit on the bottom. A basic block does not contain any control structures (e.g., if
statements or while statements) so that its translation into machine language does
not contain any branches. The basic blocks are connected by control statements.

A program in this form can be represented as a directed graph, as shown in
Fig. 4-45. Here we compute the sum of the cubes of the even and odd integers up
to some limit and accumulate them in evensum and oddsum, respectively. Within
each basic block, the reordering techniques of the previous section work fine.

The trouble is that most basic blocks are short and there is insufficient paral-
lelism in them to exploit effectively. Consequently, the next step is to allow the
reordering to cross basic block boundaries in an attempt to fill all the issue slots.
The biggest gains come when a potentially slow operation can be moved upward
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evensum = 0; evensum = 0;
oddsum = 0;
oddsum = 0; .
i=0;
i=0;
o i >= limit * !
while (i < limit) { while (i < limit)
K=ixivi Y
L . K=ix*ixi
if (((i/2) » 2) ==1) if ((i12) * 2) = =)
evensum = evensum + k; /\1
else evensum = evensum + K; oddsum = oddsum + k;
oddsum = oddsum + k; o~
- i=i+1;
i=i+1; |
!

(@) (b)

Figure 4-45. (a) A program fragment. (b) The corresponding basic block
graph.

in the graph to start it early. This might be a LOAD instruction, a floating-point
operation, or even the start of a long dependence chain. Moving code upward
over a branch is called hoisting.

Imagine that in Fig. 4-45 all the variables were kept in registers except even-
sum and oddsum (for lack of registers). It might make sense then to move their
LOAD instructions to the top of the loop, before computing k, to get them started
early on, so the values will be available when they are needed. Of course, only
one of them will be needed on each iteration, so the other LOAD will be wasted,
but if the cache and memory are pipelined and there are issue slots available, it
might still be worth doing this. Executing code before it is known if it is even go-
ing to be needed is called speculative execution. Using this technique requires
support from the compiler and the hardware as well as some architectural exten-
sions. Normally, reordering instructions over basic block boundaries is beyond
the capability of hardware, so the compiler must move the instructions explicitly.

Speculative execution introduces some interesting problems. For one, it is
essential that none of the speculative instructions have irrevocable results because
it may turn out later that they should not have been executed. In Fig. 4-45, it is
fine to fetch evensum and oddsum, and it is also fine to do the addition as soon as
k is available (even before the if statement), but it is not fine to store the results
back in memory. In more complicated code sequences, one common way of pre-
venting speculative code from overwriting registers before it is known if this is
desired is to rename all the destination registers used by the speculative code. In
this way, only scratch registers are modified, so there is no problem if the code
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ultimately is not needed. If the code is needed, the scratch registers are copied to
the true destination registers. As you can imagine, the scoreboarding to keep
track of all this is not simple, but given enough hardware, it can be done.

However, there is another problem introduced by speculative code that cannot
be solved by register renaming. What happens if a speculatively executed instruc-
tion causes an exception? A painful, but not fatal, example is a LOAD instruction
that causes a cache miss on a machine with a large cache line size (say, 256 bytes)
and a memory far slower than the CPU and cache. If a LOAD that is actually
needed stops the machine dead in its tracks for many cycles while the cache line
is being loaded, well, that’s life, since the word is needed. However, stalling the
machine to fetch a word that turns out not to be needed is counterproductive. Too
many of these “optimizations,” may make the CPU slower than if it did not have
them at all. (If the machine has virtual memory, which is discussed in Chap. 6, a
speculative LOAD might even cause a page fault, which requires a disk operation
to bring in the needed page. False page faults can have a terrible effect on perfor-
mance, so it is important to avoid them.)

One solution present in a number of modern machines is to have a special
SPECULATIVE-LOAD instruction that tries to fetch the word from the cache, but if
it is not there, just gives up. If the value is there when it is actually needed, it can
be used, but if it is not, the hardware must go out and get it on the spot. If the
value turns out not to be needed, no penalty has been paid for the cache miss.

A far worse situation can be illustrated with the following statement:

if (x> 0) z=y/x;

where x, y, and z are floating-point variables. Suppose that the variables are all
fetched into registers in advance and that the (slow) floating-point division is
hoisted above the if test. Unfortunately, x is O and the resulting divide-by-zero
trap terminates the program. The net result is that speculation has caused a
correct program to fail. Worse yet, the programmer put in explicit code to prevent
this situation and it happened anyway. This situation is not likely to lead to a
happy programmer.

One possible solution is to have special versions of instructions that might
cause exceptions. In addition, a bit, called a poison bit, is added to each register.
When a special speculative instruction fails, instead of causing a trap, it sets the
poison bit on the result register. If that register is later touched by a regular
instruction, the trap occurs then (as it should). However, if the result is never
used, the poison bit is eventually cleared and no harm is done.

4.6 EXAMPLES OF THE MICROARCHITECTURE LEVEL

In this section, we will show brief examples of three state-of-the-art proces-
sors, showing how they employ the concepts explored in this chapter. These will
of necessity be brief because real machines are enormously complex, containing
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millions of gates. The examples are the same ones we have been using so far: the
Pentium 4, the UltraSPARC 111, and the 8051.

4.6.1 The Microarchitecture of the Pentium 4 CPU

On the outside, the Pentium 4 appears to be a traditional CISC machine, with
a huge and unwieldy instruction set supporting 8-, 16-, and 32-bit integer opera-
tions as well as 32-bit and 64-bit floating-point operations. It has only eight visi-
ble registers and no two of them are quite the same. Instruction lengths vary from
1 to 17 bytes. In short, it is a legacy architecture that seems to do everything
wrong.

However, on the inside, the Pentium 4 contains a modern, lean-and-mean,
deeply-pipelined RISC core that runs at an extremely fast clock rate that is likely
to increase in the years ahead. It is quite amazing how the Intel engineers
managed to build a state-of-the-art processor to implement an ancient architec-
ture. In this section we will look at the Pentium 4 microarchitecture to see how it
works.

Overview of the NetBurst Microarchitecture

The Pentium 4 microarchitecture, called the NetBurst microarchitecture, is a
complete break from the previous P6 microarchitecture used in the Pentium Pro,
Pentium II, and Pentium III, and represents the base on which Intel will build for
the next few years. A rough overview of the Pentium 4 microarchitecture is given
in Fig. 4-46. This diagram corresponds to Fig. 1-12, more or less.

The Pentium 4 consists of four major subsections: the memory subsystem, the
front end, the out-of-order control, and the execution units. Let us examine these
one at a time starting at the upper left and going counter clockwise around the
chip.

The memory subsystem contains the a unified L2 (level 2) cache as well as
the logic for accessing the external RAM over the memory bus. In the first gen-
eration Pentium 4, it was 256 KB; in the second it was 512 MB; in the third it was
1 MB. The L2 cache is an 8-way associative cache based on 128-byte cache
lines. When a request to the L2 cache misses, it initiates a pair of 64-byte
transfers to main memory to fetch the needed blocks. The L2 cache is a write-
back cache. This means that when a line is modified, the new contents are not
written back to memory until the line is flushed to memory.

Associated with the cache is a prefetch unit (not shown in the figure) that
attempts to prefetch data from the main memory into the L2 cache before it is
needed. From the L2 cache, data can migrate into the other caches at high speed.
A new L2 cache fetch can begin every other clock cycle, so with, for example, a
3-GHz clock, theoretically the L2 cache can supply up to 1.5 billion 64-byte
blocks per second to the other caches, for a bandwidth of 96 GB/sec.
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Figure 4-46. The block diagram of the Pentium 4.

Below the memory subsystem in Fig. 4-46 is the front end, which fetches
instructions from the L2 cache and decodes them in program order. Each Pentium
ISA instruction is broken down into a sequence of RISC-like micro-ops. For the
simpler instructions, the fetch/decode unit determines which micro-ops are needed
internally. For the more complex ones, the sequence of micro-ops needed is
looked up in the micro-ROM. FEither way, every Pentium 4 ISA instruction is
converted to a sequence of micro-ops for execution by the chip’s RISC core. This
mechanism is how the gap is bridged between an ancient CISC instruction set and
a modern RISC data path.

The decoded micro-ops are fed into the trace cache, which is the level 1
instruction cache. By caching the decoded micro-ops rather than the raw instruc-
tions, when an instruction is executed out of the trace cache, there is no need to
decode it a second time. This approach is one of the key differences between the
NetBurst microarchitecture and the P6 (which just held Pentium 4 instructions in
the level 1 instruction cache). Branch prediction is also done here.

Instructions are fed from the trace cache to the scheduler in the order dictated
by the program, but they are not necessarily issued in program order. When a



314 THE MICROARCHITECTURE LEVEL CHAP. 4

micro-op that cannot be executed is encountered, the scheduler holds it, but con-
tinues processing the instruction stream to issue subsequent instructions all of
whose resources (registers, functional units, etc.) are available. Register renaming
is also done here to allow instructions with a WAR or WAW dependence to con-
tinue without delay.

Although instructions can be issued out of order, the Pentium architecture’s
requirement of precise interrupts means that the ISA instructions must be retired
(i.e., have their results made visible) in order. The retirement unit handles this
chore.

In the upper right quadrant of the figure we have the execution units, which
carry out the integer, floating point, and specialized instructions. Multiple execu-
tion units exist and run in parallel. They get their data from the register file and
the L1 data cache.

The NetBurst Pipeline

Figure 4-47 is a more detailed version of the NetBurst microarchitecture
showing the pipeline. At the top is the front end, whose job is to fetch instructions
from memory and prepare them for execution. The front end is fed new Pentium
instructions from the L2 cache, 64 bits at a time. It decodes them into micro-ops
for storage in the trace cache, which holds 12K micro-ops. This size trace cache
gives a performance comparable to an 8-KB to 16-KB conventional L1 cache.
The trace cache holds groups of six micro-ops in a single trace line. The micro-
ops in a trace line are expected to be executed in order, even though they may be
derived from Pentium ISA instructions thousands of bytes apart. For longer
sequences of micro-ops, multiple trace lines can be linked together.

If a Pentium ISA instruction requires more than four micro-ops, it is not
decoded into the trace cache. Instead, a marker is placed there telling the logic to
look up the micro-ops in the microcode ROM. In this way, micro-ops are fed into
the out-of-order logic, either by using previously decoded ISA instructions from
the trace cache or by looking up complex ISA instructions, such as string moves,
on the fly in the microcode ROM.

If the decode unit hits a conditional branch, it looks up the predicted target in
the L1 BTB (Branch Target Buffer), and continues from the predicted address.
The L1 BTB holds 4K of the most recent branches. If the branch instruction is
not in the table, static prediction is used. A backward branch is assumed to be
part of a loop and assumed to be taken. The accuracy of these static predictions is
extremely high. A forward branch is assumed to be part of an if statement and is
assumed not to be taken. The accuracy of these static predictions is much lower
than that of the backward branches. The trace BTB is used for predicting where
branch micro-ops will go.

The second part of the pipeline, the out-of-order control logic, is fed from the
trace cache, which holds 12K micro-ops. As each micro-op comes in from the
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Figure 4-47. A simplified view of the Pentium 4 data path.
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front end, three per cycle, the allocation/renaming unit logs it in a 128-entry
table called the ROB (ReOrder Buffer). This entry keeps track of the status of
the micro-op until it is retired. The allocation/renaming unit then checks to see if
the resources the micro-op needs are available. If so, the micro-op is enqueued
for execution in one of the execution queues. Separate queues are maintained for
memory and nonmemory micro-ops. If a micro-op cannot be executed, it is de-
layed, but subsequent micro-ops are processed, leading to out-of-order execution
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of the micro-ops. This strategy was designed to keep all the functional units as
busy as possible. As many as 126 instructions can be in flight at any instant, and
up to 48 of these can be loads from memory and up to 24 can be stores into mem-
ory.

Sometimes a micro-op stalls because it needs to write into a register that is
being read or written by a previous micro-op. These conflicts are called WAR
and WAW dependences, respectively, as we saw earlier. By renaming the target
of the new micro-op to allow it to write its result in one of the 120 scratch regis-
ters instead in the intended, but still-busy, target, it may be possible to schedule
the micro-op for execution immediately. It there is no scratch register available,
or the micro-op has a RAW dependence (which can never be papered over), the
allocator notes the nature of the problem in the ROB entry. When all the required
resources become available later, the micro-op is put into one of the execution
queues.

The allocation/renaming unit puts micro-ops into the two queues when they
are ready to execute. At the other end, there are four schedulers that take them
out. Each scheduler schedules some resources, as follows:

1. Scheduler 1: ALU 1 and the floating-point move unit.

2. Scheduler 2: ALU 2 and the floating-point execute unit.
3. Scheduler 3: Load instructions.
4

Scheduler 4: Store instructions.

Since the schedulers and the ALUs run at twice the nominal clock frequency, the
first two schedulers can send off two micro-ops per clock cycle. With two integer
ALUs each running at double speed, a 3-GHz Pentium 4 is capable of performing
12 billion integer operations per second. This very high speed is why the out-of-
order control goes to so much trouble to find work for the ALUs to do. The load
and store instructions share a double-frequency execution unit that is capable of
issuing one load and one store on each cycle. Thus in the best case, six integer
micro-ops can be issued per clock cycle, in addition to some floating-point opera-
tions.

The two integer ALUs are not identical. ALU 1 can perform all arithmetic
and logical operations and branches. ALU 2 can perform only addition, subtrac-
tion, shift, and rotate instructions. Similarly, the two floating-point units are not
identical either. The first one can perform moves and the SSE instructions. The
second one can perform floating-point arithmetic, MMX instructions, and SSE
instructions.

The ALU and floating-point units are fed by a pair of 128-entry register files,
one for integers and one for floating-point numbers. These provide all the
operands for the instructions to be executed and provide a repository for results.
Due to the register renaming, eight of them contain the registers visible at the ISA
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level (EAX, EBX, ECX, EDX, etc.), but which eight hold the “real’” values varies
over time as the mapping changes during execution.

The L1 data cache is part of the high-speed (2x) circuitry. It is an 8-KB
cache, and holds integers, floating-point numbers, and other kinds of data. Unlike
the trace cache, it is not decoded in any way. It just holds a copy of the bytes in
memory. The L1 data cache is a 4-way associative cache with 64 bytes per cache
line. It is a write-through cache, meaning that when a cache line is modified, that
line is immediately copied back to the L2 cache. The cache can handle one read
and one write operation per clock cycle. When a needed word is not present in
the L1 cache, a request is sent to the L2 cache, which either responds immediately
or fetches the cache line from memory and then responds. Up to four requests
from the L1 cache to the L2 cache can be in progress at any instant.

Because micro-ops are executed out of a order, stores into the L1 cache are
not permitted until all instructions preceding the one causing the store have been
retired. The retirement unit has the task of retiring instructions, in order, and
keeping track of where it is. If an interrupt occurs, instructions not yet retired are
aborted, so the Pentium 4 retains the property that upon an interrupt, all instruc-
tions up to a certain point have been completed and no instruction beyond that has
any effect.

If a store instruction has been retired, but earlier instructions are still in pro-
gress, the L1 cache cannot be updated, so the results are put into a special
pending-store buffer. This buffer has 24 entries, corresponding to the 24 stores
that might be in execution at once. If a subsequent load tries to read the stored
data, it can be passed from the pending-store buffer to the instruction, even though
it is not yet in the L1 data cache. This process is called store-to-load forwarding.

It should be clear by now that the Pentium 4 has a highly complex microarchi-
tecture whose design was driven by the need to execute the old Pentum instruction
set on a modern, highly-pipelined RISC core. It accomplishes this goal by break-
ing Pentium instructions into micro-ops, caching them, and feeding them into the
pipeline three at time for execution on a set of ALUs capable of executing up to
six micro-ops per cycle under optimal conditions. Micro-ops are executed out of
order, but retired in order and results are stored into the L1 and L2 caches in
order. More information about the NetBurst microarchitecture can be found in
Hinton et al. (2004).

4.6.2 The Microarchitecture of the UltraSPARC-III Cu CPU

The UltraSPARC series is Sun’s implementation of the Version 9 SPARC
architecture. From the user’s or programmer’s point of view (i.e., at the ISP
level), the various models are quite similar, differing mainly in performance and
price. However, at the level of the microarchitecture, they differ considerably. In
this section we will describe the UltraSPARC III Cu processor. The Cu in the
designation refers to the use of copper wiring on chip, as opposed to the aluminum



318 THE MICROARCHITECTURE LEVEL CHAP. 4

wiring used in its predecessor. Copper has lower resistance than aluminum,
which allows thinner wires and faster operation.

The UltraSPARC III Cu is a full 64-bit machine, with 64-bit registers and a
64-bit data path, although for reasons of backward compatibility with Version 8
(i.e., 32-bit) SPARC:, it can also handle 32-bit operands, and, in fact, run unmodi-
fied 32-bit SPARC software. Although the internal architecture is 64 bits, the
memory bus is 128 bits wide, analogous to the Pentium II’s having a 32-bit archi-
tecture and a 64-bit memory bus, in both cases, the bus being one generation
ahead of the CPU itself.

Unlike the Pentium 4, the UltraSPARC is a true RISC architecture, which
means that it does not need a complex mechanism to convert old CISC instruc-
tions into micro-ops for execution. The core instructions are in fact already
micro-ops. However, in recent years, graphics and multimedia instructions have
been added, which requires special hardware facilities for their execution.

Overview of the UltraSPARC III Cu Microarchitecture

The block diagram of the UltraSPARC III Cu is given in Fig. 4-48. On the
whole, it is much simpler than the Pentium 4’s NetBurst microarchitecture
because the UltraSPARC has a simpler ISA architecture to implement. Neverthe-
less, some of the key components are similar to those used in the Pentium 4. The
similarities are mostly driven by technology and economics. For example, at the
time these chips were designed, L1 data caches in the range of 8 KB to 16 KB
made sense, so that is what they have. If at some point in the future, 64-MB L1
caches make technological and economic sense, all CPUs will have them. The
differences, in contrast, are mostly due to the difference between having to bridge
the gap between an old CISC instruction set and a modern RISC core and not hav-
ing to do so.

At the top left of Fig. 4-48 is the 32-KB 4-way associative instruction cache,
which uses 32-byte cache lines. Since most UltraSPARC instructions are 4 bytes,
there is room for about 8K instructions here, slightly smaller than the NetBurst’s
trace cache.

The instruction issue unit prepares up to four instructions for execution per
clock cycle. If there is a miss on the L1 cache, fewer instructions will be issued.
When a conditional branch is encountered, a branch table with 16K entries is
consulted to predict whether to fetch the next instruction or the one at the target
address. In addition, an extra bit associated with each word in the instruction
cache also helps improve branch prediction. Prepared instructions are fed into a
16-instruction buffer that smoothes out the flow of instructions into the pipelines.

The output of the instruction buffer flows into the integer, floating-point, and
load/store units, as shown in Fig. 4-48. The integer execution unit contains two
ALUs and as well as a short pipeline for branch instructions. Both the ISA regis-
ters and some scratch registers are also contained there.
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Figure 4-48. The block diagram of the UltraSPARC III Cu.

The floating-point unit contains 32 registers and three separate ALUs, for
addition/subtraction, multiplication, and division, respectively. Graphical instruc-
tions are also executed here.

The load/store unit handles various load and store instructions. It has data
paths to three different caches. The data cache is a traditional 64-KB 4-way
associative L1 data cache using a 32-byte line size. The 2-KB prefetch cache is
provided because the UltraSPARC ISA contains prefetch instructions which allow
a compiler to fetch data words before they are needed. When a compiler thinks it
might need a certain word, it can issue a prefetch instruction, which causes the
cache line addressed to be loaded into the prefetch cache ahead of time, thus
speeding up access when the word is needed a few instructions later. Under cer-
tain circumstances, hardware prefetching is also done, in order to improve the per-
formance of legacy programs that do not do prefetching. The write cache is a
small (2-KB) cache that is used to combine write results to make better use of the
wide (256-bit) bus into the L2 cache. Its only function is to improve performance.

The chip also contains logic for controlling memory access. This logic is split
into three parts: the system interface, the L2 cache controller, and the memory
controller. The system interface interfaces with the memory over a 128-bit wide
bus. All requests to the outside world, except to the L2 cache, pass through this
interface. With a 43-bit physical memory address, in theory, the main memory
can be up to 8 TB, but the size of the printed circuit board on which the processor

To memory
- System interface >
Instruction N
cache L2 cache controller [« >
———————————— L2
Y Memory controller cache
Branch| | Instruction (off chip)
table issue unit
y ¢ h
N
Instruction Data Prefetch Write
buffer cache cache cache
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is mounted limits the memory to 16 GB. The interface has been designed to allow
multiple UltraSPARCs to be connected to the same memory to form a multipro-
cessor. We will discuss multiprocessors in Chap. 8.

The L2 cache controller interfaces with the unified L2 cache, which is exter-
nal to the CPU chip. By having the L2 cache be external, caches of 1 MB, 4 MB,
and 8 MB are possible. The line size depends on the cache size, ranging from 64
bytes for a 1-MB cache to 512 bytes for an 8-MB cache. In contrast, the Pentium
4 L2 cache is on chip, but is limited to 1 MB maximum due to lack of chip real
estate. The trade-off here is that the UltraSPARC can have a much higher L2
cache hit rate than then Pentium (because it can be bigger), but L2 cache access is
slower (because it is off chip).

The memory controller maps 64-bit virtual addresses onto 43-bit physical
addresses. The UltraSPARC supports virtual memory (discussed in Chap. 6),
with page sizes of 8 KB, 64 KB, 512 KB, and 4 MB. To speed up the mapping,
special tables, called TLBs (Translation Lookaside Buffers) are provided to
compare the current virtual address being referenced to those referenced in the
recent past. Three such tables are provided for flexible management of the differ-
ent page sizes for data and another two are provided for mapping instructions.

The UltraSPARC III Cu Pipeline

The UltraSPARC III Cu has a 14-stage pipeline, illustrated in simplified form
in Fig. 4-49. The 14 stages are designated by the letters A through D on the left-
hand side of the figure. Let us now briefly examine each of the stages. The A
(Address generation) stage is at the beginning of the pipeline. It is here that the
address of the next instruction to be fetched is determined. Normally, this address
is the one following the current instruction. However, this sequential order can be
broken for a variety of reasons, such as when a previous instruction is a branch
that has been predicted to be taken, or a trap or interrupt needs to be serviced.
Because branch prediction cannot be done in one cycle, the instruction following
a conditional branch is always executed, no matter which way the branch goes.

The P (Preliminary fetch) stage uses the address provided by the A stage to
start fetching up to four instructions from the L1 I-cache per cycle. The branch
table is also consulted here to see if any of them are conditional branches, and if
so, whether they are predicted to be taken. The F (Fetch) stage completes fetch-
ing the instructions for the I-cache.

The B (Branch target) stage decodes the instructions just fetched. If any of
them are branches predicted to be taken, that information is available in this stage
and fed back into the A stage to direct future instruction fetching.

The I (Instruction group formation) stage groups the incoming instruction
depending on which of the six functional units they use:
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Figure 4-49. A simplified representation of the UltraSPARC III Cu pipeline.
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1. Integer ALU 1.

2. Integer ALU 2.

3. Floating point/graphics ALU 1.

4. Floating point/graphics ALU 2.

5. Branch pipeline (not shown in the figure).

6. Load, store, and special operations.

The two integer ALUs are not exactly identical and the two floating-point ALUs
are appreciably different. In each case, the sets of instructions the ALUs can exe-
cute are different. In the 7 stage, instructions are sorted depending on which unit
they need.

The J (Instruction stage grouping) removes instructions from the instruction
queue and prepares to dispatch them to the execution units during the next cycle.
Up to four instructions can be moved to the R stage each cycle. The choice of
instructions is constrained by the functional units available. For example, two
integer instructions, a floating-point instruction, and a load or store instruction can
be issued at once, but three integer instructions cannot be issued in one cycle.

The R stage looks up the registers needed for the integer instructions and for-
wards the requests for floating-point registers to the floating-point register file.
Dependence checks are also made here. If a needed register is not available be-
cause it is still being used in a conflicting way by a previous instruction, the
instruction needing that register is stalled and the ones behind it are blocked.
Unlike the Pentium 4, the UltraSPARC III Cu never issues instructions out of
order.

The E (Execution) stage is where integer instructions are actually executed.
Most arithmetic, Boolean, and shift instructions use the integer ALUs and com-
plete in one cycle. Upon completion, each instruction updates the working regis-
ter file immediately. Some of the more complex integer instructions are steered
into the special unit. Load and store instructions are initiated, but not completed,
in this stage. Floating-point operands are fetched from the floating-point register
file here. Conditional branch instructions are processed in the E stage and their
direction (branch/no branch) is determined here. In the event of a misprediction, a
signal is sent back to the A stage and the pipeline voided.

The C (Cache) stage is where access to the L1 cache completes. Instructions
that read memory (i.e., load instructions) deliver their results here.

The M (Miss) stage starts the processing of data words that are needed but not
in the L1 cache. The L2 cache is tried next, and failing that, a memory reference
is issued, which takes a large number of cycles. Any bytes, quarter-words, or
half-words that are hits on the L1 cache but need to be aligned or sign extended
are also processed in this stage. Floating-point loads that hit the prefetch cache
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also get their results here. The prefetch cache is not used for integer data for
somewhat complicated timing reasons.

The W (Write) stage is where the results from the special unit are written back
to the working register file.

The X (eXtend) stage is where most of the floating-point and graphics instruc-
tions complete. The results are available to subsequent instructions via store-to-
load forwarding before the instructions are formally retired in the D stage.

The T (Trap) stage is where integer and floating-point traps are detected. This
stage is responsible for making traps and interrupts precise. In other words, after
a trap or interrupt, the state of the machine that is saved must be such that all
instructions before the trap or interrupt have fully completed and none of the
instructions following it having started.

The D stage commits the integer and floating-point registers to their respec-
tive architectural register files. If a trap or interrupt occurs, it is these values, not
those in the working registers, that are made visible. The act of storing the regis-
ter in the architectural file is equivalent to retirement in the Pentium. In addition,
in the D stage, any store instructions now complete write their results to the write
cache rather than the L1 data cache. Ultimately, lines in this cache are written
back to the L2 cache, bypassing the L1 cache (whose contents are disjoint from
the L2 cache). This arrangement relates to making it easier to build UltraSPARC
multiprocessors.

This description of the UltraSPARC III is far from complete, but should give
a reasonable idea of how it works and how it differs from the Pentium 4 microar-
chitecture.

4.6.3 The Microarchitecture of the 8051 CPU

Our last example of a microarchitecture is the 8051’s, shown in Fig. 4-50.
This one is considerably simpler than that of the Pentium and UltraSPARC. The
reason for this simplicity is that the chip is very small (60,000 transistors) and was
designed long before pipelining became common. Also, the primary design goal
was to make the chip cheap, not fast. Cheap and Simple are good friends. Cheap
and Fast are not good friends.

The heart of the 8051 is the main bus. Attached to it are a number of regis-
ters, most of which can be read and written under program control. Let us briefly
describe them now. The ACC register is the ACCumulator, the main arithmetic
register where most computational results are stored. Most of the arithmetic
instructions use it. The B register is used in multiplication and division as well as
being a scratch register for holding temporary results. The SP register is the stack
pointer, and points to the top of the stack, as in most machines. The IR register is
the Instruction Register. It holds the instruction currently being executed.

The TMP1 and TMP2 registers are latches for the ALU. To perform an ALU
operation, the operands are first copied to these latches, then the ALU is started.
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Figure 4-50. The microarchitecture of the 8051.

The ALU output can be written to any of the writable registers via the main bus.
In addition, the condition codes, which indicate if the result was zero, negative,
etc., are written to the PSW (Program Status Word).

The 8051 has separate memories for data and code. The data RAM is 128
bytes (8051) or 256 bytes (8052), so the 8-bit RAM ADDR register is sufficiently
wide to address all of it. To address the RAM, the address of the byte desired is
put in the RAM ADDR register, and the memory operation started. The code mem-
ory can be as large as 64 KB (when off-chip memory is used), so the ROM ADDR
register used to address it is 16 bits wide. In a similar way, the ROM ADDR regis-
ter addresses the program code in the ROM.
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The DPTR (Double PoinTeR) register is a 16-bit scratch register for manag-
ing and assembling 16-bit addresses. The PC register is the 16-bit Program
Counter, that is, the address of the next instruction to fetch and execute. The
PC INCREMENTER register is a special piece of hardware that acts like a pseudore-
gister. When the PC is copied into it and then read back, the value is automati-
cally incremented. Neither PC nor PC INCREMENTER are reachable from the main
bus. Finally, BUFFER is another 16-bit scratch register. All these 16-bit registers
actually consist of a pair of 8-bit registers that can be independently manipulated,
but the effect is a 16-bit register.

In addition, the 8051 has three on-chip 16-bit timers, which are essential for
real-time applications. There are also four 8-bit I/O ports, which allow the 8051
to control up to 32 external buttons, lights, sensors, actuators, and so on. It is the
presence of the timers and I/O ports more than anything else that make it possible
to use the 8051 for embedded applications without any additional chips.

The 8051 is a synchronous processor, with most instructions taking one clock
cycle, although some take more. Each clock cycle can be divided into six parts,
called states. During the first state, the next instruction is fetched from the ROM,
put on the main bus, and routed into the IR register. During the second state, the
instruction is decoded and the PC incremented. During the third state, the oper-
ands are prepared. During the fourth state, one of the operands is put on the main
bus, usually for shipment to TMP1 where it can be latched for use as an ALU
operand. The ACC register can also be copied to TMP2 during this state so both
ALU inputs are ready to go. During the fifth state, the ALU executes. Finally,
during the sixth state, the ALU output is written back to its destination on the
main bus. Meanwhile, the ROM ADDR register is set up to fetch the next instruc-
tion.

While we could go into more detail about the 8051, the description above and
Fig. 4-50 give the basic idea. The 8051 has a single main bus (to reduce chip
area), a heterogeneous set of registers, and three timers and four ports hanging off
the main bus, plus a few extra registers on the local bus. On each data path cycle,
two operands are run through the ALU and the results stored back into a register,
just as on more modern computers.

4.7 COMPARISON OF THE PENTIUM, ULTRASPARC, AND 8051

Our three examples are very different, yet even they exhibit a certain amount
of commonality. The Pentium 4 has an ancient CISC instruction set that Intel’s
engineers would dearly love to toss into San Francisco Bay, except that doing so
would violate California’s water pollution laws. The UltraSPARC III is a pure
RISC design, with a lean and mean instruction set. The 8051 is a simple 8-bit
processors for embedded applications. Yet the heart of each of them is a set of
registers and one or more ALUs that perform simple arithmetic and Boolean
operands on register operands.
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Despite their obvious external differences, the Pentium 4 and the Ultra-
SPARC III have fairly similar execution units. Both of the execution units accept
micro-operations that contain an opcode, two source registers, and a destination
register. Both of them can execute a micro-operation in one cycle. Both of them
have deep pipelines, branch prediction, and split I- and D-caches.

This internal similarity is not an accident or even due to the endless job-
hopping by Silicon Valley engineers. As we saw with our Mic-3 and Mic-4
examples, it is easy and natural to build a pipelined data path that takes two
source registers, runs them through an ALU, and stores the results in a register.
Figure 4-34 shows this pipeline graphically. With current technology, this is the
most effective design.

The main difference between the Pentium 4 and the UltraSPARC III is how
they get from their ISA instruction set to the execution unit. The Pentium 4 has to
break up its CISC instructions to get them into the three-register format needed by
the execution unit. That is what the front end in Fig. 4-47 is all about—hacking
big instructions into nice, neat micro-operations. The UltraSPARC III does not
have to do anything because its native instructions are already nice, neat micro-
operations. This is why most new ISAs are of the RISC type—to provide a better
match between the ISA instruction set and the internal execution engine.

It is instructive to compare our final design, the Mic-4, to these two real-world
examples. The Mic-4 is most like the Pentium 4. Both of them have the job of
interpreting a non-RISC ISA instruction set. Both of them do this by breaking the
ISA instructions into micro-operations with an opcode, two source registers, and a
destination register. In both cases, the micro-operations are deposited in a queue
for execution later. The Mic-4 has a strict in-order issue, in-order execute, in-
order retire design, whereas the Pentium 4 has an in-order issue, out-of-order exe-
cute, in-order retire policy.

The Mic-4 and the UltraSPARC II are not really comparable at all because the
UltraSPARC III has RISC instructions (i.e., three-register micro-operations) as its
ISA instruction set. They do not have to be broken up. They can be executed as
is, each one in a single data path cycle.

In contrast to the Pentium 4 and the UltraSPARC III, the 8051 is a simple
machine indeed. It is more RISC-like than CISC-like because most of its simple
instructions can be executed in one clock cycle and do not need to be decom-
posed. It has no pipelining, no caching, and has in-order issue, in-order execute,
and in-order retirement. In its simplicity, it is much akin to the Mic-1.

4.8 SUMMARY

The heart of every computer is the data path. It contains some registers, one,
two or three buses, and one or more functional units such as ALUs and shifters.
The main execution loop consists of fetching some operands from the registers



SEC. 4.8 SUMMARY 327

and sending them over the buses to the ALU and other functional unit for execu-
tion. The results are then stored back in the registers.

The data path can be controlled by a sequencer that fetches microinstructions
from a control store. Each microinstruction contains bits that control the data path
for one cycle. These bits specify which operands to select, which operation to
perform, and what to do with the results. In addition, each microinstruction speci-
fies its successor, typically explicitly by containing its address. Some microin-
structions modify this base address by ORing bits into the address before it is
used.

The IJVM machine is a stack machine with 1-byte opcodes that push words
onto the stack, pop words from the stack, and combine (e.g., add) words on the
stack. A microprogrammed implementation was given for the Mic-1 microarchi-
tecture. By adding an instruction fetch unit to preload the bytes in the instruction
stream, many references to the program counter could be eliminated and the
machine greatly speeded up.

There are many ways to design the microarchitecture level. Many trade-offs
exist, including two-bus versus three-bus designs, encoded versus decoded
microinstruction fields, presence or absence of prefetching, shallow or deep pipe-
lines, and much more. The Mic-1 is a simple, software-controlled machine with
sequential execution and no parallelism. In contrast, the Mic-4 is a highly parallel
microarchitecture with a seven-stage pipeline.

Performance can be improved in a variety of ways. Cache memory is a major
one. Direct-mapped caches and set-associative caches are commonly used to
speed up memory references. Branch prediction, both static and dynamic, is
important, as is out-of-order execution, and speculative execution.

Our three example machines, the Pentium 4, UltraSPARC III, and 8051, all
have microarchitectures not visible to the ISA assembly language programmers.
The Pentium 4 has a complex scheme for converting the ISA instructions into
micro-operations, caching them, and feeding them into a superscalar RISC core
for out-of-order execution, register renaming, and every other trick in the book to
get the last possible drop of speed out of the hardware. The UltraSPARC III Cu
has a deep pipeline, but is further relatively simple, with in-order issue, in-order
execution, and in-order retirement. The 8051 is very simple, with a straightfor-
ward single main bus to which a handful of registers and one ALU are attached.

PROBLEMS

1. In Fig. 4-6, the B bus register is encoded in a 4-bit field, but the C bus is represented
as a bit map. Why?

2. In Fig. 4-6 there is a box labeled “High bit.” Give a circuit diagram for it.
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3.

10.

11.

12.

When the JMPC field in a microinstruction is enabled, MBR is ORed with
NEXT_ADDRESS to form the address of the next microinstruction. Are there any cir-
cumstances in which it makes sense to have NEXT_ADDRESS be Ox1FF and use JMPC?

Suppose that in the example of Fig. 4-14(a) the statement
k =5;

is added after the if statement. What would the new assembly code be? Assume that
the compiler is an optimizing compiler.

Give two different IIVM translations for the following Java statement:

i=k+n+5;

Give the Java statement that produced the following IJVM code:

ILOAD j
ILOAD n
ISUB
BIPUSH 7
ISUB
DUP
IADD
ISTORE i

In the text we mentioned that when translating the statement
if (Z) goto L1; else goto L2

to binary, L2 has to be in the bottom 256 words of the control store. Would it not be
equally possible to have LI at, say, 0x40 and L2 at 0x140? Explain your answer.

In the microprogram for Mic-1, in if_icmpeq3, MDR is copied to H. A few lines later it
is subtracted from TOS to check for equality. Surely it is better to have one statement
here:

if_cmpeq3 Z=TOS - MDR; rd

Why is this not done?

How long does a 2.5-GHz Mic-1 take to execute the Java statement
i=j+k

Give your answer in nanoseconds.

Repeat the previous question, only now for a 2.5-GHz Mic-2. Based on this calcula-
tion, how long would a program that runs for 100 sec on the Mic-1 take on the Mic-2?

Write microcode for the Mic-1 to implement the JVM POPTWO instruction. This
instruction removes two words from the top of the stack.

On the full JVM machine, there are special 1-byte opcodes for loading locals O
through 3 onto the stack instead of using the general ILOAD instruction. How should
IJVM be modified to make the best use of these instructions?
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

The instruction ISHR (arithmetic shift right integer) exists in JVM but not in IJVM. It
uses the top two values on the stack, replacing the two with a single value, the result.
The second from top word of the stack is the operand to be shifted. Its content is
shifted right by a value between 0 and 31, inclusive, depending on the value of the 5
least significant bits of the top word on the stack (the other 27 bits of the top word are
ignored). The sign bit is replicated to the right for as many bits as the shift count. The
opcode for ISHR is 122 (0x7A).

a. What is the arithmetic operation equivalent to left right with a count of 2?7
b. Extend the microcode to include this instruction as a part of [JVM.

The instruction ISHL (shift left integer) exists in JVM but not in IIVM. It uses the top
two values on the stack, replacing the two with a single value, the result. The second
from top word of the stack is the operand to be shifted. Its content is shifted left by a
value between 0 and 31, inclusive, depending on the value of the 5 least significant
bits of the top word on the stack (the other 27 bits of the top word are ignored). Zeros
are shifted in from the right for as many bits as the shift count. The opcode for ISHL is
120 (0x78).

a. What is the arithmetic operation equivalent to shifting left with a count of 2?7
b. Extend the microcode to include this instruction as a part of [JVM.

The JVM INVOKEVIRTUAL instruction needs to know how many parameters it has.
Why?

Implement the JVM DLOAD instruction for the Mic-2. It has a 1-byte index and pushes
the local variable at this position onto the stack. Then it pushes the next higher word
onto the stack as well.

Draw a finite state machine for tennis scoring. The rules of tennis are as follows. To
win, you need at least four points and you must have at least two points more than
your opponent. Start with a state (0, 0) indicating that no one has scored yet. Then
add a state (1, 0) meaning that A has scored. Label the arc from (0, 0) to (1, 0) with an
A. Now add a state (0, 1) indicating that B has scored, and label the arc from (0, 0)
with a B. Continue adding states and arcs until all the possible states have been
included.

Reconsider the previous problem. Are there any states that could be collapsed without
changing the result of any game? If so, which ones are equivalent?

Draw a finite state machine for branch prediction that is more tenacious than Fig. 4-
42. Tt should only change predictions after three consecutive mispredictions.

The shift register of Fig. 4-27 has a maximum capacity of 6 bytes. Could a cheaper
version of the IFU be built with a 5-byte shifter register? How about a 4-byte one?

Having examined cheaper IFUs in the previous question, now let us examine more
expensive ones. Would there ever be any point to have a much larger shift register in
it, say 12 bytes? Why or why not?

In the microprogram for the Mic-2, the code for if_icmpeqg6 goes to T when Z is set to
1. However, the code at T is the same as goto1. Would it have been possible to go to
goto1 directly? Would doing so have made the machine faster?
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23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

In the Mic-4, the decoding unit maps the IJVM opcode onto the ROM index where the
corresponding micro-operations are stored. It would seem to be simpler to just omit
the decoding stage and feed the IJVM opcode into the queueing directly. It could use
the IJVM opcode as an index into the ROM, the same way as the Mic-1 works. What
is wrong with this plan?

A computer has a two-level cache. Suppose that 60% of the memory references hit on
the first level cache, 35% hit on the second level, and 5% miss. The access times are 5
nsec, 15 nsec, and 60 nsec, respectively, where the times for the level 2 cache and
memory start counting at the moment it is known that they are needed (e.g., a level 2
cache access does not even start until the level 1 cache miss occurs). What is the aver-
age access time?

At the end of Sec. 4.5.1, we said that write allocation wins only if there are likely to be
multiple writes to the same cache line in a row. What about the case of a write fol-
lowed by multiple reads? Would that not also be a big win?

In the first draft of this book, Fig. 4-39 showed a three-way associative cache instead
of a four-way associative cache. One of the reviewers threw a temper tantrum, claim-
ing that students would be horribly confused by this because three is not a power of
two and computers do everything in binary. Since the customer is always right, the
figure was changed to a four-way associative cache. Was the reviewer right? Discuss
your answer.

A computer with a five-stage pipeline deals with conditional branches by stalling for
the next three cycles after hitting one. How much does stalling hurt the performance
if 20% of all instructions are conditional branches? Ignore all sources of stalling
except conditional branches.

Suppose that a computer prefetches up to 20 instructions in advance. However, on the
average, four of these are conditional branches, each with a probability of 90% of
being predicted correctly. What is the probability that the prefetching is on the right
track?

Suppose that we were to change the design of the machine used in Fig. 4-43 to have
16 registers instead of 8. Then we change 16 to use R8 as its destination. What hap-
pens in the cycles starting at cycle 67

Normally, dependences cause trouble with pipelined CPUs. Are there any optimiza-
tions that can be done with WAW dependences that might actually improve matters?
What?

Rewrite the Mic-1 interpreter but having LV now point to the first local variable
instead of to the link pointer.

Write a simulator for a 1-way direct mapped cache. Make the number of entries and
the line size parameters of the simulation. Experiment with it and report on your find-
ings.



THE INSTRUCTION SET
ARCHITECTURE LEVEL

This chapter discusses the Instruction Set Architecture (ISA) level in detail.
This level is positioned between the microarchitecture level and the operating sys-
tem level, as we saw in Fig. 1-2. Historically, this level was developed before any
of the other levels, and, in fact, was originally the only level. To this day it is not
unusual to hear this level referred to simply as ‘““the architecture’’ of a machine or
sometimes (incorrectly) as “assembly language.”

The ISA level has a special significance that makes it important for system
architects: it is the interface between the software and the hardware. While it
might be possible to have the hardware directly execute programs written in C,
C++, Java, or some other high-level language, it would not be a good idea. The
performance advantage of compiling over interpreting would then be lost. Furth-
ermore, to be of much practical use, most computers have to be able to execute
programs written in multiple languages, not just one.

The approach that essentially all system designers take is to have programs in
various high-level languages be translated to a common intermediate form—the
ISA level—and build hardware that can execute ISA-level programs directly. The
ISA level defines the interface between the compilers and the hardware. It is the
language that both of them have to understand. The relationship among the com-
pilers, the ISA level, and the hardware is shown in Fig. 5-1.

Ideally, when designing a new machine, the architects will talk to both the
compiler writers and the hardware engineers to find out what features each of
them want in the ISA level. If the compiler writers want some feature that the
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Figure 5-1. The ISA level is the interface between the compilers and the
hardware.

engineers cannot implement in a cost-effective way (e.g., a branch-and-do-payroll
instruction), it does not go in. Similarly, if the hardware folks have some nifty
new feature they want to put in (e.g., a memory in which the words whose addres-
ses are prime numbers are super fast), but the software folks cannot figure out
how to generate code to use it, it will die on the drawing board. After much nego-
tiation and simulation, an ISA perfectly optimized for the intended programming
languages will emerge and be implemented.

That is the theory. Now the grim reality. When a new machine comes along,
the first question all the potential customers ask is: “Is it compatible with its
predecessor?”” The second one is: ““Can I run my old operating system on it?”” The
third one is: “Will it run all my existing application programs unmodified?”’ If
any of the answers are “no,” the designers will have a lot of explaining to do.
Customers are rarely keen on throwing out all their old software and starting all
over again.

This attitude puts a great deal of pressure on computer architects to keep the
ISA the same between models, or at least make it backward compatible. By this
we mean that the new machine must be able to run old programs without change.
However, it is completely acceptable for the new machine to have new instruc-
tions and other features that can only be exploited by new software. In terms of
Fig. 5-1, as long as the designers make the ISA backward compatible with the
previous models, they are pretty much free to do whatever they want with the
hardware as hardly anyone cares about the real hardware (or even knows what it
does). They can switch from a microprogrammed design to direct execution, or
add pipelines or superscalar facilities or anything else they want, provided that
they maintain backward compatibility with the previous ISA. The goal is to make
sure that old programs run on the new machine. The challenge then becomes
building better machines subject to the backward compatibility constraint.
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The above is not intended to imply that ISA design does not matter. A good
ISA has significant advantages over a poor one, particularly in raw computing
power versus cost. For otherwise equivalent designs, different ISAs might
account for a difference of as much as 25% in performance. Our point is just that
market forces make it hard (but not impossible) to throw out an ancient ISA and
introduce a new one. Nevertheless, every once in a while a new general-purpose
ISA emerges, and in specialized markets (e.g., embedded systems or multimedia
processors) they occur much more frequently. Consequently, understanding ISA
design is important.

What makes a good ISA? There are two primary factors. First, a good ISA
should define a set of instructions that can be implemented efficiently in current
and future technologies, resulting in cost-effective designs over several genera-
tions. A poor design is more difficult to implement and may require many more
gates to implement a processor and more memory for executing programs. It also
may run slower because the ISA obscures opportunities to overlap operations,
requiring much more sophisticated designs to achieve equivalent performance. A
design that takes advantage of the peculiarities of a particular technology may be
a flash in the pan, providing a single generation of cost-effective implementations,
only to be surpassed by more forward-looking ISAs.

Second, a good ISA should provide a clean target for compiled code. Regu-
larity and completeness of a range of choices are important traits that are not
always present in an ISA. These are important properties for a compiler, which
may have trouble making the best choice among limited alternatives, particularly
when some seemingly obvious alternatives are not permitted by the ISA. In short,
since the ISA is the interface between the hardware and the software, it should
make the hardware designers happy (easy to implement efficiently) and make the
software designers happy (easy to generate good code for).

5.1 OVERVIEW OF THE ISA LEVEL

Let us start our study of the ISA level by asking what it is. This may seem
like a simple question, but it has more complications than one might at first ima-
gine. In the following section we will raise some of these issues. Then we will
look at memory models, registers, and instructions.

5.1.1 Properties of the ISA Level

In principle, the ISA level is defined by how the machine appears to a
machine language programmer. Since no (sane) person does much programming
in machine language any more, let us redefine this to say that ISA-level code is
what a compiler outputs (ignoring operating system calls and ignoring symbolic
assembly language for the moment). To produce ISA level code, the compiler
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writer has to know what the memory model is, what registers there are, what data
types and instructions are available, and so on. The collection of all this informa-
tion is what defines the ISA level.

According to this definition, issues such as whether the microarchitecture is
microprogrammed or not, whether it is pipelined or not, whether it is superscalar
or not, and so on are not part of the ISA level because they are not visible to the
compiler writer. However, this remark is not entirely true because some of these
properties do affect performance, and that is visible to the compiler writer. Con-
sider, for example, a superscalar design that can issue back-to-back instructions in
the same cycle provided that one is an integer instruction and one is a floating-
point instruction. If the compiler alternates integer and floating-point instructions,
it will get observably better performance than if it does not. Thus the details of
the superscalar operation are visible at the ISA level, so the separation between
the layers is not quite as clean as it might appear at first.

For some architectures, the ISA level is specified by a formal defining docu-
ment, often produced by an industry consortium. For others it is not. For exam-
ple, the V9 SPARC (Version 9 SPARC) has an official definition (Weaver and
Germond, 1994). The purpose of a defining document is to make it possible for
different implementers to build the machine and have them all run exactly the
same software and get exactly the same results.

In the case of the SPARC, the idea is to allow multiple chip vendors to
manufacture SPARC chips that are functionally identical, differing only in perfor-
mance and price. To make this idea work, the chip vendors have to know what a
SPARC chip is supposed to do (at the ISA level). Therefore the defining docu-
ment tells what the memory model is, what registers are present, what the instruc-
tions do, and so on, but not what the microarchitecture is like.

Such defining documents contain normative sections, which impose require-
ments, and informative sections, that are intended to help the reader but are not
part of the formal definition. The normative sections constantly use words like
shall, may not, and should to require, prohibit, and suggest aspects of the architec-
ture, respectively. For example, a sentence like

Executing a reserved opcode shall cause a trap.

says that if a program executes an opcode that is not defined, it must cause a trap
and not be just ignored. An alternative approach might be to leave this open, in
which case the sentence might read

The effect of executing a reserved opcode is implementation defined.

This means that the compiler writer cannot count on any particular behavior, thus
giving different implementers the freedom to make different choices. Most archi-
tectural specifications are accompanied by test suites that check to see if an imple-
mentation that claims to conform to the specification really does.
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It is clear why the V9 SPARC has a document that defines its ISA level: so
that all V9 SPARC chips will run the same software. There is no formal defining
document for the Pentium 4’s ISA level because Intel does not want to make it
easy for other vendors to make Pentium 4 chips. In fact, Intel has gone to court to
try to stop other vendors from cloning its chips, although it lost the case.

Another important property of the ISA level is that on most machines there
are at least two modes. Kernel mode is intended to run the operating system and
allows all instructions to be executed. User mode is intended to run application
programs and does not permit certain sensitive instructions (such as those that
manipulate the cache directly) to be executed. In this chapter we will primarily
focus on user mode instructions and properties.

5.1.2 Memory Models

All computers divide memory up into cells that have consecutive addresses.
The most common cell size at the moment is 8 bits, but cell sizes from 1 bit to 60
bits have been used in the past (see Fig. 2-10). An 8-bit cell is called a byte. The
reason for using 8-bit bytes is that ASCII characters are 7 bits, so one ASCII char-
acter plus a parity bit fits into a byte. If UNICODE comes to dominate the indus-
try in the future, then future computers may be based on 16-bit consecutively
numbered units. After all, 2* is an even nicer number than 2>, since 4 is a power
of 2 and 3 is not.

Bytes are generally grouped into 4-byte (32-bit) or 8-byte (64-bit) words with
instructions available for manipulating entire words. Many architectures require
words to be aligned on their natural boundaries, so, for example, a 4-byte word
may begin at address 0, 4, 8, etc., but not at address 1 or 2. Similarly, an 8-byte
word may begin at address 0, 8, or 16, but not at address 4 or 6. Alignment of 8-
byte words is illustrated in Fig. 5-2.

Address Address
8 Bytes - ~—8Bytes ——

24 24
16 19:18:17: 16| 16
15i14:i183i12i11:10i{ 9 i 8 8 15i14:i13i 12 8
0 N 0

Aligned 8-byte Nonaligned 8-byte

word at address 8 word at address 12

(@) (b)

Figure 5-2. An 8-byte word in a little-endian memory. (a) Aligned. (b) Not
aligned. Some machines require that words in memory be aligned.
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Alignment is often required because memories operate more efficiently that
way. The Pentium 4, for example, which fetches 8 bytes at a time from memory,
uses 36-bit physical addresses, but it has only 33 address bits, as shown in Fig. 3-
44. Thus the Pentium 4 could not even make a nonaligned memory reference if it
wanted to because the low-order 3 bits are not explicitly specified. They are
always Os, forcing all memory addresses to be multiples of 8 bytes.

However, this alignment requirement sometimes causes problems. On the
Pentium 4, ISA programs are allowed to reference words starting at any address, a
property that goes back to the 8088, which had a 1-byte wide data bus (and thus
no requirement about aligning memory references on 8-byte boundaries). If a
Pentium 4 program reads a 4-byte word at address 7, the hardware has to make
one memory reference to get bytes O through 7, and a second memory reference to
get bytes 8 through 15. Then the CPU has to extract the required 4 bytes from the
16 bytes read from memory and assemble them in the right order to form a 4-byte
word.

Having the ability to read words at arbitrary addresses requires extra logic on
the chip, which makes it bigger and more expensive. The design engineers would
love to get rid of it and simply require all programs to make word-aligned refer-
ences to memory. The trouble is, whenever the engineers say “Who cares about
running musty old 8088 programs that reference memory wrong?” the folks in
marketing have a succinct answer: “Our customers.”

Most machines have a single linear address space at the ISA level, extending
from address 0 up to some maximum, often 232 bytes or 2% bytes. However, a
few machines have separate address spaces for instructions and data, so that an
instruction fetch at address 8 goes to a different address space than a data fetch at
address 8. This scheme is more complex than having a single address space, but it
has two advantages. First, it becomes possible to have 2% bytes of program and
an additional 2°? bytes of data while using only 32-bit addresses. Second, be-
cause all writes automatically go to data space, it becomes impossible to acciden-
tally overwrite the program, thus eliminating one source of program bugs.

Note that having separate address spaces for instructions and data is not the
same as having a split level 1 cache. In the former case the total amount of ad-
dress space is doubled and reads to any given address yield different results, de-
pending on whether an instruction or a data word is being read. With a split
cache, there is still just one address space, only different caches store different
parts of it.

Yet another aspect of the ISA level memory model is the memory semantics.
It is natural to expect that a LOAD instruction that occurs after a STORE instruction
and which references the same address will return the value just stored. However,
as we saw in Chap. 4, in many designs, microinstructions are reordered. Thus
there is a real danger that the memory will not have the expected behavior. The
problem gets even worse on a multiprocessor, with each of multiple CPUs send-
ing a stream of (possibly reordered) read and write requests to a shared memory.
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System designers can take any one of several approaches to this problem. At
one extreme, all memory requests can be serialized, so each one is completed
before the next one is issued. This strategy hurts performance but gives the sim-
plest memory semantics (all operations are executed in strict program order).

At the other extreme, no guarantees of any kind are given. To force an order-
ing on memory, the program must execute a SYNC instruction, which blocks the
issuing of all new memory operations until all the previous ones have completed.
This design puts a great burden on the compilers because they have to understand
how the underlying microarchitecture works in detail, but it gives the hardware
designers the maximum freedom to optimize memory usage.

Intermediate memory models are also possible, in which the hardware
automatically blocks the issuing of certain memory references (e.g., those involv-
ing a RAW or WAR dependence) but not others. While having all these peculiar-
ities caused by the microarchitecture be exposed to the ISA level is annoying (at
least to the compiler writers and assembly language programmers), it is very
much the trend. This trend is caused by the underlying implementations such as
microinstruction reordering, deep pipelines, multiple cache levels, and so on. We
will see more examples of such unnatural effects later in this chapter.

5.1.3 Registers

All computers have some registers visible at the ISA level. They are there to
control execution of the program, hold temporary results, and for other purposes.
In general, the registers visible at the microarchitecture level, such as TOS and
MAR in Fig. 4-1, are not visible at the ISA level. However, a few of them, such as
the program counter and stack pointer, are visible at both levels. On the other
hand, registers visible at the ISA level are always visible at the microarchitecture
level since that is where they are implemented.

ISA-level registers can be roughly divided into two categories: special-
purpose registers and general-purpose registers The special-purpose registers
include things like the program counter and stack pointer, as well as other regis-
ters with a specific function. In contrast, the general-purpose registers are there to
hold key local variables, and intermediate results of calculations. Their main fun-
ction is to provide rapid access to heavily-used data (basically, avoiding memory
accesses). RISC machines, with their fast CPUs and (relatively) slow memories,
usually have at least 32 general-purpose registers, and the trend in new CPU
designs is to have even more.

On some machines, the general-purpose registers are completely symmetric
and interchangeable. If the registers are all equivalent, a compiler can use R1 to
hold a temporary result, but it can equally well use R25. The choice of register
does not matter.

However, on other machines some of the general-purpose registers may be
somewhat special. For example, on the Pentium 4, there is a register called EDX
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that can be used as a general register, but which also receives half the product in a
multiplication and which holds half the dividend in a division.

Even when the general-purpose registers are completely interchangeable, it is
common for the operating system or compilers to adopt conventions about how
they are used. For example, some registers may hold parameters to procedures
called and others may be used as scratch registers. If a compiler puts an important
local variable in R1 and then calls a library procedure that thinks R1 is a scratch
register available to it, when the library procedure returns, R1 may contain gar-
bage. If there are system-wide conventions on how the registers are to be used,
compilers and assembly-language programmers are advised to adhere to them to
avoid trouble.

In addition to the ISA-level registers visible to user programs, there are
always a substantial number of special-purpose registers available only in kernel
mode. These registers control the various caches, memory, I/O devices, and other
hardware features of the machine. They are used only by the operating system, so
compilers and users do not have to know about them.

One control register that is something of a kernel/user hybrid is the flags reg-
ister or PSW (Program Status Word). This register holds various miscellaneous
bits that are needed by the CPU. The most important bits are the condition
codes. These bits are set on every ALU cycle and reflect the status of the result
of the most recent operation. Typical condition code bits include

N — Set when the result was Negative.

Z — Set when the result was Zero.

V — Set when the result caused an oVerflow.

C — Set when the result caused a Carry out of the leftmost bit.
A — Set when there was a carry out of bit 3 (Auxiliary carry).

P — Set when the result had even Parity.

The condition codes are important because the comparison and conditional branch
instructions (i.e., conditional jump instructions) use them. For example, the CMP
instruction typically subtracts two operands and sets the condition codes based on
the difference. If the operands are equal, then the difference will be zero and the
Z condition code bit in the PSW register will be set. A subsequent BEQ (Branch
Equal) instruction tests the Z bit and branches if it is set.

The PSW contains more than just the condition codes, but the full contents
varies from machine to machine. Typical additional fields are the machine mode
(e.g., user or kernel), trace bit (used for debugging), CPU priority level, and inter-
rupt enable status. Often the PSW is readable in user mode, but some of the fields
can be written only in kernel mode (e.g., the user/kernel mode bit).
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5.1.4 Instructions

The main feature of the ISA level is its set of machine instructions. These
control what the machine can do. There are always LOAD and STORE instructions
(in one form or another) for moving data between memory and registers and
MOVE instructions for copying data among the registers. Arithmetic instructions
are always present, as are Boolean instructions and instructions for comparing
data items and branching on the results. We have seen some typical ISA instruc-
tions already (see Fig. 4-11) and will study many more in this chapter.

5.1.5 Overview of the Pentium 4 ISA Level

In this chapter we will discuss three widely different ISAs: Intel’s IA-32, as
embodied in the Pentium 4, the Version 9 SPARC architecture, implemented in
the UltraSPARC processors, and the 8051. The intent is not to provide an exhaus-
tive description of any of the ISAs, but rather to demonstrate important aspects of
an ISA, and to show how these aspects can vary from one ISA to another. Let us
start with the Pentium 4.

The Pentium 4 processor has evolved over many generations, tracing its
lineage back to some of the earliest microprocessors ever built, as we discussed in
Chap. 1. While the basic ISA maintains full support for execution of programs
written for the 8086 and 8088 processors (which had the same ISA), it even con-
tains remnants of the 8080, an 8-bit processor popular in the 1970s. The 8080, in
turn, was strongly influenced by compatibility constraints with the still-earlier
8008, which was based on the 4004, a 4-bit chip used back when dinosaurs
roamed the earth.

From a software standpoint, the 8086 and 8088 were straightforward 16-bit
machines (although the 8088 had an 8-bit data bus). Their successor, the 80286
was also a 16-bit machine. Its main advantage was a larger address space,
although few programs ever used it because it consisted of 16,384 64 KB seg-
ments rather than a linear 2°*-byte memory.

The 80386 was the first 32-bit machine in the Intel family. All the subsequent
machines (80486, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium 4,
Celeron, Xeon, Pentium M, Centrino, etc) have essentially the same 32-bit archi-
tecture as the 80386, called TA-32, so it is this architecture that we will focus on
here. The only major architectural change since the 80386 was the introduction of
the MMX, SSE, and SSE2 instructions in later versions of the Pentium series.
These instructions are highly specialized and designed to improve performance on
multimedia applications.

The Pentium 4 has three operating modes, two of which make it act like an
8088. In real mode, all the features that have been added since the 8088 are
turned off and the Pentium 4 behaves like a simple 8088. If any program does
something wrong, the whole machine just crashes. If Intel had designed human
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beings, it would have put in a bit that made them revert back to chimpanzee mode
(most of the brain disabled, no speech, sleeps in trees, eats mostly bananas, etc.)

One step up is virtual 8086 mode, which makes it possible to run old 8088
programs in a protected way. In this mode, a real operating system is in control of
the whole machine. To run an old 8088 program, the operating system creates a
special isolated environment that acts like an 8088, except that if its program
crashes, the operating system is notified instead of the machine crashing. When a
Windows user starts an MS-DOS window, the program run there is started in vir-
tual 8086 mode to protect Windows itself from misbehaving MS-DOS programs.

The final mode is protected mode, in which the Pentium 4 actually acts like a
Pentium 4 instead of a very expensive 8088. Four privilege levels are available
and controlled by bits in the PSW. Level 0 corresponds to kernel mode on other
computers and has full access to the machine. It is used by the operating system.
Level 3 is for user programs. It blocks access to certain critical instructions and
control registers to prevent a rogue user program from bringing down the entire
machine. Levels 1 and 2 are rarely used.

The Pentium 4 has a huge address space, with memory divided into 16,384
segments, each going from address 0 to address 2*? — 1. However, most operating
systems (including UNIX and all versions of Windows) support only one segment,
so most application programs effectively see a linear address space of 232 bytes,
and sometimes part of this is occupied by the operating system. Every byte in the
address space has its own address, with words being 32 bits long. Words are
stored in little endian format (the low-order byte has the lowest address).

The Pentium 4’s registers are shown in Fig. 5-3. The first four registers, EAX,
EBX, ECX, and EDX, are 32-bit, more-or-less general-purpose registers, although
each one has its own peculiarities. EAX is the main arithmetic register; EBX is
good for holding pointers (memory addresses); ECX plays a role in looping; EDX is
needed for multiplication and division, where, together with EAX, it holds 64-bit
products and dividends. Each of these registers contains a 16-bit register in the
low-order 16 bits and an 8-bit register in the low-order 8 bits. These registers
make it easy to manipulate 16- and 8-bit quantities, respectively. The 8088 and
80286 had only the 8- and 16-bit registers. The 32-bit registers were added with
the 80386, along with the E prefix, which stands for Extended.

The next three are also somewhat general purpose, but with more peculiari-
ties. The ESI and EDI registers are intended to hold pointers into memory, espe-
cially for the hardware string manipulation instructions, where ESI points to the
source string and EDI points to the destination string. The EBP register is also a
pointer register. It is typically used to point to the base of the current stack frame,
the same as LV in [JVM. When a register (like EBP) is used to point to the base of
the local stack frame, it is usually called the frame pointer. Finally, ESP is the
stack pointer.

The next group of registers, CS through GS, are segment registers. To some
extent, they are electronic trilobites, ancient fossils left over from the time the
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Figure 5-3. The Pentium 4’s primary registers.
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8088 attempted to address 22° bytes of memory using 16-bit addresses. Suffice it
to say that when the Pentium 4 is set up to use a single linear 32-bit address space,
they can be safely ignored. Next is EIP, which is the program counter (Extended
Instruction Pointer). Finally, we come to EFLAGS, which is the PSW.

5.1.6 Overview of the UltraSPARC III ISA Level

The SPARC Architecture was first introduced in 1987 by Sun Microsystems.
The architecture was one of the first commercial architectures labeled a RISC
architecture. It was closely based on the research done at Berkeley in the 1980s
(Patterson, 1985; and Patterson and Séquin, 1982). The original SPARC was a
32-bit architecture, but the UltraSPARC III is a 64-bit machine, based on Version



342 THE INSTRUCTION SET ARCHITECTURE LEVEL CHAP. 5

9 of the architecture, and that is the one we will describe in this chapter. For con-
sistency with the rest of the book, we will refer to the UltraSPARC III here, but at
the ISA level, all the UltraSPARCs are identical.

The UltraSPARC III memory structure is clean and simple: addressable mem-
ory is a linear array of 2% bytes. Unfortunately, this memory is so large
(18,446,744,073,709,551,616 bytes) that no current machine can implement it.
Current implementations have a limit on the size of the address they can access
(2% bytes on the UltraSPARC III), but that will increase on future models. The
default byte order is big endian, but it can be turned into little endian by setting a
bit in the PSW.

It is important that the ISA have a larger limit than implementations need,
because future implementations almost certainly will need to increase the size of
memory the processor can access. One of the most serious problems encountered
with successful architectures has been that their ISA limited the amount of
addressable memory. In computer science, the only error one cannot work around
is not enough bits. One day your grandchildren will ask you how computers could
do anything in the old days with only 32-bit addresses and only 4 GB of real
memory when the average game needs 8 GB just to boot up.

The SPARC ISA is clean, though the organization of the registers is some-
what complex in an attempt to make procedure calls more efficient. Experience
has shown that the register organization is more trouble than it is worth, but ye
olde backwarde compatibility rule made it impossible to get rid of.

The UltraSPARC III has two groups of registers: 32 64-bit general-purpose
registers and 32 floating-point registers. The general-purpose registers are called
RO through R31 although other names are used in certain contexts. The alternative
names and functions of the registers are shown in Fig. 5-4.

Register Alt. name Function
RO GO Hardwired to 0. Stores into it are just ignored.
R1-R7 G1-G7 | Holds global variables
R8 — R13 00 - 05 | Holds parameters to the procedure being called
R14 SP Stack pointer
R15 o7 Scratch register
R16 -R23 | LO-L7 Holds local variables for the current procedure
R24 — R29 10-15 Holds incoming parameters
R30 FP Pointer to the base of the current stack frame
R31 17 Holds return address for the current procedure

Figure 5-4. The UltraSPARC III’s general registers.

All the general registers are 64 bits wide, and except for RO, which is truly 0,
can be read and written by a variety of load and store instructions. The uses given
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in Fig. 5-4 are partly based on convention, but also partly based on how the
hardware treats them. In general, it is unwise to deviate from the uses listed in the
figure unless you have a Black Belt in SPARC Guru and really, really know what
you are doing. It is the responsibility of the compiler or programmer to be sure
that the program accesses the registers correctly and performs the correct kind of
arithmetic on them. For example, it is very easy to load floating-point numbers
into the general registers and then perform integer addition on them, an operation
that will produce utter nonsense, but which the CPU will cheerfully perform when
so instructed.

The global variables are used to hold constants, variables, and pointers that
are needed in all procedures, although they can be stored and reloaded at pro-
cedure entries and exits if need be. The Ix and Ox registers are used for passing
parameters to procedures to avoid memory references. We will explain how this
works below.

Three dedicated registers are used for special purposes. The FP and SP regis-
ters bound the current frame. The former points to the base of the current frame
and is used for addressing local variables, precisely the same way as LV in Fig. 4-
10. The latter indicates the current top of the stack and fluctuates as words are
pushed onto the stack or popped from it. In contrast, FP only changes on pro-
cedure calls and returns. The third special-purpose register is R31. It is used for
procedure calls to hold the return address.

The UltraSPARC III actually has more than 32 general-purpose registers,
although only 32 are visible to the program at any instant of time. This feature,
known as register windows, is intended for the efficient support of procedure
calls. It is illustrated in Fig. 5-5. The basic idea is to emulate a stack, but using
the registers. That is, there are actually multiple sets of registers, just as there are
multiple frames on a stack. Precisely 32 general registers are visible at any
instant. The register CWP (Current Window Pointer) keeps track of which register
set is currently in use.

The procedure call instruction hides the old set of registers and provides a
new set for use by the called procedure by decrementing CWP. However, some
registers are carried over from the calling procedure to the called procedure, pro-
viding an efficient way of passing parameters between procedures. This tech-
nique works by renaming some of the registers: after the procedure call, the old
output registers, R8 to R15, are still visible, but they are now the input registers,
R24 to R31. However, the eight global registers do not change, that is, they are
always the same set of registers.

Unlike memory, which is quasi-infinite (at least as far as the stack goes),
when procedures get nested too deeply, the machine will run out of register win-
dows to use. At that point the oldest set is spilled into memory to free up a new
set. Similarly, after many procedure returns, a register set may have to be fetc