
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

STATE UNIVERSITY OF TELECOMMUNICATIONS

СТОРЧАК К. П., МИКОЛАЙЧУК В. Р., ТУШИЧ А. М.

ROBOTICS

EDUCATIONAL TEXTBOOK

Kyiv 2019

2

УДК 007.52: 004 (076.5)

ББК 3816.2

Рецензенти: доц., д.т.н. Бондарчук А. П.

 проф., д.т.н. Кухах Н. І.

Навчальний посібник призначений для самостійної роботи студентів вищих

навчальних закладів під час поглибленого вивчення дисципліни «Робототехніка».

Сторчак К. П., Миколайчук В. Р., Тушич А. М. Robotics. Навч. Посібник

підготовано для студентів вищих навчальних закладів ⎯ Київ:ДУКІТ, 2019.-96 с.

Викладені основні відомості про роботів і робототехнічні системи різних видів.

Представлено принципи будови маніпуляційних роботів і іх фізичні і технічні

характеристики. Розглянуто інформаційні системи в робототехніці і мехатроніці,

основи комп'ютерного зору, а також наведено принципи програмування роботів.

Гриф надано

Державним університетом

телекомунікацій

(протокол № 2 від 10.09.2018 р)

3

CONTENTS

Introduction……………………………………………………………………………………………. 4

Chapter1 Robots and their history …………………………………………………………………... 5

1.1 Era of Industrial Robots……………………………………………………………………. 5

1.2 Creation of Robotics……………………………………………………………….………. 8

1.3. Manipulation and Dexterity……………………………………………………….………. 11

1.4 Locomotion and Navigation ……………………………………………………….……… 12

Chapter 2 Configuration of manipulators of industrial robots …………………………...……….. 18

2.1 Joint Primitives and Serial Linkages……………………………………………………….. 18

2.2 Robot mechanisms analogous to coordinate systems……………………………………… 19

2.3 Parallel Linkages …………………………………………………………………..………. 22

Chapter 3 Planar Kinematics………………………………………………………………................ 25

3.1 Planar Kinematics of Serial Link Mechanisms ……………………………………………. 25

3.2 Inverse Kinematics of Planar Mechanisms………………………………………...………. 28

3.3 Kinematics of Parallel Link Mechanisms………………………………………….………. 32

3.4 Redundant mechanisms …………………………………………………………………… 34

Chapter 4 Dynamics of manipulation robots………………………………………………………... 35

4.1 Lagrange – Euler method of inverse dynamics solution…………………………...………. 35

4.2 Kinetic energy of manipulator……………………………………………………..………. 40

4.3 Potential energy of manipulator…………………………………………………................. 41

Chapter 5 Information systems in robotics …………………………………………………………. 44

5.1General information from the theory of information……………………………….………. 44

5.2 The concept of a signal. Classes and types of signals……………………………...………. 46

5.3 Communication systems…………………………………………………………………… 56

5.4. Information Systems Classification……………………………………………………….. 65

Chapter 6Computer vision…………………………………………………………………………… 67

6.1 Machines that see?.. 68

6.2 Application problems………………………………………………………………….. 68

6.3 Operations on Images………………………………………………………………….. 75

Chapter 7 Robot programming languages and systems…………………………………………….. 80

7.1 A sample application……………………………………………………………………….. 83

7.2 Requirements of a robot programming language ………………………………………….. 85

7.3 Problems peculiar to robot programming languages………………………………………. 90

References……………………………………………………………………………………………… 95

4

Introduction

Many definitions have been suggested for what we call a robot. The word may

conjure up various levels of technological sophistication, ranging from a simple

material handling device to a humanoid. The image of robots varies widely with

researchers, engineers, and robot manufacturers.

Robots in antiquity and through the Middle Ages were used primarily for

entertainment. However, the 20th century featured a boom in the development of

industrial robots. Through the rest of the century, robots changed the structure of

society and allowed for safer conditions for labor. In addition, the implementation of

advanced robotics in the military and NASA has changed the landscape of national

defense and space exploration.

Robotics technology influences every aspect of work and home. Robotics has

the potential to positively transform lives and work practices, raise efficiency and

safety levels and provide enhanced levels of service. Even more, robotics is set to

become the driving technology underpinning a whole new generation of autonomous

devices and cognitive artefacts that, through their learning capabilities, interact

seamlessly with the world around them, and hence, provide the missing link between

the digital and physical world. Robotics is already the key driver of competitiveness

and flexibility in large scale manufacturing industries.

5

Chapter1 Robots and their history

Introduction

It is widely accepted that today’s robots used in industries originated in the

invention of a programmed material handling device by George C. Devol. In 1954,

Devol filed a U.S. patent for a new machine for part transfer, and he claimed the

basic concept of teachin/playback to control the device. This scheme is now

extensively used in most of today's industrial robots.

1.1 Era of Industrial Robots

Devol's industrial robots have their origins in two preceding technologies:

numerical control for machine tools, and remote manipulation. Numerical control is a

scheme to generate control actions based on stored data. Stored data may include

coordinate data of points to which the machine is to be moved, clock signals to start

and stop operations, and logical statements for branching control sequences.

The whole sequence of operations and its variations are prescribed and stored in a

form of memory, so that different tasks can be performed without requiring major

hardware changes. Modern manufacturing systems must produce a variety of

products in small batches, rather than a large number of the same products for an

extended period of time, and frequent changes of product models and production

schedules require flexibility in the manufacturing system. The transfer line approach,

which is most effective for mass production, is not appropriate when such flexibility

is needed (Figure 1-1). When a major product change is required, a special-purpose

production line becomes useless and often ends up being abandoned, despite the large

capital investment it originally involved. Flexible automation has been a central issue

in manufacturing innovation for a few decades, and numerical control has played a

central role in increasing system flexibility. Contemporary industrial robots are

programmable machines that can perform different operations by simply modifying

stored data, a feature that has evolved from the application of numerical control.

6

Figure 1-1 General trend of manufacturing cost vs. batch size

Another origin of today's industrial robots can be found in remote manipulators. A

remote manipulator is a device that performs a task at a distance. It can be used in

environments that human workers cannot easily or safely access, e.g. for handling

radio-active materials, or in some deep sea and space applications. The first master-

slave manipulator system was developed by 1948. The concept involves an

electrically powered mechanical arm installed at the operation site, and a control

joystick of geometry similar to that of the mechanical arm (Figure 1-2). The joystick

has position transducers at individual joints that measure the motion of the human

operator as he moves the tip of the joystick. Thus the operator's motion is

transformed into electrical signals, which are transmitted to the mechanical arm and

cause the same motion as the one that the human operator performed. The joystick

that the operator handles is called the master manipulator, while the mechanical arm

is called the slave manipulator, since its motion is ideally the replica of the operator's

commanded motion. A master-slave manipulator has typically six degrees of freedom

to allow the gripper to locate an object at an arbitrary position and orientation. Most

joints are revolute, and the whole mechanical construction is similar to that of the

human arm. This analogy with the human arm results from the need of replicating

7

human motions. Further, this structure allows dexterous motions in a wide range of

workspaces, which is desirable for operations in modern manufacturing systems.

Contemporary industrial robots retain some similarity in geometry with both the

human arm and remote manipulators. Further, their basic concepts have evolved from

those of numerical control and remote manipulation. Thus a widely accepted

definition of today’s industrial robot is that of a numerically controlled manipulator,

where the human operator and the master manipulator in the figure are replaced by a

numerical controller.

8

Figure 1-Assembly lines using spot welding robots

1.2 Creation of Robotics

The merge of numerical control and remote manipulation created a new field of

engineering, and with it a number of scientific issues in design and control which are

substantially different from those of the original technologies have emerged.

Robots are required to have much higher mobility and dexterity than traditional

machine tools. They must be able to work in a large reachable range, access crowded

places, handle a variety of workpieces, and perform flexible tasks. The high mobility

and dexterity requirements result in the unique mechanical structure of robots, which

parallels the human arm structure. This structure, however, significantly departs from

traditional machine design. A robot mechanical structure is basically composed of

cantilevered beams, forming a sequence of arm links connected by hinged joints.

Such a structure has inherently poor mechanical stiffness and accuracy, hence is not

appropriate for the heavy-duty, high-precision applications required of machine tools.

Further, it also implies a serial sequence of servoed joints, whose errors accumulate

along the linkage. In order to exploit the high mobility and dexterity uniquely

featured by the serial linkage, these difficulties must be overcome by advanced

design and control techniques.

The serial linkage geometry of manipulator arms is described by complex

nonlinear equations. Effective analytical tools are necessary to understand the

geometric and kinematic behavior of the manipulator, globally referred to as the

manipulator kinematics. This represents an important and unique area of robotics

research, since research in kinematics and design has traditionally focused upon

single-input mechanisms with single actuators moving at constant speeds, while

robots are multi-input spatial mechanisms which require more sophisticated

analytical tools.

The dynamic behavior of robot manipulators is also complex, since the dynamics

of multi-input spatial linkages are highly coupled and nonlinear. The motion of each

9

joint is significantly affected by the motions of all the other joints. The inertial load

imposed at each joint varies widely depending on the configuration of the

manipulator arm. Coriolis and centrifugal effects are prominent when the manipulator

arm moves at high speeds. The kinematic and dynamic complexities create unique

control problems that are not adequately handled by standard linear control

techniques, and thus make effective control system design a critical issue in robotics.

Figure 1-4 Adept Direct-Drive robot

Finally, robots are required to interact much more heavily with peripheral devices

than traditional numerically-controlled machine tools. Machine tools are essentially

self-contained systems that handle workpieces in well-defined locations. By contrast,

the environment in which robots are used is often poorly structured, and effective

means must be developed to identify the locations of the workpieces as well as to

communicate to peripheral devices and other machines in a coordinated fashion.

Robots are also critically different from master-slave manipulators, in that they are

autonomous systems.

10

Figure 1-5 Dexterous fingers

Master-slave manipulators are essentially manually controlled systems, where the

human operator takes the decisions and applies control actions. The operator

interprets a given task, finds an appropriate strategy to accomplish the task, and plans

the procedure of operations. He/she devises an effective way of achieving the goal on

the basis of his/her experience and knowledge about the task. His/her decisions are

then transferred to the slave manipulator through the joystick. The resultant motion of

the slave manipulator is monitored by the operator, and necessary adjustments or

modifications of control actions are provided when the resultant motion is not

adequate, or when unexpected events occur during the operation.

Figure 1-6 Medical robots for minimally invasive surgery

11

The human operator is, therefore, an essential part of the control loop. When the

operator is eliminated from the control system, all the planning and control

commands must be generated by the machine itself. The detailed procedure of

operations must be set up in advance, and each step of motion command must be

generated and coded in an appropriate form so that the robot can interpret it and

execute it accurately. Effective means to store the commands and manage the data

file are also needed . Thus, programming and command generation are critical issues

in robotics. In addition, the robot must be able to fully monitor its own motion. In

order to adapt to disturbances and unpredictable changes in the work environment,

the robot needs a variety of sensors, so as to obtain information both about the

environment (using external sensors, such as cameras or touch sensors) and about

itself (using internal sensors, such as joint encoders or joint torque sensors). Effective

sensor-based strategies that incorporate this information require advanced control

algorithms. But they also imply a detailed understanding of the task.

1.3. Manipulation and Dexterity

Contemporary industrial needs drive the applications of robots to ever more

advanced tasks. Robots are required to perform highly skilled jobs with minimum

human assistance or intervention. To extend the applications and abilities of robots, it

becomes important to develop a sound understanding of the tasks themselves.

In order to devise appropriate arm

mechanisms and t develop effective control

algorithms, we need to precisely understand how a

given task should be accomplished and what sort of

motions the robot should be able to achieve. To

perform an assembly operation, for example, we

need to know how to guide the assembly part to

the desired location, mate it with another part,

and secure it in an appropriate way. In a grinding

operation, the robot must properly position the

12

grinding wheel while accommodating the contact force. We need to analyze the

grinding process itself in order to generate appropriate force and motion commands.

A detailed understanding of the underlying principles and "know-how" involved

in the task must be developed in order to use

industrial robots effectively, while there is no

such need for making control strategies explicit

when the assembly and grinding operations are performed by a human worker.

Human beings perform sophisticated manipulation tasks without being aware of the

control principles involved. We have trained ourselves to be capable of skilled jobs,

but in general we do not know what the acquired skills are exactly about. A sound

and explicit understanding of manipulation operations, however, is essential for the

long-term progress of robotics. This scientific aspect of manipulation has never been

studied systematically before, and represents an emerging and important part of

robotics research.

1.4 Locomotion and Navigation

Robotics has found a number of important application areas in broad fields

beyond manufacturing automation. These range from space and under-water

exploration, hazardous waste disposal, and environment monitoring to robotic

surgery, rehabilitation, home robotics, and entertainment. Many of these applications

entail some locomotive functionality so that the robot can freely move around in an

unstructured environment. Most industrial robots sit on a manufacturing floor and

perform tasks in a structured environment. In contrast, those robots for non-

manufacturing applications must be able to move around on their own. See Figure 1-

8.

Locomotion and navigation are increasingly important, as robots find challenging

applications in the field. This opened up new research and development areas in

robotics. Novel mechanisms are needed to allow robots to move through crowded

areas, rough terrain, narrow channels, and even staircases. Various types of legged

robots have been studied, since, unlike standard wheels, legs can negotiate with

Figure 1-7 Remote-center

compliance hand

13

uneven floors and rough terrain. Among others, biped robots have been studied most

extensively, resulting in the development of humanoids, as shown in Figure 1-9.

Combining leg mechanisms with wheels has accomplished superior performance in

both flexibility and efficiency. The Mars Rover prototype shown below has a rocker-

buggy mechanism combined with advanced wheel drives in order to adapt itself to

diverse terrain conditions. See Figure 1-10.

Figure 1-8 Automatically guided vehicle for meal delivery in hospitals

Navigation is another critical functionality

needed for mobile robots, in particular, for

unstructured environment. Those robots are

equipped with range sensors and vision system, and

are capable of interpreting the data to locate

themselves. Often the robot has a map of the

environment, and uses it for estimating the location.

Furthermore, based on the real-time data obtained in

the field, the robot is capable of updating and

augmenting the map, which is incomplete and

uncertain in unstructured environment. As depicted

in Figure 1-10, location estimation and map building

are simultaneously executed in the advanced navigation system. Such Simultaneous

Figure 1-9 Honda’s P3

humanoid robot

14

Location and MApping (SLAM) is exactly what we human do in our daily life, and is

an important functionality of intelligent robots.

The goal of robotics is thus two-fold: to extend our understanding about

manipulation, locomotion, and other robotic behaviors and to develop engineering

methodologies to actually perform desired tasks. The goal of this book is to provide

entry-level readers and experienced engineers with fundamentals of understanding

robotic tasks and intelligent behaviors as well as with enabling technologies needed

for building and controlling robotic systems.

Figure 1-10 JPL’s planetary exploration robot: an early version of the Mars Rover

15

There are many types of robots; they are used in many different environments

and for many different uses, although being very diverse in application and form they

all share three basic similarities when it comes to their construction:

1. Robots all have some kind of mechanical construction, a frame, form or

shape designed to achieve a particular task. For example, a robot designed to travel

across heavy dirt or mud, might use caterpillar tracks. The mechanical aspect is

mostly the creator's solution to completing the assigned task and dealing with the

physics of the environment around it. Form follows function.

2. Robots have electrical components which power and control the

machinery. For example, the robot with caterpillar tracks would need some kind of

power to move the tracker treads. That power comes in the form of electricity, which

will have to travel through a wire and originate from a battery, a basic electrical

circuit. Even petrol powered machines that get their power mainly from petrol still

require an electric current to start the combustion process which is why most petrol

powered machines like cars, have batteries. The electrical aspect of robots is used for

movement (through motors), sensing (where electrical signals are used to measure

things like heat, sound, position, and energy status) and operation (robots need some

level of electrical energy supplied to their motors and sensors in order to activate and

perform basic operations)

3. All robots contain some level of computer programming code. A

program is how a robot decides when or how to do something. In the caterpillar track

example, a robot that needs to move across a muddy road may have the correct

mechanical construction and receive the correct amount of power from its battery, but

would not go anywhere without a program telling it to move. Programs are the core

essence of a robot, it could have excellent mechanical and electrical construction, but

if its program is poorly constructed its performance will be very poor (or it may not

perform at all). There are three different types of robotic programs: remote control,

artificial intelligence and hybrid. A robot with remote control programing has a

preexisting set of commands that it will only perform if and when it receives a signal

from a control source, typically a human being with a remote control. It is perhaps

https://en.wikipedia.org/wiki/Caterpillar_tracks
https://en.wikipedia.org/wiki/Caterpillar_tracks
https://en.wikipedia.org/wiki/Electrical_circuit
https://en.wikipedia.org/wiki/Electrical_circuit
https://en.wikipedia.org/wiki/Machines
https://en.wikipedia.org/wiki/Electrical_energy
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Remote_control

16

more appropriate to view devices controlled primarily by human commands as falling

in the discipline of automation rather than robotics. Robots that use artificial

intelligence interact with their environment on their own without a control source,

and can determine reactions to objects and problems they encounter using their

preexisting programming. Hybrid is a form of programming that incorporates both AI

and RC functions.

As more and more robots are designed for specific tasks this method of

classification becomes more relevant. For example, many robots are designed for

assembly work, which may not be readily adaptable for other applications. They are

termed as "assembly robots". For seam welding, some suppliers provide complete

welding systems with the robot i.e. the welding equipment along with other material

handling facilities like turntables etc. as an integrated unit. Such an integrated robotic

system is called a "welding robot" even though its discrete manipulator unit could be

adapted to a variety of tasks. Some robots are specifically designed for heavy load

manipulation, and are labelled as "heavy duty robots".

Current and potential applications include:

• Military robots.

• Industrial robots. Robots are increasingly used in manufacturing (since

the 1960s). According to the Robotic Industries Association US data, in 2016

automotive industry was the main customer of industrial robots with 52% of total

sales.[21] In the auto industry, they can amount for more than half of the "labor".

There are even "lights off" factories such as an IBM keyboard manufacturing factory

in Texas that was fully automated as early as 2003.

• Cobots (collaborative robots).

• Construction robots. Construction robots can be separated into three

types: traditional robots, robotic arm, and robotic exoskeleton.

• Agricultural robots (AgRobots). The use of robots in agriculture is

closely linked to the concept of AI-assisted precision agriculture and drone usage.

1996-1998 research also proved that robots can perform a herding task.

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Military_robot
https://en.wikipedia.org/wiki/Industrial_robot
https://en.wikipedia.org/wiki/Robotic_Industries_Association
https://en.wikipedia.org/wiki/Robotics#cite_note-21
https://en.wikipedia.org/wiki/Lights_out_(manufacturing)
https://en.wikipedia.org/wiki/Cobot
https://en.wikipedia.org/wiki/Robotic_arm
https://en.wikipedia.org/wiki/Powered_exoskeleton
https://en.wikipedia.org/wiki/Agricultural_robot
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Precision_agriculture
https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
https://en.wiktionary.org/wiki/herding

17

• Medical robots of various types (such as da Vinci Surgical

System and Hospi).

• Kitchen automation. Commercial examples of kitchen automation are

Flippy (burgers), Zume Pizza (pizza), Cafe X (coffee), Makr Shakr (coctails), Frobot

(frozen yogurts) and Sally (salads). Home examples are Rotimatic (flatbreadsbaking)

and Boris (dishwasher loading).

• Robot combat for sport – hobby or sport event where two or more robots

fight in an arena to disable each other. This has developed from a hobby in the 1990s

to several TV series worldwide.

• Cleanup of contaminated areas, such as toxic waste or nuclear facilities.

• Domestic robots.

• Nanorobots.

• Swarm robotics.

• Autonomous drones.

https://en.wikipedia.org/wiki/Medical_robot
https://en.wikipedia.org/wiki/Da_Vinci_Surgical_System
https://en.wikipedia.org/wiki/Da_Vinci_Surgical_System
https://en.wikipedia.org/wiki/Hospi
https://en.wikipedia.org/wiki/Rotimatic
https://en.wikipedia.org/wiki/Flatbread
https://en.wikipedia.org/wiki/Robot_combat
https://en.wikipedia.org/wiki/Domestic_robot
https://en.wikipedia.org/wiki/Nanorobot
https://en.wikipedia.org/wiki/Swarm_robotics
https://en.wikipedia.org/wiki/Autonomous_drone

18

Chapter 2 Configuration of manipulators of industrial robots

In this chapter, we will first overview various types of mechanisms used for

generating robotic motion, and introduce some taxonomy of mechanical structures

before going into a more detailed analysis in the subsequent chapters.

2.1 Joint Primitives and Serial Linkages

A robot mechanism is a multi-body system with the multiple bodies connected

together. We begin by treating each body as rigid, ignoring elasticity and any

deformations caused by large load conditions. Each rigid body involved in a robot

mechanism is called a link, and a combination of links is referred to as a linkage. In

describing a linkage it is fundamental to represent how a pair of links is connected to

each other. There are two types of primitive connections between a pair of links, as

shown in Figure 3.1.1. The first is a prismatic joint where the pair of links makes a

translational displacement along a fixed axis. In other words, one link slides on the

other along a straight line. Therefore, it is also called a sliding joint. The second type

of primitive joint is a revolute joint where a pair of links rotates about a fixed axis.

This type of joint is often referred to as a hinge, articulated, or rotational joint1.

Figure 3.1 Primitive joint types: (a) a prismatic joint and (b) a revolute joint

Combining these two types of primitive joints, we can create many useful

mechanisms for robot manipulation and locomotion. These two types of primitive

joints are simple to build and are well grounded in engineering design. Most of the

robots that have been built are combinations of only these two types. Let us look at

some examples.

1It is interesting to note that all biological creatures are made of revolute type joints; there are no

sliding joints involved in their extremities.

19

2.2 Robot mechanisms analogous to coordinate systems

One of the fundamental functional requirements for a robotic system is to

locate its end effecter, e.g. a hand, a leg, or any other part of the body performing a

task, in three-dimensional space. If the kinematic structure of such a robot

mechanism is analogous to a coordinate system, it may suffice this positioning

requirement. Figures 2.1.2~ 4 show three types of robot arm structures corresponding

tothe Cartesian coordinate system, the cylindrical coordinate system, and the

spherical coordinate system respectively. TheCartesian coordinate robot shown in

Figure 3.1.2 has three prismatic joints, corresponding to three axes denoted x,y,and z.

The cylindrical robot consists of one revolute joint and two prismatic joints, with r,

and z representing thecoordinates of the end-effecter. Likewise, the spherical robot

has two revolute joints denoted and one prismatic jointdenoted r.

Figure 3.2 Cartesian coordinate robot

There are many other ways of locating an end-effecter in three-dimensional

space. Figure 3.1.5 ~ 6 show other kinematicstructures that allow the robot to locate

its end-effecter in three-dimensional space. Although these mechanisms have no

analogy with common coordinate systems, they are capable of locating the end-

effecter in space, and have salient features desirablefor specific tasks. The first one is

a so-called SCALAR robot consisting of two revolute joints and one prismatic

joint.This robot structure is particularly desirable for assembly automation in

20

manufacturing systems, having a wide workspace inthe horizontal direction and an

independent vertical axis appropriate for insertion of parts.

Figure 2.1.3 Cylindrical coordinate robot

Figure 2.1.4 Spherical coordinate robot.

21

Figure 3.1.5 SCALAR type robot.

The second type, called an articulated robot or an elbow robot, consists of all

three revolute joints, like a human arm. This type of robot has a great degree of

flexibility and versatility, being the most standard structure of robot manipulators.

The third kinematic structure, also consisting of three revolute joints, has a unique

mass balancing structure. The counter balance at the elbow eliminates gravity load

for all three joints, thus reducing toque requirements for the actuators. This structure

has been used for the direct-drive robots having no gear reducer.

Figure 3.1.6 Articulated robot

22

Note that all the above robot structures are made of serial connections of

primitive joints. This class of kinematic structures, termed a serial linkage, constitutes

the fundamental makeup of robot mechanisms. They have no kinematic constraint in

each joint motion, i.e. each joint displacement is a generalized coordinate. This

facilitates the analysis and control of the robot mechanism. There are, however,

different classes of mechanisms used for robot structures. Although more complex,

they do provide some useful properties. We will look at these other mechanisms in

the subsequent sections.

2.3 Parallel Linkages

Primitive joints can be arranged in parallel as well as in series. Figure 3.2.1

illustrates such a parallel link mechanism. It is a five-bar-linkage consisting of five

links, including the base link, connected by five joints. This can be viewed as two

serial linkage arms connected at a particular point, point A in the figure. It is

important to note that there is a closed kinematic chain formed by the five links and,

thereby, the two serial link arms must conform to a certain geometric constraint. It is

clear from the figure that the end-effecter position is determined if two of the five

joint angles are given. For example, if angles 1? and 3? of joints 1 and 3 are

determined, then all the link positions are determined, as is the end-effecter’s.

Driving joints 1 and 3 with two actuators, we can move the end-effecter within the

vertical plane. It should be noted that, if more than two joints were actively driven by

independent actuators, a conflict among three actuators would occur due to the

closed-loop kinematic chain. Three of the five joints should be passive joints, which

are free to rotate. Only two joints should be active joints, driven by independent

actuators.

23

Figure 3.2.1 Five-bar-link parallel link robot

This type of parallel linkage, having a closed-loop kinematic chain, has

significant features. First, placing both actuators at the base link makes the robot arm

lighter, compared to the serial link arm with the second motor fixed to the tip of link

1. Second, a larger end-effecter load can be born with the two serial linkage arms

sharing the load. Figure 3.2.2 shows a heavy duty robot having a parallel link

mechanism.

Figure 3.2.2 Heavy-duty robot with parallel link mechanism

Figure 3.2.3 shows the Stewart mechanism, which consists of a moving

platform, a fixed base, and six powered cylinders connecting the moving platform to

24

the base frame. The position and orientation of the moving platform are determined

by the six independent actuators. The load acting on the moving platform is born by

the six "arms". Therefore, the load capacity is generally large, and dynamic response

is fast for this type of robot mechanisms. Note, however, that this mechanism has

spherical joints, a different type of joints than the primitive joints we considered

initially.

Figure 3.2.3 Stewart mechanism parallel-link robot

25

Chapter 3 Planar Kinematics

Kinematics is Geometry of Motion. It is one of the most fundamental

disciplines in robotics, providing tools for describing the structure and behavior of

robot mechanisms. In this chapter, we will discuss how the motion of a robot

mechanism is described, how it responds to actuator movements, and how the

individual actuators should be coordinated to obtain desired motion at the robot end-

effecter. These are questions central to the design and control of robot mechanisms.

To begin with, we will restrict ourselves to a class of robot mechanisms that

work within a plane, i.e. Planar Kinematics. Planar kinematics is much more

tractable mathematically, compared to general three-dimensional kinematics.

Nonetheless, most of the robot mechanisms of practical importance can be treated as

planar mechanisms, or can be reduced to planar problems. General three-dimensional

kinematics, on the other hand, needs special mathematical tools, which will be

discussed in later chapters.

3.1 Planar Kinematics of Serial Link Mechanisms

Example 3.1 Consider the three degree-of-freedom planar robot arm shown in

Figure 3.1.1. The arm consists of one fixed link and three movable links that move

within the plane. All the links are connected by revolute joints whose joint axes are

all perpendicular to the plane of the links. There is no closed-loop kinematic chain;

hence, it is a serial link mechanism.

Figure 3.1 Three dof planar robot with three revolute joints

26

To describe this robot arm, a few geometric parameters are needed. First, the

length of each link is defined to be the distance between adjacent joint axes. Let

points O, A, and B be the locations of the three joint axes, respectively, and point E be

a point fixed to the end-effecter. Then the link lengths are 1 2 3, , l OA l AB l BE= = = .

Let us assume that Actuator 1 driving link 1 is fixed to the base link (link 0),

generating angle
1 , while Actuator 2 driving link 2 is fixed to the tip of Link 1,

creating angle
2 between the two links, and Actuator 3 driving Link 3 is fixed to the

tip of Link 2, creating angle
3 , as shown in the figure. Since this robot arm performs

tasks by moving its end-effecter at point E, we are concerned with the location of the

end-effecter. To describe its location, we use a coordinate system, O-xy, fixed to the

base link with the origin at the first joint, and describe the end-effecter position with

coordinates
ex and

ey . We can relate the end-effecter coordinates to the joint angles

determined by the three actuators by using the link lengths and joint angles defined

above:

() ()1 1 2 1 2 3 1 2 3cos cos cosex l l l     = + + + + + (3.1)

() ()1 1 2 1 2 3 1 2 3sin sin siney l l l     = + + + + + (3.2)

This three dof robot arm can locate its end-effecter at a desired orientation as

well as at a desired position. The orientation of the end-effecter can be described as

the angle the centerline of the end-effecter measured from the positive x coordinate

axis. This end-effecter orientation
e is related to the actuator displacements as

1 2 3e   = + + (3.3)

The above three equations describe the position and orientation of the robot

end-effecter viewed from the fixed coordinate system in relation to the actuator

displacements. In general, a set of algebraic equations relating the position and

orientation of a robot end-effecter, or any significant part of the robot, to actuator or

active joint displacements, is called Kinematic Equations, or more specifically,

Forward Kinematic Equations in the robotics literature.

27

Exercise 3.1

Shown below in Figure 3.1.2 is a planar robot arm with two revolute joints and

one prismatic joint. Using the geometric parameters and joint displacements, obtain

the kinematic equations relating the end-effecter position and orientation to the joint

displacements.

Figure 3.2 Three dof robot with two revolute joints and one prismatic joint

Now that the above Example and Exercise problems have illustrated kinematic

equations, let us obtain a formal expression for kinematic equations. As mentioned in

the previous chapter, two types of joints, prismatic and revolute joints, constitute

robot mechanisms in most cases. The displacement of the i-th joint is described by

distance
id if it is a prismatic joint, and by angle

i for a revolute joint. For formal

expression, let us use a generic notation:
iq . Namely, joint displacement

iq represents

either distance
id or angle

i depending on the type of joint.

 Prismatic joint

 Revolute joint

i

i

i

d
q




= 


 (3.4)

We collectively represent all the joint displacements involved in a robot

mechanism with a column vector:  1 2, ,...,
T

nq q q q= , where n is the number of joints.

Kinematic equations relate these joint displacements to the position and orientation of

the end-effecter. Let us collectively denote the end-effecter position and orientation

by vector p. For planar mechanisms, the end-effecter location is described by three

variables:

28

e

e

e

x

p y



 
 

=
 
  

 (3.5)

Using these notations, we represent kinematic equations as a vector function

relating p to q:

3 1 1(), , np f q p q =   (3.6)

For a serial link mechanism, all the joints are usually active joints driven by

individual actuators. Except for some special cases, these actuators uniquely

determine the end-effecter position and orientation as well as the configuration of the

entire robot mechanism. If there is a link whose location is not fully determined by

the actuator displacements, such a robot mechanism is said to be under-actuated.

Unless a robot mechanism is under-actuated, the collection of the joint displacements,

i.e. the vector q, uniquely determines the entire robot configuration. For a serial link

mechanism, these joints are independent, having no geometric constraint other than

their stroke limits. Therefore, these joint displacements are generalized coordinates

that locate the robot mechanism uniquely and completely. Formally, the number of

generalized coordinates is called degrees of freedom. Vector q is called joint

coordinates, when they form a complete and independent set of generalized

coordinates.

3.2 Inverse Kinematics of Planar Mechanisms

The vector kinematic equation derived in the previous section provides the

functional relationship between the joint displacements and the resultant end-effecter

position and orientation. By substituting values of joint displacements into the right-

hand side of the kinematic equation, one can immediately find the corresponding end-

effecter position and orientation. The problem of finding the end-effecter position and

orientation for a given set of joint displacements is referred to as the direct kinematics

problem. This is simply to evaluate the right-hand side of the kinematic equation for

known joint displacements. In this section, we discuss the problem of moving the

end-effecter of a manipulator arm to a specified position and orientation. We need to

find the joint displacements that lead the end-effecter to the specified position and

29

orientation. This is the inverse of the previous problem, and is thus referred to as the

inverse kinematics problem. The kinematic equation must be solved for joint

displacements, given the end-effecter can be achieved by moving each joint to the

determined value.

In the direct kinematics problem, the end-effecter location is determined

uniquely for any given set of joint displacements. On the other hand, the inverse

kinematics is more complex in the sense that multiple solutions may exist for the

same end-effecter location. Also, solutions may not always exist for a particular

range of end-effecter locations and arm structures. Furthermore, since the kinematic

equation is comprised of nonlinear simultaneous equations with many trigonometric

functions, it is not always possible to derive a closed-form solution, which is the

explicit inverse function of the kinematic equation. When the kinematic equation

cannot be solved analytically, numerical methods are used in order to derive the

desired joint displacements.

Example 3.2 Consider the three dof planar arm shown in Figure 3.1.1 again.

To solve its inverse kinematics problem, the kinematic structure is redrawn in Figure

3.2.1. The problem is to find three joint angles
1 2 3, ,   that lead the end effecter to a

desired position and orientation, eeeyxφ,,. We take a two-step approach. First, we find

the position of the wrist, point B, from , ,e e ex y  . Then we find
1 2,  from the wrist

position. Angle
3 can be determined immediately from the wrist position.

30

Figure 3.3 Skeleton structure of the robot arm of Example 3.1

Let
wx and

wy be the coordinates of the wrist. As shown in Figure 3.3, point B

is at distance
3l 3 from the given end-effecter position E. Moving in the opposite

direction to the end effecter orientation
e , the wrist coordinates are given by

3

3

cos

sin

w e e

w e e

x x l

y y l





= −

= −
 (3.7)

Note that the right hand sides of the above equations are functions of , ,e e ex y  ,

alone. From these wrist coordinates, we can determine the angle α shown in the

figure.2

1tan w

w

y

x
 −= (3.8)

Next, let us consider the triangle OAB and define angles , ,  as shown in the

figure. This triangle is formed by the wrist B, the elbow A, and the shoulder O.

Applying the law of cosines to the elbow angle  yields

2 2 2

1 2 1 22 cosl l l l r+ − = (3.9)

2Unless noted specifically we assume that the arc tangent function takes an angle in a proper

quadrant consistent with the signs of the two operands.

31

where
2 2 2

w wr x y= + , the squared distance between O and B. Solving this for

angle yields

2 2 2 2
1 1 2

2

1 2

cos
2

w wl l x y

l l
    − + − −

= − = − (3.10)

Similarly,

2 2 2

1 1 22 cosr l rl l+ − = (3.2.5)

Solving this for  yields

2 2 2 2
1 1 1 2

1 2 2

1

tan cos
2

w w w

w w w

y x y l l

x l x y
   − − + + −
= − = −

+
 (3.11)

From the above
1 2,  we can obtain

3 1 2e   = − − (3.12)

Eqs. (4), (6), and (7) provide a set of joint angles that locates the end-effecter at

the desired position and orientation. It is interesting to note that there is another way

of reaching the same end-effecter position and orientation, i.e. another solution to the

inverse kinematics problem. Figure 3.3 shows two configurations of the arm leading

to the same end-effecter location: the elbow down configuration and the elbow up

configuration. The former corresponds to the solution obtained above. The latter,

having the elbow position at point A’, is symmetric to the former configuration with

respect to line OB, as shown in the figure. Therefore, the two solutions are related as

'

1 1

'

2 2

' ' '

3 1 2 3 2

2

2 2e

  

 

      

= +

= −

= − − = + −

 (3.13)

Inverse kinematics problems often possess multiple solutions, like the above

example, since they are nonlinear. Specifying end-effecter position and orientation

does not uniquely determine the whole configuration of the system. This implies that

vector p, the collective position and orientation of the end-effecter, cannot be used as

generalized coordinates.

The existence of multiple solutions, however, provides the robot with an extra

degree of flexibility. Consider a robot working in a crowded environment. If multiple

configurations exist for the same end-effecter location, the robot can take a

configuration having no interference with the environment. Due to physical

32

limitations, however, the solutions to the inverse kinematics problem do not

necessarily provide feasible configurations. We must check whether each solution

satisfies the constraint of movable range, i.e. stroke limit of each joint.

Figure 3.4Multiple solutions to the inverse kinematics problem of Example 3.2

3.3 Kinematics of Parallel Link Mechanisms

Example 3.3 Consider the five-bar-link planar robot arm shown in Figure 3.5.

1 1 5 2

1 1 5 2

cos cos

sin sin

e

e

x l l

y l l

 

 

= +

= +
 (3.14)

Note that Joint 2 is a passive joint. Hence, angle
2 is a dependent variable.

Using
2 , however, we can obtain the coordinates of point A:

1 1 5 2

1 1 5 2

cos cos

sin sin

A

A

x l l

y l l

 

 

= +

= +
 (3.15)

Point A must be reached via the branch comprising Links 3 and 4. Therefore,

3 3 4 4

3 3 4 4

cos cos

sin sin

e

e

x l l

y l l

 

 

= +

= +
 (3.16)

Equating these two sets of equations yields two constraint equations:

1 1 5 2 3 3 4 4

1 1 5 2 3 3 4 4

cos cos cos cos

sin sin sin sin

l l l l

l l l l

   

   

+ = +

+ = +
 (3.17)

Note that there are four variables and two constraint equations. Therefore, two

of the variables, such as 1 3,  , are independent. It should also be noted that multiple

solutions exist for these constraint equations.

33

Figure 3.5 Five-bar-link mechanism

Although the forward kinematic equations are difficult to write out explicitly,

the inverse kinematic equations can be obtained for this parallel link mechanism. The

problem is to find
1 3,  that lead the endpoint to a desired position: ,e ex y . We will

take the following procedure:

Step 1 Given ,e ex y , find
1 2,  by solving the two-link inverse kinematics problem.

Step 2 Given
1 2,  ,obtain ,A Ax y . This is a forward kinematics problem.

Step 3 Given ,A Ax y , find
3 4,  by solving another two-link inverse kinematics

problem.

Example 3.4 Obtain the joint angles of the dog’s legs, given the body position

and orientation.

Figure 3.6 A doggy robot with two legs on the ground

34

The inverse kinematics problem:

Step 1 Given , ,B B Bx y  , find ,A Ax y and ,C Cx y

Step 2 Given ,A Ax y , find
1 2, 

Step 3 Given ,C Cx y , find
3 4, 

3.4 Redundant mechanisms

A manipulator arm must have at least six degrees of freedom in order to locate

its end-effecter at an arbitrary point with an arbitrary orientation in space.

Manipulator arms with less than 6 degrees of freedom are not able to perform such

arbitrary positioning. On the other hand, if a manipulator arm has more than 6

degrees of freedom, there exist an infinite number of solutions to the kinematic

equation. Consider for example the human arm, which has seven degrees of freedom,

excluding the joints at the fingers. Even if the hand is fixed on a table, one can

change the elbow position continuously without changing the hand location. This

implies that there exist an infinite set of joint displacements that lead the hand to the

same location. Manipulator arms with more than six degrees of freedom are referred

to as redundant manipulators.

35

Chapter 4 Dynamics of manipulation robots

Dynamics is the branch of classical mechanics that deals with forces and/or

torques required to cause the motion of a system of bodies.

The manipulator is represented as open-loop kinematical and dynamic circuit

from several links, connected by rotary or prismatic joints. The generalized forces fi

and torques i, that provide the required force f and torque t in the gripper must be

considered.

Primary dynamical problem is: given a set of actuated joint torque and/or

force functions (fi or i) it is necessary to calculate the resulting motion of the gripper

in terms of generalized coordinates, speeds and accelerations as functions of time.

Inverse dynamical problem is: given a trajectory of the gripper in terms of

generalized coordinates, speeds and accelerations as functions of time it is necessary

to find a set of actuated joint torque and/or force functions (fi or i) which will

produce this motion.

There are three methods of solution:

– method of connected graphs,

– Newton – Euler method,

– Lagrange – Euler method.

Beside these, there are also recurrent approaches: recurrent method of Newton-

Euler and recurrent method of Lagrange. They provide smaller time of calculations.

We’ll consider Lagrange–Euler method and Newton-Euler method.

4.1 Lagrange – Euler method of inverse dynamics solution

Denavit–Hartenberg notation will be used. This method is based on the

following equation:

.
,i

i i

d L L

dt q q


    
− =   

    
 (2)

where L is Lagrange function (L = T – V); T is kinetic energy of system; V is

the potential energy; qi are generalized coordinates ()i ; i are generalized forces

and torques.

36

The motion of every link of manipulator can be described in 6-dimensional

coordinate system [, , , , ,]x p p p
i x y z

  = , where [, ,]x y z

Tp p p p= is the vector of

coordinate origin of this link, and , ,  are Eulerian angles. They connect nth

coordinate system of considered link with the base coordinate system
0 0 0(, ,)x y z .

Then generalized coordinates are

1 2 6(, ... ,),m mq q x x x t= or
1 2(, ... ,)i i Nx x q q q t= ,

where t is time.

It is necessary to note that unambiguous solution of inverse dynamics is

possible only for the manipulator with 6 DOF. It means that N = 6.

Let’s consider the body in the free falling. Its kinetic energy is equal to 21

2
mV ,

and the potential energy is mgh. Here V is the derivative from the coordinate h, that is

2 21 1

2 2
mV mh= . Now let’s compose the Lagrange equation:

2

.

1 1
2

2 2i

L
mh mgh mh

q h

    
= − =   

    
;

().

i

d L d
mh mh

dt q dt

 
= = 

 
;

21

2i

L
mh mgh mg

q h

    
= − =   

    
.

We know that ah = - acceleration and mg is the gravity force. Since generalized

torques and forces equal zero (no forces or torques act on the body), then the result

will be:

ma = mg.

It is the classical formulation of second Newton’s law.

Speeds and accelerations

The coordinates ix in the link coordinate system can be converted into

generalized Cartesian coordinates)(jxi

() () 1 2(, ... ,), , 1,2...i j i j Nx x q q q t i j N= =

37

Then the speed is determined as following:

() ()

()

1

N
i j i j

i j m

m m

x x
x q

q t=

 
= +

 


and the acceleration

2 2 2

() () () ()

() 2
1 1 1 1

2
N N N N

i j i j i j i j

i j m m n m

m m n mm m n m

x x x x
x q q q q

q q q q t t= = = =

       
= + + +    

          
  

Example Find components of speed and of acceleration for coordinate origin

of gripper that works in cylindrical coordinate system.

Solution The coordinate system of gripper can be connected with Cartesian

system as following:

cos , sin ,x r y r z z = = = ,
2 2 1/2() , (/)r x y arctg y x= + =

Components of speed are:

. . .

. . .

cos sin

sin cos

x r r

y r r

  

  

= −

= +

Components of acceleration are:

..

2..

cos sin sin sin cos

cos () sin (2)

x r r r r r

r r r r r

        

    

= − − − − =

= − − +

...
2(sin - (2)cosy r r r r    = − = +

Distribution of robot mass and inertia tensor

When there is a rotation, then it is necessary to know the distribution of robot

mass relatively to all axes of rotation. Then inertia tensor is used

xx xy xz

xz yz zz

I I I
I

I I I

 
=  
  

,

where for robot with discrete distribution of mass:

2 2 2 2 2 2

1 1 1

(), (), ();
N N N

xx i i i yy i i i zz i i i

i i i

I m z y I m x z I m x y
= = =

= + = + = +   (3)

, ,xy i i i xz i i i yz i i iI m x y I m x z I m y z= − = − = −  

38

for robot with continuous distribution

2 2 2 2 2 2() , () , () ;

, , .

xx yy zz

xy yz xz

I z y dxdydz I x z dxdydz I x y dxdydz

I xydxdydz I yzdxdydz I xzdxdydz

  

  

= + = + = +

= − = − = −

  

  

where  is the density of link.

Example Find the inertia tensor for represented link of manipulator (fig. 1).

Figure 4.1

Solution

()

2 2 2 2 3

2

0 0 0 0 0 0

2 3 4
2 2

1
() ()

3

3 3 3

a L a a L a

xx

xx

I y z dxdydz a y z dydz L z L a dz

a L a L m
I L a

  



 
= + = + = + 

 

 
= + = + 

 

     

Speed of links

Let’s the vector 0

ir determines the position of point P relatively the base

coordinate system (x0, y0, z0). The vector ir will define the position of the same point,

but in ith coordinate system (fig. 2). Therefore, the speed of point P in the base

coordinate system can be determined as

()0

i

i

d
v r

dt
= .

Now it is time to

remember that vector 0

ir can

be rewritten using Denavit-

Hartenberg notation in the

following way:

Fig. 4.2 Geometry of two-dimensional manipulator

39

0 0 1 1 .i i i i

i i i ir A r or r A r− −= =

Thus we will obtain

() 0
0 0

1

ii
i i i

i i i

j i

d A dq
v v A r r

dt q dt=

 
= = =  

 
 ,

where qi are independent variables i. We can rewrite the last expression

0
0

1

, 1, 2 , ...,
ii

i

i i

j i

A
v q r i n

q=

 
= = 

 
 .

Now we can show that

1
1

i
ii

i i

i

A
Q A

q

−
−


=


,

where Qi is the constant matrix. For example, for i

i 1−A we will have

1

sin cos cos sin cos - sin

cos cos sin sin sin cos

0 0 0 0

0 0 0 0

0 1 0 0 cos cos sin sin sin cos

1 0 0 0 sin cos cos sin cos sin

0 0 0 0 0 sin

0 0 0 0

i i i i i i i

i
i i i i i i ii

i

i i i i i i i

i i i i i i i

a

aA

a

a

     

     



     

     

−

− − 
 

−  = =
 
 
 

− − 
 

−
 =
 
 
 

.
cos

0 0 0 1

i i id 

 
 
 
 
 
 

For the rotary joints the matrix Qi will be

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

− 
 
 
 
 
 

and for prismatic

joints the matrix Qi will be

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 
 
 
 
 
 

.

Let’s define the value Dij as

1

0 10
, ,

0, .

j ii
j j

j

A Q A j iA

q j i

−

−
  

= 
 

. Then it is easy to write

the derivatives of higher orders

40

1 1

0 1 1

1 1

0 1 1

, ,

, ,

0, .

j k i

j j k k

ij k j i

ijk k k j j

k

A Q A Q A i k j
D

D A Q A Q A i j k
q

i j or i k

− −

− −

− −

− −

  
 

= =  
 

 

4.2 Kinetic energy of manipulator

The kinetic energy dT of body with the mass dm is equal to

1

,
n

i

i

dT dT
=

=

where dTi is the kinetic energy of ith link of manipulator. It can be found from

the following expression:

()
1

.
2

T

i i i idT tr v v dm=

where ‘tr’ designation means the trace operation, that is, the sum of the

diagonal elements of matrix.

Let’s consider the product in brackets:

 

2
1 1 1 2 1 3

2
2 2 1 2 2 3

1 2 3 2
3 3 1 3 2 3

0

0
0

0

0 0 0 0 0

i i i i i i

iT i i i i i

i i i i i

i i i i i i

v v v v v v

v v v v v v
v v v v v

v v v v v v

  
  
  = =
  
  

   

.

Then from the expressions (6) and (7) we can write down:

()

1 1

1 1

1

2

1
.

2

T
i i

i ip p i ir r i i

p r

i i
T T

i ip i i i ir p r

p r

dT tr D q r D q r dm

or

dT tr D rdm r D q q

= =

= =

  
=   

   

 
=  

 

 



Now we will integrate both parts of this expression:

()
1 1

1
.

2

i i
T T

i i ip i i i ir p r

p r

T dT tr D rr dm D q q
= =

 
= =  

 
 

The integral component in brackets is the matrix of inertia of ith link relatively

the origin of joint coordinate system i:

41

2

2

2
.

i i i i i i i i i i

i i i i i i i i i i
T

i i i i

i i i i i i i i i i

i i i i i i i

x dm x y dm x z dm x dm

x y dm y dm y z dm y dm
J rr dm

z x dm y z dm z dm z dm

x dm y dm z dm dm

 
 
 
 = =
 
 
 
 

   

   


   

   

Let’s express Ji in terms of inertia tensor I in the following way:

()

()

()

/ 2

/ 2
,

/ 2

xx yy zz xy xz i i

xy xx yy zz yz i i

i

xz yz xx yy zz i i

i i i i i i i

I I I I I m x

I I I I I m y
J

I I I I I m z

m x m y m z m

 − + +
 
 − +

=  
 + −
 
  

where , , i i ix y z are coordinates of center of mass for ith link in ith coordinate

system. Thus, the total kinetic energy of manipulator equals

==
=

n

i

iTT
1

()
1 1 1

1

2

n i i
T

ip i ir p r

i p r

tr D J D q q
= = =

 
  .

4.3 Potential energy of manipulator

The total potential energy V of manipulator that depends on the weight of robot

can also be determined as the sum of all potential energies of separate links:

()0

1 1

n n
i

i i i

i i

V V m g A r
= =

 = = −
   ,

where
ir is the position vector of center of mass of ith link defined in ith

coordinate system, g is the gravitational acceleration.

Lagrange function

Lagrange function is defined as the difference between kinetic and potential

energies:

L = T – V

or

() ()0

1 1 1 1

1
.

2

n i i n
T i

ip i ir p r i i

i p r i

L tr D J D q q m g A r
= = = =

 = +
  

Let’s differentiate Lagrange function in order to substitute it into Lagrange

function:

42

()()
1 1 1

1

1

1 1 1 1

1

2

,

n i i
T

ip i ir p jk j kp

i p rk

n i
T

ip i ik p

i k p

n i
T

ip i ik p

i k pk

n i i i i
T T

ipm i ik p m ikm i ip p m

i k p m p m

L
tr D J D q q

q

tr D J D q

d L
tr D J D q

dt q

tr D J D q q tr D J D q q

 
= = =

= =

= =

= = = = =


 = + =
 

 =  

 
 = +    

   + +   







  .
n

i k=



In much the same way we can write

() ()
1 1 1 1

1 1

2 2

.

n i i n i i
T T

ijk i ip j p ipk i i ij j p

i k j p i k j pk

n

i ik i

i p

L
tr D J D q q tr D J J D q q

q

m gD r

= = = = = =

=


= + +



+

 



Lagrange equation

Lagrange equation in vector form is the following:

() (,) ()     = + +D H G , (10)

where D is a matrix of mass nn, H is a vector (n1) of centrifugal and

Coriolis components, G is a vector (n1) of gravitational components.

Then Lagrange equation can be represented as following:

1 1 1

n n n

i ik k ikm k m i

k k m

M q M q q M
= = =

= + +  ,

where Mi, Mik, Mikm are generalized matrices of mass

()

()

()

max(,)

max(, ,)

,

,

.

n

i j ji j

j i

n
T

ik jk j ji

j i k

n
T

ikm jkm j ji

j i k m

M m gD r

M tr D J D

M tr D J D

=

=

=

= −

=

=







Lagrange equation can be expanded for this very case (fig. 4.1):

43

1

1 11 11 12 11

2 21 22 22
2

1 1

.

n n

km k m

k m

n n

km k m

k m

M
M M M

M M M
M

 
 

 
 

= =

= =

 
       
 = + +      
       
 
 





Let’s write this equation in expanded form:

() ()

()

()

11 11 1 11 21 2 21

12 21 22 2 21

22 22 2 22

1 1 11 1 1 21 2

2 2 22 2

,

,

,

,

.

T T

T

T

M tr D J D tr D J D

M M tr D J D

M tr D J D

M m gD r m gD r

M m gD r

= +

= =

=

= +

=

44

Chapter 5 Information systems in robotics

Introduction

Along with matter and energy, information is the primary concept of our world

and therefore cannot be defined in the strict sense. We can only list its main

properties, for example:

1) information brings information about the surrounding world, which at the

point in question was not before receiving it;

2) information is not material, but it manifests itself in the form of material

carriers of discrete characters or primary signals;

3) the signs and primary signals carry information only for the recipient who is

able to recognize it.

Information based on the unambiguous connection of signs or signals with

real-world objects is called semantic or semantic. The information contained in the

nature (order and relationship) of the following signs of the communicating, is called

syntactic. Also in the general science of signs (semiotics), besides the listed ones, the

sigmatic and pragmatic aspects of information are distinguished. In the first case we

study the question of the choice of signs to denote real world objects, the second - on

the value of information to achieve the objectives.

5.1 General information from the theory of information

Most of the information we use is communicated through one or another

“language” that obeys certain statistical patterns. In the simplest case, when messages

are written using п symbols
ix , the relative frequencies of occurrence of which are

mutually independent and are completely determined by the prior probability ()iP x , it

is true

1

() 1
n

i

i

P x
−

=

The main properties of the information include:

45

1. The amount of information regarding an event ix delivered by an event jy is

defined as the logarithm of the ratio of the a posteriori probability (,)i jP x y to the a

priori ()ip x :

(/)
(,) log

()

i j

i i

i

P x y
I x y

p x
= .

2. The measure of the amount of information is a symmetric function with

respect to ix and jy :

(,) (,)i i j iI x y I y x= .

The information delivered by the event jy relative to the event ix is equal to the

information delivered by the event ix relative to the event jy .

3. With a fixed probability, mutual information (,)j iI y x reaches a maximum

when (/) 1i jP x y = when jy it reliably uniquely identifies ix :

() log ()i iI x p x= − .

4. Mutual information satisfies the additivity conditions:

(/)
(, ,) log

()

i j k

i j k

i

P x y z
I x y z

P x
= , i.e. information I is obtained with respect to ix

with the compatibility of the observation of two events ix and jy .

The process of converting a message into a combination of characters

according to a code is called encoding; the process of recovering a message from a

combination of characters is called decoding. Code is a universal way of displaying

information during its storage, transmission and processing.

The final sequence of characters ja is called a word in a given alphabet. Each

word in the code is called a code word (code combination). There are uniform, non-

uniform, direct, inverse, additional codes.

Uniform codes, these are codes in which all combinations have the same

length. For a uniform code, the number of possible combinations is
nm . An example

of such a code is the five-digit Bodo code containing five binary elements

46

(2, 5)m n= = . The number of possible code combinations is equal to 52 32= , which

is enough to encode all the letters of the alphabet. The use of uniform codes does not

require the transfer of separation characters between code combinations.

Non-uniform codes are characterized by the fact that their code combinations

differ from each other not only in the mutual arrangement of symbols, but also in

their number. This leads to the fact that different combinations have different

duration. A typical example of non-uniform codes is Morse code, in which the

characters 0 and 1 are used only in two combinations - as single (1 and 0) or as triple

(111 and 000). The signal corresponding to one unit is called a point, three units - a

dash. The symbol 0 is used as a sign separating the point from the dash, the point

from the point and the dash from the dash. Aggregate 000 is used as a separator

between code combinations.

Direct code - a binary number code that matches the image with the record of

the number itself. The value of the sign bit for positive numbers is 0, and for negative

numbers - 1. The sign bit is usually the extreme bit in the bit grid. In some cases,

when writing code, the sign bit is separated by a comma. For example, in the case

where one byte is allocated to the code entry, the direct code is 0.0001101 for the

+1101 number, the direct code is 1.0001101 for the –1101 number.

The reverse code for a positive number is the same as the direct code. For a

negative number, all digits of the number are replaced with the opposite ones (1 to 0,

0 to 1), and one is entered in the sign bit. For example, for the number +1101, the

direct code is 0.0001101; the return code is 0.0001101. For the number –1101, the

direct code is 1,0001101; the reverse is 1,1110010.

The additional code of a positive number is the same as the direct code. For a

negative number, an additional code is formed by obtaining a reverse code and

adding 1 to the lower order.

5.2 The concept of a signal. Classes and types of signals

Signals of the most diverse types are widely used in everyday life; therefore,

the already intuitive concept of a signal has a rather specific content. Nevertheless,

47

this concept should be considered in more detail and give definitions characterizing

the signal from different positions and covering all types of signals.

A signal is a display of a message; the signal is a material carrier of

information. Whatever the specific signal - sound, light or radio signal, book, record

or movie - the whole point of creating this signal lays in the display of certain

information. In the end, any information, and consequently, any signal, is addressed

to the recipient and is of some value only if the recipient exists (or possibly exists).

The sender and receiver are always separated by space or time; signals provide

communication between them. Hence the addition (or, rather, an explanation) to the

definition given above: a signal is a means of transferring information in space and

time.

The above definitions cannot serve as a basis for the theory of the structure of

signals, since they consider a signal from its service side and are not related to the

structure of the signal. The infinite variety of signals, the equivalence of physically

completely different representations of one message - all this requires a definition

that answers the question: “What is a signal?”, I.e. a definition that considers a signal

from the point of view of a person who is interested in a signal, not as an aid, but as

an object of study.

Consideration of any situations in which signals are involved leads to the

conclusion that, although the signal is always associated with a material object, most

of the specific (physical, chemical, etc.) properties of this object are insignificant. In

the end, it does not matter what sort of paper and ink composition the letter is written

on; it differs from all other letters as a signal by the state of the distribution of color

over the surface of the sheet.

When making a radio broadcast, a whole number of physically different objects

are used to display the message: typewritten text of the broadcast - voice of the

speaker - electromagnetic waves - current fluctuations in the electromagnet winding -

loudspeaker sound - vibrations of the listener's ear drum - oscillatory processes in the

listener's nerve. As links in this circuit, you can turn on sound recording and playback

on a tape recorder, etc. The common thing that binds such a variety of objects is that

48

they all serve to form signals. In a certain sense, we can say that these objects

themselves "serve as signals," but it is more essential that the same object (for

example, an electromagnetic field) can carry different signals. Consequently, as

signals, not the objects themselves are used, but their states. Signal formation is the

change in the state of the object. This statement requires development, since,

obviously, the reverse is not true: not every change in the state of an object is a

signal. Impact on an object that changes its state, only then will lead to the formation

of a signal when this impact is performed according to certain rules. The existence of

such rules ensures consistency between the message and the signal. The existence of

this correspondence, in turn, makes it possible to extract a message from the received

signal. This possibility can be realized only if the rules for changing the state of the

object (that is, the rules of signal formation) are known to the party that received the

signal, or are partially known, at least to the extent that, relying on this partial

information and signal analysis, fully define these rules. Now we can give a refined

definition: a signal is a change in the state of a material object produced according

to predetermined rules (that is, using a predetermined code).

Since the signals are used to transfer information in space and time, only those

objects can be used to form signals, the states of which are sufficiently stable with

respect to a change in time or position in space. Quantitative requirements for

stability are imposed in accordance with the specific conditions of use of the signal.

In terms of stability, all signals can be divided into two classes.

The first class includes signals, which are used as stable, stable states of

physical systems. Examples of signals of this type can be: a book, a photographic

image, the state of a tape recorder film, the state of a ferrite matrix of computer

memory, a register state (trigger system) of a computer, the position of a railroad

semaphore rod, the location of a triangulation tower, etc. Such signals are called

static signals.

In the second class, the signals are combined, which use the dynamic states of

the force fields. As mentioned in the previous paragraph, the signal occurs when the

state of an object changes. In contrast to other material systems, the fields are

49

characterized by the fact that a change in their state cannot be localized in the (non-

isolated) part of the field and leads to the propagation of a disturbance. When a

disturbance propagates in a field, the configuration parameters and the structures of

this disturbance possess a certain stability, which makes it possible to use such field

states as signals. Examples of such signals are: sound signals (change in the state of

the field of elastic forces in a gas, liquid, or solid), light and radio signals (changes in

the state of the electromagnetic field). Let us call the signals of the second class

dynamic signals.

Due to the characteristic difference between dynamic and static signals, their

practical use is also different. Dynamic signals are used primarily for transmission,

and static - for storing information. However, these functions cannot be fully

separated. Dynamic signals can be used to store information, as is the case, for

example, in storage devices on ultrasonic delay lines of electronic digital computers.

In a sense, it can be said that such static signals as newspapers and letters are more

intended to be transmitted than to store information.

Despite the huge variety of signals, by the method of generating them and

extracting information from them at the receiving end (ie, by encoding and

decoding), all signals are divided into three large groups.

The first group includes signals that can be called communication signals, or

direct signals. Such signals include signals used in the telegraph, telephone,

television, telecontrol, acoustic and light communications, written and printed letter

signals, etc. The characteristic features of this group of signals are that, first, the

sender and receiver of the signal are always present and the signal is intended to

transmit information from the first to the second; secondly, the code is fully known to

both parties; thirdly, in the part that does not affect the conditions for the existence of

a signal, the code is conditional, i.e. is built by agreement of the advising parties and

by agreement can be changed.

The second group is formed by the signals with which the measurements are

made - the signals for measurements. Measuring a certain value is comparing it with

the corresponding standard, therefore, when measuring, there are always two signals:

50

the reference and the comparison with it. In some situations (for example, in

radiolocation) the signal to be compared is a reference signal (“probing”) changed

during the propagation process; in other cases (for example, when measuring the

length with a ruler), the compared signal exists independently of the reference signal.

The peculiarity of the reference signal is that everything is known about it, and he,

therefore, does not carry any information; for convenience of comparing a wide class

of signals with a standard, the latter is usually periodic, although this is not necessary.

The third group can be attributed to the so-called natural signals. Signals

always appear as states of physical objects. In a certain sense, one can say that any

state of any physical object can be considered as a signal even if bringing this object

into this state is not at all connected with the transfer of any information, but occurred

due to natural causes. We can say that we have before us a “signal with a not

completely known code”.

The signal is always a function of time. Depending on what values the

argument can take (time t) and signal levels, they are divided into 4 types.

1. Continuous, or analog, signals (Fig. 6.1) are defined for all points in time

and can take all values from the specified range. Most often, the physical processes

that generate the signals are continuous. This explains the second name of the signals

of this type - analog, i.e. similar to generating processes (random signals of this type

are called continuous random processes).

Fig. 1.1. Continuous, or analog, signal

2. Discrete, or discretely continuous, signals (Fig. 6.2) are determined only at

certain points in time and can take any level values. The time interval t between

adjacent samples is called the sampling step. Often such signals are called discrete in

51

time (random signals of this type are called processes with discrete time or

continuous random sequences).

Fig. 1.2. Discrete, or discretely continuous, signal

3. Level discrete, or quantized, signals (Fig. 6.3) are defined for all points in

time and take only the allowed values of the levels, separated from each other by the

quantization step size 1k kx x x+ = + (random signals of this type are called discrete

random processes). The signal conversion operation in which it is discretized by level

or by time or simultaneously by level and time is called quantization.

Fig. 1.3. Level discrete or quantized signals

Time quantization - the transformation of a signal into a sequence of

successive pulses whose amplitude, duration or frequency depend on the amplitude of

the input signal.

Level quantization - the signal transformation, which consists in surrounding

the instantaneous value to some nearest pre-determined, fixed value, is called a level.

4. The discrete by level and by time signals (Fig. 1.4) are determined at

individual allowed points in time and can take only the allowed values of the levels

(random signals of this type are called discrete random sequences).

52

Рис. 1.4. The discrete by level and by time signals

Digital signal processing, DSP, - the conversion of signals presented in digital

form. Any continuous (analog) signal can be subjected to time sampling and level

quantization (digitization), i.e. presented in digital form. If the signal sampling

frequency is higher than twice the highest frequency in the signal spectrum maxF , i.e.

max2dF F  then the obtained discrete signal s(k) is equivalent to the signal s(t) (see

the Kotelnikov theorem).

With the help of mathematical algorithms, s(k) is converted into some other

signal s1(k), having the required properties. The process of converting signals is

called filtering, and the device that performs filtering is called a filter. Since the

signal samples arrive at a constant speed Fd, the filter must have time to process the

current sample before the next one arrives, i.e. process the signal in real time. For

signal processing (filtering) in real time, use special computing devices - digital

signal processors.

There are methods of signal processing in the time and frequency domain. The

equivalence of the time-frequency transformations is uniquely determined by the

Fourier transform.

Filters are:

- continuous, discrete, linear and nonlinear;

- electrical, mechanical, acoustic, etc.

The main tasks of filtering:

53

− linear filtering - selection of the signal in the frequency domain;

synthesis of filters matched with signals; frequency division channels; Hilbert's

digital converters and differentiators; channel correctors;

− spectral analysis - processing of speech, sound, seismic, hydroacoustic

signals; pattern recognition;

− time-frequency analysis - image compression, hydro- and radar, various

detection tasks;

− adaptive filtering - processing of speech, images, pattern recognition,

noise suppression, adaptive antenna arrays;

− nonlinear processing - calculation of correlations, median filtration;

synthesis of amplitude, phase, frequency detectors, speech processing, vector coding;

− multi-speed processing - interpolation (increase) and decimation

(decrease) of the sampling rate in multi-speed telecommunication systems, audio

systems.

A general model of information system

Any (artificial or natural) system of interacting objects can be considered as an

information system. Any part of a set of interacting objects (in particular, one of the

objects) can be studied in order to extract information about another part of this set

(in particular, about another individual object), since the interaction ensures that the

states correspond, reflection, content information. The objects that make up the

information system can have a completely arbitrary nature.

From this, of course, it does not follow that information theory is intended to

replace or embrace other sciences that study the specific interactions between objects

of a particular class. But from this it follows that among the infinite set of properties

that are inherent in any system of interacting objects, an integral property is the

property of objects to reflect each other, to contain information about each other. In

some phenomena, informational relations do not play a significant role or are

disguised - then the science that studies these phenomena can achieve certain success

without using information theory; in other cases, the information approach is

inevitable.

54

Fig. 6.5. Simplified object system layout

Suppose we have a system of objects of arbitrary nature, interconnected with

each other. Of the many connections of a particular object with others, it is usually

possible to single out only a few of the most significant ones, omitting the others

from consideration. In this case, some complex system of objects can be simplified as

shown in Fig. 6.5.

Essential connections between objects are depicted by arrows, the direction of

which corresponds to the transition from cause to effect. Due to the presence of direct

connections, object B, for example, contains information about objects O, G, N;

connections through other objects provide content in the object of information about

objects A, R, S, O, etc.

Typically, the recipient is interested in information about any one object, for

example A, and object B is observed in order to extract this particular information.

Information about the object of interest to the recipient is considered as useful,

information about other objects appears to be unnecessary, useless and even harmful,

since its presence may make it difficult to extract useful information. If the recipient

does not have comprehensive information about the remaining objects, their influence

should be considered as “interference” or “noise”. Thus, whenever the influence of an

object that does not interest us violates the uniqueness of the correspondence between

55

the states of objects A and B, they say that interference occurs. Corresponding objects

(for example, C, R, S, T, O, Q) are considered to be sources of interference.

If objects A and B do not interact directly, then the correspondence of their

states is established due to the presence of chains of intermediate objects. There can

sometimes be several such binding sequences of objects (D, E, F, G and K, L, M, N

in Fig. 1.5); sometimes only part of the multiplet sequence (L, M and L, P, M). In

these cases, they talk about multichannel, multipath or multipath systems.

Finally, in the structure of an information system there may exist closed

sequences of objects that carry useful information (for example, E, F, G, I in Fig.

1.5). Such systems are commonly referred to as systems with feedback loops.

Feedback loops can cover both several intermediate objects (“internal” loops) and the

entire system, connecting the final and initial objects (“external” loops).

So, in any information system, objects of the following four types can be

distinguished:

1. The initial object. The rest of the system is used to obtain information about

this particular object. The initial object is often called the source of information.

2. The target object. Knowing the law of correspondence between the states of

the initial and final objects and directly observing the latter, the recipient extracts

information about the state of the former.

3. Intermediate, auxiliary objects. With the help of these objects the

correspondence between the initial and final objects is established.

4. Objects, the interaction with which destroys the uniqueness of the

correspondence of the states of the initial and final objects; sources of interference.

It should be noted that sometimes the separation of these types of objects can

be carried out only conditionally. The simplest example is a real amplifier; essentially

being an object of the third type, it is simultaneously a source of thermal noise.

Another example is the communication line on tropospheric scattering. On the one

hand, the presence of tropospheric inhomogeneities ensures the very existence of

communication at a distance, on the other, the chaotic movements of the same

inhomogeneities cause uncontrolled signal fading, making communication difficult.

56

However, for convenience of consideration, even such systems are artificially

depicted as an equivalent combination of objects of these four types.

We emphasize once again that the same real-life information system may be

qualitatively different for two observers with different information about this system.

In order to extract information about object A, observing object B, it is necessary to

know the law of correspondence of their states. If the observer does not know this

law, the observation of the object cannot directly give him the necessary information,

the whole system is in a qualitatively different state for him than for the observer who

knows this law. To be convinced of the reality of such a situation, it is enough to

imagine a distressed radioactive yacht, on which, after the radio operator’s death,

there were no people familiar with Morse code. Another example is a reader looking

at a book written in an unfamiliar language.

The question of the classification of information systems according to their

functional purpose or use cannot be considered sufficiently fully considered: there are

many subtle differences between such systems. However, several types of

information systems differ quite clearly: 1) communication systems, or information

transfer systems, 2) information storage systems, 3) information processing

(conversion) systems, 4) measurement systems, 5) observation or research systems.

5.3 Communication systems

Communication systems called information system, the main function of which

is to transfer information in the space.

There are many types of communication systems, such as mail and

broadcasting, telephone and telegraph, acoustic communication systems and signal

cable of divers, etc. Technical communication systems deserve special consideration,

in which dynamic signals are used to transfer information from one point to another.

To excite a dynamic signal, a special transmitting system is created, and a receiving

system is used to record the signal at the destination. The set of objects connecting

the transmitting and receiving systems is called a communication line. For example,

in telephone communication, a line is a pair of wires; in radio communication, a

communication line is the space in which radio waves propagate.

57

Fig. 6.6. Communication channel block diagram

If it is necessary to describe the potential capabilities of the communication

system, it can be agreed not to take into account the specific features of the

transmitter and receiver. In this case, the initial object in the communication system is

considered the input device of the transmitting system, and the final object is the

output signal of the receiving system.

Let’s consider some types of technical communication systems that work with

dynamic signals.

1. Single channel communication system. A communication system designed

for one-way transmission of information between two given points will be called a

single-channel system or simply a communication channel. The simplest block

diagram of the communication channel is shown in Fig. 6.6 and contains, in addition

to the transmitting and receiving systems and communication lines, source of noise,

acting in general to all elements of the system. Noise arising (or created artificially)

in a communication line is called external (in radio communications, for example,

industrial interference, atmospheric and cosmic noise, noise from extraneous radio

facilities, etc.). Internal noise is usually understood as noise arising in the transmitting

and receiving systems (thermal noise of resistance, noise of electronic tubes, etc.).

Under some conditions it is sometimes possible to neglect the effect of noise; Such a

communication system is called a channel without noise. In other cases, the noise

cannot be excluded from consideration. Usually, however, it is considered that

internal noises can be either neglected compared to external ones, or that the system

allows for “recalculation” of all sources into one equivalent with known

characteristics, and this noise is carried to the communication line. It is advisable to

distinguish between communication channels operating on continuous and discrete

58

signals. This refers to the discreteness of the channel in the sense that the sets of

elementary symbols at the input and output of the communication line are discrete

and finite. The problems that arise when considering discrete communication

channels can be illustrated with the help of the diagram in fig. 1.7. It differs from the

general scheme (see Fig. 1.6) by the details of both the transmitting and receiving

systems: the transmitting system is represented by two encoding devices, and the

receiving system - by two decoding devices.

Fig. 1.7. The problems that arise when considering discrete communication

channels

The input signal of the communication system can be printed text or a graphic

image, sound wave, instrument readings, etc. The purpose of the first encoder is to

present the input signal in some standard form, for example, as a sequence of binary

symbols. The main problem of such a recoding is that the standard representation is

the most economical, i.e. would require (on average) the smallest possible number of

binary characters.

Due to the presence of interference in the communication line, the

correspondence between the sent and received symbols ceases to be one-to-one. In

the general case, attempts to determine by the received symbol which of the possible

symbols was sent are inevitably associated with errors. However, it is possible to

mitigate the effect of interference by suitable signal transcoding. In the simplest case,

this possibility can be realized with the help of multiple repetition of the transmission

and subsequent comparison of the received texts. Such a method, however, is

applicable only with small probabilities of errors and, moreover, dramatically

increases the required transmission time. There are ways to more efficient coding.

59

The purpose of the second encoder and the first decoder is to implement the chosen

method of noise-resistant coding and decoding of the signal. The main problem with

this is to minimize the probability of errors, although the interference randomly

distorts the useful signal. Ideally, the output of the first encoder is the same as the

input of the second decoder. So, the function of the second encoder is to represent the

standard sequence of characters in the selected code, and the first decoder restores the

signal again in a standard form according to the adopted sequence.

Finally, the function of second decoder is to restore input signal of the entire

system;it is assumed that the standard representation of the signal was accurately

determined by the first decoder.

2. Multichannel communication system. Quite often, it is necessary to transfer

information from a group of close sources to a group of recipients concentrated in

another location. A good example is the need to transfer data from various

instruments installed on an artificial satellite to a group of ground-based recording

devices. Another example is the telephone connection between two major cities. On

the one hand, it is necessary to create a separate communication channel for each

sender – receiver pair. On the other hand, economic considerations (for example, the

high cost of building a wired communication line) or technical difficulties (for

example, creating a separate communication line for each instrument on the satellite)

prevent an increase in the number of separate communication lines for each pair of

objects to be connected. The way out is to combine the channels by sending all the

information through a single line of communication (if, of course, it allows for this).

Such combined communication systems are called multichannel.

In order for a signal to be addressed to a specific recipient and to be sent only

to him, it is obviously necessary to provide the signals of various channels with some

additional physical sign, a selection parameter by which filtering would be performed

at the receiving end. Therefore, in the multi-channel communication system,

additional devices appear to separate the signals belonging to different channels. For

multichannel systems, a specific feature is that, as a result of the non-ideal separation,

60

the signals of adjacent channels somewhat distort the signal of this channel; This so-

called crosstalk is usually the main type of interference in such systems.

3. Multi-path (multiray) communication channels. In some cases, you have to

use such communication channels, the signal in for some physical reasons is split into

several components. At the same time, each of the signal components follows a

separate path, undergoing specific transformation paths (changes, delay in time, and

sometimes non-linear distortions). If it were possible at the receiving end to separate

the signals that came in different ways, then we would have one of the

communication systems discussed above. However, this possibility is often not

available, and the receiver captures a signal that is the result of some total component

impact, coming in different ways. Such communication systems are called multipath

(multiray).

An example of a multipath communication system can serve as radio

communication on short waves that propagate by the ground wave and by reflection

from the ionosphere (sometimes undergoing multiple reflections from the ionosphere

and the surface of the Earth). Another example is radio communication on scattering,

in which the inhomogeneities of the troposphere or ionosphere can be considered as

separate scattering centers emitting separate components of the signal.

4. Communication systems with random parameters. The main difficulties in

considering multipath channels arise not so much due to the need to take into account

the ratios between the signal components, but rather due to the fact that it is necessary

to take into account temporary changes in the conditions for passing components

along different paths. These changes are usually random in nature, which causes a

number of difficulties. To overcome these difficulties, a convenient means was to

construct a model of a communication system with random parameters.

In some cases, consideration of multipath channels with random changes in the

parameters of the signal components can be approached purely phenomenologically:

the whole system is considered as one-channel, single-track, and all probabilistic

properties are attributed to random changes in some imaginary parameters of such a

channel. Such a model turns out to be useful not only when considering multipath

61

communication systems; there are systems that are directly displayed by such a

model (for example, communication on meteor tracks), which makes its study even

more important.

5. Complex communication systems. For some purposes it is necessary to

construct integrated communication systems: duplicate channels to improve

communication reliability; transmit, information on a sequence of channels with

different properties; to construct networks with a complex interlacing of channels,

etc. Such composite communication systems will be called complex. Complex

communication systems have a number of specific features that must be considered

when building and using.

Information Storage Systems

In the overwhelming majority of practical situations, the information available

by the time t cannot or should not be used immediately; but usually there is

confidence that this information will be needed in the future. To ensure the transfer of

information in time and created a variety of information storage systems. Examples

of such systems include a tape recorder and notebook, a library and storage devices of

personal computers, an atlas of geographical maps, an art gallery, function tables, etc.

For technical information storage systems (which are of primary interest in the

information-theoretic approach), the main characteristics are the information capacity

(that is, the maximum amount of information the system is capable of storing) and the

long-term storage of information without loss limits). When considering high-speed

systems that include storage devices, an important parameter is the sampling time, i.e.

the time interval between the moment of accessing the memory and the moment of

obtaining the necessary information.

The variety of information storage systems is very large, even if you do not go

into the technical differences between specific systems. Distinguish (by duration of

storage) long-term and operational storage devices (memory); there are memories

that can be accessed as many times as necessary, but there are memories that store

information only until the first access to them. There are memory devices that can

62

only be accessed at fixed points in time (usually periodically repeated); There are

chargers that can be accessed at arbitrary points in time.

With all the variety of information storage systems, several basic subsystems

with different functional purposes can be distinguished in them. In addition to the

information storage itself, there is an address system that provides searching for a

number of features of the desired storage cell; input and output blocks provide the

ability to request and issue data, as well as entering new information both by

crowding out unnecessary ones and by filling in free cells.

The introduction of storage devices into complex information systems greatly

expands the capabilities of the latter and, of course, significantly increases the

difficulty of their research. Therefore systems with memory and systems without

memory are usually considered separately.

Information converters

All kinds of operations occurring in information systems are not limited only to

the transfer and storage of information. In many systems, the most significant is the

processing of information, sometimes simple, sometimes very complex. For such

processing are special devices - information converters. The transformation of

information poses a number of complex problems, only a part of which is resolved by

the theory of information to a sufficient degree fully.

Recoding is one of the relatively simple and at the same time most frequent

transformations. We have already had the opportunity to discuss the functioning of

the coding and decoding devices that make up the communication systems.

Essentially, transcoding is an operation of transition from presenting some

information in one code to presenting it in another code (code means the entire set of

rules for generating a signal). This statement, being correct, is too general in nature

and requires clarification. We will call transcoding such a conversion of one signal to

another, in which the amount of information carried by the second signal is equal to

the amount of information carried by the first. This, of course, does not mean that

each element of the secondary signal carries the same load as the element of the

63

primary signal. Recoding can be done in such a way that one signal will contain more

elements than the other.

By the principle of operation, all encoders can be divided into two classes. The

first includes memoryless encoders, which transcode the signal elementwise, or

instantly. A more difficult object to study is memory encoders. Their peculiarity is

that each element of the output signal of a device is generally determined not by one

element of the input signal, but by some set of such elements. Examples of such

devices are devices that perform optimal coding for transmitting a signal over a noisy

channel, devices for transmitting secret codes (excluding the simplest codes), as well

as filters with finite bandwidth, etc.

Information converters, which have also been studied in relatively detail,

include information storage devices. An integral part of the accumulation of

information is its memorization, therefore, storage devices are sometimes considered

as drives. However, accumulation can (or should) sometimes be made not by

memorizing all input signals, but by memorizing the result of some processing of

these signals. The accumulator is, for example, an adder, the output of which cannot

unambiguously determine the terms. The accumulator is a device issuing its

histogram by the input realization of a random process. The purpose with which

drives are created is the accumulation of necessary information. If all the incoming

information is needed, then the drive is simply a keeper of information, a storage

device. If the input signals carry not only useful information, but also unnecessary,

then the drive plays the role of a filter that selects and accumulates only what is

necessary for further use; in this case, accumulation does not boil down to simple

memorization.

Listing the typical systems of information transformation, mention should be

made of the comparison devices, which establish the degree of similarity of the

compared signals; solvers, i.e. systems that display the space of input signals to the

solution space (control signals); quantizing devices that associate discrete mappings

with continuous signals; filters that select signals based on certain characteristics, and

a whole range of other information processing systems. Each of these systems is

64

associated with a number of information problems; first of all - the question of the

optimality of such systems in the sense of minimal loss of useful information (or in

some close to this sense).

Other types of information systems

The variety of information systems is very large, and, apparently, the issues of

their classification will be discussed in the scientific literature. In addition to the three

types of information systems discussed above, several more characteristic groups of

systems can be distinguished, of which we briefly discuss measurement systems and

research systems.

The main features of the measurement systems are associated with the features

of the measuring signals. The measurement system includes: probes and reference

signal generators; communication lines through which signals are sent and retracted

from the measurement object; A system for comparing a signal from a measured

object with a standard. The main problems in the design of measurement systems are:

the selection of the most informative signals; reduction of noise (measurement

errors), i.e. bringing to a possible minimum the impact of uncontrolled changes, not

objects of interest to us; finding such data processing methods that would allow to

extract the maximum available information.

Research systems are created to receive and decode signals whose code is not

fully known. Such systems include devices for receiving and extracting information

from natural signals, systems created for intercepting and deciphering the enemy's

radiograms encoded with a secret "unshake-resistant" code, etc. One of the main

points in the work of such systems is the promotion and testing of hypotheses

regarding an unknown code. This procedure poses very difficult problems. After all,

if a very large number of hypotheses can be put forward relative to an unknown code,

then simply going through them becomes a hopeless matter. The problem arises of

selecting "the most plausible" hypotheses, the solution of which is based on a

comparative assessment of the plausibility of hypotheses. The introduction of this

assessment is not a trivial matter. Naturally, the more information one assessment or

65

another takes into account, the more effective the research procedure becomes. The

application of information theory to the study of such systems seems quite justified.

Finishing the discussion of the types of information systems, we note once

again that in practice there are often systems that cannot be unambiguously attributed

to any of the specified types. Such systems are a complex system that includes

communication channels, information processing and storage systems, and other

devices. An example is a universal digital computer. An even more complex complex

is, for example, the Earth satellite launch management system. Such complex systems

can be considered in parts, but a number of issues (especially some issues of

optimality) must sometimes be solved taking into account the interaction of all parts.

We also point out a very poorly studied and very promising class of

information systems, the characteristics of which change during the operation of the

systems in such a way that the properties of the system as a whole improve (in a

sense); these are so-called self-adjusting, or self-organizing, systems.

5.4. Information Systems Classification

Recall that information systems are called a set of interrelated means that carry

out the transmission, storage and processing of information, they are also called

information and computing systems. In the information system data comes from the

source of information. These data are sent to storage or undergo some processing in

the system and then transferred to the consumer.

Feedback can be established between the consumer and the information system

itself. In this case, the information system is called closed. The feedback channel is

necessary when it is necessary to take into account the reaction of the consumer to the

information received.

The information system consists of the source of information, the hardware of

the IC, the software of the IC, the consumer of information.

There are 3 classes of information systems used in mechatronics, according to

the degree of their automation:

Automatic information systems - perform all information processing

operations without human participation; various robots. An example of automated

66

information systems are some Internet search servers, such as Google, where the

collection of information about sites is performed automatically by a search robot and

the human factor does not affect the ranking of search results.

Manual information systems - are characterized by the absence of modern

technical means of processing information and all operations are performed manualy.

Automated Information Systems (AIS) - the most popular class of IS. They

assume that both the person and the hardware are involved in the processing of

information, with the main role being played by the computer.

AIS is a set of software and hardware designed to automate activities related to

the storage, transmission and processing of information.

AIS are, on the one hand, a kind of information systems (IS), on the other -

automated systems (AS), as a result of which they are often called IS or AS.

In the AIS, the following information is responsible for storing information: at

the physical level - built-in memory devices (RAM), external drives, disk arrays, at

the software level - the OS file system, document storage systems, multimedia, etc.

67

Chapter 6Computer vision

In order to make decisions about real objects, it is almost always necessary to

construct some description or model of them from the image. Because of this, many

experts will say that the goal of computer vision is the construction of scene

descriptions from images. Critical issues raised in this chapter and studied in the

remainder of the text include the following.

Sensing: How do sensors obtain images of the world? How do the images

encode properties of the world, such as material, shape, illumination and spatial

relationships?

Encoded Information: How do images yield information for understanding

the 3D world, including the geometry, texture, motion, and identity of objects in it?

Representations: What representations should be used for stored descriptions

of objects, their parts, properties and relationships?

Algorithms: What methods are there to process image information and

construct descriptions of the world and its objects?

Figure 6.1: (Top left) Image of a face, (top center) aubimage of 8x8 pixels from

the right eye region, (top right) eye location detected by a computer program, and

(bottom) intensity values from the 8x8 aubimage. Images courtesy of Vera Bakic.

68

6.1 Machines that see?

Scientists and science fiction writers have been fascinated by the possibility of

building intelligent machines, and the capability of understanding the visual world ia

a prerequisite that some would require of such a machine. Much of the human brain

ia dedicated to vision. Humana solve many visual problems effortlessly, yet moat

have little analytical understanding of visual cognition aa a process. Allan Turing,

one of the fathers of both the modern digital computer and the field of artificial

intelligence, believed that a digital computer would achieve intelligence and the

ability to understand scenes. Such lofty goals have proved difficult to achieve and the

richness of human imagination ia not yet matched by our engineering. However,

there has been surprising progress along some lines of research. While building

practical systems ia a primary theme of this text and artificial intelligence ia not, we

will sometimes ponder the deeper questions, and, where we can, make some

assessment of progress. Consider, for example, the following scenario, which could

be realized within the next few years. A TV camera at your door provides images to

your home computer which you have trained to recognize some faces of people

important to you. When you call in to your home message center, your computer not

only reports the phone messages, but it also reports probable visits from your sister

Eleanor and Chad the paper boy.

6.2 Application problems

The applications of computers in image analysis are virtually limitless. Only a

small sample of applications can be included here, but these will serve us well for

both motivation and orientation to the field of study.

A preview of the digital image

A digital image might represent a cartoon, a page of text, a person’s face, a

map of Katmandu, or a product for purchase from a catalog. A digital image contains

a fixed number of rows and columns of pixels, short for picture elements. Pixels are

like little tiles holding quantized values - small numbers, often between 0 and 255,

that represent the brightness at the points of the image. Depending on the coding

scheme, 0 could be the darkest and 255 the brightest, or visa-versa. At the top left in

69

Figure 1.1 is a printed digital image of a face that is 257 rows high by 172 columns

wide. At the top center is an 8 x 8 subimage extracted from the right eye of the left

image. At the bottom of the figure are the 64 numbers representing the brightness of

the pixels in that subimage. The numbers below 100 in the upper right of the

subimage represent the lower reflection from the dark of the eye (iris), while the

higher numbers represent the brighter white of the eye. A color image would have

three numbers for each pixel, perhaps one value for red, one for blue, and one for

green. Digital images are most commonly displayed on a monitor, which is basically

a television screen with a digital image memory. A color image that has 500 rows and

500 columns is roughly equivalent to what you see at one instant of time on your TV.

A pixel is displayed by energizing a small spot of luminescent material; displaying

color requires energizing 3 neighboring spots of different materials. A high resolution

computer display has roughly 1200 by 1000 pixels. The next chapter discusses digital

images in more detail, while coding and interpretation of color in digital images is

treated in Chapter 6.

Image Database Query

Huge digital memories, high bandwidth transmission and multimedia personal

computers have facilitated the development of image databases. Good use of the

many existing images requires good retrieval methods. Standard database techniques

apply to images that have been augmented with text keys; however, content-based

retrieval is needed and is a topic of much current research. Suppose that a newly

formed company wants to design and protect a new logo and that an artist has created

several candidates for the company to consider. A logo cannot be used if it is too

similar to one of an existing company, so a database of existing logos must be

searched. This operation is analagous to patent search and is done by humans, but

could be greatly aided by machine vision methods. See Figure 1.2. There are many

similar problems. Suppose an architect or an art historian wants to search for

buildings with a particular kind of entryway. It would be desirable to just provide a

picture, perhaps fetched from the database itself, and request the system to produce

other similar pictures. In a later chapter, you will see how geometric, color, and

70

texture features can be used to aid in answering such an image database query.

Suppose that an advertising agency wants to search for existing images of young

children enjoying eating. This semantic requirement, which is simple for humans to

understand, presents a very high level of difficulty for machine vision. Characterizing

“children”, “enjoyment”, and “eating” would require complex use of color, texture,

and geometric features. We note in passing that a computer algorithm has been

devised that decides whether or not a color image contains a naked person. This could

be useful for parents who want to screen images that their children retrieve from the

web.

Inspecting crossbars for holes

In the late 1970’s an engineer in Milwaukee implemented a machine vision

system that successfully counted the number of bolt holes in crossbars made for truck

companies. The truck companies demanded that every crossbar be inspected before

being shipped to them, because a missing bolt hole on a partly assembled truck was a

very costly defect. Either the assembly line would have to be stopped while the

needed hole was drilled, or worse, a worker might ignore placing a required bolt in

order to keep the production line running. To create a digital image of the truck

crossbar, lights were placed beneath the existing transfer line and a digital camera

above it. When a crossbar came into the field of view, an image was taken. Dark

pixels inside the shadow of the crossbar were represented as l’s indicating steel, and

pixels in the bright holes were represented as 0’s, indicating that the hole was drilled.

Figure6.2: Image query by example: query image(left) and two most similar

images produced by an image database system (Courtesy of Takenobu Igarashi).

71

The number of holes can be computed as the number of external comers minus the

number of internal corners all divided by four. Figure 6.3shows three bright holes

(’0’s) in a background of T’s. An external comer is just a 2 x 2 set of neighboring

pixels containing exactly 3 ones while an internal comer is a 2 x 2 set of neighboring

pixels containing exactly 3 zeroes. Example processing of an image with 7 rows and

33 columns is shown in the figure and a skeleton algorithm is also shown.

Holecounting is only one example of many simple, but powerful operations possible

with digital images. (As the exercises below show, the holecounting algorithm is

correct only if the holes are “4-connected” and “simply connected” — that is, they

have no background pixels inside them. These concepts are discussed further in

Chapter 3 and in more detail in the text by Rosenfeld.)

Examining the inside of a human head.

Magnetic resonance imaging (MRI) devices can sense materials in the interior

of 3D objects. Figure 1.4 shows a section through a human head: brightness is related

to movement of material, so this is actually a picture of blood flow. One can “see”

important blood vessels.

The whispy comet-like structures are associated with the eyes. MRI images are

used by doctors to check for tumors or blood flow problems such as abnormal vessel

constrictions or expansions. The image at the right in Figure 1.4 was made from a

copy of the one on the left by making every pixel of value 208 or more bright (255)

and those below 208 dark (0). Most pixels correctly show blood vessels versus

background, but there are many incorrectly “colored” pixels of both types. Machine

vision techniques are often used in medical image analysis, although usually to aid in

data presentation and measurement rather than diagnosis itself. Wouldn’t it be great if

we could “see” thoughts occuring in the brain! Well, it turns out that MRI can sense

organic activity related to thought processes and this is a very exciting current area of

research.

72

Figure 6.5: (Left) Chinese characters and (right) English equivalent. Is it

possible that a machine could automatically translate one into the other? Chinese

characters and poem courtesy of John Weng; poem in English by Stockman.

Processing scanned text pages

A common problem is to convert information from paper documents into

digital form for information systems. For example, we might want to make an old

book available on the Internet, or we might need to convert a blueprint of some object

into a geometry file so that the part can be made by a numerically controlled machine

Figure 6.4: Magnetic resonance image (left) where brightness relates to blood

flow and binary image (right) resulting from changing all pixels with value 208 or

above to 255 and those below 208 to 0. Image courtesy of James Siebert, Michigan

State Radiology.

73

tool.

Figure 6.5 shows the same message in both Chinese and English. The Chinese

characters were written on paper and scanned into an image of 482 rows and 405

columns. The postscript file encoding the graphics and printed in the figure has a size

of 68,464 bytes. The English version is stored in a file of 115 bytes, each holding one

ASCII character. There is an entire range of important applications in processing

documents. Recognizing individual characters from the dots of the scanner or FAX

files is one such application that is done fairly well today, provided that the characters

conform to standard patterns. Providing a semantic interpretation of the information,

possibly to be used for indexing in a large database, is a harder problem.

Accounting for snow cover using a satellite image

Much of the earth’s surface is scanned regularly from satellites, which transmit

their images to earth in digital form. These images can then be processed to extract a

wealth of information. For example, inventory of the amount of snow in the

watershed of a river may be critical for regulating a dam for flood control, water

supply, or wildlife habitat. Estimates of snow mass can be made by accounting for

the number of pixels in the image that appear as snow. A pixel from a satellite image

might result from sensing a 10 meter by 10 meter spot of earth, but some satellites

reportedly can see much smaller spots than that. Often, the satellite image must be

compared to a map or other image to determine which pixels are in a particular area

or watershed. This operation is usally manually-aided by a human user interacting

with the image processing software and will be discussed more in Chapter 11 where

image matching is covered. Figure 1.6 is a photograph taken on a space shuttle flight

managed by the Johnson Space Center in Houston, Texas. It shows the town of

Wenatchie, Washington, where the Wenatchie River flows into the Columbia River.

Computers are known for their ability to handle large amounts of data;

certainly the earth scanning satellites produce a tremendous amount of data useful for

many purposes. For example, counts and locations of snow pixels might be input to a

computer program that simulates the hydrology for that region. (Temperature

information for the region must be input to the program as well.) Another related

74

application is taking inventory of crops and predicting harvests. Yet another is taking

inventory of buildings for tax purposes: this is usually done manually with pictures

taken from airplanes.

Understanding a scene of parts

At many points of manufacturing processes, parts are transferred on conveyors

or in boxes. Parts must be individually placed in machines, packed, inspected, etc. If

the operation is dull or dangerous, a vision-guided robot might provide a solution.

The underlying image of Figure 1.7 shows three workpieces in a robot’s workspace.

By recognizing edges and holes, the robot vision system is able to guess at both the

identity of a part and its position in the workspace. Using a 3D model made by

computer-aided-design (CAD) for each guessed part and its guessed position, the

vision system then compares the sensed image data with a computer graphic

generated from the model and its position in space. Bad matches are rejected while

good matches cause the guess to be refined. The bright lines in Figure 1.7 show three

such refined matches between the image and models of the objects it contains.

Finally, the robot eye-brain can tell the robot arm how to pick up a part and where to

put it. The problems and techniques of 3D vision are covered in the later chapters of

this text.

Figure 1.6: Photo of the Wenatchie and Columbia Rivers in Washington State.

Courtesy of Johnson Space Center; see http://earthrise.sdsc.edu.

http://earthrise.sdsc.edu/

75

6.3 Operations on Images

Operations can be grouped into different categories depending on their

structure, level, or purpose. Some operations are for the purpose of improving the

image solely for human consumption, while others are for extracting information for

downstream automatic processing. Some operations create new output images, while

others output non-image descriptions. A few important categories of image

operations follow.

Changing pixels in small neighborhoods

Pixel values can be changed according to how they relate to a small number of

neighboring pixels, for example, neighbors in adjacent rows or columns. Frequently,

isolated l’s or 0’s in a binary image will be reversed in order to make them the same

as their neighbors. The purpose of this operation could be to remove likely noise from

the digitization process. Or, it could be just to simplify image content; for example, to

ignore tiny islands in a lake or imperfections in a sheet of paper. Another common

operation is to change border pixels to be background pixels as shown in Figure 1.8.

The images of bacteria have fuzzy borders and often fuse together. By changing the

black border pixels to white, the bacteria images, although smaller, have clearer

borders and some formerly fusing pairs are separated. These operations are treated in

Chapter 3.

Figure 1.7: An inspection or assembly robot matches stored 3D models to a

sensed 2D image (Courtesy of Mauro Costa).

76

Enhancing an entire image

Some operations treat the entire image in a uniform manner. The image might

be too dark - say its maximum brightness value is 120 - so all brightness values can

be scaled upby a factor of 2 to improve its displayed appearance. Noise or

unnecessary detail can be removed by replacing the value of every input pixel with

the average of all nine pixels in its immediate neighborhood. Alternatively, details

can be enhanced by replacing each pixel value by the contrast between it and its

neighbors. Figure 6.9 shows a simple contrast computation applied at all pixels of an

input image. Note how the boundaries of most objects are well detected. The output

image results from computations made only on the local 3x3 neighborhoods of the

input image. Chapter 5 describes several of these kinds of operations. Perhaps an

image is taken using a fish eye lens and we want to create an output image with less

distortion: in this case, we have to “move” the pixel values to other locations in the

image to move them closer to the image center. Such an operation is called image

warping.

Figure 6.8: (Left) Binary image of bacteria (in the original microscope image,

the bacteria were blue due to their fluoresence); (right) cleaner image resulting from

changing black pixels that had one or more white neighbors to white. Original image

courtesy of Frank Dazzo.

77

Combining multiple images

An image can be created by adding or subtracting two input images. Image

subtraction is commonly used to detect change over time. Figure 6.10shows two

images of a moving part and the difference image resulting from subtracting the

corresponding pixel values of the second image from those of the first image. Image

subtraction captures the boundary of the moving object, but not perfectly. (Since

negative pixel values were not used, not all changes were saved in the output image.)

In another application, urban development might be more easily seen by subtracting

an aerial image of a city taken five years ago from a current image of the city. Image

addition is also useful. Figure 6.11shows an image of Thomas Jefferson “added” to

an image of the great arch opening onto the lands of the Louisiana Purchase; more

work is needed in this case to blend the images better.

Computing features from an image

Figure6.9: Contrast in the left image is shown in the right image. The top 10%

of the pixels in terms of contrast are made bright while the lower 90% are made dark.

Contrast is computed from the 3x3 neighborhood of each pixel.

Figure 6.10: Images of a moving part (left and center) and a difference image

(right) that captures the boundary of the part.

78

We have already seen the example of counting holes. More generally, the

regions of 0’s corresponding to holes in the crossbar inspection problem could be

images of objects, often called blobs - perhaps these are microbes in a water sample.

Important features might be average object area, perimeter, direction, etc. We might

want to output these important features separately for every detected object. Figure

6.12shows output from a well-known algorithm applied to the bacteria image of

Figure 6.8giving features of separate regions identified in the image, including the

region area and location. Regions with area of a few hundred pixels correspond to

isolated bacteria while the large region is due to several touching bacteria.

Extracting non-iconic representations

Higher-level operations usually extract representations of the image that are

non-iconic, that is, data structures that are not like an image. (Recall that extraction of

such descriptions is often defined to be the goal of computer vision.) Figure

6.12shows a non-iconic description derived from the bacteria image. In addition to

examples already mentioned, consider a report of the count of microbes of type A and

B in a slide from a microscope or

Figure 6.11: Image of the great archway at St. Louis (left); face of Jefferson

(center); and, combination of the two (right).

79

Figure 6.12: Components automatically identified in the bacteria image in

Figure 1.8(right) Single bacteria have an area of a few hundred pixels: the large

component consist of several touching bacteria and the tiny objects 2,4 and 5 are due

to noise.

the volume of traffic flow between two intersections of a city computed from a

video taken from a utility pole. In another important application, the (iconic) input

might be a scanned magazine article and the output a hypertext structure containing

sections of recognized ASCII text and sections of raw images for the figures. As a

final example, in the application illustrated in Figure 6.7, the machine vision system

would output a set of three detections, each encoding a part number, three parameters

of part position and three parameters of the orientation of the part. This scene

description could then be turned over to the motionplanning system, which would

decide on how to manipulate the three parts.

80

Chapter 7 Robot programming languages and systems

In this chapter, we begin to consider the interface between the human user and

an industrial robot. It is by means of this interface that a user takes advantage of all

the underlying mechanics and control algorithms we have studied in previous

chapters.

The sophistication of the user interface is becoming extremely important as

manipulators and other programmable automation are applied to more and more

demanding industrial applications. It turns out that the nature of the user interface is a

very important concern. In fact, most of the challenge of the design and use of

industrial robots focuses on this aspect of the problem

Robot manipulators differentiate themselves from fixed automation by being

"flexible," which means programmable. Not only are the movements of manipulators

programmable, but, through the use of sensors and communications with other

factory automation, manipulators can adapt to variations as the task proceeds.

In considering the programming of manipulators, it is important to remember

that they are typically only a minor part of an automated process. The term workceil

is used to describe a local collection of equipment, which may include one or more

manipulators, conveyor systems, parts feeders, and fixtures. At the next higher level,

workcells might be interconnected in factorywide networks so that a central control

computer can control the overall factory flow. Hence, the programming of

manipulators is often considered within the broader problem of programming a

variety of interconnected machines in an automated factory workcell.

Teach by showing

Early robots were all programmed by a method that we will call teach by

showing, which involved moving the robot to a desired goal point and recording its

position in a memory that the sequencer would read during playback. During the

teach phase, the user would guide the robot either by hand or through interaction with

a teach pendant. Teach pendants are handlield button boxes that allow control of each

manipulator joint or of each Cartesian degree of freedom. Some such controllers

81

allow testing and branching, so that simple programs involving logic can be entered.

Some teach pendants have alphanumeric displays and are approaching hand-held

terminals in complexity. Figure 7.1 shows an operator using a teach pendant to

program a large industrial robot.

FIGURE 7.1: The GMF S380 is often used in automobile-body spot-welding

applications. Here an operator uses a teach-pendant interface to program the

manipulator. Photo courtesy of GIviFanuc Corp.

Explicit robot programming languages

Ever since the arrival of inexpensive and powerful computers, the trend has

been increasingly toward programming robots via programs written in computer

programming languages. Usually, these computer programming languages have

special features that apply to the problems of programming manipulators and so are

called robot programming languages (RPLs). Most of the systems that come

equipped with a robot programming language have nonetheless retained a teach-

pendant-style interface also.

Robot programming languages have likewise taken on many forms. We will

split them into three categories:

1. Specialized manipulation languages. These robot programming

languages have been built by developing a completely new language that, although

82

addressing robot-specific areas, might well be considered a general computer

programming language. An example is the VAL language developed to control the

industrial robots by Unimation, Inc. VAL was developed especially as a manipulator

control language; as a general computer language, it was quite weak. For example, it

did not support floating-point numbers or character strings, and subroutines could not

pass arguments. A more recent version, V-Il, provided these features. The current

incarnation of this language, V+, includes many new features. Another example of a

specialized manipulation language is AL, developed at Stanford University. Although

the AL language is now a relic of the past, it nonetheless provides good examples of

some features still not found in most modern languages (force control, parallelism).

Also, because it was built in an academic environment, there are references available

to describe it. For these reasons, we continue to make reference to it.

2. . Robot library for an existing computer language. These robot

programming languages have been developed by starting with a popular computer

language (e.g., Pascal) and adding a library of robot-specific subroutines. The user

then writes a Pascal program making use of frequent calls to the predefined

subroutine package for robot-specific needs. An examples is AR-BASIC from

American Cimfiex, essentially a subroutine library for a standard BASIC

implementation. JARS, developed by NASA's Jet Propulsion Laboratory, is an

example of such a robot programming language based on Pascal.

3. Robot library for a new general-purpose language. These robot

programming languages have been developed by first creating a new general-purpose

language as a programming base and then supplying a library of predefined robot-

specific subroutines. Examples of such robot programming languages are RAPID

developed by ABB Robotics, AML developed by IBM, and KAREL developed by

GMF Robotics.

Studies of actual application programs for robotic workcells have shown that a

large percentage of the language statements are not robot-specific. Instead, a great

deal of robot programming has to do with initialization, logic testing and branching,

communication, and so on. For this reason, a trend might develop to move away from

83

developing special languages for robot programming and move toward developing

extensions to general languages, as in categories 2 and 3 above.

Task-level programming languages

The third level of robot programming methodology is embodied in task-level

progranmiing languages. These languages allow the user to command desired

subgoals of the task directly, rather than specify the details of every action the robot

is to take. In such a system, the user is able to include instructions in the application

program at a significantly higher level than in an explicit robot programming

language. A task-level robot programming system must have the ability to perform

many planning tasks automatically. For example, if an instruction to "grasp the bolt"

is issued, the system must plan a path of the manipulator that avoids coffision with

any surrounding obstacles, must automatically choose a good grasp location on the

bolt, and must grasp it. In contrast, in an explicit robot programming language, all

these choices must be made by the programmer. The border between explicit robot

programming languages and task-level programming languages is quite distinct.

Incremental advances are being made to explicit robot programming languages to

help to ease programming, but these enhancements cannot be counted as components

of a task-level programming system. True task-level programming of manipulators

does not yet exist, but it has been an active topic of research and continues as a

research topic today.

7.1A sample application

Figure 7.2 shows an automated workcell that completes a small subassembly in

a hypothetical manufacturing process. The workcell consists of a conveyor under

computer control that delivers a workpiece; a camera connected to a vision system,

used to locate the workpiece on the conveyor; an industrial robot (a PUIVIA 560 is

pictured) equipped with a force-sensing wrist; a small feeder located on the work

surface that supplies another part to the manipulator; a computer-controlled press that

can be loaded and unloaded by the robot; and a pallet upon which the robot places

finished assemblies.

84

Figure 7.2: An automated workcell containing an industrial robot.

 The entire process is controlled by the manipulator's controller in a sequence,

as follows:

1. The conveyor is signaled to start; it is stopped when the vision system

reports that a bracket has been detected on the conveyor.

2. The vision system judges the bracket's position and orientation on the

conveyor and inspects the bracket for defects, such as the wrong number of holes.

3. Using the output of the vision system, the manipulator grasps the bracket

with a specified force. The distance between the fingertips is checked to ensure that

the bracket has been properly grasped. If it has not, the robot moves out of the way

and the vision task is repeated.

4. The bracket is placed in the fixture on the work surface. At this point, the

conveyor can be signaled to start again for the next bracket—that is, steps 1 and 2 can

begin in parallel with the following steps.

5. A pin is picked from the feeder and inserted partway into a tapered hole

in the bracket. Force control is used to perform this insertion and to perform simple

checks on its completion. (If the pin feeder is empty, an operator is notified and the

manipulator waits until commanded to resume by the operator.)

85

6. The bracket—pin assembly is grasped by the robot and placed in the

press.

7. The press is commanded to actuate, and it presses the pin the rest of the

way into the bracket. The press signals that it has completed, and the bracket is

placed back into the fixture for a final inspection.

8. By force sensing, the assembly is checked for proper insertion of the pin.

The manipulator senses the reaction force when it presses sideways on the pin and

can do several checks to discover how far the pin protrudes from the bracket.

9. If the assembly is judged to be good, the robot places the finished part

into the next available pallet location. If the pallet is ftll, the operator is signaled. If

the assembly is bad, it is dropped into the trash bin.

10. Once Step 2 (started earlier in parallel) is complete, go to Step 3.

This is an example of a task that is possible for today's industrial robots. It

should be clear that the definition of such a process through "teach by showing"

techniques is probably not feasible. For example, in dealing with pallets, it is

laborious to have to teach all the pallet compartment locations; it is much preferable

to teach only the corner location and then compute the others from knowledge of the

dimensions of the pallet. Further, specifying interprocess signaling and setting up

parallelism by using a typical teach pendant or a menu-style interface is usually not

possible at all. This kind of application necessitates a robot programminglanguage

approach to process description. (See Exercise 7.5.) On the other hand, this

application is too complex for any existing task-level languages to deal with directly.

It is typical of the great many applications that must be addressed with an explicit

robot programming approach. We will keep this sample application in mind as we

discuss features of robot programming languages.

7.2Requirements of a robot programming language

World modeling

Manipulation programs must, by definition, involve moving objects in three-

dimensional space, so it is clear that any robot programming language needs a means

of describing such actions. The most common element of robot programming

86

languages is the existence of special geometric types. For example, types are

introduced to represent joint-angle sets, Cartesian positions, orientations, and frames.

Predefined operators that can manipulate these types often are available. The

"standard frames" introduced in Chapter 3 might serve as a possible model of the

world: All motions are described as tool frame relative to station frame, with goal

frames being constructed from arbitrary expressions involving geometric types.

Given a robot programming environment that supports geometric types, the

robot and other machines, parts, and fixtures can be modeled by defining named

variables associated with each object of interest. Figure 7.3 shows part of our

example workcell with frames attached in task-relevant locations. Each of these

frames would be represented with a variable of type "frame" in the robot program.

Figure 7.3: Often, a workcell is modeled simply, as a set of frames attached to

relevant objects.

In many robot progranmiing languages, this ability to define named variables

of various geometric types and refer to them in the program forms the basis of the

world model. Note that the physical shapes of the objects are not part of such a world

model, and neither are surfaces, volumes, masses, or other properties. The extent to

87

which objects in the world are modeled is one of the basic design decisions made

when designing a robot programming system. Most present-day systems support only

the style just described.

Some world-modeling systems allow the notion of aflixments between named

objects—that is, the system can be notified that two or more named objects have

become "affixed"; from then on, if one object is explicitly moved with a language

statement, any objects affixed to it are moved with it. Thus, in our application, once

the pin has been inserted into the hole in the bracket, the system would be notified

(via a language statement) that these two objects have become affixed. Subsequent

motions of the bracket (that is, changes to the value of the frame variable "bracket")

would cause the value stored for variable "pin" to be updated along with it.

Ideally, a world-modeling system would include much more information about

the objects with which the manipulator has to deal and about the manipulator itself.

For example, consider a system in which objects are described by CAD-style models

that represent the spatial shape of an object by giving definitions of its edges,

surfaces, or volume. With such data available to the system, it begins to become

possible to implement many of the features of a task-level programming system

Motion specification

A very basic function of a robot programming language is to allow the

description of desired motions of the robot. Through the use of motion statements in

the language, the user interfaces to path planners and generators of the style described

in Chapter 7. Motion statements allow the user to specify via points, the goal point,

and whether to use joint-interpolated motion or Cartesian straight-line motion.

Additionally, the user might have control over the speed or duration of a motion.

To ifiustrate various syntaxes for motion primitives, we will consider the

following example manipulator motions: (1) move to position "goall," then (2) move

in a straight line to position "goal2," then (3) move without stopping through "vial"

and come to rest at "goal3." Assuming all of these path points had already been

taught or described textually, this program segment would be written as follows:

In VAL II,

88

move goall

moves goal2

move vial

move goal3

In AL (here controlling the manipulator "garm"),

move garm to goall;

move garm to goal2 linearly;

move garm to goal3 via vial;

Most languages have similar syntax for simple motion statements like these.

Differences in the basic motion primitives from one robot programming language to

another become more apparent if we consider features such as the following:

1. the ability to do math on such structured types as frames, vectors, and

rotation matrices;

2. the ability to describe geometric entities like frames in several different

convenient representations—along with the ability to convert between

representations;

3. the ability to give constraints on the duration or velocity of a particular

move—for example, many systems allow the user to set the speed to a fraction of

maximum, but fewer allow the user to specify a desired duration or a desired

maximum joint velocity directly;

4. the ability to specify goals relative to various frames, including frames

defined by the user and frames in motion (on a conveyor, for example).

Flow of execution

As in more conventional computer programming languages, a robot

programming system allows the user to specify the flow of execution—that is,

concepts such as testing and branching, looping, calls to subroutines, and even

interrupts are generally found in robot programming languages.

More so than in many computer applications, parallel processing is generally

important in automated workcell applications. First of all, very often two or more

robots are used in a single workcell and work simultaneously to reduce the cycle time

of the process. Even in single-robot applications, such as the one shown in Fig. 7.2,

other workcell equipment must be controlled by the robot controller in a parallel

89

fashion. Hence, signal and wait primitives are often found in robot programming

languages, and occasionally more sophisticated parallel-execution constructs are

provided.

 Another frequent occurrence is the need to monitor various processes with

some kind of sensor. Then, either by interrupt or through polling, the robot system

must be able to respond to certain events detected by the sensors. The ability to

specify such event monitors easily is afforded by some robot programming languages

Programming environment

As with any computer languages, a good programming environment fosters

programmer productivity. Manipulator programming is difficult and tends to be very

interactive, with a lot of trial and error. If the user were forced to continually repeat

the "edit-compile-run" cycle of compiled languages, productivity would be low.

Therefore, most robot programming languages are now interpreted, so that individual

language statements can be run one at a time during program development and

debugging. Many of the language statements cause motion of a physical device, so

the tiny amount of time required to interpret the language statements is insignificant.

Typical programming support, such as text editors, debuggers, and a file system, are

also required.

Sensor integration

An extremely important part of robot programming has to do with interaction

with sensors. The system should have, at a minimum, the capability to query touch

and force sensors and to use the response in if-then-else constructs. The ability to

specify event monitors to watch for transitions on such sensors in a background mode

is also very useful.

Integration with a vision system allows the vision system to send the

manipulator system the coordinates of an object of interest. For example, in our

sample application, a vision system locates the brackets on the conveyor belt and

returns to the manipulator controller their position and orientation relative to the

camera. The camera's frame is known relative to the station frame, so a desired goal

frame for the manipulator can be computed from this information.

90

the manipulator can be computed from this information. Some sensors could be

part of other equipment in the workcell—for example, some robot controllers can use

input from a sensor attached to a conveyor belt so that the manipulator can track the

belt's motion and acquire objects from the belt as it moves.

The interface to force-control capabilities, as discussed in Chapter 9, comes

through special language statements that allow the user to specify force strategies.

Such force-control strategies are by necessity an integrated part of the manipulator

control system—the robot programming language simply serves as an interface to

those capabilities. Programming robots that make use of active force control might

require other special features, such as the ability to display force data collected during

a constrained motion.

In systems that support active force control, the description of the desired force

application could become part of the motion specification. The AL language

describes active force contro in the motion primitives by specifying six components

of stiffness (three translational and three rotational) and a bias force. In this way, the

manipulator's apparent stiffness is programmable. To apply a force, usually the

stiffness is set to zero in that direction and a bias force is specified—for example,

move garm to goal

with stif±ness=(80, 80, 0, 100, 100, 100)

with force=20*ounces along zhat;

7.3Problems peculiar to robot programming languages

Advances in recent years have helped, but programming robots is still difficult.

Robot programming shares all the problems of conventional computer programming,

plus some additional difficulties caused by effects of the physical world.

Internal world model versus external reality

A central feature of a robot programming system is the world model that is

maintained internally in the computer. Even when this model is quite simple, there

are ample difficulties in assuring that it matches the physical reality that it attempts to

model. Discrepancies between internal model and external reality result in poor or

failed grasping of objects, coffisions, and a host of more subtle problems.

91

This correspondence between internal model and the external world must be

established for the program's initial state and must be maintained throughout its

execution. During initial programming or debugging, it is generally up to the user to

suffer the burden of ensuring that the state represented in the program corresponds to

the physical state of the workcell. Unlike more conventional programming, where

only internal variables need to be saved and restored to reestablish a former situation,

in robot programming, physical objects must usually be repositioned.

Besides the uncertainty inherent in each object's position, the manipulator itself

is limited to a certain degree of accuracy. Very often, steps in an assembly will

require the manipulator to make motions requiring greater precision than it is capable

of. A common example of this is inserting a pin into a hole where the clearance is an

order of magnitude less than the positional accuracy of the manipulator. To further

complicate matters, the manipulator's accuracy usually varies over its workspace.

In dealing with those objects whose locations are not known exactly, it is

essential to somehow refine the positional information. This can sometimes be done

with sensors (e.g., vision, touch) or by using appropriate force strategies for

constrained motions

During debugging of manipulator programs, it is very useful to be able to

modify the program and then back up and try a procedure again. Backing up entails

restoring the manipulator and objects being manipulated to a former state. However,

in working with physical objects, it is not always easy, or even possible, to undo an

action. Some examples are the operations of painting, riveting, driJling, or welding,

which cause a physical modffication of the objects being manipulated. It might

therefore be necessary for the user to get a new copy of the object to replace the old,

modified one. Further, it is likely that some of the operations just prior to the one

being retried wifi also need to be repeated to establish the proper state required before

the desired operation can be successfully retried.

Context sensitivity

 Bottom-up programming is a standard approach to writing a large computer

program in which one develops small, low-level pieces of a program and then puts

92

them together into larger pieces, eventually attaining a completed program. For this

method to work, it is essential that the small pieces be relatively insensitive to the

language statements that precede them and that there be no assumptions concerning

the context in which these program pieces execute. For manipulator programming,

this is often not the case; code that worked reliably when tested in isolation

frequently fails when placed in the context of the larger program. These problems

generally arise from dependencies on manipulator configuration and speed of

motions.

Manipulator programs can be highly sensitive to initial conditions—for

example, the initial manipulator position. In motion trajectories, the starting position

will influence the trajectory that will be used for the motion. The initial manipulator

position might also influence the velocity with which the arm wifi be moving during

some critical part of the motion. For example, these statements are true for

manipulators that follow the cubic-spline joint-space paths studied in Chapter 7.

These effects can sometimes be dealt with by proper programming care, but often

such problems do not arise until after the initial language statements have been

debugged in isolation and are then joined with statements preceding them.

form an operation at one location is likely to need to be tuned (i.e., positions

retaught and the like) to make it work at a different location. Changes in location

within the workcell result in changes in the manipulator's configuration in reaching

goal locations. Such attempts at relocating manipulator motions within the workcell

test the accuracy of the manipulator kinematics and servo system, and problems

frequently arise. Such relocation could cause a change in the manipulator's kinematic

configuration—for example, from left shoulder to right shoulder, or from elbow up to

elbow down. Moreover, these changes in configuration could cause large arm

motions during what had previously been a short, simple motion.

ions during what had previously been a short, simple motion. The nature of the

spatial shape of trajectories is likely to change as paths are located in different

portions of the manipulator's workspace. This is particularly true of joint-space

93

trajectory methods, but use of Cartesian-path schemes can also lead to problems

when singularities are nearby.

When testing a manipulator motion for the first time, it often is wise to have

the manipulator move slowly. This allows the user a chance to stop the motion if it

appears to be about to cause a coffision. It also allows the user to inspect the motion

closely. After the motion has undergone some initial debugging at a slower speed it is

then desirable to increase motion speeds. Doing so might cause some aspects of the

motion to change. Limitations in most manipulator control systems cause greater

servo errors, which are to be expected if the quicker trajectory is followed. Also, in

force-control situations involving contact with the environment, speed changes can

completely change the force strategies required for success.

The manipulator's configuration also affects the delicacy and accuracy of the

forces that can be applied with it. This is a function of how well conditioned the

Jacobian of the manipulator is at a certain configuration, something generally

difficult to consider when developing robot programs.

Error recovery

 Another direct consequence of working with the physical world is that objects

might not be exactly where they should be and, hence, motions that deal with them

could fail. Part of manipulator programming involves attempting to take this into

account and making assembly operations as robust as possible, but, even so, errors

are likely, and an important aspect of manipulator progranmiing is how to recover

from these errors.

 Almost any motion statement in the user's program can fail, sometimes for a

variety of reasons. Some of the more common causes are objects shifting or dropping

out of the hand, an object missing from where it should be, jamming during an

insertion, and not being able to locate a hole.

The first problem that arises for error recovery is identifying that an error has

indeed occurred. Because robots generally have quite limited sensing and reasoning

capabilities, error detection is often difficult. In order to detect an error, a robot

program must contain some type of explicit test. This test might involve checking the

94

manipulator's position to see that it lies in the proper range; for example, when doing

an insertion, lack of change in position might indicate jamming, or too much change

might indicate that the hole was missed entirely or the object has slipped out of the

hand. If the manipulator system has some type of visual capabilities, then it might

take a picture and check for the presence or absence of an object and, if the object is

present, report its location. Other checks might involve force, such as weighing the

load being carried to check that the object is still there and has not been dropped, or

checking that a contact force remains within certain bounds during a motion.

Every motion statement in the program might fail, so these explicit checks can

be quite cumbersome and can take up more space than the rest of the program.

Attempting to deal with all possible errors is extremely difficult; usually, just the few

statements that seem most likely to fail are checked. The process of predicting which

portions of a robot application program are likely to fail is one that requires a certain

amount of interaction and partial testing with the robot during the program-

development stage.

Once an error has been detected, an attempt can be made to recover from it.

This can be done totally by the manipulator under program control, or it might

involve manual intervention by the user, or some combination of the two. In any

event, the recovery attempt could in turn result in new errors. It is easy to see how

code to recover from errors can become the major part of the manipulator program.

The use of parallelism in manipulator programs can further complicate

recovery from errors. When several processes are running concurrently and one

causes an error to occur, it could affect other processes. In many cases, it will be

possible to back up the offending process, while allowing the others to continue. At

other times, it Wi-Fi be necessary to reset several or all of the running processes.

95

References

1. Джастін Дж. Кром BASIC Face-off // PC Tech Journal. Вересень 1987.Р.

136.

2. Carne, Nick (8 березня, 2019). "Дослідники роблять мільйон крихітних

роботів". Журнал «Космос». 8 березня 2019.

3. Зунт, Домінік. "Хто ж насправді винайшов слово" робот "і що це

означає?". Сайт Karel Čapek. 2017-02-05.

4. Даффі, Вінсент Г. (19 квітня 2016). Довідник з цифрового моделювання

людини: дослідження для прикладної ергономіки та інженерії людського

фактора. CRC Press. ISBN 9781420063523 - через Книги Google.

5. Waurzyniak, Patrick (2006). "Майстри виробництва: Джозеф Ф.

Енгельбергер". Товариство інженерів-виробників. 137 (1). Архів з

оригіналу 2011-11-09.

6. "Щільність роботів зростає глобально". Асоціація Robotic Industries. 8

лютого 2018. 3 грудня 2018 року.

7. Колодний, Лора (4 липня 2017 року). "Роботи приходять до бургерного

суглоба поруч з вами". CNBC. 3 грудня 2018 року.

8. Corner, Стюарт (23 листопада 2017 р.). "Робот, керований AI, робить"

досконалу "плоскодонній". iothub.com.au. 3 грудня 2018 року.

9. Eyre, Michael (12 вересня 2014 року). "Борис" робот може завантажувати

посудомийну машину ". BBC News. 3 грудня 2018 року.

10. Одна база даних, розроблена Міністерством енергетики США, містить

інформацію про майже 500 існуючих робототехнічних технологій і може

бути знайдена на інформаційному інструменті D&D Knowledge

Management.

11. Даулінг, Кевін. "Джерела енергії для малих роботів" (PDF). Університет

Карнегі-Меллона. 11 травня 2012 року.

12. Двонаправлений паралельний пружний привід і перекриття виконавчих

шарів Raphaël Furnémont1, Glenn Mathijssen1,2, Tom Verstraten1, Dirk

96

Lefeber1 і Bram Vanderborght1 Опубліковано 26 січня 2016 • © 2016 IOP

Publishing Ltd

13. Пратт, Джеррі Е .; Крупп, Бенджамін Т. (2004). "Серія еластичних

приводів для роботів з ногами". Технологія безпілотних наземних

транспортних засобів VI. Технологія безпілотних наземних транспортних

засобів Vi. 5422. С. 135

14. www.imagesco.com, Зображення SI Inc -. "Приводи повітряних м'язів, що

йдуть далі, с. 6".

15. "Повітряні м'язи". Тіньовий робот. Архівовано з оригіналу на 2007-09-27.

16. Тонду, Бертран (2012). "Моделювання штучних м'язів Маккіббена:

огляд". Журнал систем та структур інтелектуальних матеріалів. 23 (3):

225–253. doi: 10.1177 / 1045389X11435435.

17. Драгани, Рахель (8 листопада 2018). "Чи може робот зробити вас"

суперпрацівником "?". Verizon Communications. 3 грудня 2018 року.

18. Поллок, Емілі (7 червня 2018). "Промисловість будівельної робототехніки

встановлюється удвічі до 2023 року". engineering.com. 3 грудня 2008 року.

19. Гріфт, Тоні Е. (2004). "Сільськогосподарська робототехніка". Університет

Іллінойсу в Урбані-Шампейн. Архівовано з оригіналу 2007-05-04. 3

грудня 2018 року.

20. Томас, Джим (1 листопада 2017 року). "Як корпоративні гіганти

автоматизують ферму". Новий інтернаціоналіст. 3 грудня 2008 року.

21. "OUCL робот Sheepdog проекту". Кафедра комп'ютерних наук,

Оксфордський університет. 3 липня 2001 року.

