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Foreword

Daniel E. Geer, Jr., ScD
Daniel Geer is a security researcher with a quantitative bent. His group at MIT pro-
duced Kerberos, and a number of startups later he is still at it—today as chief infor-
mation security officer at In-Q-Tel. He writes a lot at every length, and sometimes it 
gets read. He’s an electrical engineer, a statistician, and someone who thinks truth is 
best achieved by adversarial procedures.

It is my pleasure to recommend How to Measure Anything in Cybersecurity 
Risk. The topic is nothing if not pressing, and it is one that I have myself 

been dancing around for some time.1 It is a hard problem, which allows me 
to quote Secretary of State John Foster Dulles: “The measure of success is 
not whether you have a tough problem to deal with, but whether it is the 
same problem you had last year.” At its simplest, this book promises to help 
you put some old, hard problems behind you.

The practice of cybersecurity is part engineering and part inference. 
The central truth of engineering is that design pays if and only if the prob-
lem statement is itself well understood. The central truth of statistical infer-
ence is that all data has bias—the question being whether you can correct 
for it. Both engineering and inference depend on measurement. When mea-
surement gets good enough, metrics become possible.

I say “metrics” because metrics are derivatives of measurement. A metric 
encapsulates measurements for the purpose of ongoing decision support. I 
and you, dear reader, are not in cybersecurity for reasons of science, though 
those who are in it for science (or philosophy) will also want measurement 
of some sort to backstop their theorizing. We need metrics derived from 
solid measurement because the scale of our task compared to the scale of 
our tools demands force multiplication. In any case, no game play improves 
without a way to keep score.

Early in the present author’s career, a meeting was held inside a market-
maker bank. The CISO, who was an unwilling promotion from Internal 

We are fortunate to have two forewords from two leading thinkers in cybersecurity risk 
assessment—Daniel E. Geer, Jr., and Stuart McClure.



x� Foreword: Daniel E. Geer

Audit, was caustic even by the standards of NYC finance. He began his com-
ments mildly enough:

Are you security people so stupid that you can’t tell me:
■■ How secure am I?
■■ Am I better off than I was this time last year?
■■ Am I spending the right amount of money?
■■ How do I compare to my peers?
■■ What risk transfer options do I have?

Twenty-five years later, those questions remain germane. Answering them, 
and others, comes only from measurement; that is the “Why?” of this book.

Yet even if we all agree on “Why?,” the real value of this book is not 
“Why?” but “How?”: how to measure and then choose among methods, how 
to do that both consistently and repeatedly, and how to move up from one 
method to a better one as your skill improves.

Some will say that cybersecurity is impossible if you face a sufficiently 
skilled opponent. That’s true. It is also irrelevant. Our opponents by and 
large pick the targets that maximize their return on their investment, which 
is a polite way of saying that you may not be able to thwart the most sin-
gularly determined opponent for whom cost is no object, but you can sure 
as the world make other targets more attractive than you are. As I said, no 
game play improves without a way to keep score. That is what this book 
offers you—a way to improve your game.

This all requires numbers because numbers are the only input to both 
engineering and inference. Adjectives are not. Color codes are not. If you 
have any interest in taking care of yourself, of standing on your own two 
feet, of knowing where you are, then you owe it to yourself to exhaust this 
book. Its writing is clear, its pedagogy is straightforward, and its download-
able Excel spreadsheets leave no excuse for not trying.

Have I made the case? I hope so.

Note

	 1.	 Daniel Geer, Jr., Kevin Soo Hoo, and Andrew Jaquith, “Information 
Security: Why the Future Belongs to the Quants,” IEEE Security & 
Privacy 1, no. 4 ( July/August 2003): 32–40, geer.tinho.net/ieee/ieee
.sp.geer.0307.pdf.
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Foreword

Stuart McClure
Stuart McClure is the CEO of Cylance, former global CTO of McAfee, and founding 
author of the Hacking Exposed series.

My university professors always sputtered the age-old maxim in class: 
“You can’t manage what you cannot measure.” And while my perky, 

barely-out-of-teenage-years ears absorbed the claim aurally, my brain never 
really could process what it meant. Sure, my numerous computer science 
classes kept me chasing an infinite pursuit of improving mathematical algo-
rithms in software programs, but little did I know how to really apply these 
quantitative efforts to the management of anything, much less cyber.

So I bounded forward in my career in IT and software programming, 
looking for an application of my unique talents. I never found cyber mea-
surement all that compelling until I found cybersecurity. What motivated 
me to look at a foundational way to measure what I did in cybersecurity 
was the timeless question that I and many of you get almost daily: “Are we 
secure from attack?”

The easy answer to such a trite yet completely understandable question 
is “No. Security is never 100%.” But some of you have answered the same 
way I have done from time to time, being exhausted by the inane query, 
with “Yes. Yes we are.” Why? Because we know a ridiculous question should 
be given an equally ridiculous answer. For how can we know? Well, you 
can’t—without metrics.

As my cybersecurity career developed with InfoWorld and Ernst & 
Young, while founding the company Foundstone, taking senior executive 
roles in its acquiring company, McAfee, and now starting Cylance, I have 
developed a unique appreciation for the original professorial claim that you 
really cannot manage what you cannot measure. While an objective metric 
may be mythical, a subjective and localized measurement of your current 
risk posture and where you stand relative to your past and your peers is 
very possible.
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Measuring the cyber risk present at an organization is nontrivial, and 
when you set the requirement of delivering on quantitative measurements 
rather than subjective and qualitative measurements, it becomes almost be-
yond daunting.

The real questions for all of us security practitioners are ultimately 
“Where do we start? How do we go about measuring cybersecurity’s  
effectiveness and return?” The only way to begin to answer those ques-
tions is through quantitative metrics. And until now, the art of cybersecurity 
measurement has been elusive. I remember the first time someone asked 
me my opinion on a security-risk metrics program, I answered something 
to the effect of, “It’s impossible to measure something you cannot quantify.”

What the authors of this book have done is begin to define a framework 
and a set of algorithms and metrics to do exactly what the industry has long 
thought impossible, or at least futile: measure security risk. We may not be 
perfect in our measurement, but we can define a set of standard metrics 
that are defensible and quantifiable, and then use those same metrics day 
in and day out to ensure that things are improving. And that is the ultimate 
value of defining and executing on a set of security metrics. You don’t need 
to be perfect; all you need to do is start somewhere and measure yourself 
relative to the day before.
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Introduction

Why This Book, Why Now?

This book is the first of a series of spinoffs from Douglas Hubbard’s success-
ful first book, How to Measure Anything: Finding the Value of “Intangibles” 
in Business. For future books in this franchise, we were considering titles 
such as How to Measure Anything in Project Management or industry-
specific books like How to Measure Anything in Healthcare. All we had to 
do was pick a good idea from a long list of possibilities.

Cybersecurity risk seemed like an ideal first book for this new series. 
It is extremely topical and filled with measurement challenges that may 
often seem impossible. We also believe it is an extremely important topic 
for personal reasons (as we are credit card users and have medical records, 
client data, intellectual property, and so on) as well as for the economy 
as a whole.

Another factor in choosing a topic was finding the right co-author. 
Because Doug Hubbard—a generalist in measurement methods—would not 
be a specialist in any of the particular potential spinoff topics, he planned to 
find a co-author who could write authoritatively on the topic. Hubbard was 
fortunate to find an enthusiastic volunteer in Richard Seiersen—someone 
with years of experience in the highest levels of cybersecurity management 
with some of the largest organizations.

So, with a topical but difficult measurement subject, a broad and grow-
ing audience, and a good co-author, cybersecurity seemed like an ideal fit.

What Is This Book About?

Even though this book focuses on cybersecurity risk, this book still has a 
lot in common with the original How to Measure Anything book, including:
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	 1.	 Making better decisions when you are significantly uncertain about 
the present and future, and

	 2.	 Reducing that uncertainty even when data seems unavailable or the 
targets of measurement seem ambiguous and intangible.

This book in particular offers an alternative to a set of deeply rooted 
risk assessment methods now widely used in cybersecurity but that have no 
basis in the mathematics of risk or scientific method. We argue that these 
methods impede decisions about a subject of growing criticality. We also 
argue that methods based on real evidence of improving decisions are not 
only practical but already have been applied to a wide variety of equally 
difficult problems, including cybersecurity itself. We will show that we can 
start at a simple level and then evolve to whatever level is required while 
avoiding problems inherent to “risk matrices” and “risk scores.” So there is 
no reason not to adopt better methods immediately.

What to Expect

You should expect a gentle introduction to measurably better decision 
making—specifically, improvement in high-stakes decisions that have a lot 
of uncertainty and where, if you are wrong, your decisions could lead to 
catastrophe. We think security embodies all of these concerns.

We don’t expect our readers to be risk management experts or cyber-
security experts. The methods we apply to security can be applied to many 
other areas. Of course, we do hope it will make those who work in the field 
of cybersecurity better defenders and strategists. We also hope it will make 
the larger set of leaders more conscious of security risks in the process of 
becoming better decision makers.

Is This Book for Me?

If you really want to be sure this book is for you, here are the specific per-
sonas we are targeting:

■■ You are a decision maker looking to improve—that is, measurably 
improve—your high-stakes decision making.

■■ You are a security professional looking to become more strategic in 
your fight against the bad guy.

■■ You are neither of the above. Instead, you have an interest in under-
standing more about cybersecurity and/or risk management using read-
ily accessible quantitative techniques.
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■■ If you are a hard-core quant, consider skipping the purely quant parts. 
If you are a hard-core hacker, consider skipping the purely security 
parts. That said, we will often have a novel perspective, or “epiphanies 
of the obvious,” on topics you already know well. Read as you see fit.

We Need More Than Technology

We need to lose less often in the fight against the bad guys. Or, at least, 
lose more gracefully and recover quickly. Many feel that this requires better 
technology. We clamor for more innovation from our vendors in the security 
space even though breach frequency has not been reduced. To effectively 
battle security threats, we think there is something equally important as 
innovative technology, if not more important. We believe that “something” 
must include a better way to think quantitatively about risk.

New Tools for Decision Makers

We need decision makers who consistently make better choices through 
better analysis. We also need decision makers who know how to deftly han-
dle uncertainty in the face of looming catastrophe. Parts of this solution are 
sometimes referred to with current trendy terms like “predictive analytics,” 
but more broadly this includes all of decision science or decision analysis 
and even properly applied statistics.

Our Path Forward

Part I of this book sets the stage for reasoning about uncertainty in security. We 
will come to terms on things like security, uncertainty, measurement, and risk 
management. We also argue against toxic misunderstandings of these terms 
and why we need a better approach to measuring cybersecurity risk and, for 
that matter, measuring the performance of cybersecurity risk analysis itself. 
We will also introduce a very simple quantitative method that could serve as 
a starting point for anyone, no matter how averse they may be to complexity.

Part II of this book will delve further into evolutionary steps we can 
take with a very simple quantitative model. We will describe how to add 
further complexity to a model and how to use even minimal amounts of 
data to improve those models.

Last, in Part III we will describe what is needed to implement these 
methods in the organization. We will also talk about the implications of this 
book for the entire cybersecurity “ecosystem,” including standards organiza-
tions and vendors.





Part I
Why Cybersecurity Needs Better 

Measurements for Risk
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Chapter 1
The One Patch Most Needed  

in Cybersecurity 

There is nothing more deceptive than an obvious fact.

—Sherlock Holmes
The Bascombe Valley Mystery 1

In the days after September 11, 2001, increased security meant overhauled 
screening at the airport, no-fly lists, air marshals, and attacking terrorist 

training camps. But just 12 years later, the FBI was emphasizing the emer-
gence of a very different concern: the “cyber-based threat.” In 2013, FBI 
director James B. Comey, testifying before the Senate Committee on Home-
land Security and Governmental Affairs, stated the following:

. . .we anticipate that in the future, resources devoted to cyber-based 
threats will equal or even eclipse the resources devoted to non-cyber 
based terrorist threats.

—FBI director James B. Comey, November 14, 20132

This is a shift in priorities we cannot overstate. How many organizations 
in 2001, preparing for what they perceived as the key threats at the time, 
would have even imagined that cyber threats would have not only equaled 
but exceeded more conventional terrorist threats? Yet as we write this book, 
it is accepted as our new “new normal.”

Admittedly, those outside of the world of cybersecurity may think the 
FBI is sowing seeds of Fear, Uncertainty, and Doubt (FUD) to some politi-
cal end. But it would seem that there are plenty of sources of FUD, so why 
pick cyber threats in particular? Of course, to cybersecurity experts this is 
a non-epiphany. We are under attack and it will certainly get worse before 
it gets better.
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Yet resources are limited. Therefore, the cybersecurity professional 
must effectively determine a kind of “return on risk mitigation.” Whether 
or not such a return is explicitly calculated, we must evaluate whether a 
given defense strategy is a better use of resources than another. In short, we 
have to measure and monetize risk and risk reduction. What we need is a 
“how to” book for professionals in charge of allocating limited resources to  
addressing ever-increasing cyber threats, and leveraging those resources for 
optimum risk reduction. This includes methods for:

■■ How to measure risk assessment methods themselves.
■■ How to measure reduction in risk from a given defense, control, miti-
gation, or strategy (using some of the better-performing methods as 
identified in the first bullet).

■■ How to continuously and measurably improve on the implemented 
methods, using more advanced methods that the reader may employ as 
he or she feels ready.

Let’s be explicit about what this book isn’t. This is not a technical secu-
rity book—if you’re looking for a book on “ethical hacking,” then you have 
certainly come to the wrong place. There will be no discussions about how 
to execute stack overflows, defeat encryption algorithms, or execute SQL 
injections. If and when we do discuss such things, it’s only in the context of 
understanding them as parameters in a risk model.

But don’t be disappointed if you’re a technical person. We will certainly 
be getting into some analytic nitty-gritty as it applies to security. This is from 
the perspective of an analyst or leader trying to make better bets in relation 
to possible future losses. For now, let’s review the scale of the challenge we 
are dealing with and how we deal with it currently, then outline a direction 
for the improvements laid out in the rest of the book.

The Global Attack Surface

Nation-states, organized crime, hacktivist entities, and insider threats want 
our secrets, our money, and our intellectual property, and some want our 
complete demise. Sound dramatic? If we understand the FBI correctly, they 
expect to spend as much or more on protecting us from cyber threats than 
from those who would turn airplanes, cars, pressure cookers, and even 
people into bombs. And if you are reading this book, you probably already 
accept the gravity of the situation. But we should at least spend some time 
emphasizing this point if for no other reason than to help those who already 
agree with this point make the case to others.
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The Global Information Security Workforce Study (GISWS)—a survey 
conducted in 2015 of more than 14,000 security professionals, including 
1,800 federal employees—showed we are not just taking a beating, we are  
backpedaling:

When we consider the amount of effort dedicated over the past two 
years to furthering the security readiness of federal systems and the 
nation’s overall security posture, our hope was to see an obvious step 
forward. The data shows that, in fact, we have taken a step back.

—(ISC)2 on the announcement of the GISWS, 20153

Indeed, other sources of data support this dire conclusion. The UK 
insurance market, Lloyd’s of London, estimated that cyberattacks cost 
businesses $400 billion globally per year.4 In 2014, one billion records 
were compromised. This caused Forbes magazine to refer to 2014 as 
“The Year of the Data Breach.”5,6 Unfortunately, identifying 2014 as the 
year of the data breach may still prove to be premature. It could easily 
get worse.

In fact, the founder and head of XL Catlin, the largest insurer in Lloyd’s 
of London, said cybersecurity is the “biggest, most systemic risk” he has 
seen in his 42 years in insurance.7 Potential weaknesses in widely used 
software; interdependent network access between companies, vendors, and 
clients; and the possibility of large coordinated attacks can affect much 
more than even one big company like Anthem, Target, or Sony. XL Catlin 
believes it is possible that there could be a simultaneous impact on multiple 
major organizations affecting the entire economy. They feel that if there are 
multiple major claims in a short period of time, this is a bigger burden than 
insurers can realistically cover.

What is causing such a dramatic rise in breach and the anticipation of 
even more breaches? It is called attack surface. “Attack surface” is usually 
defined as the kind of total of all exposures of an information system. It 
exposes value to untrusted sources. You don’t need to be a security pro-
fessional to get this. Your home, your bank account, your family, and your 
identity all have an attack surface. If you received identity theft protection 
as a federal employee, or a customer of Home Depot, Target, Anthem, 
or Neiman Marcus, then you received that courtesy of an attack surface. 
These companies put the digital you within reach of criminals. Directly or 
indirectly, the Internet facilitated this. This evolution happened quickly and 
without the knowledge or direct permission of all interested parties (orga-
nizations, employees, customers, or citizens).

Various definitions of the phrase consider the ways into and out of a 
system, the defenses of that system, and sometimes the value of data in that 
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system.8,9 Some definitions of attack surface refer to the attack surface of a 
system and some refer to the attack surface of a network, but either might 
be too narrow even for a given firm. We might also define an “Enterprise 
Attack Surface” that not only consists of all systems and networks in that 
organization but also the exposure of third parties. This includes everyone 
in the enterprise “ecosystem” including major customers, vendors, and per-
haps government agencies. (Recall that in the case of the Target breach, the 
exploit came from an HVAC vendor.)

Perhaps the total attack surface that concerns all citizens, consumers, 
and governments is a kind of “global attack surface”: the total set of cy-
bersecurity exposures—across all systems, networks, and organizations—
we all face just by shopping with a credit card, browsing online, receiving 
medical benefits, or even just being employed. This global attack surface 
is a macro-level phenomenon driven by at least four macro-level causes 
of growth: increasing users worldwide, variety of users worldwide, 
growth in discovered and exploited vulnerabilities per person per use, 
and organizations more networked with each other resulting in “cascade 
failure” risks.

■■ The increasing number of persons on the Internet.  Internet users 
worldwide grew by a factor of 6 from 2001 to 2014 (half a billion to 
3 billion). It may not be obvious that the number of users is a dimen-
sion in some attack surfaces, but some measures of attack surface 
also include the value of a target, which would be partly a func-
tion of number of users (e.g., gaining access to more personal re-
cords)10 Also, on a global scale, it acts as an important multiplier on 
the following dimensions.

■■ The number of uses per person for online resources. The varied uses of 
the Internet, total time spent on the Internet, use of credit cards, and 
various services that require the storage of personal data-automated 
transactions are growing. Per person. Worldwide. For example, since 
2001 the number of websites alone has grown at a rate five times 
faster than the number of users—a billion total by 2014. Connected 
devices constitute another potential way for an individual to use the 
Internet even without their active involvement. One forecast regarding 
the “Internet of Things” (IoT) was made by Gartner, Inc: “4.9 billion 
connected things will be in use in 2015, up 30 percent from 2014, 
and will reach 25 billion by 2020.”11 A key concern here is the lack of 
consistent security in designs. The National Security Telecommunica-
tions Advisory Committee determined that “there is a small—and rap-
idly closing—window to ensure that the IoT is adopted in a way that 
maximizes security and minimizes risk. If the country fails to do so, it 
will be coping with the consequences for generations.”12
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■■ Vulnerabilities increase. A natural consequence of the previous two 
factors is the number of ways such uses can be exploited increases. 
This is due to the increase in systems and devices with potential 
vulnerabilities, even if vulnerabilities per system or device do not  
increase. At least the number of discovered vulnerabilities will in-
crease partly because the number of people actively seeking and 
exploiting vulnerabilities increases. And more of those will be from 
well-organized and well-funded teams of individuals working for na-
tional sponsors.

■■ The possibility of a major breach “cascade.” More large organizations 
are finding efficiencies from being more connected. The fact that 
Target was breached through a vendor raises the possibility of the 
same attack affecting multiple organizations. Organizations like Tar-
get have many vendors, several of which in turn have multiple large 
corporate and government clients. Mapping this cyber-ecosystem of 
connections would be almost impossible, since it would certainly 
require all these organizations to divulge sensitive information. So 
the kind of publicly available metrics we have for the previous three 
factors in this list do not exist for this one. But we suspect most large 
organizations could just be one or two degrees of separation from 
each other.

It seems reasonable that of these four trends the earlier trends magnify 
the latter trends. If so, the risk of the major breach “cascade” event could 
grow faster than the growth rate of the first couple of trends.

Our naïve, and obvious, hypothesis? Attack surface and breach are cor-
related. If this holds true, then we haven’t seen anything yet. We are head-
ing into a historic growth in attack surface, and hence breach, which will 
eclipse what has been seen to date. Given all this, the FBI director’s com-
ments and the statements of Lloyd’s of London insurers cannot be dismissed 
as alarmist. Even with the giant breaches like Target, Anthem, and Sony 
behind us, we believe we haven’t seen “The Big One” yet.

The Cyber Threat Response

It’s a bit of a catch-22 in that success in business is highly correlated with 
exposure. Banking, buying, getting medical attention, and even being em-
ployed is predicated on exposure. You need to expose data to transact 
business, and if you want to do more business, that means more attack sur-
face. When you are exposed, you can be seen and affected in unexpected 
and malicious ways. In defense, cybersecurity professionals try to “harden” 
systems—that is, removing all nonessentials, including programs, users, 
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data, privileges, and vulnerabilities. Hardening shrinks, but does not elimi-
nate, attack surface. Yet even this partial reduction in attack surface requires 
significant resources, and the trends show that the resource requirements 
will grow.

Generally, executive-level attention on cybersecurity risks has increased, 
and attention is followed by resources. The boardroom is beginning to ask 
questions like “Will we be breached?” or “Are we better than Sony?” or “Did 
we spend enough on the right risks?” Asking these questions eventually 
brings some to hire a chief information security officer (CISO). The first For-
tune 100 CISO role emerged more than 20 years ago, but for most of that 
time growth in CISOs was slow. CFO Magazine acknowledged that hiring a 
CISO as recently as 2008 would have been considered “superfluous.”13 In fact, 
large companies are still in the process of hiring their first CISOs, many just 
after they suffer major breaches. By the time this book was written, Target 
finally hired their first CISO,14 and JPMorgan did likewise after their breach.15

In addition to merely asking these questions and creating a management- 
level role for information security, corporations have been showing a will-
ingness, perhaps more slowly than cybersecurity professionals would like, 
to allocate serious resources to this problem:

■■ Just after the 9/11 attacks the annual cybersecurity market in the United 
States was $4.1 billion.16 By 2015 the information technology budget 
of the United States Defense Department had grown to $36.7 billion.17

■■ This does not include $1.4 billion in startup investments for new  
cybersecurity-related firms.18

■■ Cybersecurity budgets have grown at about twice the rate of IT budgets 
overall.19

So what do organizations do with this new executive visibility and in-
flow of money to cybersecurity? Mostly, they seek out vulnerabilities, detect 
attacks, and eliminate compromises. Of course, the size of the attack surface 
and the sheer volume of vulnerabilities, attacks, and compromises means 
organizations must make tough choices; not everything gets fixed, stopped, 
recovered, and so forth. There will need to be some form of acceptable 
(tolerable) losses. What risks are acceptable is often not documented, and 
when they are, they are stated in soft, unquantified terms that cannot be 
used clearly in a calculation to determine if a given expenditure is justified 
or not.

On the vulnerability side of the equation, this has led to what is called 
“vulnerability management.” An extension on the attack side is “security event 
management,” which can generalize to “security management.” More recently 
there is “threat intelligence” and the emerging phrase “threat management.” 
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While all are within the tactical security solution spaces, the management 
portion attempts to rank-order what to do next. So how do organizations 
conduct security management? How do they prioritize the allocation of sig-
nificant, but limited, resources for an expanding list of vulnerabilities? In 
other words, how do they make cybersecurity decisions to allocate limited 
resources in a fight against such uncertain and growing risks?

Certainly a lot of expert intuition is involved, as there always is in man-
agement. But for more systematic approaches, the vast majority of organi-
zations concerned with cybersecurity will resort to some sort of “scoring” 
method that ultimately plots risks on a “matrix.” This is true for both very 
tactical level issues and strategic, aggregated risks. For example, an applica-
tion with multiple vulnerabilities could have all of them aggregated into one 
score. Using similar methods at another scale, groups of applications can 
then be aggregated into a portfolio and plotted with other portfolios. The ag-
gregation process is typically some form of invented mathematics unfamiliar 
to actuaries, statisticians, and mathematicians. 

In one widely used approach, “likelihood” and “impact” will be rated 
subjectively, perhaps on a 1 to 5 scale, and those two values will be used to 
plot a particular risk on a matrix (variously called a “risk matrix,” “heat map,” 
“risk map,” etc.). The matrix—similar to the one shown in Figure 1.1—is 
then often further divided into sections of low, medium, and high risk. 
Events with high likelihood and high impact would be in the upper-right 
“high risk” corner, while those with low likelihood and low impact would 
be in the opposite “low risk” corner. The idea is that the higher the score, 
the more important something is and the sooner you should address it. You 
may intuitively think such an approach is reasonable, and if you thought so 
you would be in good company.

Impact

Negligible Minor Moderate Critical Catastrophic

1 2 3 4 5

L
ik

el
ih

o
o

d

Frequent 5 Medium Medium High High High

Likely 4 Medium Medium Medium High High

Occasional 3 Low Medium Medium Medium High

Seldom 2 Low Low Medium Medium Medium

Improbable 1 Low Low Low Medium Medium

Figure 1.1  The familiar risk matrix (a.k.a. heat map or risk map)
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Various versions of scores and risk maps are endorsed and promoted 
by several major organizations, standards, and frameworks such as the 
National Institute of Standards and Technology (NIST), the International 
Standards Organization (ISO), MITRE.org, and the Open Web Application 
Security Project (OWASP), among others. Most organizations with a cyber-
security function claim at least one of these as part of their framework for 
assessing risk. In fact, most major software organizations like Oracle, Mi-
crosoft, and Adobe rate their vulnerabilities using a NIST-supported scoring  
system called the “Common Vulnerability Scoring System” (CVSS). Also, 
many security solutions also include CVSS ratings, be it for vulnerability 
and/or attack related. While the control recommendations made by many 
of these frameworks are good, it’s how we are guided to prioritize risk man-
agement on an enterprise scale that is amplifying risk.

Literally hundreds of security vendors and even standards bodies have 
come to adopt some form of scoring system. Indeed, scoring approaches 
and risk matrices are at the core of the security industry’s risk management 
approaches.

In all cases, they are based on the idea that such methods are of some 
sufficient benefit. That is, they are assumed to be at least an improvement 
over not using such a method. As one of the standards organizations has put 
it, rating risk this way is adequate:

Once the tester has identified a potential risk and wants to figure out 
how serious it is, the first step is to estimate the likelihood. At the high-
est level, this is a rough measure of how likely this particular vulnerabil-
ity is to be uncovered and exploited by an attacker. It is not necessary 
to be over-precise in this estimate. Generally, identifying whether the 
likelihood is low, medium, or high is sufficient.

—OWASP20 (emphasis added)

Does this last phrase, stating “low, medium, or high is sufficient,” need 
to be taken on faith? Considering the critical nature of the decisions such 
methods will guide, we argue that it should not. This is a testable hypothesis 
and it actually has been tested in many different ways. The growing trends 
of cybersecurity attacks alone indicate it might be high time to try some-
thing else.

So let’s be clear about our position on current methods: They are a 
failure. They do not work. A thorough investigation of the research on these 
methods and decision-making methods in general indicates the following 
(all of this will be discussed in detail in Chapters 4 and 5):
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■■ There is no evidence that the types of scoring and risk matrix methods 
widely used in cybersecurity improve judgment.

■■ On the contrary, there is evidence these methods add noise and error 
to the judgment process. One researcher—Tony Cox—goes as far as to 
say they can be “worse than random.” (Cox’s research and many others 
will be detailed in Chapter 5.)

■■ Any appearance of “working” is probably a type of “analysis placebo.” 
That is, a method may make you feel better even though the activity 
provides no measurable improvement in estimating risks (or even adds 
error).

■■ There is overwhelming evidence in published research that quantita-
tive, probabilistic methods are effective.

■■ Fortunately, most cybersecurity experts seem willing and able to adopt 
better quantitative solutions. But common misconceptions held by 
some—including misconceptions about basic statistics—create some 
obstacles for adopting better methods.

How cybersecurity assesses risk, and how it determines how much it 
reduces risk, are the basis for determining where cybersecurity needs to 
prioritize the use of resources. And if this method is broken—or even just 
leaves room for significant improvement—then that is the highest-prior-
ity problem for cybersecurity to tackle! Clearly, putting cybersecurity risk- 
assessment and decision-making methods on a solid foundation will affect 
everything else cybersecurity does. If risk assessment itself is a weakness, 
then fixing risk assessment is the most important “patch” a cybersecurity 
professional can implement.

A Proposal for Cybersecurity Risk Management

In this book, we will propose a different direction for cybersecurity. Every 
proposed solution will ultimately be guided by the title of this book. That 
is, we are solving problems by describing how to measure cybersecurity 
risk—anything in cybersecurity risk. These measurements will be a tool in 
the solutions proposed but also reveal how these solutions were selected in 
the first place. So let us propose that we adopt a new quantitative approach 
to cybersecurity, built upon the following principles:

■■ It is possible to greatly improve on the existing methods. Many aspects of 
existing methods have been measured and found wanting. This is not 
acceptable for the scale of the problems faced in cybersecurity.
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■■ Cybersecurity can use the same quantitative language of risk analysis 
used in other problems. As we will see, there are plenty of fields with 
massive risk, minimal data, and profoundly chaotic actors that are regu-
larly modeled using traditional mathematical methods. We don’t need 
to reinvent terminology or methods from other fields that also have 
challenging risk analysis problems.

■■ Methods exist that have already been measured to be an improvement 
over expert intuition. This improvement exists even when methods are 
based, as are the current methods, on only the subjective judgment of 
cybersecurity experts.

■■ These improved methods are entirely feasible. We know this because it 
has already been done. One or both of the authors have had direct ex-
perience with using every method described in this book in real-world 
corporate environments. The methods are currently used by cybersecu-
rity analysts with a variety of backgrounds.

■■ You can improve further on these models with empirical data. You have 
more data available than you think from a variety of existing and newly 
emerging sources. Even when data is scarce, mathematical methods 
with limited data can still be an improvement on subjective judgment 
alone. Even the risk analysis methods themselves can be measured and 
tracked to make continuous improvements.

The book is separated into three parts that will make each of these 
points in multiple ways. Part I will introduce a simple quantitative method 
that requires little more effort than the current scoring methods, but uses 
techniques that have shown a measurable improvement in judgment. It 
will then discuss how to measure the measurement methods themselves. 
In other words, we will try to answer the question “How do we know it 
works?” regarding different methods for assessing cybersecurity. The last 
chapter of Part I will address common objections to quantitative methods, 
detail the research against scoring methods, and discuss misconceptions 
and misunderstandings that keep some from adopting better methods.

Part II will move from the “why” we use the methods we use and  
focus on how to add further improvements to the simple model described 
in Part I. We will talk about how to add useful details to the simple model, 
how to refine the ability of cybersecurity experts to assess uncertainties, 
and how to improve a model with empirical data (even when data seems 
limited).

Part III will take a step back to the bigger picture of how these methods 
can be rolled out to the enterprise, how new threats may emerge, and 
how evolving tools and methods can further improve the measurement of 
cybersecurity risks. We will try to describe a call to action for the cyber
security industry as a whole.
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But first, our next chapter will build a foundation for how we should 
understand the term “measurement.” That may seem simple and obvious, 
but misunderstandings about that term and the methods required to execute 
it are behind at least some of the resistance to applying measurement to 
cybersecurity.
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Chapter 2
A Measurement Primer  

for Cybersecurity

Success is a function of persistence and doggedness and the willingness 
to work hard for twenty-two minutes to make sense of something that 
most people would give up on after thirty seconds.

—Malcom Gladwell, Outliers1

Before we can discuss how literally anything can be measured in cyber-
security, we need to discuss measurement itself, and we need to address 

early the objection that some things in cybersecurity are simply not measur-
able. The fact is that a series of misunderstandings about the methods of 
measurement, the thing being measured, or even the definition of measure-
ment itself will hold back many attempts to measure.

This chapter will be mostly redundant for readers of the original How 
to Measure Anything: Finding the Value of “Intangibles” in Business. This 
chapter has been edited from the original and the examples geared slightly 
more in the direction of cybersecurity. However, if you have already read 
the original book, then you might prefer to skip this chapter. Otherwise, you 
will need to read on to understand these critical basics.

We propose that there are just three reasons why anyone ever thought 
something was immeasurable—cybersecurity included—and all three are 
rooted in misconceptions of one sort or another. We categorize these three 
reasons as concept, object, and method. Various forms of these objections to 
measurement will be addressed in more detail later in this book (especially 
in Chapter 5). But for now, let’s review the basics:

	 1.	 Concept of measurement. The definition of measurement itself is widely 
misunderstood. If one understands what “measurement” actually means, 
a lot more things become measurable.
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	 2.	 Object of measurement. The thing being measured is not well defined. 
Sloppy and ambiguous language gets in the way of measurement.

	 3.	 Methods of measurement. Many procedures of empirical observation 
are not well known. If people were familiar with some of these basic 
methods, it would become apparent that many things thought to be 
immeasurable are not only measurable but may have already been 
measured.

A good way to remember these three common misconceptions is by 
using a mnemonic like “howtomeasureanything.com,” where the c, o, and m 
in “.com” stand for concept, object, and method. Once we learn that these 
three objections are misunderstandings of one sort or another, it becomes 
apparent that everything really is measurable.

The Concept of Measurement

As far as the propositions of mathematics refer to reality, they are not 
certain; and as far as they are certain, they do not refer to reality.

—Albert Einstein

Although this may seem a paradox, all exact science is based on the idea 
of approximation. If a man tells you he knows a thing exactly, then you 
can be safe in inferring that you are speaking to an inexact man.

—Bertrand Russell (1872–1970), British  
mathematician and philosopher

For those who believe something to be immeasurable, the concept 
of measurement—or rather the misconception of it—is probably the most 
important obstacle to overcome. If we incorrectly think that measurement 
means meeting some nearly unachievable standard of certainty, then few 
things will be measurable even in the physical sciences.

If you ask a manager or cybersecurity expert what measurement means, 
you would usually get answers like “to quantify something,” “to compute an 
exact value,” “to reduce to a single number,” or “to choose a representative 
amount,” and so on. Implicit or explicit in all of these answers is that mea-
surement is a single, exact number with no room for error. If that was really 
what the term means, then, indeed, very few things would be measurable.

Perhaps the reader has heard—or said—something like, “We can’t mea-
sure the true impact of a data breach because some of the consequences can’t 
be known exactly.” Or perhaps, “There is no way we can put a probability 
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on being the target of a massive denial-of-service attack because there is 
too much uncertainty.” These statements indicate a presumed defi nition of 
measurement that is both unrelated to real decision making and also unsci-
entifi c. When scientists, actuaries, or statisticians perform a measurement, 
they are using a different de facto defi nition.  

 a Defi nition of Measurement 

 For all practical decision-making purposes, we need to treat measurement 
as  observations that quantitatively reduce uncertainty.  A mere reduction, 
not necessarily an elimination, of uncertainty will suffi ce for a measurement. 
Even if some scientists don’t articulate this defi nition exactly, the methods 
they use make it clear that, to them, measurement is only a probabilistic 
exercise. Certainty about real-world quantities is usually beyond their reach. 
The fact that some amount of error is unavoidable but can still be an im-
provement on prior knowledge is central to how experiments, surveys, and 
other scientifi c measurements are performed. 

      Defi nition of Measurement  

  Measurement:  A quantitatively expressed reduction of uncertainty 
based on one or more observations.   

 The practical differences between this defi nition and the most popular 
defi nitions of measurement are enormous. Not only does a true measure-
ment not need to be infi nitely precise to be considered a measurement, but 
the lack of reported error—implying the number is exact—can be an indica-
tion that empirical methods, such as sampling and experiments, were not 
used (i.e., it’s not really a measurement at all). Measurements that would pass 
basic standards of scientifi c validity would report results with some specifi ed 
degree of uncertainty, such as, “There is a 90% chance that an attack on this 
system would cause it to be down somewhere between 1 and 8 hours.” 

 This conception of measurement might be new to many readers, but 
there are strong mathematical foundations—as well as practical reasons—for 
looking at measurement this way. A measurement is, ultimately, just infor-
mation, and there is a rigorous theoretical construct for information. A fi eld 
called “information theory” was developed in the 1940s by Claude Shannon, 
an American electrical engineer and mathematician. In 1948, he published 
a paper titled “A Mathematical Theory of Communication,”  2   which laid the 
foundation for information theory and, ultimately, much of the world of 
information technology that cybersecurity professionals work in. 
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Shannon proposed a mathematical definition of “information” as the 
amount of uncertainty reduction in a signal, which he discussed in terms of 
the “entropy” removed by a signal. To Shannon, the receiver of information 
could be described as having some prior state of uncertainty. That is, the 
receiver already knew something, and the new information merely removed 
some, not necessarily all, of the receiver’s uncertainty. The receiver’s prior 
state of knowledge or uncertainty can be used to compute such things as the 
limits to how much information can be transmitted in a signal, the minimal 
amount of signal to correct for noise, and the maximum data compression 
possible.

This “uncertainty reduction” point of view is what is critical to business. 
Major decisions made under a state of uncertainty—such as whether to ap-
prove large information technology (IT) projects or new security controls—can 
be made better, even if just slightly, by reducing uncertainty. Sometimes even 
small uncertainty reductions can be worth millions of dollars.

A Taxonomy of Measurement Scales

Okay, so measuring cybersecurity is like any other measurement in the 
sense that it does not require certainty. Various types of measurement scales 
can push our understanding of measurement even further. Usually, we think 
of measurements as involving a specific, well-defined unit of measure such 
as dollars per year in the cybersecurity budget or minutes of duration of 
system downtime.

But could a scale like “high,” “medium,” or “low” constitute a proper 
measurement? Cybersecurity professionals will recognize scales like this as 
common in many standards and practices in all areas of risk assessment. It is 
common to see quantities like “impact” or “likelihood” assessed subjectively 
on a scale of 1 to 5 and then for those scales to be combined further to 
assess risk as high, medium, or low. These are deceptively simple methods 
that introduce a series of issues that will be discussed in further detail later 
in this book. For now, let’s talk about where it might make sense to use 
scales other than conventional units of measure.

Note that the definition I offer for measurement says a measurement is 
“quantitatively expressed.” The uncertainty, at least, has to be quantified, but 
the subject of observation might not be a quantity itself—it could be entirely 
qualitative, such as a membership in a set. For example, we could “measure” 
something where the answer is yes or no—like whether a data breach will 
occur this year or whether a cyberinsurance claim will be made—while still 
satisfying our precise definition of measurement. But our uncertainty about 
those observations must still be expressed quantitatively (e.g., there is a 
15% chance of a data breach this year, there is a 20% chance of making a 
cyberinsurance claim, etc.).
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The view that measurement applies to questions with a yes/no answer 
or other qualitative distinctions is consistent with another accepted school 
of thought on measurement. In 1946, the psychologist Stanley Smith Stevens 
wrote an article called “On the Theory of Scales and Measurement.”3 In it he 
describes four different scales of measurement: nominal, ordinal, interval, 
and ratio scales. If the reader is thinking of Celsius or dollars as a measure-
ment, they are thinking of an interval and ratio scale, respectively. These 
scales both have a well-defined “unit” of a regular size. In both cases we 
can say a 6 is 2 more than a 4 (6 degrees Celsius or $6). An interval scale, 
however, doesn’t really allow us to say that a 6 is “50% more” than a 4 or 
“twice as much” as a 3. For example, 6 degrees Celsius is not “twice as hot” 
as 3 degrees Celsius (since the “zero” position on the Celsius scale is set 
arbitrarily at the freezing point of water). But $6 million is twice as much as 
$3 million. So, there are some mathematical operations we cannot do with 
interval scales, like multiplication or division.

Nominal and ordinal scales are even more limited. A nominal scale has 
no implied order or magnitude—like gender or location or whether a sys-
tem has a given feature. A nominal scale expresses a state without saying 
that one state is twice as much as the other or even, for that matter, more 
or less than the other—each state scale is just a different state, not a higher 
or lower state. Ordinal scales, on the other hand, denote an order but not 
by how much. We can say, for example, that someone with admin rights 
has more privilege than a regular user. But we don’t say it is five times the 
privilege of a normal user and twice as much as another user. So most 
mathematical operations—other than basic logic or set operations—are not 
applicable to nominal or ordinal scales.

Still, it is possible for nominal and ordinal scales to be informative 
even though they vary from more conventional measurement scales like 
kilograms and seconds. To a geologist, it is useful to know that one rock 
is harder than another, without necessarily having to know by how much. 
The method they use for comparing hardness of minerals—called the Mohs 
hardness scale—is an ordinal scale.

So the use of ordinal scales like those often found in cybersecurity are 
not strictly a violation of measurement concepts, but how it is done, what 
it is applied to, and what is done with these values afterward actually does 
violate basic principles and can cause a lot of problems. Geologists don’t 
multiply Mohs hardness scale values times the rock’s color. And while the 
Mohs scale is a well-defined measurement, the uses of ordinal scales in 
cybersecurity often are not.

We will show later that measures based on well-defined quantities—like 
the annual probability of an event and a probability distribution of poten-
tial losses—are preferable to the types of ordinal scales typically used in 
cybersecurity. In fact, nothing in science and engineering really relies on 
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an ordinal scale. Even the Mohs hardness scale has been replaced in many 
uses. (Outside of geology, the Vickers scale, a proper ratio scale, is consid-
ered more suitable for materials in science and engineering problems.)

These are all important distinctions about the concept of measurement 
that contain many lessons for managers in general as well as cybersecurity 
specialists. The commonplace notion that presumes measurements are 
exact quantities ignores the usefulness of simply reducing uncertainty, if 
eliminating uncertainty is not possible or economical. And not all measure-
ments even need to be about a conventional quantity. Measurement applies 
to discrete, nominal points of interest like “Will we experience a major 
data breach?” as well as continuous quantities like “How much will it cost 
if we do have a data breach?” In business, decision makers make decisions 
under uncertainty. When that uncertainty is about big, risky decisions, then 
uncertainty reduction has a lot of value—and that is why we will use this 
definition of measurement.

Bayesian Measurement: A Pragmatic Concept for Decisions

Therefore the true logic for this world is the calculus of Probabilities, 
which takes account of the magnitude of the probability which is, or 
ought to be, in a reasonable man’s mind.

—James Clerk Maxwell, 1850

When we talk about measurement as “uncertainty reduction,” we imply 
that there is some prior state of uncertainty to be reduced. And since this 
uncertainty can change as a result of observations, we treat uncertainty as 
a feature of the observer, not necessarily the thing being observed.4 When 
we conduct a penetration test on a system, we are not changing the state of 
the application with this inspection; rather, we are changing our uncertainty 
about the state of the application.

We quantify this initial uncertainty and the change in uncertainty from 
observations by using probabilities. This means that we are using the term 
“probability” to refer to the state of uncertainty of an observer or what 
some have called a “degree of belief.” If you are almost certain that a given 
system will be breached, you can say there is a 99% probability. If you are 
unsure, you may say there is a 50% probability (as we will see in Chapter 
7, assigning these probabilities subjectively is actually a skill you can learn). 
Likewise, if you are very uncertain about the duration of an outage from a 
denial of service attack, you may say there is a 90% probability that the true 
value falls between 10 minutes and 2 hours. If you had more information, 
you might give a much narrower range and still assign a 90% probability 
that the true value falls within that range.
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This view of probabilities is called the “subjectivist” or sometimes the 
“Bayesian” interpretation. The original inspiration for the Bayesian interpreta-
tion, Thomas Bayes, was an eighteenth-century British mathematician and Pres-
byterian minister whose most famous contribution to statistics would not be 
published until after he died. His simple formula, known as Bayes’s theorem, 
describes how new information can update prior probabilities. “Prior” could 
refer to a state of uncertainty informed mostly by previously recorded data, but 
it can also refer to a point before any objective and recorded observations. At 
least for the latter case, the prior probability often needs to be subjective.

For decision making, this is the most relevant use of the word “probabil-
ity.” It is not just something that must be computed based on other data. A 
person represents uncertainty by stating a probability. Being able to express 
a prior state of uncertainty is an important starting point in all practical  
decisions. In fact, you usually already have a prior uncertainty—even though 
you might not explicitly state probabilities. Stating priors even allows us to 
compute the value of additional information since, of course, the value of 
additional information is at least partly dependent on your current state of 
uncertainty before you gather the information. The Bayesian approach does 
this while also greatly simplifying some problems and allowing us to get 
more use out of limited information.

This is a distinction that cybersecurity professionals need to understand. 
Those who think of probabilities as only being the result of calculations 
on data—and not also a reflection of personal uncertainty—are, whether 
they know it or not, effectively presuming a particular interpretation of 
probability. They are choosing the “frequentist” interpretation, and while 
they might think of this as “objective” and scientific, many great statisticians, 
mathematicians, and scientists would beg to differ. (The original How to 
Measure Anything book has an in-depth exposition of the differences.)

So, there is a fundamental irony when someone in cybersecurity says they 
lack the data to assign probabilities. We use probability because we lack per-
fect information, not in spite of it. This position was stated best by the widely 
recognized father of the field of decision analysis, Professor Ron Howard of 
Stanford University. During a podcast for an interview with Harvard Business 
Review, the interviewer asked Howard how to deal with the challenge of 
analysis “when you don’t know the probabilities.” Howard responded:

Well, see, but the whole idea of probability is to be able to describe by 
numbers your ignorance or equivalently your knowledge. So no matter 
how knowledgeable or ignorant you are, that’s going to determine what 
probabilities are consistent with that.

—Ron Howard, Harvard Business Review podcast, 
interviewed by Justin Fox, November 20, 2014
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There are cases where “probability” is a computed value but, as great minds 
like Howard and James Clerk Maxwell (from the earlier quote) state, probability 
is also used to represent our current state of uncertainty about something, no 
matter how much that uncertainty is. But keep in mind that, while subjective, 
the probability we refer to is not just irrational and capricious. We need subjec-
tive uncertainties to at least be mathematically coherent as well as consistent 
with repeated, subsequent observations. A rational person can’t simply say, for 
instance, that there is a 25% chance of their organization being hit by a par-
ticular type of cyberattack and a 90% chance that it won’t be (of course, these 
two possibilities should have a total probability of 100%). Also, if someone 
keeps saying they are 100% certain of their predictions and they are consistently 
wrong, then we can reject their subjective uncertainties on objective grounds 
just as we would with the readings of a broken digital scale or ammeter. In 
Chapter 7, you will see how probabilities can be subjective and yet rational.

Finally, we need to remember that there is another edge to the “uncer-
tainty reduction” sword. Total elimination of uncertainty is not necessary 
for a measurement, but there must be some uncertainty reduction. If a 
decision maker or analyst engages in what they believe to be measurement 
activities, but their estimates and decisions actually get worse or don’t at 
least improve, then they are not actually reducing their error and are not 
conducting a measurement according to the stated definition.

And so, to determine whether these ordinal scales so commonly used 
in cybersecurity are proper measurements, we at least need to ask whether 
such scales really constitute a reduction in uncertainty. (These finer points 
will be developed further in Chapter 5.)

The Object of Measurement 

A problem well stated is a problem half solved.

—Charles Kettering (1876–1958), American inventor, holder of 
over 100 patents, including electrical ignition for automobiles

There is no greater impediment to the advancement of knowledge than 
the ambiguity of words.

—Thomas Reid (1710–1796), Scottish philosopher

Even when the more useful concept of measurement (as uncertainty-
reducing observations) is adopted, some things seem immeasurable because 
we simply don’t know what we mean when we first pose the question. In 
this case, we haven’t unambiguously defined the object of measurement. 
If someone asks how to measure “damage to reputation” or “threat” or 
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“business disruption,” we simply ask, “What do you mean, exactly?” It is 
interesting how often people further refi ne their use of the term in a way 
that almost answers the measurement question by itself. 

 Once managers fi gure out what they mean and why it matters, the issue 
in question starts to look a lot more measurable. This is usually the fi rst 
level of analysis when one of the authors, Hubbard, conducts what he calls 
“clarifi cation workshops.” It’s simply a matter of clients stating a particular, 
but initially ambiguous, item they want to measure. Just ask questions like 
“What do you mean by [fi ll in the blank]?” and “Why do you care?” 

 This applies to a wide variety of measurement problems, and cybersecu-
rity is no exception. In 2000, when the Department of Veterans Affairs asked 
Hubbard to help defi ne performance metrics for what they referred to as “IT 
security,” Hubbard asked: “What do you mean by ‘IT security’?” and over the 
course of two or three workshops, the department staff defi ned it for him. 
They eventually revealed that what they meant by IT security were things 
like a reduction in intrusions and virus infections. They proceeded to explain 
that these things impact the organization through fraud, lost productivity, or 
even potential legal liabilities (which they may have narrowly averted when 
they recovered a stolen notebook computer in 2006 that contained the Social 
Security numbers of 26.5 million veterans). All of the identifi ed impacts were, 
in almost every case, obviously measurable. “Security” was a vague concept 
until they decomposed it into what they actually expected to observe. 

 What we call a “clarifi cation chain” is just a short series of connections that 
should bring us from thinking of something as an intangible to thinking of it as 
a tangible. First, we recognize that if X is something that we care about, then 
X, by defi nition, must be detectable in some way. How could we care about 
things like “quality,” “risk,” “security,” or “public image” if these things were totally 
undetectable, in any way, directly or indirectly? If we have reason to care about 
some unknown quantity, it is because we think it corresponds to desirable or 
undesirable results in some way. Second, if this thing is detectable, then it must 
be detectable in some amount. If you can observe a thing at all, you can observe 
more of it or less of it. Once we accept that much, the fi nal step is perhaps the 
easiest. If we can observe it in some amount, then it must be measurable. 

      Clarifi cation Chain    

   1.  If it matters at all, it is detectable/observable. 
   2.  If it is detectable, it can be detected as an amount (or range of 

possible amounts). 
   3.  If it can be detected as a range of possible amounts, it can be 

measured.     



28� Why Cybersecurity Needs Better Measurements for Risk

If the clarification chain doesn’t work, I might try what scientists 
would call a “thought experiment.” Imagine you are an alien scientist 
who can clone not just sheep or even people but entire organizations. 
You create a pair of the same organization, calling one the “test” group 
and one the “control” group. Now imagine that you give the test group 
a little bit more “damage to reputation” while holding the amount in 
the control group constant. What do you imagine you would actually 
observe—in any way, directly or indirectly—that would change for the 
first organization? Does it mean sales go down in the near term or long 
term? Does it mean it becomes harder to recruit applicants who want 
to work at prestigious firms? Does it mean that you have to engage 
in expensive PR campaigns to offset these consequences? If you can 
identify even a single observation that would be different between the 
two cloned organizations, then you are well on the way to identifying 
how you would measure it.

It also helps to state why we want to measure something in order to 
understand what is really being measured. The purpose of the measurement 
is often the key to defining what the measurement is really supposed to be. 
Measurements should always support some kind of decision, whether that 
decision is a one-off or a frequent, recurring decision. In the case of mea-
suring cybersecurity risks, we are presumably conducting measurements to 
better allocate resources to reduce risks. The purpose of the measurement 
gives us clues about what the measure really means and how to measure 
it. In addition, we find several other potential items that may need to be 
measured to support the relevant decision.

Identifying the object of measurement really is the beginning of almost 
any scientific inquiry, including the truly revolutionary ones. Cybersecurity 
experts and executives need to realize that some things seemed intangible 
only because they have been poorly defined. Avoidably vague terms like 
“threat capability” or “damage to reputation” or “customer confidence” seem 
immeasurable at first, perhaps, only because what they mean is not well 
understood. These terms may actually represent a list of distinct and observ-
able phenomena that need to be identified in order to be understood. Later 
in this book (especially Chapter 6) we will offer ways of decomposing them 
into lists of more specific things.

We should start clarifying the objective of measurement by defining 
some of the other terms we’ve used many times up to now. To measure 
cybersecurity, we would need to ask such questions as “What do we mean 
by ‘cybersecurity’?” and “What decisions depend on my measurement of 
cybersecurity?”

To most people, an increase in security should ultimately mean more 
than just, for example, who has attended security training or how many 
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desktop computers have new security software installed. If security is bet-
ter, then some risks should decrease. If that is the case, then we also need 
to know what we mean by risk. Clarifying this problem requires that we 
jointly clarify uncertainty and risk. Not only are they measurable; they are 
key to understanding measurement in general. So let’s defi ne these terms 
and what it means to measure them. 

      Defi nitions for  Uncertainty  and  Risk , and their Measurements  

  Uncertainty : The lack of complete certainty, that is, the existence of 
more than one possibility. The “true” outcome/state/ result/value is not 
known. 
  Measurement of Uncertainty : A set of probabilities assigned to a set 
of possibilities. For example: “There is a 20% chance we will have a data 
breach sometime in the next fi ve years.” 
  Risk : A state of uncertainty where some of the possibilities involve a 
loss, catastrophe, or other undesirable outcome. 
  Measurement of Risk : A set of possibilities, each with quantifi ed 
probabilities and quantifi ed losses. For example: “We believe there is a 
10% chance that a data breach will result in a legal liability exceeding 
$10 million.”   

 We will explain how we assign these probabilities (initially by using 
skills you will learn in Chapter   7  ), but at least we have defi ned what we 
mean—which is always a prerequisite to measurement. We chose these 
defi nitions because they are the most relevant to how we measure the ex-
ample we are using here: security and the value of security. But, as we will 
see, these defi nitions also are the most useful when discussing  any  other 
type of measurement problem we have. 

 Now that we have defi ned “uncertainty” and “risk,” we have a better 
tool box for defi ning terms like “security” (or “safety,” “reliability,” and “qual-
ity,” but more on that later). When we say that security has improved, we 
generally mean that particular risks have decreased. If I apply the defi ni-
tion of risk given earlier, a reduction in risk must mean that the probability 
and/or severity (loss) decreases for a particular list of events. That is the 
approach mentioned earlier to help measure some very large IT security 
investments—including the $100 million overhaul of IT security for the 
Department of Veterans Affairs. 
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In short, figure out what you mean and you are halfway to measuring 
it. Chapter 6 will dive deeper into approaches for defining the observable 
consequences of cybersecurity, how to break down the effects of a cyber
security event, and how to clarify the necessary decision. (There you will 
find that we will again refer to Ron Howard’s work in decision analysis.)

The Methods of Measurement 

It’s not what you don’t know that will hurt you, it’s what you know  
that ain’t so.

—Mark Twain5

When thinking about measurement methods, someone may imagine a 
fairly direct case of measurement. If you measure the downtime of a system 
or the number of people who attended security training, there is no larger 
“unseen” population you are trying to assess. You have direct access to the 
entire object of measurement. If this is the limit of what one understands 
about measurement methods, then, no doubt, many things will seem im-
measurable. Statistics and science in general would be much easier if we 
could directly see everything we ever measured. Most “hard” measurements, 
however, involve indirect deductions and inferences. This definitely applies 
to cybersecurity, where we often need to infer something unseen from 
something seen. Studying populations too large or dynamic to see all at 
once is what statistics is really all about.

Cybersecurity is not some exceptional area outside the domain of sta-
tistics but rather exactly the kind of problem statistics was made for. (Cyber
security experts who are convinced otherwise should consider Mark Twain’s 
quote above.) They may believe they correctly recall and understand enough 
about statistics and probability so that they can make confident declarations 
about what inferences can be made from some data without attempting any 
math. Unfortunately, their mental math is often not at all close to correct. 
There are misconceptions about the methods of measurement that get in 
the way of assessing risk in many fields, including cybersecurity.

Statistical Significance: What’s the Significance?

You may often hear someone claim that a set of sample data is not large 
enough to be “statistically significant.” If you hear someone say that, you 
know one thing for sure: They misunderstand the concept of statistical 
significance. A recent survey of 171 cybersecurity professions conducted  
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by the authors demonstrates that these misconceptions are just as prevalent 
in this industry as in any other (more about the findings from this survey 
will be covered in Chapter 5). You may notice that the beliefs some hold 
about statistics will contradict the following facts:

■■ There is no single, universal sample size required to be “statistically 
significant.”

■■ To compute it correctly, statistical significance is a function of not only 
sample size, but also the variance within a sample and the hypothesis 
being tested. These would be used to compute something called a 
“P-value.” This result is then compared to a stated “significance level.” 
Lacking those steps, the declaration of what is statistically significant 
cannot be trusted.

■■ Once you know not only how to compute statistical significance but 
also how to understand what it means, then you will find out that it isn’t 
even what you wanted to know in the first place. Statistical significance 
does not mean you learned something and the lack of statistical signifi-
cance does not mean you learned nothing.

This issue is explored in further detail at a mathematical level in the 
original How to Measure Anything: Finding the Value of “Intangibles” in 
Business. For now, it is probably better if you drop the phrase “statistically 
significant” from your vocabulary. What you want to know is whether you 
have less uncertainty after considering some source of data and whether 
that reduction in uncertainty warrants some change in actions. Statisticians 
know that is not the question statistical significance answers and they find 
themselves constantly correcting those who believe otherwise. There is 
math for questions like how much uncertainty was reduced, but they can 
be answered without reference to statistical significance or what the cyber-
security analyst believes they recall about it.

Cybersecurity experts, like many in virtually all fields of management, 
need to unlearn some misconceptions about statistics as much as they need to 
learn new concepts about statistics. Later, we will discuss how several proven 
measurement methods can be used for a variety of issues to help measure 
something you may have at first considered immeasurable. Here are a few 
examples involving inferences about something unseen from something seen:

■■ Measuring with very small random samples of a very large population: 
You can learn something from a small sample of data breaches and other 
events—especially when there is currently a great deal of uncertainty.

■■ Measuring when many other, even unknown, variables are involved: 
We can estimate how much a new security control reduced risk even 
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when there are many other factors affecting whether or not losses due 
to cyberattacks occurred.

■■ Measuring the risk of rare events: The chance of a launch failure of 
a rocket that has never flown before, or the chance of another major 
financial crisis, can be informed in valuable ways through observation 
and reason. These problems are at least as difficult as the risk of the 
rare major breach in cybersecurity, yet measurements can and have 
been applied.

■■ Measuring subjective preferences and values: We can measure the value 
of art, free time, or reducing risk to your life by assessing how much 
people actually pay for these things. Again, the lessons from other 
fields apply equally well to cybersecurity.

Most of these approaches to measurements are just variations on basic 
methods involving different types of sampling and experimental controls 
and, sometimes, choosing to focus on different types of questions that 
are indirect indicators of what we are trying to measure. Basic methods 
of observation like these are often absent from certain decision-making 
processes in business, perhaps because such quantitative procedures are 
considered to be some elaborate, overly formalized process. Such methods 
are not usually considered to be something you might do, if necessary, on 
a moment’s notice with little cost or preparation. But we will show some 
methods that—to use a popular concept in systems engineering—can even 
be considered “agile.”

Small Samples Tell You More Than You Think

When someone in cybersecurity or any other field says something like, “We 
don’t have enough data to measure this,” they probably do not understand 
that they are making a very specific mathematical claim—for which they 
provided no actual math to support. Did they actually compute the uncer-
tainty reduction from a given amount of data? Did they actually compute the 
economic value of that uncertainty reduction? Probably not.

Our intuition is one problem when it comes to making probabilistic 
inferences about data. But perhaps a bigger problem is what we think we 
learned (but learned incorrectly) about statistics. Statistics actually helps us 
make some informative inferences from surprisingly small samples.

Consider a random sample of just five of anything. It could be time 
spent by employees on websites, a survey of firms in some industry report-
ing cybersecurity budgets, and so on. What is the chance that the median of 
the entire population (the point at which half the population is below and 
half above) is between the largest and smallest of that sample of five? The 
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answer is 93.75%. In  How to Measure Anything,  Hubbard refers to this as 
the “Rule of Five.” With a sample this small, the range might be very wide, 
but if it is any narrower than your previous range, then it counts as a mea-
surement according to our previous defi nition. The Rule of Five is simple, it 
works, and it can be proven to be statistically valid for a surprisingly wide 
range of problems. If your intuition—or your recollection of statistics—
disagrees with this, it’s not the math that is wrong. 

      rule of Five  

 There is a 93.75% chance that the median of a population is between 
the smallest and largest values in any random sample of fi ve from that 
population.   

 It might seem impossible to be 93.75% certain about anything based on 
a random sample of just fi ve, but it’s not. If we randomly picked fi ve values 
that were all above the median or all below it, then the median would be 
outside our range. But what is the chance of that, really? Remember, the 
chance of randomly picking a value above the median is, by defi nition, 
50%—the same as a coin fl ip resulting in “heads.” The chance of randomly 
selecting fi ve values that happen to be all above the median is like fl ipping 
a coin and getting heads fi ve times in a row. The chance of getting heads 
fi ve times in a row in a random coin fl ip is 1 in 32, or 3.125%; the same is 
true with getting fi ve tails in a row. The chance of  not  getting all heads or 
all tails is then 100% – (3.125% × 2), or 93.75%. Therefore, the chance of 
at least one out of a sample of fi ve being above the median  and  at least 
one being below is 93.75% (round it down to 93% or even 90% if you 
want to be conservative). Some readers might remember a statistics class 
that discussed statistics for very small samples. Those methods were more 
complicated than the Rule of Five, but the answer is really not much better. 
(Both methods make some simplifying assumptions that work very well in 
practice.) 

 We can improve on a rule of thumb like this by getting more samples 
and by using simple methods to account for certain types of bias we will 
discuss later. Still, even with acknowledged shortcomings, the Rule of Five is 
something that the person who wants to develop an intuition for measure-
ment keeps handy. 

 Let’s make some deliberate and productive assumptions instead of 
ill-considered presumptions. We propose a contrarian set of assumptions 
that—because they are assumptions—may not always be true in every 
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single case but in practice turn out to be much more effective. We will cover 
these points in more detail later but for now we will just point them out:

	 1.	 No matter how complex or “unique” your measurement problem 
seems, assume it has been measured before.

	 2.	 If you are resourceful, you can probably find more sources of data 
than you first thought.

	 3.	 You probably need less data than your intuition tells you—this is actually 
even more the case when you have a lot of uncertainty now.

There might be the rare case where, only for lack of the most sophis-
ticated measurement methods, something seems immeasurable. But for 
those things labeled “intangible,” more advanced, sophisticated methods are  
almost never what are lacking. Things that are thought to be intangible tend 
to be so uncertain that even the most basic measurement methods are likely 
to reduce some uncertainty. Cybersecurity is now such a critical endeavor 
that even small reductions in uncertainty can be extremely valuable.

In the next chapter, we will show how these concepts can be just par-
tially applied through a very simple yet quantitative method for evaluating 
cybersecurity risks, which will take barely any more time than the common 
risk matrix.

Notes 

	 1.	 Malcolm Gladwell, Outliers: The Story of Success (London: Hachette 
UK, 2008).

	 2.	 C. Shannon, “A Mathematical Theory of Communication,” The Bell System 
Technical Journal 27 (July/October, 1948): 379–423, 623–656.

	 3.	 S. S. Stevens, “On the Theory of Scales and Measurement,” Science 103 
(1946): 677–80.

	 4.	 Leonard J. Savage, The Foundations of Statistics (New York: John Wiley 
& Sons, 1954).

	 5.	 This statement is often incorrectly attributed to Mark Twain, although 
he surely helped to popularize it. Twain got it from either one of 
two nineteenth-century British politicians, Benjamin Disraeli or Henry 
Labouchere.
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Chapter 3
Model Now!

An Introduction to Practical Quantitative 
Methods for Cybersecurity 

Build a little. Test a little. Learn a lot.

—Rear Admiral Wayne Meyer,
Aegis Weapon System Program Manager

In this chapter we will propose a simple starting point for developing a 
quantitative risk assessment. Later, we will explore more detailed models 

(starting in Chapter 6) and more advanced methods (starting in Chapter 8). 
But for now we will start with a model that merely replaces the common 
risk matrix. It will simply be a way to capture subjective estimates of likeli-
hood and impact, but do so probabilistically.

To make it work, we need to introduce a few methods. First, we need 
to introduce the idea of subjectively assessing probabilities, but we will 
defer the exercises to train you to do that until Chapter 7 (for now, hang in 
there). We will also introduce a very basic simulation method, and the work 
of actually building the simulation is mostly done for you. The example 
will be demonstrated with an Excel spreadsheet you can download from  
www.howtomeasureanything.com/cybersecurity.

When you are done with this chapter, you will have the foundation to 
build on for the rest of the book. Later, we will incrementally add further 
improvements. You will learn how to test your subjective assessments of 
probability and improve on them. You will learn how even a few observa-
tions can be used in mathematically sound ways to improve your estimates 
further. And you will learn how to improve your models with additional 
detail and complexity. For now, we will just stick to the simplest possible 
substitution methods commonly used in cybersecurity today.

http://www.howtomeasureanything.com/cybersecurity
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A Simple One‐for‐One Substitution

We can start down a path for better risk assessment simply by replacing ele-
ments of the method most cybersecurity experts are already familiar with—
the risk matrix. Like the risk matrix, we will only depend on the judgment 
of subject matter experts in cybersecurity. They continue to make a subjec-
tive, expert judgment about likelihood and impact, just as analysts now do 
with the risk matrix. No data is required other than the information that 
cybersecurity analysts may already use to inform their judgments with a risk 
matrix. As before, experts can use as much data as they like to inform what 
ultimately comes down to a subjective judgment.

We only propose that instead of using the scales like “high, medium, 
low” or 1 to 5, experts learn how to subjectively assess the actual quantities 
behind those scales—that is, probability and dollar impact. In Table 3.1, we 
summarize how we propose to replace each element of the common risk 
matrix with a method that uses explicit probabilities.

The method proposed is, like the risk matrix, really just another expres-
sion of your current state of uncertainty. It does not yet reflect a proper 

Table 3.1  Simple Substitution of Quantitative vs. the Risk Matrix

Instead of: We Substitute:

Rating likelihood on a scale of 1 to 5 or 
“low” to “high.” Example: “Likelihood 
of X is a 2” or “Likelihood of X is 
medium”

Estimating the probability of the event 
occurring in a given period of time 
(e.g., 1 year). Example: “Event X has 
a 10% chance of occurring in the 
next 12 months.”

Rating impact on a scale of 1 to 5 or 
“low” to “high.” Example: “Impact of 
X is a 2” or “Impact of X is medium”

Estimating a 90% confidence interval 
for a monetized loss. Example: 
“If event X occurs, there is a 90% 
chance the loss will be between $1 
million and $8 million.”

Plotting likelihood and impact scores on 
a risk matrix

Using the quantitative likelihood 
and impact to generate a “loss 
exceedance curve”—a quantitative 
approach to expressing risk—using 
a simple Monte Carlo simulation 
done in a spreadsheet

Further dividing the risk matrix into risk 
categories like “low/medium/high” 
or “green/yellow/red” and guessing 
whether you should do something 
and what you should do

Comparing the loss exceedance 
curve to a risk tolerance curve and 
prioritizing actions based on return 
on mitigation
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“measurement” in the sense that we have further reduced uncertainty based 
on additional observations. We are merely stating our prior uncertainty. But 
now we have expressed this level of uncertainty in a way that allows us 
to unambiguously communicate risk and update this uncertainty with new 
information.

Let’s put together the pieces of this approach, starting with how the 
cybersecurity expert comes up with subjective estimates of probability.

The Expert as the Instrument

In the spirit of the one‐for‐one substitution we will start with, we will use 
the same source for an estimate as the current risk matrix—the cybersecu-
rity expert. Just as experts already assess likelihood and impact on the con-
ventional risk matrix, they can simply assess these values using meaningful 
quantities. We will deal with how to incorporate additional external infor-
mation in a later step. But simply capturing your current state of uncertainty 
is an important starting point in any measurement problem. We just need to 
set up a basic structure with the following steps.

	 1.	 Define a list of risks. There are different options for categorizing risks, 
but for now let’s just say that it is the same list that would have been 
plotted on the conventional risk matrix.

	 2.	 Define a specific period of time over which that risk event could 
materialize (e.g., “A data breach will occur for application X in the 
next 12 months, a loss of availability for system X long enough to incur 
a productivity loss will occur in the next 5 years, etc.”).

	 3.	 For each risk, subjectively assign a probability (0% to 100%) that the 
stated event will occur in the specified time (e.g., “There is a 10% 
chance a data breach of system X will occur in the next 12 months.”).

	 4.	 For each risk, subjectively assign a range for a monetary loss if such an 
event occurs as a “90% confidence interval” (CI). This is a range wide 
enough that you are 90% certain that the actual loss will be within 
the stated range (e.g., if there is a data breach of application X, then 
it is 90% likely that there will be a loss equal to somewhere between 
$1 million and $10 million).

	 5.	 Get the estimates from multiple experts if possible, but don’t have 
a joint meeting and attempt to reach consensus. Simply provide the 
list of defined events and let individuals answer separately. If some 
individuals give very different answers than others, then investigate 
whether they are simply interpreting the problem differently. For ex-
ample, if one person says something is 5% likely to happen in a year, 
and another says it is 100% likely to happen every day, then they 
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probably interpreted the question differently (the authors have per-
sonally seen this very result). But as long as they at least interpret the 
question similarly, simply average their responses. That is, average 
all event probabilities to get one probability, and average the lower 
bounds to produce one lower bound and upper bounds to produce 
one upper bound.

Some may object to the idea of subjectively assessing probabilities. 
Some analysts who had no problem saying likelihood was a “4” on a 
scale of 1 to 5 or a “medium” on a verbal scale will argue that there are 
requirements for quantitative probabilities that make quantification infea-
sible. Somehow, the problems that were not an issue using more ambigu-
ous methods are major roadblocks when attempting to state meaningful 
probabilities.

This is a common misunderstanding. As we first introduced in Chapter 2, 
it is a mathematically valid position to use a subjective probability to repre-
sent the prior state of uncertainty of a subject matter expert. In fact, there 
are problems in statistics that can only be solved by using a probabilistically 
expressed prior state of uncertainty. And these are actually the very situa-
tions most relevant to decision making in any field, including cybersecurity. 
Later, we will discuss the sources supporting this approach, including some 
very large empirical studies demonstrating its validity. Additionally, we have 
a chapter dedicated to helping readers measure and improve their own skill 
at assessing probabilities using a short series of exercises that can help them 
continue to improve it over time. We call this “calibrated probability assess-
ment,” and we will show that there is quite a bit of research backing up the 
validity of this approach.

For now, just recognize that most experts can be trained to subjectively 
assess probabilities and that this skill is objectively measurable (as ironic as 
that sounds). Remember, if the primary concern about using probabilistic 
methods is the lack of data, then you also lack the data to use nonquantita-
tive methods. As we’ve stated, both methods are based on the same source 
of data so far—that is, the expert opinion of cybersecurity specialists. And 
we cannot assume that whatever errors you may be introducing to the de-
cision by using quantitative probabilities without being trained are being 
avoided by using qualitative methods.

The expert can also be improved by using methods that account for 
two other sources of error in judgment: the high degree of expert incon-
sistency, and a tendency to make common inference errors when it comes 
to thinking probabilistically. These improvements will also be addressed in 
upcoming chapters. (Of course, these sources of error are not dealt with in 
the typical risk matrix at all.)
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Doing “Uncertainty Math”

Using ranges to represent your uncertainty instead of unrealistically precise 
point values clearly has advantages. When you allow yourself to use ranges 
and probabilities, you don’t really have to assume anything you don’t know 
for a fact. But precise values have the advantage of being simple to add, 
subtract, multiply, and divide in a spreadsheet. If you knew each type of 
loss exactly it would be easy to compute the total loss. Since we only have 
ranges for each of these, we have to use probabilistic modeling methods to 
“do the math.”

So how do we add, subtract, multiply, and divide in a spreadsheet 
when we have no exact values, only ranges? Fortunately, there is a practi-
cal, proven solution, and it can be performed on any modern personal 
computer—the “Monte Carlo” simulation method. A Monte Carlo simulation 
uses a computer to generate a large number of scenarios based on prob-
abilities for inputs. For each scenario, a specific value would be randomly 
generated for each of the unknown variables. Then these specific values 
would go into a formula to compute an output for that single scenario. This 
process usually goes on for thousands of scenarios.

In the 1940s, some mathematicians and scientists started using such 
simulations of thousands of random trials to help solve certain very hard 
mathematical problems. Stanislaw Ulam, John von Neumann, and Nicho-
las Metropolis had developed a way to use this method on the rudimen-
tary computers available at the time to help solve math problems related 
to the development of the first atomic bomb. They found that randomly 
running thousands of trials was a way to work out the probabilities of 
various outcomes when a model has a number of highly uncertain in-
puts. At the suggestion of Metropolis, Ulam named this computer‐based 
method of generating random scenarios after Monte Carlo, a famous 
gambling hotspot, in honor of Ulam’s uncle, a gambler.1 Now, with the 
advantage of greater computing power (easily billions of times greater 
than what was available on the Manhattan Project, by almost any mea-
sure), Monte Carlo simulations have been used to simulate risk models 
on power plants, supply chains, insurance, project risks, financial risks, 
and, yes, cybersecurity.

If you have no experience with Monte Carlo simulations, they’re prob-
ably easier than you think. The authors and many of their staff routinely 
apply Monte Carlo simulations on a variety of practical business problems. 
We have seen that many people who initially were uncomfortable with the 
idea of using Monte Carlo simulations eventually became avid supporters 
after tinkering with the tools themselves.

Let’s start with a very simple problem and provide some tools for solv-
ing it. Suppose you have a set of possible events that could occur in a given 
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one‐year period. Each event has an assigned probability and, if it occurs, a 
range of possible losses. Let’s suppose that some events have a probabil-
ity of 1% and perhaps some have a probability of more than 10%. In any 
given year it is possible that no significant loss event occurs, and it is also 
possible that several events occur. It is even possible that the same event 
could happen multiple times in the same year. There is a solution to that, 
but for now we will keep it simple and just model an event as an either/or 
outcome that happens no more than once per year. The risk matrix doesn’t 
make this distinction anyway (and it misses quite a few other issues we will 
introduce later), so this will help keep the example closer to a one‐for‐one 
substitution.

We will have an opportunity to get into much further detail for this kind 
of modeling later in the book. But to help get you started, we have provided 
some easy examples in an Excel spreadsheet that can be downloaded from 
www.howtomeasureanything.com/cybersecurity. Armed with this informa-
tion and some of the more detailed content of upcoming chapters, you 
should be able to model your uncertainty and answer questions like “What 
is the chance we will lose more than X next year due to a cyberattack?”

To do this we will simulate thousands of scenarios for every risk. We 
just need to determine in each scenario whether an event occurs for each 
type of risk and, if it occurs, what its impact will be.

An Introduction to Generating Random Events and Impacts in Excel

Let’s start with whether the event occurred for a single risk in a single 
scenario. To simulate whether a particular event occurs, we can randomly 
generate a “1” if it occurs and a “0” if it does not occur, where the prob-
ability of a “1” is equal to the stated probability of the event. In Excel, we 
can write this as

= <if rand event probability 1 0( () _ , , )

For example, if the event probability is .15, then this equation would 
produce a “1” (meaning the event occurred) 15% of the time. In Excel, every 
time you recalculate this (press F9), you will see a different result. If you did 
this a thousand times, you would see the event occur about 150 times. Note 
that this would be for each individual risk you are listing in your simulation. 
So if you have 100 risks each with different probabilities and you run 1,000 
scenarios, this little formula would have been executed 100,000 times.

For the impact, we need to generate not just a “0” or “1,” but a con-
tinuum of values. We can do this using one of Excel’s “inverse probability 
functions.” Some probability functions in Excel will tell you the probabil-
ity of a given result in a particular probability distribution. For example, 
normdist(x,mean,stddev,1) will tell you the probability that a normal distribution  

http://www.howtomeasureanything.com/cybersecurity
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with a given mean and standard deviation will produce a value of x or less. 
The inverse probability function, on the other hand, tells you the value of 
x given a probability. In Excel, the inverse probability function for a normal 
distribution is

= norminv probability mean standard deviation( , , )

(Note: Recent versions of Excel also use “norm.inv()” but “norminv()” 
will still work.) If you use the Excel rand() function in place of the prob-
ability term, this will produce a normally distributed random value with 
the stated mean and standard deviation. The standard deviation is a sort of 
measure of the width of a probability distribution, but it is not really a very 
intuitive quantity for an expert to estimate. It will be better if we just ask the 
expert for a 90% confidence interval as described earlier. This can be used 
to compute the required parameters like a mean and standard deviation 
based on an upper bound (UB) and lower bound (LB) of describing a range 
of potential losses provided by the expert.

We are going to turn that range into a probability distribution of a partic-
ular type that we will use often: the “lognormal” distribution. The lognormal 
distribution is a variation of the more familiar, bell‐shaped “normal” distribu-
tion. It is just a normal distribution on the log of a value we want to simulate 
and it is a distribution that is usually a much better representation of reality.

Figure 3.1 illustrates an example of this distribution compared to the 
normal distribution. Notice how the lognormal distribution is lopsided or 
“skewed,” unlike the normal distribution. The lognormal distribution can’t 
generate a zero or negative amount, but it has a tail to the right that allows 
for the possibility of extremely large outcomes. This is why it is often a realis-
tic representation of the probability of various amounts of loss. A normal 

90%

90%

0 $1 million $2 million $3 million $4 million $5 million

Normal
Distribution

Lognormal
Distribution

Figure 3.1  The Lognormal versus Normal Distribution
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distribution wide enough to capture some extreme events could also pro-
duce illogical negative results on the other end of the scale (you can’t have a 
negative number of records breached or a negative downtime for a system). 
This is why the lognormal is also used to model a variety of quantities that 
can’t be negative but could possibly (but rarely) be very large.

To generate a lognormal distribution, the tool provided on the book’s 
website uses the following formula in Excel:

= lognorm inv rand Mean of ln X standarddeviation of ln X. ( (), ( ( )), ( ( )))

where:

Standarddeviation of ln X ln UB ln LB /3 29( ) ( ( ) ( )) . )= −

Mean of ln X ln UB +ln LB /2( ) ( ( ) ( )) )=

So if we had a 90% CI for an impact of $100,000 to $8 million, then the 
mean and standard deviation we need to use for lognorm.inv (which is the 
mean and standard deviation of the log of the original distribution) would be:

Mean of ln x ln 8000000 ln 100000 /2 13 7( ) ( ( ) ( )) .= + =

Standarddeviation of ln x ln 8000000 ln 100000 /3 29 1 3( ) ( ( ) ( )) . .= − = 33

To generate the loss for an event with a 5% chance of occurrence and 
an impact of $1 million to $9 million, we would write

= < +if rand 05 lognorm inv rand ln 9000000 ln 1000000( () . , . ( (), ( ( ) ( ))) ,

( ( ) ( )) . ), )

/2

ln 9000000 ln 1000000 /3 29 0−

Most of the time (95%), this function would produce a zero. And just 
5% of the time it would generate a value with a 90% chance of falling be-
tween $1 million and $9 million. Note that since this is a 90% CI, there is 
a 5% chance of being below the lower bound (but above zero, since the 
log normal distribution can only produce positive values) and a 5% chance 
of being above the upper bound and sometimes well above. If the event 
occurs in the example above, there is a 1% chance the loss could exceed 
$14.2 million.

Here is one note of caution in using lognormal distributions. The  
extreme losses for a given 90% CI may be unrealistic when the upper bound 
is many times the lower bound. This can happen when the expert estimat-
ing the value makes the mistake of believing the upper bound represents a 
worst case extreme, which it is not. The upper bound of a 90% confidence 
interval allows for a 5% chance the value is higher. Extreme outcomes are 
also sensitive to the lower bound. If the 90% CI is $10,000 to $1 million, 
then the upper bound is 100 times as much as the lower bound. In this case 
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there is a 1% chance the loss will exceed 2.6 times the stated upper bound 
($2.6 million). If the 90% CI was $1,000 to $10 million, then there is a 1% 
chance the loss could be more than 6.7 times the upper bound ($67 mil-
lion). If that seems like too much, then reconsider the width of the range 
or simply truncate the generated value to some maximum. If we wanted to 
say that $10 million was the maximum loss, then we could use the Excel 
function =min(Loss,$10000000) to take the lesser of the loss or $10 million.

Appendix A has more distributions that will be more appropriate for 
certain kinds of problems. It provides the Excel formulas for them, along 
with a description of when different distributions are appropriate. Later, we 
will review some considerations for choosing distributions.

Adding Up the Risks

For a large number of events and impacts, we could make a table like Table 
3.2 to simulate all of the losses for all of the events (an example is provided 
for download at www.howtomeasureanything.com/cybersecurity.)

The value of interest in this particular trial is the total losses: $23,345,193. 
All you have to do now is run a few thousand more trials to see what 
the distribution of losses will be. Every time you recalculate this table you 
would see a different value come up in the total. (If you are an MS Office 
user on a PC, “recalculate” should be your F9 key.) If you could somehow 
record every result in a few thousand trials, then you have the output of a 
Monte Carlo simulation.

Event
AA
AB
AC
AD
AE
AF
AG
AH

ZM
ZN

.1

.05

.01

.03

.05

.1

.07

.02

.05

.01

$50,000
$100,000
$200,000
$100,000
$250,000
$200,000
$1,000,000
$100,000

$250,000
$1,500,000

$500,000
$10,000,000
$25,000,000
$15,000,000
$30,000,000
$2,000,000
$10,000,000
$15,000,000

$30,000,000
$40,000,000

0
$8,456,193
0
0
0
0
$2,110,284
0

0
0

Total: $23,345,193

Probability
of the event
occurring in
a year

Lower Bound
of the 90% CI

Upper Bound
of the 90% CI

Random Result
(zero when the
event did not
occur)

Table 3.2  Excel Example of Cyber Incidents

http://www.howtomeasureanything.com/cybersecurity


44� Why Cybersecurity Needs Better Measurements for Risk

The easiest way to do this in Excel is with a “data table” in the “What-If 
Analysis” tools. You can run as many trials as you like and show each indi-
vidual result without you having to copy Table 3.2 thousands of times. The 
data table lets the Excel user see what a series of answers would look like 
in a formula if you could change one input at a time. For example, you 
might have a very big spreadsheet for computing retirement income that 
includes current savings rates, market growth, and several other factors. 
You might want to see how the estimate of project duration changes if you 
modified your monthly savings from $100 to $5,000 in $100 increments. 
A data table would automatically show all of the results as if you manu-
ally changed that one input each time yourself and recorded the result. 
The spreadsheet you can download at www.howtomeasureanything.com/ 
cybersecurity uses this method.

If you want to find out more about data tables in general, the help 
pages for Excel can take you through the basics, but we do make one 
modification in the example spreadsheet. Usually, you will need to enter 
either a “column input cell” or “row input cell” (we would just use “column 
input cell” in our example) to identify which value the data table will be 
repeatedly changing to produce different results. In this case, we don’t 
really need to identify an input to change because we already have the 

Table 3.3  The Excel Data Table Showing 10,000 Scenarios of Cybersecurity 
Losses

Data Table for 10,000
Scenarios
$23,345,193
$5,937,544

This cell contains the function you want to
replicate. In this case, it is simply the sum of the
entire “Random Result” column in Table 3.2.

Each of these rows is a potential value for
the total of the “Random Result” column in
Table 3.2.

If a row has a value of “$0”, it means that no
loss-producing event occurred from any of the
risks listed in Table 3.2 in that trial. If your
organization has enough risks, most years you
will have some losses.

1
$02
$3,744,9593
$26,814,5294
$12,048,1715
$06
$2,865,6197

$12,300,3849999
$14,639,83110000

(From the example provided in www.howtomeasureanything.com/cybersecurity.)

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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rand() function that changes every time we recalculate. So our “input” val-
ues are just arbitrary numbers counting from 1 to the number of scenarios 
we want to run.

There is an important consideration for the number of trials when simu-
lating cybersecurity events. We are often concerned with rare but high‐ 
impact events. If an event likelihood is only 1% each year, then 10,000 trials 
will produce about 100 of these events most of the time, but this varies a 
bit. Out of this number of trials, it can vary randomly from an exact value 
of 100 (just as flipping a coin 100 times doesn’t necessarily produce exactly 
50 heads). In this case the result will be between 84 and 116 about 90% of 
the time.

Now, for each of these times the event occurs, we have to generate a 
loss. If that loss has a long tail, there may be a significant variation each 
time the Monte Carlo is run. By “long tail,” what I mean is that it is not 
infeasible for the loss to be much more than the average loss. We could 
have, for example, a distribution for a loss where the most likely outcome 
is a $100,000 loss, but there is a 1% chance of a major loss ($50 million or 
more). The one‐percentile worst‐case scenario in a risk that has only a 1% 
chance per year of occurrence in the first place is a situation that would 
happen with a probability of 1/100 x 1/100 or 1 in 10,000 per year. Since 
10,000 is our number of trials, we could run a simulation where this worst‐
case event occurred one or more times in 10,000 trials, and we could run 
another 10,000 trials where it never occurred at all. This means that every 
time you ran a Monte Carlo simulation, you would see the average total 
loss jump around a bit.

The simplest solution to this problem for the Monte Carlo modeler who 
doesn’t want to work too hard is to throw more trials at it. This simulation‐
to‐simulation variation would shrink if we ran 100,000 trials or a million. 
You might be surprised at how little time this takes in Excel on a decently 
fast machine. We’ve run 100,000 trials in a few seconds using Excel, which 
doesn’t sound like a major constraint. We have even run a million scenarios— 
in plain ol’ native Excel—of models with several large calculations in 15 
minutes or less. As events get rarer and bigger, however, there are more 
efficient methods available than just greatly increasing the number of trials. 
But for now we will keep it simple and just throw cheap computing power 
at the problem.

Now we have a method of generating thousands of outcomes in a 
Monte Carlo simulation using native Excel—no add‐ins or Visual Basic 
code to run. Given that Excel is so widely used, it is almost certain any 
cybersecurity analyst has the tools to use this. We can then use this 
data for another important element of risk analysis—visualizing the risk 
quantitatively.
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Visualizing Risk

The risk matrix familiar to anyone in cybersecurity is widely used because 
it appears to serve as a simple illustration of likelihood and impact on one 
chart. In our proposed simple solution, we have simply replaced the likeli-
hood scale with an explicit probability, and the impact with a 90% CI repre-
senting a range of potential losses.

In our proposed solution, the vertical axis can still be represented by 
a single point—a probability as opposed to a score. But now the impact is 
represented by more than a single point. If we say that an event has a 5% 
chance of occurrence, we can’t just say the impact will be exactly $10 mil-
lion. There is really a 5% chance of losing something, while perhaps there 
is a 2% chance of losing more than $5 million, a 1% chance of losing more 
than $15 million, and so on.

This amount of information cannot be plotted with a simple point on 
a two‐dimensional chart. Instead, we can represent this with a chart called 
a “loss exceedance curve” or LEC. In the spirit of not reinventing the wheel 
(as risk managers in many industries have done many times), this is a con-
cept also used in financial portfolio risk assessment, actuarial science, and 
what is known as “probabilistic risk assessment” in nuclear power and other 
areas of engineering. In these other fields, it is also variously referred to as a 
“probability of exceedance” or even “complementary cumulative probability 
function.” Figure 3.2 shows an example of an LEC.
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This means there is about a 40% chance of losing more than $10 million
in a year and about a 15% chance of losing more than $100 million.

Figure 3.2  Example of a Loss Exceedance Curve
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Explaining the Elements of the Loss Exceedance Curve

Figure 3.2 shows the chance that a given amount would be lost in a given 
period of time (e.g., a year) due to a particular category of risks. This curve 
can be constructed entirely from the data generated in the previous data table 
example (Table 3.3). A risk curve could be constructed for a particular vulner-
ability, system, business unit, or enterprise. An LEC can show how a range of 
losses is possible (not just a point value) and that larger losses are less likely 
than smaller ones. In the example shown in Figure 3.2 (which, given the 
scale, would probably be enterprise‐level cybersecurity risks for a large orga-
nization), there is a 40% chance per year of losing $10 million or more. There 
is also about a 15% chance of losing $100 million or more. A logarithmic scale 
is used on the horizontal axis to better show a wider range of losses (but that 
is just a matter of preference—a linear scale can be used, too).

We can also create another variation of this chart by adding a couple 
more curves. Figure 3.3 shows three curves: inherent risk, residual risk, and 
risk tolerance. Inherent versus residual risk is a common distinction made in 
cybersecurity to represent risks before the application of proposed controls 
(i.e., methods of mitigating risks) and risks after the application of con-
trols, respectively. Inherent risk, however, doesn’t have to mean a complete 
lack of controls, since this is not a realistically viable alternative. Inherent 
risk might be defined instead as including only minimal required controls. 
Those are controls where it would be considered negligent to exclude them 
so there really is no dilemma about whether to include them. The dif-
ferences between inherent and residual risks are only truly discretionary 
controls—the sorts of controls where it would be considered a reasonable 
option to exclude them. Examples of minimal controls may be password 
protection, firewalls, some required frequency of updating patches, limiting 
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Figure 3.3  Inherent Risk, Residual Risk, and Risk Tolerance
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certain types of access to administrators, and so on. The organization can 
make its own list of minimal controls. If a control is considered a required 
minimum, then there is no dilemma, and where there is no dilemma, there 
is no value to decision analysis. So it is helpful to focus our attention on 
controls where having them or not are both reasonable alternatives.

The LEC provides a simple and useful visual method for comparing a 
risk to a risk tolerance, which can also be unambiguously and quantitatively 
expressed as an LEC. As Figure 3.3 shows, part of the inherent risk curve 
(shown in the thicker curve) is above the risk tolerance curve (shown as 
the dashed curve). The part of the inherent risk curve that is over the risk 
tolerance curve is said to “violate” or “break” the risk tolerance. The residual 
risk curve, on the other hand, is on or underneath the risk tolerance curve at 
all points. If this is the case, we say that the risk tolerance curve “stochasti-
cally dominates” the residual risk curve. This simply means that the residual 
risks are acceptable. We will talk about a simple process for defining a risk 
tolerance curve shortly, but first we will describe how to generate the other 
curves from the Monte Carlo simulation we just ran.

Generating the Inherent and Residual Loss Exceedance Curves

Remember, as with the other methods used in this chapter, the download-
able spreadsheet at the previously mentioned website shows all the techni-
cal details. As Table 3.4 shows, the histogram has two columns, one showing 
a series of loss levels. These would be the values shown on the horizontal 
axis of an LEC. The second column shows the percentage of Monte Carlo 
results that generated something equal to or higher than the value in the 
first column. The simplest method involves using a “countif()” function in 
Excel. If we use “Monte Carlo Results” to stand for the second column of 
values in Table 3.3 and “Loss” to mean the cell in the spreadsheet in the loss 
column of the same row as the following formula, we get:

= Countif(Monte Carlo Results, “>”&Loss)/10000

The countif() function does what it sounds like. It counts the number 
of values in a defined range that meet a stated condition. If countif() returns 
8,840 for a given range and if “Loss” is equal to $2 million, then that means 
there are 8,840 values in the range greater than $2 million. Dividing by 
10,000 is to turn the result into a value between 0 and 1 (0% and 100%) for 
the 10,000 trials in the Monte Carlo simulation. As this formula is applied to 
larger and larger values in the loss column, the percentage of values in the 
simulation that exceed that loss level will decrease.

Now, we simply create an XY scatterplot on these two columns in 
Excel. If you want to make it look just like the LEC that has been shown, 
you will want to use the version of the scatterplot that interpolates points 
with curves and without markers for the point. This is the version set up 
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in the spreadsheet. More curves can be added simply by adding more 
columns of data. The residual risk curve, for example, is just the same 
procedure but based on your estimated probabilities and impacts (which 
would presumably be smaller) after your proposed additional controls are 
implemented.

One disadvantage of the LEC chart is that if multiple LECs are shown, 
it can get very busy looking. While in the typical risk matrix, each risk is 
shown as a single point (although an extremely unrealistic and ambiguous 
point), an LEC is a curve. This is why one organization that produced a 
chart with a large number of LECs called it a “spaghetti chart.” However, this 
complexity was easily managed just by having separate charts for different 
categories. Also, since the LECs can always be combined in a mathemati-
cally proper way, we can have aggregate LEC charts where each curve on 
that chart could be decomposed into multiple curves shown on a sepa-
rate, detailed chart for that curve. This is another key advantage of using a 
tool like an LEC for communicating risks.  We provide a spreadsheet on the 
book’s website to show how this is done.

Table 3.4  Histogram for a Loss Exceedance Curve

99.9%

Probability per Year of
Loss or Greater

Histogram for Loss Exceedance Curve

Loss

98.8%

95.8%

92.6%

88.4%

83.4%

77.5%

3.0%

2.7%

$ −

$500,000

$1,000,000

$1,500,000

$2,000,000

$2,500,000

$3,000,000

$24,000,000

$24,500,000
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Now, compare this to popular approaches in cybersecurity risk assess-
ment. The typical low/medium/high approach lacks the specificity to say that 
“seven lows and two mediums are riskier than one high” or “nine lows add 
up to one medium,” but this can be done with LECs. Again, we need to point 
out that the high ambiguity of the low/medium/high method in no way saves 
the analyst from having to think about these things. With the risk matrix, the 
analyst is just forced to think about risks in a much more ambiguous way.

What we need to do is to create another table like Table 3.3 that is then 
rolled up into another Table 3.4, but where each value in the table is the to-
tal of several simulated categories of risks. Again, we have a downloadable 
spreadsheet for this at www.howtomeasureanything.com/cybersecurity. We 
can run another 10,000 trials on all the risks we want to add up, and we 
follow the LEC procedure for the total. You might think that we could just 
take separately generated tables like Table 3.3 and add up the number of 
values that fall within each bin to get an aggregated curve, but that would 
produce an incorrect answer unless risks are perfectly correlated (I’ll skip 
over the details of why this is the case, but a little experimentation would 
prove it to you if you wanted to see the difference between the two proce-
dures). Following this method we can see the risks of a system from several 
vulnerabilities, the risks of a business unit from several systems, and the 
risks across the enterprise for all business units.

Where Does the Risk Tolerance Curve Come from?

Ideally, the risk tolerance curve is gathered in a meeting with a level of man-
agement that is in a position to state, as a matter of policy, how much risk 
the organization is willing to accept. Hubbard has gathered risk tolerance 
curves of several types (LEC is one type of risk tolerance quantification) 
from many organizations, including risk tolerance for multiple cybersecurity 
applications. The required meeting is usually done in about 90 minutes. It 
involves simply explaining the concept to management and then asking 
them to establish a few points on the curve. We also need to identify which 
risk tolerance curve we are capturing (e.g., the per‐year risk for an indi-
vidual system, the per‐decade risk for the entire enterprise, etc.). But once 
we have laid the groundwork, we could simply start with one arbitrary point 
and ask the following:

Analyst:	 Would you accept a 10% chance, per year, of losing more 
than $5 million due to a cybersecurity risk?

Executive:	 I prefer not to accept any risk.
Analyst:	 Me too, but you accept risk right now in many areas. You 

could always spend more to reduce risks, but obviously 
there is a limit.

http://www.howtomeasureanything.com/cybersecurity


Model Now!� 51

Executive:	 True. I suppose I would be willing to accept a 10% chance 
per year of a $5 million loss or greater.

Analyst:	 How about a 20% chance of losing more than $5 million in 
a year?

Executive:	 That feels like pushing it. Let’s stick with 10%.
Analyst:	 Great, 10%, then. Now, how much of a chance would you 

be willing to accept for a much larger loss, like $50 million 
or more? Would you say even 1%?

Executive:	 I think I’m more risk averse than that. I might accept a 1% 
chance per year of accepting a loss of $25 million or more. . .

And so on. After plotting three or four points, we can interpolate the 
rest and give it to the executive for final approval. It is not a technically dif-
ficult process, but it is important to know how to respond to some potential 
questions or objections. Some executives may point out that this exercise 
feels a little abstract. In that case, give them some real‐life examples from 
their firm or other firms of given losses and how often those happen.

Also, some may prefer to consider such a curve only for a given  
cybersecurity budget—as in, “That risk is acceptable depending on what it 
costs to avoid it.” This is also a reasonable concern. You could, if the execu-
tive was willing to spend more time, state more risk tolerance at different  
expenditure levels for risk avoidance. There are ways to capture “risk/
return” tradeoffs (see Hubbard’s original book, How to Measure Anything 
for details on this method). But most seem willing to consider the idea that 
there is still a maximum acceptable risk, and this is what we are attempting 
to capture.

It is also worth noting that the authors have had many opportunities to 
gather risk tolerance curves from upper management in organizations for 
problems in cybersecurity as well as other areas. If your concern is that up-
per management won’t understand this, we can say we have not observed 
this—even when we’ve been told that management wouldn’t understand it. 
In fact, upper management seems to understand having to determine which 
risks are acceptable at least as well as anyone in cybersecurity. (We will 
bring this up again in Chapter 5 when we discuss this and other illusory 
obstacles to adopting quantitative methods.)

Supporting the Decision: A Return on Mitigation

Ultimately, the point of risk analysis—even with the risk matrix we are 
replacing—is to support decisions. But the difficulty we had before was 
making specific resource‐allocation choices for specific controls. What is it 
worth, after all, to move one “high” risk to a “medium”? Is it $5,000 or $5 
million? Or what if we have a budget of $8 million for cybersecurity and 80 
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lows, 30 mediums, and 15 highs? And what if we can mitigate more lows 
for the same money as one medium? If you have observed (as the authors 
have) someone asking a question like, “If we spent another million dollars, 
can we move this risk from a red to a yellow?” then you may have felt the 
dissatisfaction from this approach. Clearly the traditional risk matrix offers 
little guidance once the CISO actually has to make choices about allocating 
resources. You might think that you may as well do without these methods 
altogether. But, as we will show later, the CISO should definitely not assume 
they handle these decisions well using their expert intuition alone.

What the CISO needs is a “Return on Control” calculation. That is the 
monetized value of the reduction in expected losses divided by the cost of 
the control. If we look only at the benefits in a single year (and ignore other 
“time value” considerations), we can show this as:

Return on Control = – 1
Reduction in Expected Losses

Cost of Control

The term “expected” in the context of design analysis generally refers 
to the probability‐weighted average of some amount. So “expected loss” 
is the average of the Monte Carlo simulation losses due to some cause. If 
we applied a control to reduce risks and then we simulated a new set of 
losses, the average of those losses would be less (by either reducing the 
chance of any loss, reducing the impact if the loss event occurred, or both). 
The difference in the loss before and after the control is the “Reduction in 
Expected Losses” in the simple formula above. If the Reduction in Expected 
Losses was exactly as much as the cost, then this formula would say the 
Return on Control was 0%. This would be the convention for other forms 
of investment.

You would also have to identify over what period of time this expected 
reduction in losses would occur. If the control was just an ongoing expense 
that could be started and stopped at any time, then this simple formula 
could just be applied to a year’s worth of benefits (loss reduction) and 
a year’s worth of costs. If the control is a one‐time investment that could 
provide benefits over a longer period of time, then follow the financial con-
ventions in your firm for capital investments. You will probably be required 
then to compute the benefits as a “present value” of a stream of investments 
at a given discount rate. Or you may be asked to produce an “internal rate 
of return.” We won’t spend time on those methods here, but there are fairly 
simple financial calculations that can, again, be done entirely with simple 
functions in Excel.

A note of caution is needed if you plan on decomposing our simple 
range for impact further into more variables that go into computing im-
pact. In the example we have shown so far, computing the expected losses 
is a very simple calculation. We can just multiply the computed mean of 
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the distribution for the impact times the probability of the event occurring 
(the spreadsheet we provide on the website does this for you). But if we 
decompose impact into multiple components that need to be multiplied 
together (e.g., records breached times cost per record, duration of outage 
times number of people affected times cost per person per hour, etc.), then 
working with the averages no longer becomes a reasonable estimation. 
We effectively have to run a separate simulation on each row. But in our 
simplest model we can ignore that for now. As we make the model more 
advanced, we can add more detail. Later chapters will describe how you can 
evolve the model by adding elements that incrementally improve realism.

Where to Go from Here

There are many models cybersecurity analysts could use to represent their 
current state of uncertainty. You could simply estimate likelihood and impact 
directly without further decomposition. You could develop a modeling meth-
od that determines how likelihood and impact are modified by specifying 
types of threat, the capabilities of threats, vulnerabilities, or the characteristics 
of systems. You can list applications and evaluate risk by application, or you 
can list controls and assess the risks that individual controls would address.

Ultimately, this book will be agnostic regarding which modeling strat-
egy you use, but we will discuss how various modeling strategies should 
be evaluated. When enough information is available to justify the indus-
try adopting a single, uniform modeling method, then it should do so. 
Until then, we should let different organizations adopt different modeling 
techniques while taking care to measure the relative performance of these 
methods.

To get started, there are some ready‐made solutions to decompose risks. 
In addition to the methods Hubbard uses, solutions include the methodol-
ogy and tools used by the FAIR method, developed by Jack Jones and Jack 
Freund.2 In the authors’ opinion, FAIR, as another Monte Carlo–based solution 
with its own variation on how to decompose risks into further components, 
could be a step in the right direction for your firm. We can also build quite 
a lot on the simple tools we’ve already provided (and with more to come in 
later chapters). For readers who have had even basic programming, math, or 
finance courses, they may be able to add more detail without much trouble. 
So, most readers will be able to extrapolate from this as much as they see fit. 
The website will also add a few more tools for parts of this, like R and Python 
for those who are interested. But, since everything we are doing in this book 
can be handled entirely within Excel, any of these tools would be optional.

So far, this method is still only a very basic solution based on expert 
judgment—updating this initial model with data using statistical methods 
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comes later. Still, even at this stage there are advantages of a method like 
this when compared to the risk matrix. It can capture more details about 
the knowledge of the cybersecurity expert, and it gives us access to much 
more powerful analytical tools. If we wanted, we could do any or all of the 
following:

■■ As we just mentioned, we could decompose impacts into separate es-
timates of different types of costs—legal, remediation, system outages, 
public relations costs, and so on. Each of those could be a function 
of known constraints such as the number of employees or business 
process affected by a system outage or number of records on a system 
that could be compromised in a breach. This leverages knowledge the 
organization has about the details of its systems.

■■ We could make relationships among events. For example, the cyberse-
curity analyst may know that if Event X happens, Event Y becomes far 
more likely. Again, this leverages knowledge that would otherwise not 
be directly used in a less quantitative method.

■■ Where possible, some of these likelihoods and impacts can be inferred 
from known data using proper statistical methods. We know ways we 
can update the state of uncertainty described in this method with new 
data using mathematically sound methods.

■■ These results can be properly “added up” to create aggregate risks for 
whole sets of systems, business units, or companies.

We will introduce more about each of these improvements later in the 
book, but we have demonstrated what a simple one‐for‐one substitution 
would look like. Now we can turn our attention to evaluating alternative 
methods for assessing risk. Of all the methods we could have started with 
in this simple model and for all the methods we could add to it, how do 
we select the best for our purposes? Or, for that matter, how do we know 
it works at all?

Notes

	 1.	 Stanislaw Ulam, Adventures of a Mathematician (Berkeley: University 
of California Press, 1991).

	 2.	 Jack Freund and Jack Jones, Measuring and Managing Information 
Risk: A FAIR Approach (Waltham, MA: Butterworth-Heinemann, 2014).
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Chapter 4
The Single Most Important 

Measurement in Cybersecurity 

We hope Chapter 2 cleared up how the term “measurement” is used 
in decision science as well as the empirical sciences in general. We 

contend that this is the most relevant understanding of measurement for 
cybersecurity. Chapter 3 gave you an introduction to the most basic level 
of quantitative risk analysis. There will be a lot more to cover regarding the 
details of the methods of measurement, but for now we propose that our 
first target should be a measurement of risk analysis itself.

The authors have observed experts throughout the field with pas-
sionately held positions on the relative merits of different cybersecurity 
risk-assessment methods. One easy observation we could make is that both 
sides of polar-opposite positions were often argued by highly qualified 
cybersecurity experts, all with decades of experience. One knowledgeable 
expert will argue, for example, that a particular framework based on quali-
tative scores improves decisions, builds consensus, and avoids the problems 
of more quantitative methods. Another equally qualified expert will argue 
this is an illusion and that such methods simply “do the math wrong.” Since 
we know at least one (if not both) must be wrong, then we know qualifica-
tions and expertise in cybersecurity alone are not sufficient to determine if 
a given opinion on this topic is correct.

This leaves us with several hard questions. How do we decide which 
methods work better? Is it possible that the risk analysis methods cybersecu-
rity experts have used for decades—methods in which many cybersecurity 
experts have a high degree of confidence—could actually not work? Is it 
possible that the perceived benefits of widely used tools could be an illu-
sion? What do we even mean by whether a method “works” and how would 
that be measured? We propose that the single most important measurement 
in cybersecurity risk assessment, or any other risk assessment, is to measure 
how well the risk assessment methods themselves work.
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More fundamentally, does it even matter whether risk analysis works? 
And by “works,” do we really just mean whether it succeeds in putting on 
a show for compliance, or should we mean it actually improves the iden-
tification and management of risks? We will take what we believe to be an 
obvious position that shouldn’t really be controversial:

■■ We believe it matters whether risk analysis actually works.
■■ What we mean by whether it “works” is whether it measurably reduces 
risks relative to alternative methods with the same resources. That is, 
we believe that risk analysis in any field, including cybersecurity, is not 
just a matter of putting on a show for the appearance of compliance.

■■ Regulators and standards organizations must make measured per-
formance of methods the key feature of what “compliance” means. 
If complying with standards and regulations does not actually 
improve risk management, then those standards and regulations 
must change.

■■ We also think it is entirely reasonable to say that in order to settle an 
issue with many contradictory opinions from experts at all levels, we 
will have to actually begin to measure how well risk analysis methods 
work.

■■ We assert that if firms are using cybersecurity risk-analysis methods 
that cannot show a measurable improvement or, even worse, if they 
make risk assessment worse, then that is the single biggest risk in 
cybersecurity, and improving risk assessment will be the single most 
important risk management priority.

Measuring the methods themselves will be the basis of every recom-
mendation in this book. Either we will propose risk analysis methods based 
on measurements that have already been done and published, or, if no 
such measurement has been done, we will propose a measurement that 
will help identify a valid method. And while we describe how to measure 
the relative effectiveness of methods, we also need to explain how not to 
measure them.

By the end of this chapter we will see what published research has 
already measured about key pieces of the quantitative methods we pro-
posed in Chapter 3. In the next chapter, we will also consider research 
showing that components of current popular risk-assessment methods 
may do more harm than good. Now, let’s look at why we need to base 
our methods on research in the first place as opposed to our expert 
opinion.
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The Analysis Placebo: Why We Can’t Trust Opinion Alone

The first principle is that you must not fool yourself, and you are the 
easiest person to fool.

—Richard P. Feynman, Nobel Prize–Winning Physicist

We often hear that a given method is “proven” and is a “best practice.” 
It may be touted as a “rigorous” and “formal” method—implying that this is 
adequate reason to believe that it improves estimates and decisions. Even-
tually it gets the title of “accepted standard.” Some satisfied users will even 
provide testimonials to the method’s effectiveness.

But how often are these claims ever based on actual measurements of 
the method’s performance? It is not as if large clinical trials were run with 
test groups and control groups. Estimates are rarely compared to actual out-
comes, and costly cybersecurity breaches are almost never tracked over a 
large number of samples to see if risk really changed as a function of which 
risk assessment and decision-making methods are used. Unfortunately, the 
label of “best practice” does not mean it was measured and scientifically 
proven to be the best performer among a set of practices. Yet, as Feynman’s 
quote states, we are easy to fool. Perceived improvements may actually be 
a mirage. Even if a method does more harm than good, users may still hon-
estly feel they see a benefit.

How is this possible? Blame an “analysis placebo”—the feeling that 
some analytical method has improved decisions and estimates even when it 
has not. The analogy to a placebo as it is used in medical research is actu-
ally a bit generous. In that case, there can actually be a positive physiologi-
cal effect from a mere placebo beyond the mere perception of benefit. But 
when we use the term in this context we mean there literally is no benefit 
other than the perception of benefit. Several studies in fields outside of 
cybersecurity have been done that show how spending effort on analysis 
improved confidence even when the actual performance was not improved 
at all. Here are a few examples that have also been mentioned in other 
books by Hubbard:

■■ Sports Picks: A 2008 study at the University of Chicago tracked proba-
bilities of outcomes of sporting events as assigned by participants given 
varying amounts of information about the teams without being told the 
names of teams or players. As the fans were given more information 
about the teams in a given game, they would increase their confidence 
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that they were picking a winner, even though the actual chance of pick-
ing the winner was nearly flat no matter how much information they 
were given.1

■■ Psychological Diagnosis: Another study showed how practicing clini-
cal psychologists became more confident in their diagnosis and their 
prognosis for various risky behaviors by gathering more information 
about patients, and yet, again, the agreement with observed outcomes 
of behaviors did not actually improve.2

■■ Investments: A psychology researcher at MIT, Paul Andreassen, did sev-
eral experiments in the 1980s showing that gathering more informa-
tion about stocks in investment portfolios improved confidence but 
without any improvement in portfolio returns. In one study he showed 
how people tend to overreact to news and assume that the additional 
information is informative even though, on average, returns are not 
improved by these actions.3

■■ Collaboration on Sports Picks: In another study, sports fans were asked 
to collaborate with others to improve predictions. Again, confidence 
went up after collaboration but actual performance did not. Indeed, the 
participants rarely even changed their views from before the discus-
sions. The net effect of collaboration was to seek confirmation of what 
participants had already decided.4

■■ Collaboration on Trivia Estimates: Another study investigating the ben-
efits of collaboration asked subjects for estimates of trivia from an al-
manac. It considered multiple forms of interaction including the Delphi 
technique, free-form discussion, and other methods of collaboration. 
Although interaction did not improve estimates over simple averaging 
of individual estimates, the subjects did feel more satisfied with the 
results.5

■■ Lie Detection: A 1999 study measured the ability of subjects to de-
tect lies in controlled tests involving videotaped mock interrogations of 
“suspects.” The suspects were actors who were incentivized to conceal 
certain facts in staged crimes to create real nervousness about being 
discovered. Some of the subjects reviewing the videos received training 
in lie detection and some did not. The trained subjects were more con-
fident in judgments about detecting lies even though they were worse 
than untrained subjects at detecting lies.6

And these are just a few of many similar studies showing that we can 
engage in training, information gathering, and collaboration that improves 
confidence but not actual performance. Of course, these examples are 
from completely different types of problems. But what is the basis for 
assuming that these same problems don’t appear in cybersecurity? In the 
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pharmaceutical industry, a new drug is effectively assumed to be a pla-
cebo until it is proven that it is not. The fact that a placebo exists in some 
areas means it could exist in other areas unless the data shows otherwise. 
With examples in problems as diverse as investments, horse racing, football 
games, and diagnosis of psychology patients, it would seem that the burden 
of proof is on the person claiming that some other area, like cybersecurity, 
avoids these problems. So let’s start by assuming that cybersecurity is not 
particularly immune to problems observed in so many other areas where 
humans have to make judgments.

What we will not do to measure the performance of various methods 
is rely on the proclamations of any expert regardless of his or her claimed 
level of knowledge or level of vociferousness. So even though the authors 
can fairly claim plenty of experience—cybersecurity in the case of Sei-
ersen and quantitative risk analysis in general in the case of Hubbard—we 
will not rely on any appeals to our authority regarding what works and 
what does not. (We see this as a shortcoming in many books on risk man-
agement and information security.) Our arguments will be based on the 
published research from large experiments. Any mention of anecdotes or 
quotes from “thought leaders” will only be used to illustrate a point, never 
to prove it.

We don’t think it is controversial to insist that reason and evidence 
are the way to reach reliable conclusions about reality. For “reason,” we 
include using math and logic to derive new statements from previously 
confirmed statements. For “evidence,” we don’t include anecdotal or tes-
timonial arguments. (Any method, including astrology and pet psychics, 
can produce those types of “evidence.”) The best source of evidence is 
large, random samples; clinical trials; unbiased historical data; and so on. 
The data should then be assessed with proper mathematical methods to 
make inferences.

How You Have More Data Than You Think

What we need to do is define a scientifically sound way to evaluate methods 
and then look at how different methods compare based on that evaluation. 
But a common concern is that cybersecurity simply lacks sufficient data 
for proper, statistically valid measurements. Ironically, this claim is almost 
always made without actually doing any proper math.

Recall from Chapter 2 that if we can expand our horizons about what 
data could be informative, we actually have more data than we think. So 
here are some ways that we actually have more data than we think about 
the performance of cybersecurity risk assessment methods.
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■■ We don’t have to be limited by looking just at ourselves. Sure, each 
organization is unique but that doesn’t mean that we can’t learn from 
different examples (indeed, experience would mean nothing if we 
couldn’t generalize from experiences that aren’t exactly identical). 
Using information from larger populations is how insurance companies 
estimate your health risk even though you never made a claim, or how 
a doctor believes a drug you never tried will work with you because he 
knows of a large experiment involving many other people.

■■ We can measure components as well as whole systems. We can mea-
sure the overall performance of an entire system, or we can measure 
individual components of the system. When an engineer predicts the 
behavior of a new system that has not yet been built, the engineer is 
using knowledge of the behavior of components and how they interact. 
It’s easier to measure several components of risk assessment than it is 
to wait for rare events to happen. For example, tracking how well cy-
bersecurity analysts estimate more frequent, small events is a measure 
of the “expert estimation component” in the risk management system.

■■ We can use published research. If we are willing to consider component 
level studies of larger populations outside of our own experience, then 
a lot more data becomes available. When you don’t have existing data 
or outside research of any kind, it might be time to start gathering the 
data as part of a defined measurement process.

Now, in a perfect world, your firm would have so much of its own data 
that it doesn’t need to make inferences from larger populations of other 
firms. It can measure the overall performance of a risk assessment system 
by actually measuring outcomes observed within your own firm. If it were 
large enough and willing to wait long enough, it could observe variations 
in major data breaches in different business units using different risk assess-
ment methods. Better yet, industry-wide experiments could include many 
organizations and would produce a lot of data even about events that would 
be rare for a single firm.

Of course, large, industry-wide experiments would not be practical for 
several reasons, including the time it would have to take. (Which organiza-
tions would want to be in the “placebo” group using a fake method?) Not 
surprisingly, no such study has been published in peer-reviewed literature 
by the date of this writing. So what can be done to compare different risk 
assessment methods in a scientifically rational way? The other measurement 
strategy dimensions we just mentioned give us some choices—some of 
which can give us immediate answers.

A more feasible answer for an initial measurement would be to experi-
ment with larger populations but with existing research at the component 
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level. Component testing is an approach many professionals in information 
technology are already familiar with. Components we could consider are the 
individual steps in risk assessment, the tools used, and the methods of col-
laboration. Even the act of simply putting a probability on a cybersecurity 
attack is a component of the process we could test. In fact, a lot of research 
has already been done on this at a component level—including some studies 
that were very large, conducted over many decades by many separate re-
searchers, and published in leading, peer-reviewed scientific journals.

If the individual components of a method are shown to be an improve-
ment, then a method based entirely on these elements is much more likely 
to be effective than a method for which the components have no such evi-
dence or, worse yet, have been shown to be flawed. This is no different than 
a designer of an oil refinery or rocket using established physical principles 
to evaluate components of a system and then calculating how those compo-
nents would behave in the aggregate. There are many potential components 
to evaluate, so let’s divide them into two broad categories that are or could 
be used in cybersecurity risk assessment:

■■ What is the relative performance of purely historical models in estimat-
ing uncertain outcomes as compared to experts?

■■ Where we use experts, what is the performance of the tools experts use 
to assist in making estimates of outcomes?

When Algorithms Beat Experts

The key “component” we should consider in cybersecurity risk analysis 
is the performance of how information is synthesized to make estimates. 
Specifically, is it better to rely on experts to make a judgment or a statistical 
model? One particular area where research is plentiful is in the comparison 
of statistical models to human experts in the task of estimating uncertain 
outcomes of future events. This research generated one of the most consis-
tently replicated and impactful findings of psychology: that even relatively 
naïve statistical models seem to outperform human experts in a surprising 
variety of estimation and forecasting problems.

We aren’t saying that we can entirely replace humans in risk assess-
ment. We are simply looking at a few situations where objective, quanti-
tative models were made and compared to expert intuition. We want to 
investigate the following question: If we could build a purely quantitative 
model on historical data, would that even be desirable?

As you read about this research, you may also want to know whether 
any of the research in other areas could even apply to cybersecurity. If you 
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bear with us, we think you will agree that it does. In fact, like the placebo 
effect mentioned earlier, the studies are so numerous and varied it seems 
the burden of proof would be on the one arguing that cybersecurity some-
how avoids these fundamental issues.

Some Research Comparing Experts and Algorithms

Some of this research started in a very different field and during a time 
before the concept of cybersecurity had even been imagined. As early as 
the 1950s, the American psychologist Paul Meehl proposed an idea that 
shook up the field of clinical psychology. He claimed that expert-based 
clinical judgments about psychiatric patients might not be as good as simple 
statistical models. Meehl collected a large set of studies showing that statisti-
cal models based on medical records produced diagnoses and prognoses 
that at least matched but usually beat the judgment of trained clinicians. 
Meehl was able to show, for example, that personality tests were better than 
experts at predicting several behaviors regarding neurological disorders, 
juvenile delinquency, and addictive behaviors.

In 1954, he wrote the seminal book on the subject, Clinical versus 
Statistical Prediction. At the time of this initial research, he could already 
cite over 90 studies that challenged the assumed authority of experts.7 Re-
searchers like Robyn Dawes (1936–2010) of the University of Michigan 
were inspired to build on this body of research, and every new study that 
was generated only confirmed Meehl’s findings, even as they expanded 
the scope to include experts outside of clinical diagnosis.8,9,10 The library 
of studies they compiled included findings predicting the GPAs of college 
freshmen and medical students, criminal recidivism, sporting events, and 
medical prognoses. After the studies had grown significantly in number, 
Meehl felt forced to conclude:

There is no controversy in social science which shows such a large body 
of qualitatively diverse studies coming out so uniformly in the same di-
rection as this one. When you’re pushing 90 investigations [now closer 
to 150], predicting everything from the outcome of football games to the 
diagnosis of liver disease and when you can hardly come up with a half 
dozen studies showing even a weak tendency in favor of the [human 
expert], it is time to draw a practical conclusion.11

The methods used in this research were fairly straightforward. Ask ex-
perts to predict some objectively verifiable outcomes—like whether a new 
business will fail or the effectiveness of chemotherapy for a cancer patient— 
then predict the same thing using an algorithm based only on historical 



The Single Most Important Measurement in Cybersecurity � 63

data, then lastly track both over a large number of predictions, and see 
which method performs better.

Such conclusive findings as those of Meehl and his colleagues inevita-
bly draw the interest of other researchers looking for similar phenomena in 
other fields. In one of the more recent examples, a study of oil exploration 
firms shows a strong relationship between the use of quantitative methods 
(including Monte Carlo simulations) to assess risks and a firm’s financial 
performance.12,13 NASA has been applying Monte Carlo simulations based 
on historical data along with softer methods (based on subjective scales) 
to assess the risks of cost and schedule overruns and mission failures. The 
cost and schedule estimates from the quantitative methods had, on average, 
less than half the error of scientists and engineers using nonquantitative 
methods.14

In perhaps the most ambitious study of this kind, Philip Tetlock con-
ducted an experiment over a 20-year period and published it in his book 
Expert Political Judgment: How Good Is It? The title indicates a particular 
focus but he interpreted it broadly to include economics, military affairs, 
technology, and more. He tracked the probabilities of world events assigned 
by a total of 284 experts in their respective fields. By the conclusion of 
the study he had collected over 82,000 individual forecasts.15 (This puts 
Tetlock’s data equal to or in excess of the largest phase III clinical drug trials 
published in scientific journals.) Based on this data, Tetlock was willing to 
make even stronger statements than Meehl and his colleagues:

It is impossible to find any domain in which humans clearly outper-
formed crude extrapolation algorithms, less still sophisticated statistical 
ones.

Why Does This Happen?

Robyn Dawes, Meehl’s colleague who we mentioned earlier, makes the case  
that poor performance by humans in forecasting and estimation tasks is 
partly due to inaccurate interpretations of probabilistic feedback.16 These 
researchers came to view the expert as a kind of imperfect mediator of in-
put and output. Very few experts actually measure their performance over 
time, and they tend to summarize their memories with selected anecdotes. 
The expert then makes rough inferences from this selective memory, and 
according to the research published by Dawes, this can lead to an “illusion 
of learning.” That is, experts can interpret experience as evidence of per-
formance. They assume that years of experience should result in improved 
performance so they assume that it does. But it turns out that we cannot take 
learning for granted no matter how many years of experience are gained.
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Tetlock proposed in his book that “human performance suffers because 
we are, deep down, deterministic thinkers with an aversion to probabilistic 
strategies that accept the inevitability of error.” The math of dealing with 
error and uncertainty is the math of probabilities. If we can’t get that math 
right in our heads, then we would have a lot of difficulty with probabilistic 
forecasting problems. For example, if someone was not good at simple arith-
metic, we wouldn’t be surprised if that person was not very good at estimat-
ing, say, the costs and duration of a large, complex engineering project with 
many interrelated elements. Surely a person skilled at those estimates would 
know how to multiply the number of people involved in a task, their cost of 
labor, and the duration of the task in order to estimate the task’s labor costs. 
He or she would also know how to total the costs of the separate tasks along 
with other project costs (e.g., materials, licenses, equipment rental, etc.).

So when an expert says that, based on some experience and data, 
one threat is a bigger risk than another, they are doing a kind of “mental 
math” whether intentional or not. We aren’t saying they are literally trying 
to add numbers in their heads; rather, they are following an instinct for 
something that in many cases really could be computed. How well our intu-
ition matches mathematical facts has also been measured by an impressive 
array of research including that of Daniel Kahneman, winner of the 2002 
Nobel Prize in Economic Sciences, and his colleague Amos Tversky. They 
showed how even statistically sophisticated researchers will tend to greatly 
misestimate the odds that new data will confirm or contradict a previous 
experiment of a given sample size,17 and will incorrectly estimate expected 
variations in observations based on sample size.18

By “statistically sophisticated,” we mean that the subjects of this research 
were actual scientists published in respected, peer-reviewed journals. As 
Kahneman and Tversky noted in this research, “It’s not just that they should 
know the math, they did know the math.” So even those who know the 
math default to their intuition and their intuition is wrong. Even for trained 
scientists, various recurring—but avoidable—mathematical errors are just 
one of the challenges of trying to do math in our heads.

So What? Does This Apply to Cybersecurity?

Even though all of this research is borrowed from fields outside of cyberse-
curity, the breadth of these findings in so many areas seems to demonstrate 
that they are fundamental and apply to any area of human judgment, in-
cluding cybersecurity. But if the variety of findings in so many areas doesn’t 
convince us that these same issues apply to cybersecurity, consider another 
argument made by Kahneman and another researcher in decision psychol-
ogy, Gary Klein.
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They point out three necessary conditions for experience to result in 
learning. First, there must be consistent feedback. The person must be given 
the information about past performance regularly, not rarely. Second, the 
feedback must be relatively immediate. If a person makes several forecasts 
for events that may happen years from now (which is often the case in a 
cost–benefit analysis for some new investment in, say, technology, infra-
structure, or new products), the delay in the feedback will make learning 
more difficult. Third, the feedback should be unambiguous. If the person 
simply says a cybersecurity project will be a “success” or that risk will be re-
duced, that may be open to interpretation. And when our past performance 
is left to interpretation, we are likely to interpret data in a way that would be 
flattering to ourselves. Unless we get regular, immediate, and unambiguous 
feedback, we are likely to have selective memory and interpret our experi-
ences in the most flattering way.

So the uncomfortable question cybersecurity risk analysts must ask 
themselves is this: Does the experience of the cybersecurity expert actually 
meet those requirements? Do cybersecurity experts actually record all their 
estimates of probability and impact, then compare them to observation? 
Even assuming they did that, how long would they typically have to wait 
before they learned if their estimate was correct? Even if estimates are re-
corded and we wait long enough for the event to occur, was it clear whether 
the original estimate was correct or the discrete event occurred or not? For 
example, if we say we lost reputation from a breach, how do we know that, 
and how did we actually validate—even approximately—the magnitude of 
the event as originally estimated? In cybersecurity, like many other fields, 
we cannot assume learning happens without deliberate processes to make 
sure that is the case. These findings are obvious to researchers like Meehl:

The human brain is a relatively inefficient device for noticing, selecting, 
categorizing, recording, retaining, retrieving, and manipulating informa-
tion for inferential purposes. Why should we be surprised at this?19

This does not mean that experts know very little about their fields. They 
have a lot of detailed technical knowledge. The performance of experts in 
the research mentioned so far relates only to the estimation of quantities 
based on subjective inferences of recalled experience. The problem is that 
experts often seem to conflate the knowledge of a vast set of details in their 
field with their skill at forecasting uncertain future events. A cybersecu-
rity expert can become well versed in technical details such as conducting 
penetration tests, using encryption tools, setting up firewalls, and much 
more—and still be unable to realistically assess their own skills at forecast-
ing future events.
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Tools for Improving the Human Component

The research reviewed up to this point might make it look like there is little 
room for the expert in assessing risks. But we are not making that case at 
all. When we can make sound mathematical models based on objective ob-
servations and historical data, we should do that. But we acknowledge that 
there are several tasks still left to the expert. The expert is a component of 
risk analysis we cannot remove but we can improve.

The expert must help define the problem in the first place. He or she 
must assess situations where the data is ambiguous or where conditions do 
not fit neatly into existing statistical data. The expert also must propose the 
solutions that must be tested.

Our goal is actually to elevate the expert. We want to treat the cyberse-
curity expert as part of the risk assessment system. Like a race car or athlete, 
they need to be monitored and fine-tuned for maximum performance. The 
expert is really a type of measurement instrument that can be “calibrated” 
to improve its output.

It is also worth noting that none of the challenges we are about to list 
are unique to the cybersecurity profession, but that profession does have 
some characteristics that put it among a set of professions susceptible to 
“uncalibrated” judgment. Cybersecurity can borrow from other, very techni-
cal engineering fields reliant on expert judgment that have specific methods 
in place to track and calibrate the judgments of experts. The Nuclear Regu-
latory Commission (NRC), for example, recognizes the need for expert input 
during several steps in the risk assessment process. An NRC report on the 
use and elicitation of expert judgment stated the following:

Expert judgments are both valid in their own right and comparable to 
other data. All data are imperfect representations of reality. The validity 
of expert judgment data, like any data, can vary based on the proce-
dures used to collect it. So-called “hard” data, such as data taken from 
instruments, cannot be considered to be perfect because of problems 
such as random noise, equipment malfunction, operator interference, 
data selection, or data interpretation. The validity of all data varies. 
The validity of expert judgment depends heavily on the quality of the 
expert’s cognitive representation of the domain and ability to express 
knowledge. The elicitation of expert judgment is a form of data collec-
tion that can be scrutinized; the use of the judgments can, and should, 
also be scrutinized.20

We agree. We must scrutinize the expert as we would any other mea-
surement instrument. We consider the cybersecurity expert to be an essential 
and ultimately irreplaceable component of any risk analysis. Even as new 
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data sources emerge that will allow even more quantitative analysis of risks, 
cybersecurity will continue to rely on cybersecurity experts for the foresee-
able future. It is because of the key role trained experts will have that we 
need to take special notice of their performance at various critical tasks. And 
just as we would not rely on only a measurement instrument to measure its 
own accuracy, we cannot rely on the experts themselves to evaluate their 
own performance.

As we did earlier, we will begin by looking at existing research on the 
topic. We want to consider the tools that experts use and whether they actu-
ally help or harm the value of their judgment.

The Subjective Probability Component

A critical component of risk analysis is cybersecurity experts’ assessment 
of the likelihoods of events, like cybersecurity breaches, and the potential 
costs if those events occur. Whether they are using explicit probabilities or 
nonquantitative verbal scales, they need to judge whether one kind of threat 
is more likely than another. Since we will probably have to rely on the ex-
pert at some level for this task, we need to consider how the experts’ skill at 
this task can be measured and what those measurements show.

This is a well-documented field of research, occurring with experts and 
nonexperts in many different fields. Every study takes a similar approach. 
Large numbers of estimates are collected from individuals and then com-
pared to observed outcomes. The findings are conclusive and repeated by 
every study that looks at this issue:

■■ Without training or other controls, almost all of us would assign prob-
abilities that deviate significantly from observed outcomes (e.g., of all 
the times we say we are 90% confident, the predicted outcome happens 
much less frequently than 90%).

■■ There are methods, including training, that greatly improve the ability 
of experts to estimate subjective probabilities (e.g., when they say they 
are 90% confident, they turn out to be right about 90% of the time).

One example related to research in a different profession, that of cor-
porate chief financial officer (CFO), illustrates the typical findings of these 
studies. Researchers in a 2010 study at the National Bureau of Economic 
Research asked CFOs to provide estimates of the annual returns on the 
S&P 500.21 These estimates were in the form of ranges—given as a lower 
bound and an upper bound—of values that were wide enough that the 
CFO believed they had an 80% chance that the range would contain the 
correct answer. We can refer to these as 80% confidence intervals.22 By 
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simply waiting, it was easy to confirm what the actual return was over a 
given period of time. Although the CFOs were extremely experienced and 
well educated for their positions, their 80% CIs actually contained the true 
answers only 33% of the time. They believed that they provided ranges that 
would not contain the correct answer only 20% of the time, but in fact the 
answers were outside of their bounds 67% of the time. This is a rate of “sur-
prise” much higher than they expected.

This is a measure of overconfidence. The confidence of experts, in this 
case expressed in the width of an 80% CI, contained the correct answer 
much less often than the experts expected. In other words, they did not 
have the 80% chance they thought they had of the stated interval contain-
ing the eventually observed value. Unfortunately, this phenomenon is not 
limited to CFOs. Several studies over the last several decades confirm that 
overconfidence is a pervasive characteristic of nearly all of us. Calibrated 
probability assessments have been an area of investigation since the 1970s 
by a large body of published research, led at first by Daniel Kahneman and 
Amos Tversky.23 Their research showed that almost all people in many dif-
ferent professions are about as overconfident as the previously mentioned 
CFOs, regardless of their specific profession.

This research is not purely academic. It affects real-world judgments and 
affects actions taken to solve real problems. One of the authors (Hubbard) 
has had the opportunity over the last 20 years to collect one of the largest 
data sets regarding this phenomenon. Hubbard has tested and trained over 
1,000 individuals from several different industries, professions, and levels of 
management. At least 54 of the subjects in these studies were specifically in 
the field of cybersecurity.

To measure how well experts assigned subjective probabilities, 
Hubbard gave them a series of tests similar to those in most other 
studies. In an initial benchmark test (conducted prior to any training 
meant to improve estimation skills), Hubbard would ask the participants 
their 90% CIs for estimates of general trivia knowledge (when was Isaac  
Newton born, how many meters tall is the world’s tallest building, etc.). 
Most individuals provided ranges that only contained about 40% to 
50% of the correct answers, similar to what the previously mentioned  
researchers had observed.24

Overconfidence is also observed when applying probabilities to dis-
crete events—such as whether a cyberattack will result in a major data 
breach this year. Of course, the outcome of a single event is generally not 
a good indicator of how realistic a previously stated probability happens to 
be. If we say that an event is 25% likely to occur by the end of next year, 
whether it happens or not is not proof the probability was unrealistic. But 
if we track a number of experts making many probability assessments, then 
we can compare expectations to observations in a more valid manner.
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Suppose, for example, a group of experts gives 1,000 estimates of prob-
abilities of specifically defined events. These could be data breaches of a cer-
tain minimum size occurring during a defined period, the probability of loss 
greater than $10 million, and so on. Suppose for 100 of those estimates they 
said they were 90% certain of the outcome. Then the stated outcome should 
have happened about 90 out of 100 times. We would expect some variation 
just due to random luck, but we can compute (as we will show later) how 
much random error is acceptable. On the other hand, if they are right only 65 
out of 100 times they said they were 90% confident, that result is a lot worse 
than what we would expect by just bad luck (if only bad luck were at play, 
there is only a 1 in 68.9 billion chance that they would be wrong that often). 
So the much more likely explanation would be that the experts are simply 
applying far too high a probability to events they should be less certain about.

Fortunately, other researchers have run experiments25 showing that ex-
perts can be trained to be better at estimating probabilities by applying 
a battery of estimation tests, giving the experts a lot of quick, repetitive, 
clear feedback along with training in techniques for improving subjective 
probabilities. In short, researchers discovered that assessing uncertainty is 
a general skill that can be taught with a measurable improvement. That is, 
when calibrated cybersecurity experts say they are 85% confident that a 
major data breach will occur in their industry in the next 12 months, there 
really is an 85% chance it will occur.

Again, the breadth of different people that have been measured on this 
“component” includes not just CFOs but also physicians, students, scien-
tists, project managers, and many more. So it is reasonable to say that these 
observations probably apply to everyone. Remember, just in case someone 
were to try to make the case that cybersecurity experts were different from 
all the other fields that have been measured, Hubbard’s data does include 
54 cybersecurity experts from many industries. They do about as poorly 
as any other profession in the first test. We also observe that they improve 
dramatically during the training, just like those in every other field Hubbard 
has tested, and about the same share succeed in becoming calibrated by the 
end of the training (85% to 90% of experts become calibrated).

In Chapter 7, we will describe this training and its effects in more detail. 
We will explain how you can calibrate yourself with some practice and how 
you can measure your performance over time. This skill will be a starting 
point for developing more advanced quantitative models.

The Expert Consistency Component

Ultimately, testing subjective probabilities for calibration relative to overconfi-
dence means waiting for observed outcomes to materialize. But another type 
of calibration can be observed very quickly and easily without necessarily 
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waiting for the predicted outcomes to happen or not: We can measure the con-
sistency of the expert. That is, independent of whether the judgment was ac-
curate, we should also expect the expert to give the same answer consistently 
when given the exact same situation. Of course, consistent answers do not 
mean the answers are any good, but we know that two contradictory answers 
cannot both be correct. The amount of inconsistency must be at least a lower 
bound for estimation error. In one extreme, if “experts” give wildly different 
answers every time they look at the exact same issue, then this would be in-
distinguishable from someone who ignores the information they are given and 
randomly picks estimates from slips of paper in a bowl. We don’t have to wait 
for predicted events to occur in order to evaluate the consistency of that expert.

Likewise, even if researchers are perfectly consistent with their own 
previous judgments, but give very different answers than other experts, 
again, we at least know they can’t all be right (of course they could all be 
wrong). Fortunately, these components of expert performance have also 
been measured at length. Researchers have given names to both of these 
measures of consistency:26

■■ Stability: an expert’s agreement with their own previous judgment of 
the identical situation (same expert, same data, different time)

■■ Consensus: an expert’s agreement with other experts (same data, dif-
ferent experts)

In every field tested so far, it has been observed that experts are highly 
inconsistent—both in stability and consensus—in virtually every area of 
judgment. This inconsistency applies whether it relates to project managers 
estimating costs, physicians diagnosing patients, or cybersecurity experts 
evaluating risks.

In an early twentieth century example of this expert consistency mea-
surement, researchers gave several radiologists a stack of 96 X-rays of stom-
ach ulcers.27 Each radiologist was asked to judge whether the ulcer was a 
malignant tumor. A week later the same radiologists were given another set 
of 96 X-rays to assess. Unbeknownst to the radiologists, they were actually 
the same X-rays as before but in a different order. Researchers found that 
radiologists changed their answers 23% of the time.

If we ask an expert in such a situation whether the arbitrary order of the 
list should have any bearing on their judgments, they would all agree that it 
should not. And yet the research tells us that the arbitrary order of lists like 
this actually does affect their judgments.

A particular source of inconsistency appears in another common type of 
judgment. When estimating numbers, the expert can be influenced by an ef-
fect known as “anchoring.” Simply thinking of one number affects the value 
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of a subsequent estimate even on a completely unrelated issue. Researchers 
showed how using arbitrary values, such as one’s Social Security number or 
a randomly generated number, affects subsequent estimates of, for instance, 
the number of doctors in an area or the price of things on eBay.28,29

Why shouldn’t random, irrelevant factors like anchoring also affect the 
judgment of cybersecurity experts? We’ve had a lot of opportunity to gather 
information on that point, and a summary of this data follows:

■■ In multiple separate projects over the last five years, Hubbard and 
his staff asked 54 cybersecurity experts for the probabilities of vari-
ous types of cybersecurity events. The projects were for clients from 
four different industries: oil and gas, banking, higher education, and 
healthcare. Each of these experts had previously completed calibrated 
probability-assessment training.

■■ Each expert was given some descriptive data for 80 to 200 different 
systems or threat scenarios in the organization. The types of scenarios 
and the data provided varied among the clients, but it could include in-
formation about the type of data at risk, the operating systems involved, 
types of existing controls, the types and numbers of users, and so on.

■■ For each of these systems or scenarios, each expert was asked to assess 
the probabilities of up to six different types of events including confi-
dentiality breaches, unauthorized editing of data, unauthorized transfer 
of funds, theft of intellectual property, availability outages, and so on.

■■ In total, for the 54 experts assessing up to 6 probabilities for each of 80 
to 200 situations—typically about 300 to 1,000 estimates per expert—
we have more than 30,000 individual assessments of probabilities.

What the experts were not told at the time they were providing these 
estimates is that the list they were given included some duplicate pairs of 
scenarios. In other words, the data provided for the system in the ninth row 
of the list might be identical to the data provided in the ninety-fifth row, the 
eleventh might be the same as the eighty-first, and so on. Each expert had 
several duplicates in the list, totaling 2,428 duplicate pairs.

To measure inconsistency, we simply needed to compare the first esti-
mate the expert provided with their second estimate for the identical sce-
nario. Figure 4.1 shows how the first and second estimates of identical 
scenarios compare. To better display the concentration of a large number of 
points in the same locations of this chart, we added a bit of random noise 
around each point so that they don’t all plot directly on top of one another. 
But the noise added is very small compared to the overall effect, and the 
noise is only for the display of this chart (it is not used in the statistical 
analysis of the results).
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What we observe is that 26% of the time, there was a difference greater 
than 10 percentage points between the first and second estimate—for exam-
ple, the first estimate was 15% and the second was 26%. Some differences 
were much more extreme. There were even 2.7% where the difference was 
greater than 50 percentage points. See Figure 4.2 for a summary of these 
response inconsistencies.

As inconsistent as this may seem, it’s actually worse than it looks. We 
have to compare this inconsistency to the “discrimination” of the expert. 
That is, how much do the experts’ responses vary for a given type of event? 
The probabilities estimated varied substantially by the type of risk being as-
sessed. For example, availability risk (a system going down) was generally 
given probabilities that were higher than an integrity risk where someone 
could actually steal funds with unauthorized transactions. If all of the re-
sponses of the expert only varied between, say, 2% and 15% for a given type 
of risk (say, the chance of a major data breach), then a 5 or 10 percentage 
point inconsistency would make up a large part of how much the judge 
varied their answers.

Consistency is partly a measure of how diligently the expert is considering 
each scenario. For some of the experts, the inconsistency accounted for most 
of the discrimination. Note that if inconsistency equaled discrimination, this 
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would be what we would observe if an expert were just picking probabili-
ties at random regardless of the information provided. In our surveys, most 
judges appeared to at least try to carefully consider the responses with the 
information provided. Still, we see that inconsistency accounts for at least 
21% of discrimination. That is a significant portion of the expert’s judgment 
reflecting nothing more than personal inconsistency.

We should note that a small percentage of the duplicates were dis-
covered by the participants. Some would send an e-mail saying, “I think 
there is an error in your survey. These two rows are identical data.” But 
nobody who found a duplicate found more than two, and most people 
discovered none. More importantly, the discovery of some duplicates by 
the estimators would only serve to reduce the observed inconsistency. 
The fact that they happened to notice some duplicates means that their 
consistency was measured to be higher than it otherwise would have 
been. In other words, inconsistency is at least as high as we show, not 
lower.

Fortunately, we can also show that this inconsistency can be reduced 
and this will result in improved estimates. We can statistically “smooth” the 
inconsistencies of experts using mathematical methods that reduce esti-
mation error of experts. The authors have had the opportunity to apply 
these methods specifically in cybersecurity (the inconsistency data shown in 
Figure 4.1 were from real-world projects where we applied these methods). 
We will describe these methods in more detail later in the book.

Figure 4.2  Summary of Distribution of Inconsistencies
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The Collaboration Component

We just saw that there is a lot of data about aspects of subjective expert judg-
ment, but there is also interesting research about how to combine the judg-
ments of many experts. Perhaps the most common method of combining ex-
pert judgments is sometimes referred to in the U.S. military as the “BOGSAT” 
method—that is, the “Bunch of Guys Sitting Around Talking” method (excuse 
the gender specificity). The experts meet in a room and talk about how likely 
an event would be, or what its impact would be if it occurred, until they reach 
a consensus (or at least until remaining objections have quieted down).

We can apply different mathematical methods for combining judgments 
and different ways to allow for interaction among the experts. So, as we’ve 
done with the other component tests, we ask whether some methods are 
shown to measurably outperform others.

Some research, for example, shows that the random stability inconsis-
tencies of individuals can be reduced by simply averaging several individu-
als together.30 Instead of meeting in the same room and attempting to reach 
consensus as a group, each expert produces their own estimate indepen-
dently, and their estimates are averaged together.

This approach and some of the research behind it were explained in the 
book The Wisdom of Crowds by James Surowiecki.31 Surowiecki also described 
several other collaboration methods, such as “prediction markets,”32 which 
show a measurable improvement over the estimates of individual experts.

The same data that allowed Hubbard Decision Research to measure 
expert stability was also able to measure consensus. If judges were simply 
personally inconsistent—that is, they had low stability—we would expect 
disagreements between judges solely due to random personal inconsis-
tency. However, the actual total disagreement between experts was more 
than could be accounted for by stability alone. In addition to being per-
sonally inconsistent, experts in the same organization also had systemic 
disagreements with each other about the importance of various factors and 
the overall risk of cybersecurity attacks.

It is interesting to note, however, that cybersecurity experts at a par-
ticular organization provided responses that were well correlated with their 
peers at the same organization. One expert may have estimated the prob-
ability of an event to be consistently higher than their peers, but the same 
information that caused them to increase or decrease a probability also had 
the same effect on other experts. At least they were more or less in agree-
ment “directionally.” So we do not observe that different experts behave as 
if they were just randomly picking answers. They agree with each other to 
some degree and, as the previous research shows, they can predict out-
comes better if we can average several experts together.
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The Decomposition Component

We have already seen that experts don’t perform as well as statistical 
models based on objective, historical data. But what about quantitative 
models that are still based on subjective estimates? Is it possible for ex-
perts to build models, using only their current knowledge, that outper-
form how they would have done without the quantitative models? The 
research says yes.

From the 1970s to the 1990s, decision science researchers Donald G. 
MacGregor and J. Scott Armstrong, both separately and together, conducted 
experiments about how much estimates can be improved by decomposi-
tion.33 For their various experiments, they recruited hundreds of subjects 
to evaluate the difficulty of estimates like the circumference of a given 
coin or the number of pairs of men’s pants made in the United States per 
year. Some of the subjects were asked to directly estimate these quantities, 
while a second group was instead asked to estimate decomposed vari-
ables, which were then used to estimate the original quantity. For example, 
for the question about pants, the second group would estimate the U.S. 
population of men, the number of pairs of pants men buy per year, the 
percentage of pants made overseas, and so on. Then the first group’s esti-
mate (made without the benefit of decomposition) was compared to that 
of the second group.

Armstrong and MacGregor found that decomposition didn’t help 
much if the estimates of the first group already had relatively little 
error—like estimating the circumference of a U.S. 50-cent coin in inches. 
But where the error of the first group was high—as they were with es-
timates for men’s pants manufactured in the United States, or the total 
number of auto accidents per year—then decomposition was a huge 
benefit. They found that for the most uncertain variables, a simple de-
composition—none of which was more than five variables—reduced 
error by a factor of as much as 10 or even 100. Imagine if this were a 
real-world decision with big uncertainties. Decomposition itself is cer-
tainly worth the time.

Doing the math explicitly, even if the inputs themselves were subjective 
estimates, removes a source of error. If we want to estimate the monetary 
impact of a denial of service attack on a given system, we can estimate the 
duration, the number of people affected, and the cost per unit of time per 
person affected. Once we have these estimates, however, we shouldn’t then 
just estimate the product of these values—we should compute the product. 
Since, as we have shown earlier, we tend to make several errors of intuition 
around such calculations, we would be better off just doing the math in 
plain sight. It seemed obvious to many of the researchers that we are better 
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off doing whatever math we would have done in our heads explicitly. As 
Meehl mentioned in one of his papers:

Surely we all know that the human brain is poor at weighting and 
computing. When you check out at a supermarket, you don’t eyeball 
the heap of purchases and say to the clerk, “Well it looks to me as if it’s 
about $17.00 worth; what do you think?” The clerk adds it up.34

But not all decompositions are as informative. It is possible to “over-
decompose” a problem.35 The reason we decompose is that we have less 
uncertainty about some things than we do others, but we can compute the 
latter based on the former. If, however, we do not have less uncertainty about 
the variables we decompose the problem into, then we may not be gaining 
ground. In fact, a bad decomposition could make things worse. In Chapter 6, 
we will discuss what we call “uninformative decompositions” in more detail.

Even assuming your decompositions are useful to you, there are several 
decomposition strategies to choose from, and we will start with no particu-
lar position about which of these decompositions are more informative. The 
best decomposition method may vary from one organization to the next 
as the information they have varies. But, as we will see in Chapter 6, there 
are some hard mathematical rules about whether a decomposition actually 
reduces uncertainty. We should use these rules as well as empirically mea-
sured performance to determine the best method of decomposition for a 
given organization.

Summary and Next Steps

“In my experience . . .” is generally the start of a sentence that should be 
considered with caution, especially when applied to evaluating the expert 
themselves. There are reasons why our experiences, even when they add 
up to many decades, may not be a trustworthy source of information on 
some topics. Because of the analysis placebo, we cannot evaluate ourselves 
in estimation tasks simply by whether we feel better about it. Evaluating 
experts and the methods they use will require that we look at the scientific 
research behind them. And the research clearly points to the following 
conclusions:

	 1.	 Wherever possible, explicit, quantitative models based on objective 
historical data are preferred. The role of experts primarily would be 
to design and set up these models instead of being responsible for 
individual estimates.
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	 2.	 Where we need to estimate probabilities and other quantities, experts 
can be trained to provide subjective probabilities that can be com-
pared to observed reality.

	 3.	 The inconsistency of experts can be moderated with mathematical and 
collaborative methods to get an improvement in estimates. When us-
ing multiple experts, even simple averages of experts appear to be an 
improvement over individual experts.

	 4.	 Decomposition improves estimates, especially when faced with very 
high uncertainty. Models that force calculations to be explicit instead 
of “in the head” of the expert avoid many of the inference errors that 
experts tend to make.

In this chapter, our measurements of different risk assessment methods 
have focused on previously published scientific research into individual 
components of risk assessment processes, including alternative tools for 
estimating probabilities (using experts or algorithms), how to control for 
inconsistencies, how to collaborate, and the effects of decomposition. We 
have focused entirely on components where we have research showing 
how alternative methods measurably improve results.

Every component of the methods we introduced in Chapter 3, and every-
thing we introduce from this point forward, will be guided by this research. 
We are adopting no method component that doesn’t have some research 
supporting it; just as importantly, we are adopting no methods that have been 
shown to add error. The importance of cybersecurity risk assessment means 
that we must continue to seek improvements in our methods. We must persist 
in the kind of skepticism that forces us to ask, “How do I know this works?”

Later, we will describe how to go beyond existing research to track your 
own data in a statistically sound manner that can further reduce uncertainty 
and allow you to continuously improve your risk assessment methods. In 
the next chapter we will continue with a component-level analysis based 
on existing research, but we will focus on those methods that either show 
no improvement—or even make things worse. We need to do this because 
these components are actually part of the most widely used methods and 
standards in cybersecurity. So it is time we addressed these issues head 
on, along with responding to common objections to using the quantitative 
methods we just recommended.
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Chapter 5
Risk Matrices, Lie Factors, 

Misconceptions, and Other Obstacles 
to Measuring Risk 

We are ultimately trying to move cybersecurity in the direction of 
more quantitative risk assessment methods. The previous chapters 

showed that there are several methods that are both practical (the authors 
have used these methods in actual cybersecurity environments) and have  
evidence of measurably improving risk assessments. We offered an ex-
tremely simple method based on a one‐for‐one substitution of the com-
ponents of a risk matrix. Anyone who has the technical skills to work in 
cybersecurity certainly has the skills to implement that solution. Once an 
analyst becomes familiar with the basics, he or she can build on the founda-
tion we’ve provided with our methods in later chapters.

But regardless of the evidence shown so far, we expect to see resistance 
to many of the concepts shown. There will be sacred cows, red herrings, 
black swans, and a few other zoologically-themed metaphors related to 
arguments against the use of quantitative methods. In this chapter we will 
address each of these issues. We have to warn you in advance: This case 
will be tedious. This chapter is long and it will often feel like we are bela-
boring a point beyond what it deserves. But we need to systematically ad-
dress each of these arguments and thoroughly make our case in a manner 
as airtight as the evidence allows.

Scanning the Landscape: A Survey of Cybersecurity Professionals

In preparation for making this comprehensive case, we wanted to under-
stand something about the backgrounds and opinions that the cybersecu-
rity industry had about many of the points we are making. We wanted to 
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know the level of acceptance of current methods and perceptions about 
quantitative methods. So, we asked 171 cybersecurity specialists from a 
variety of backgrounds and industries to answer some questions about 
statistics and the use of quantitative methods in cybersecurity. Survey par-
ticipants were recruited from multiple information security related groups 
including the Society for Information Risk Assessment (SIRA), ISACA, and 
three of the largest discussion groups on LinkedIn. There were a total of 
63 questions covering topics such as personal background, their organi-
zations, and breaches experienced. The survey also included questions 
related to the use of quantitative methods in cybersecurity and a quiz con-
taining basic statistics‐literacy questions.

Part of the survey contained a set of 18 questions we referred to as At-
titudes Toward Quantitative Methods (ATQM). These helped us assess the 
opinions of cybersecurity experts as being more supportive of the use of 
quantitative methods or more skeptical. Within the ATQM, we had two sub-
sets. Some of the questions (7 to be exact) had responses that were clearly 
more “anti‐quantitative,” such as, “Information security is too complex to 
model with quantitative methods.” These questions made much sharper dis-
tinctions between supporters and opponents of quantitative methods. Other 
questions were about attitudes that were not directly anti‐quantitative but 
indicated an acceptance of the value of nonquantitative methods—for ex-
ample, “Ordinal scales help develop consensus for action.” Table 5.1 shows 
a few examples from each group of ATQM questions.

Table 5.1  Selected Examples of Survey Questions About Attitudes Toward 
Quantitative Methods

Statement from Survey
Percent Agreeing

(Positive Responses/Number Responding)

Ordinal scales must be used because 
probabilistic methods are not 
possible in cybersecurity.

18%
(28/154)

Probabilistic methods are impractical 
because probabilities need exact 
data to be computed and we don’t 
have exact data.

23%
(37/158)

Quantitative methods don’t apply in 
situations where there are human 
agents who act unpredictably.

12%
(19/158)

Commonly used ordinal scales help  
us develop consensus for action.

64%
(99/154)
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We found it encouraging that most who work in cybersecurity (86%) 
are generally accepting of more quantitative methods based on probabilis-
tic models; that is, they answered more of the “opinions about quantitative 
methods” in a way that supported quantitative methods. For example, most 
(75%) agreed with the statement “Cybersecurity should eventually adopt 
a more sophisticated probabilistic approach based on actuarial methods 
where it has not already done so.”

However, only 32% were always supportive of quantitative methods 
(i.e., 68% disagreed with some of the statements preferring quantitative 
methods to softer methods). Even those who support more quantitative 
methods see value in the continued use of softer methods. For example, 
64% agreed with the statement “Commonly used ordinal scales help us 
develop consensus for action” and 61% stated that they use risk matrices. 
There is even a small but significant minority (8.3%) who tended to be 
more anti‐quantitative than pro‐quantitative. This is a concern because vocal  
minorities can at least slow an adoption of quantitative methods (the authors 
have seen some cases of this). And even the majority who are generally ac-
cepting of quantitative may be slow to adopt better methods only because 
it seems a bit too challenging to change or because current methods are 
perceived as adequate even if flawed.

Of course, any survey that relies on voluntary responses could have 
a selection bias but it would not be clear whether such a selection bias 
would be more “pro‐” or “anti‐” quantitative. Still, the level of acceptance 
of quantitative methods was on the high end of what we expected. Some 
readers may already question the methods, sample size, and so on but the 
statistical significance—and the academic research credentials of the Hub-
bard Decision Research staff who analyzed the results—will be discussed 
shortly.

If you personally have reservations about moving cybersecurity risk 
assessment in the direction of quantitative methods, see if your specific 
reservation is discussed in this chapter and consider the counterargument. 
If you are a fan of quantitative methods and we are preaching to the choir, 
then familiarize yourself with this chapter so that you might be better able 
to respond to these objections when you hear them.

At first glance, the arguments against the use of quantitative methods 
seem to be many and varied, but we make the case that these points all 
boil down to a few basic types of fallacies. We will start by investigating a 
collection of methods that are currently the most popular in cybersecurity 
risk assessments: the ordinal scales on a risk matrix. Once we can shine a 
light on the problems with these techniques and objections, we hope we 
can move past this to implement mathematically sound risk assessment in a 
field that needs it badly.
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What Color Is Your Risk? The Ubiquitous—and Risky—Risk Matrix

Any cybersecurity expert will recognize and likely embrace the common 
risk matrix, which is based on ordinal scales. In fact, based on our experi-
ence, most executives will laud the risk matrix as “best practice.” As men-
tioned in Chapter 1, these scales represent both likelihood and impact, not 
in probabilistic or monetary terms, but in ordinal scales. The scales might 
be represented with labels such as low, medium, or high, or they might be 
represented as numbers on a scale of, say, 1 to 5. For example, a likelihood 
and impact might be represented as a 3 and a 4, respectively, and the result-
ing risk might be categorized as “medium.” These scales are then usually 
plotted onto a two‐dimensional matrix where the regions of the matrix are 
further categorized into “low” to “high” risk or perhaps given colors (“green” 
is low risk, while “red” is high). In some cases ordinal scales are used with-
out a risk matrix. Perhaps several ordinal scales are added together in an 
overall risk score, as is the case with OWASP’s risk rating methodology.1 
(Note: OWASP, like many frameworks, has great controls recommendations, 
but a controls checklist does not equate to a risk management methodol-
ogy). The scales focus on attributes that might indicate risk (such as “ease 
of discovery” or “regulatory impact”). Then these scores are categorized still 
further into high, medium, and low risk just like a risk matrix.

As mentioned in Chapter 2, ordinal scales are not in themselves neces-
sarily a violation of measurement theory or statistics. They do have legiti-
mate applications. But are they substitutions for ratio scales of probability 
and impact? Meaning, are they some form of vague stand‐in for probabili-
ties, as have already been used in insurance, decision science, statistics, and 
many other areas? Should substituting ordinal scales like “high” or “medium” 
for more quantitative measures strike us as just as odd as an engineer saying  
the mass of a component on an airplane is “medium,” or an accountant re-
porting that revenue was “high” or a “4” on a scale of 5?

These are important questions because risk matrices using ordinal 
scales to represent likelihood and impact are common in cybersecurity. In 
the survey we found that 61% of organizations use some form of the risk 
matrix, and 79% use ordinal scales to assess and communicate risks. Even 
partial use of some of the statistical methods, for which we provided so 
much evidence of their effectiveness in Chapter 4, are much less common. 
For example, only 13% of respondents say they use Monte Carlo simula-
tions, and 14% say they use some form of Bayesian methods (although 
both of these are actually much more common responses than the authors 
expected).

Some form of these ordinal scales are promoted by just about every 
standards organization, consulting group, and security technology vendor 
that covers cybersecurity. Dozens if not hundreds of firms help organizations 
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implement methods or software tools that utilize some form of scores and 
risk matrices. The International Organization for Standardization (ISO) stan-
dard 31010, states that the risk map (what Table A.1 of the standard refers 
to as a “consequency/probability matrix”), is “strongly applicable” for risk  
identification.2

Clearly, these methods are deeply intertwined in the ecosystem of  
cybersecurity. However, as widely used as these scales are in cybersecurity, 
there is not a single study indicating that the use of such methods actually 
helps reduce risk. Nor is there even a study that merely shows that individ-
ual judgment is improved in any way over expert intuition alone. Granted, 
there are a lot of advocates of such methods. But advocates, no matter how 
vocal, should be considered cautiously given the research about the pos-
sibility of analysis placebo effects mentioned in Chapter 4.

On the other hand, several studies show that the types of scales used 
in these risk matrices can make the judgment of an expert worse by intro-
ducing sources of error that did not exist in the experts’ intuition alone. In 
fact, we believe that these methods are like throwing rocket fuel on a fire. 
We have enough uncertainty in battling hard‐to‐detect threats; why make it 
worse by abstracting away data through questionable scales?

In the book The Failure of Risk Management, Hubbard spends an entire 
chapter reviewing the research about the problems with scores. Subsequent 
editions of his book How to Measure Anything added more sources as new 
studies finding problems with these scales were identified. To help make 
this issue clear we will use the same approach used in Chapter 4. That is, we 
will look at research regarding three key components of the issue:

■■ The Psychology of Scales: The psychological research behind how we 
use verbal scales such as “unlikely” to “likely” to evaluate the likelihood 
of an event, and how arbitrary features of verbal or numeric (e.g., 1–5) 
ordinal scales affect our choices.

■■ Math and the Risk Matrix: The mathematical problems associated with 
attempting to do math with ordinal scales or presenting them on a risk 
matrix.

■■ How These Issues Combine: Each of the two issues above is bad enough 
but we will show some research that shows what happens when we 
consider these effects together.

The Psychology of Scales and the Illusion of Communication

Ordinal scales are widely used because of their simplicity, but the psychol-
ogy of how they are actually used is not quite so simple. The human expert 
using a scale has to be thought of as a kind of instrument. The instrument 
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can have surprising behaviors and the conditions that elicit these behaviors 
should be investigated. As we did in earlier component analysis, we resort 
to research in other fields when research in cybersecurity specifically is 
lacking.

One component of risk scales that has been researched is how we 
use words to describe likelihoods. Researchers like the psychologist Da-
vid Budescu published findings about how differently people will interpret 
terms that are meant to convey likelihood such as “unlikely” or “extremely 
likely.” This ambiguity obviously would allow for at least some different 
interpretations, but Budescu wondered how varied those interpretations 
might be. He had subjects in his experiment read phrases from the Intergov-
ernmental Policy on Climate Change (IPCC) report. Budescu would give his 
survey subjects a phrase from the IPCC report, which included one of seven 
probability categories (e.g., “It is very likely that hot extremes, heat waves, 
and heavy precipitation events will continue to become more frequent”). 
Budescu found that individuals varied greatly by how much they inter-
preted the probability implied by the phrase. For example, Budescu finds 
that “Very Likely” could mean anything from 43% to 99%, and “Unlikely” 
could mean as low as 8% or as high as 66% depending on who you ask.3

The subjects in Budescu’s study were 223 students and faculty of the 
University of Illinois, not professionals charged with interpreting that kind 
of research. So we might wonder if these findings would not apply to an 
audience that is more skilled in the topic areas. Fortunately, there is also 
supporting research in the field of intelligence analysis—a field cybersecu-
rity analysts might appreciate as being more relevant to their profession. In 
Psychology of Intelligence Analysis, a declassified 1999 CIA paper, veteran 
CIA analyst Richards J. Heuer, Jr. asked 23 NATO officers to evaluate similar 
probability statements.4 Similar to what Budescu found for “Very Likely,” 
Heuer found that the phrase “Highly Likely” evoked interpretations ranging 
from 50% to nearly 100%. Likewise, Heuer’s findings for “Unlikely” were not 
inconsistent with Budescu’s, since the responses varied from 5% to 35%. 
Figure 5.1 shows the range of responses in Heuer’s study.

In our survey, 28% of cybersecurity professionals reported that they use 
verbal or ordinal scales where the probability they are meant to represent 
is not even defined. However, some scale users attempt to manage this am-
biguity by offering specific definitions for each phase. For example, “Very 
Unlikely” can be defined as a probability of less than 10%. (In fact, this is 
what NIST 800–30 does).5 In our survey, 63% of respondents who use ordi-
nal scales indicated that they use verbal or numbered ordinal scales where 
the probabilities are defined in this way. However, Budescu finds that offer-
ing these definitions doesn’t help, either.

Even in situations where each of the verbal scales was assigned specific 
probability ranges (e.g., “Very Likely” was defined as “Greater than 90%” 
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Figure 5.1  Variations of NATO Officers’ Interpretations of Probability Phrases
Source: Heuer, Psychology of Intelligence Analysis, 1999.

and “Very Unlikely” was defined as “Less than 10%”), these rules were vio-
lated over half the time. In other words, even when participants were told 
exactly what the terms meant, they interpreted the terms in the context of 
the statement they were presented in. In that way, the phrase “Very Likely” 
meant something different to the subjects when it was in the context of 
temperature extremes, glaciers melting, or sea level rise.

Table 5.2 shows how widely the subjects in Budescu’s study interpreted 
these verbal scales even when they were given specific directions regarding 
what they meant. It appears that about half of respondents ignored the guide-
lines (perhaps the term “guideline” itself invited too much interpretation).

Table 5.2  Variance in Understanding Selected Common Terms Used to Express 
Uncertainty in the IPCC Report

Examples of 
Some Likelihood 
Terms Used in 
the Report

IPCC 
Guidelines for 
Meaning

Minimum 
of All 

Responses

Maximum 
of All 

Responses

Percentage 
of Responses 
That Violated 
Guidelines

Very Likely More than 90% 43% 99% 58%
Likely Between  

66% to 90%
45% 84% 46%

Unlikely Between  
10% and 33%

8% 66% 43%

Very Unlikely Less than 10% 3% 75% 67%

Source: David V. Budescu, Stephen Broomell, and Han‐Hui Por, University of Illinois at 
Urbana‐Champaign.
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Some of the more extreme results beg for further explanation. In the 
case of “very unlikely” we see a remarkable range of 3% to 75%. The 75% 
isn’t just a single outlier, either, since two‐thirds of the respondents violated 
the guideline (meaning they interpreted it to mean something greater than 
10%). How could this be? Budescu found very little relationship between 
the subjects’ probability interpretations and their predisposition on climate 
research (i.e., they did not simply put higher probabilities on events if they 
indicated more concern about climate research). But he did point out that 
the ambiguity of some of the statements might have had some bearing on 
responses. If the statement was about the likelihood of “heat extremes,” the 
user may have included uncertainty about the meaning of “heat extremes” 
when they assessed a probability.

Hubbard has another potential explanation. Anecdotally, he has ob-
served conversations about risks with clients where something was judged 
“highly likely” in part because of the impact it would have. Of course, im-
pact and likelihood are supposed to be judged separately, but managers 
and analysts have been heard making statements like “A 10% chance per 
year is far too high for such a big event, so I think of 10% as highly likely.” 
This is purely anecdotal, of course, and we don’t rely on these sorts of 
observations—the data from Budescu and Heuer is sufficient to detect the 
problem. But in terms of potential explanations, the fact that such state-
ments have been observed at least introduces a possibility: Some users of 
these terms are attempting to combine likelihood, impact, and their own 
aversion to risk in highly ad hoc ways. These users require methods that 
unpack these distinct concepts.

Furthermore, to adequately define a probability of an event, we can’t 
exclude the time period it is meant to cover. If, for example, we say that 
an event is 10% likely, do we mean there is a 10% chance of it happen-
ing sometime next year or sometime in the next decade? Obviously, these 
would be very different estimates. How is it that management or analysts 
could come to agree on these points when they haven’t even specified such 
a basic unit of measure in risk?

All these factors together combine to create what Budescu refers to as 
the “illusion of communication.” Individuals may believe they are communi-
cating risks when they have very different understandings of what is being 
said. They may believe they have come to an agreement when they all say 
that some risk is “medium” and another is “high.” And even when specific 
numbers are presented for probabilities, the listener or the presenter may 
conflate their own risk tolerance with the assessment of probability, or they 
may be assuming that the probability is for an event over a longer time 
period than someone else is assuming it to be.

So far we have only discussed the psychology of how people inter-
pret ambiguous terminology in regard to risk, but that is not the end of it. 
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Separate from the use of nonquantitative labels for probabilities or the con-
sequences of other ambiguities, there are some curious human behaviors 
that arise in their responses to subjective ordinal scales in general. Relatively 
arbitrary features of the scale have a much larger effect on judgment than 
the users would expect.

For example, Professor Craig Fox of UCLA conducted studies showing 
that arbitrary features of how scales are partitioned have unexpected effects 
on responses, regardless of how precisely individual values are defined.6 On 
a scale of 1 to 5, the value of “1” will be chosen more often than if it were 
a scale of 1 to 10, even if “1” is defined identically in both (e.g., “1” could 
mean an outage duration of less than 10 minutes or a breach resulting in 
less than $100,000 in losses). In addition, there is plenty of research showing 
how other arbitrary features of scales affect response behavior in ways that 
are unexpected and larger than you might think. These include whether or-
dinal numbers are provided in addition to verbal scales or instead of them,7 
or how the direction of the scale (5 is high or 5 is low) affects responses.8

Issues like these are fairly standard considerations in the field of psy-
chometrics and survey design. Surveys are designed with various sorts of 
controls and item testing so that the effects of some biases can be estimated. 
These are referred to as “artifacts” of the survey and can then be ignored 
when drawing conclusions from it. But we see no evidence that any of these 
considerations are ever entertained in the development of risk scales. We 
need to consider the psychology of how we assess risks and how we use 
these tools. It cannot be taken for granted.

Intelligence analysts should be self‐conscious about their reasoning pro-
cess. They should think about how they make judgments and reach con-
clusions, not just about the judgments and conclusions themselves.

—Richards J. Heuer Jr., Psychology of Intelligence Analysis

How the Risk Matrix Doesn’t Add Up

At first glance, the math behind a risk score or risk matrix could hardly 
be simpler. But, as with the psychology of scales, further investigation re-
veals new concerns. This may seem like a bit of esoterica, but, just as with 
every other component of risk analysis, the scale of the problem means we 
shouldn’t leave such a widely used tool unexamined.

Perhaps nobody has spent more time on this topic than Tony Cox, 
PhD, an MIT‐trained risk expert. He has written extensively about the prob-
lems that ordinal scales introduce in risk assessment and how those scales 
are then converted into a risk matrix (which is then often converted into 
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regions of “low” to “high” risk). He investigates all the less‐than‐obvious 
consequences of various forms of ordinal scales and risk matrices and how 
they can lead to decision‐making error.9

One such error is what he refers to as “range compression.” Range com-
pression is a sort of extreme rounding error introduced by how continuous 
values like probability and impact are reduced to a single ordinal value. No 
matter how the buckets of continuous quantities are partitioned into ordinal 
values, choices have to be made that undermine the value of the exercise. 
For example, the upper end of impact may be defined as “losses of $10 mil-
lion or more” so that $10 million and $100 million are in the same bucket. 
To adjust for this, either the $10 million must be increased—which means 
the ranges in the lower categories also must be widened—or the number of 
categories must be increased.

Range compression is further exacerbated when two ordinal scales are 
combined onto a matrix. Cox shows how this can result in two very dif-
ferent risks being plotted in the same cell (i.e., the position at a given row 
and column in a matrix) and how a higher‐risk cell can contain a risk that 
is lower than a risk in a low‐risk cell. To see this, consider the risk matrix 
shown in Table 5.3. It is drawn from an actual risk matrix example pro-
moted by a major consulting organization.

First, let’s look at how two very different risks can end up in the same 
cell. We’ll plot two risks in the “Seldom” likelihood category, which ranges 
from “greater than 1% and up to 25%” to the maximum loss category, “$10 
million or more.” The two risks are:

■■ Risk A: likelihood is 2%, impact is $10 million
■■ Risk B: likelihood is 20%, impact is $100 million

Table 5.3  Risk Matrix Example to Illustrate Range Compression Problems

Impact

Negligible Minor Moderate Critical Catastrophic

<$10K
$10K to 
<$100K

$100K to  
<$1 Million

$1 Million 
to <$10 
Million ≥$10 Million

Likelihood Frequent 99%+ Medium Medium High High High

Likely >50%–99% Medium Medium Medium High High

Occasional >25%–50% Low Medium Medium Medium High

Seldom >1%–25% Low Low Medium Medium Medium

Improbable ≤1% Low Low Low Medium Medium
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With this information Cox computes the “expected loss” (probability 
weighted loss), just as an actuary would do for many types of risks. He 
compares the products of the likelihoods and impacts of the risks: $200,000 
for Risk A (2% × $10 million) and $20 million for Risk B (20% × $100 mil-
lion). In other words, to an actuary, Risk B would be considered to have 100 
times the risk of Risk A. Yet these two very different risks would actually be 
plotted in the same cell (that is, same row, same column) on a risk matrix!

Next, let’s look at how Cox shows that two very different risks can be 
plotted in cells that are the opposite order by expected loss. Again, this 
relies on the fact that in order to map continuous values with wide ranges to 
discrete bins, some “bins” on the likelihood and impact axes have to contain 
wide ranges of values. Here are another two risks:

■■ Risk A: Likelihood is 50%, impact is $9 million
■■ Risk B: Likelihood is 60%, impact is $2 million

In this case, Risk A has an expected loss of $4.5 million and Risk B has 
an expected loss of $1.2 million. Yet, if we followed the rules of this matrix, 
Risk B is considered a “High” risk and Risk A is only “Medium.” Cox says 
that these properties combine to make a risk matrix literally “worse than 
useless.” As remarkable as this sounds, he argues (and demonstrates) it 
could even be worse than randomly prioritized risks.

Some might argue that this is a straw man argument because we don’t 
usually have the specific probabilities and impacts used in these examples. 
We only have vague ideas of the ranges, they might argue. But the ambi-
guity hides problems instead of facilitating the lack of information. Cox 
also points out that risk matrices ignore factors such as correlations be-
tween events. He stated in an interview with this book’s authors that “it is 
traditional to completely ignore correlations between vulnerability, conse-
quence, and threat. Yet, the correlations can completely change the implica-
tions for risk management.”

Cox sees the potential for conflation of computed risks and risk toler-
ance: “The risk attitude used in assessing uncertain consequences is never 
revealed in conjunction with the risk matrix. But without knowing that, 
there is no way to decipher what the ratings are intended to mean, or how 
they might change if someone with a different risk attitude were to do the 
ratings. The assessments shown in the matrix reflect an unknown mixture 
of factual and subjective components.” He asks what seems like a basic  
question: “The problem arises when you ask ‘What did I just see?’ when 
looking at a score or matrix.”

The reader could make the case that this is just a feature of this par-
ticular risk matrix, and a different matrix with different categories wouldn’t 
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have this problem. Actually, there will still be examples of inconsistencies 
like this regardless of how the ranges are defined for impact and likelihood. 
Cox himself even worked on how some of these issues can be avoided—but 
only some. Cox’s “risk matrix theorem” shows how certain rules and ar-
rangements of categories can at least lead to a weakly consistent matrix. He 
defines “weakly consistent” in a very specific way and never concedes that 
a matrix could be entirely consistent. In short, matrices are ambiguity ampli-
fiers. Cox summarizes his position for us by saying, “Simply on theoretical 
grounds there is no unambiguous way of coming up with such ratings in a 
risk matrix when the underlying severities are uncertain.”

Other scoring methods don’t necessarily rely on risk matrices. As men-
tioned earlier, methods such as OWASP simply add up multiple ordinal 
scales to get to an overall risk score. We also noted that this method and 
others like it in security find precedence in various scoring systems like 
the Common Vulnerability Scoring System (CVSS), the Common Weak-
ness Scoring System (CWSS), the Common Configuration Scoring System 
(CCSS), and so forth. All of these scoring systems do improper math on 
nonmathematical objects for the purpose of aggregating some concept of 
risk. These wouldn’t have the same problems as a risk matrix, but they 
introduce others—such as the mathematical no‐no of applying operations 
like addition and multiplication to ordinal scales. As the authors have stated 
it in presentations on this topic, it is like saying “Birds times Orange plus 
Fish times Green equals High.” And, of course, methods like those used in 
the CVSS would share the same problems of scale‐response psychology 
(discussed earlier) as any risk matrix.

Amplifying Effects: More Studies Against the Risk Matrix  
(As If We Needed More)

The effects mentioned so far are compounding, meaning they work to-
gether to make risk management even more difficult than they could indi-
vidually. Work from multiple sources has been done that shows the harm of 
combining scales and risk matrices.

In 2008 and 2009, Hubbard collected data from five different organiza-
tions regarding cybersecurity risks. Each provided separate responses from 
multiple individuals, with each individual providing dozens of scores for 
various risks. In total, there were a little over 2,000 individual responses. 
Hubbard found that the responses were highly clustered—about 76% of re-
sponses fell within just two values on the scale (a 3 or 4 on a 5‐point scale). 
That is, most of the responses really boiled down to a decision between two 
specific values on the 5‐point scale. What was meant to be a 5 × 5 matrix 
was mostly a 2 × 2 matrix. The net effect of the clustering was an even lower 
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resolution—that is, an even bigger rounding error and even less informa-
tion. Combined with the other research, Hubbard suspected this clustering 
could only exacerbate the problems found in the earlier research.

Hubbard teamed up with psychologist Dylan Evans to publish these 
findings in the IBM Journal of Research & Development. (Evans is an expe-
rienced researcher and professor who had also researched the effects of 
placebos and their use in clinical drug trials.) Their paper, which was pub-
lished in 2010, presented a comprehensive review of the literature up to that 
point, and combined this with Hubbard’s observations from his collection of 
ordinal‐scale responses. In short, the paper concluded:

The problem discussed in this paper is serious. The fact that simple 
scoring methods are easy to use, combined with the difficulty and time 
delay in tracking results with respect to reality, means that the prolif-
eration of such methods may well be due entirely to their perceived 
benefits and yet have no objective value.10

Another more recent and (as Hubbard is happy to concede) even 
more comprehensive investigation, using psychological literature, theo-
retical issues, and original data, found similar results. In the Economics 
& Management journal of the Society of Petroleum Engineers, authors 
Philip Thomas, Reidar Bratvold, and J. Eric Bickel reviewed 30 different 
papers that described various risk matrices (mostly used in the oil and 
gas industry). In addition to providing a comprehensive review of all the 
literature (including Budescu, Cox, Hubbard and Evans, and many more), 
the authors also examined the effect of changing the design of the risk 
matrix and the ranking of various risks, and then measured how risk ma-
trices distort data.11

Leveraging Cox’s findings, Thomas et al. showed how the designs of 
these various risk matrices affected the rankings of risks in a way the ma-
trices’ designers probably did not anticipate. For example, 5 of the 30 risk 
matrix designs they investigated reversed the score—that is, 1 was high 
impact or likelihood instead of 5. These matrices would then multiply the 
likelihood and impact scores just as many of the other matrices did, but the 
lower product was considered high risk. The designers of these methods 
may have thought this was an arbitrary choice that would have no conse-
quence for the risk rankings. Actually, it changed them a lot. Thomas et al. 
also looked at how various methods of categorizing likelihood and impact 
into a few discrete ordinal values (such as defining “Unlikely” as 1% to 
25% or moderate impact as $100,000 to $1 million) modified risk rankings. 
Again, they found that these arbitrary design choices had a significant im-
pact on ranking risks.
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Thomas et al. also estimated a “Lie Factor” for each of several types 
of risk matrices. The Lie Factor is a measure defined by Edward Tufte and 
Peter Graves‐Morris in 1983 based on how much data is distorted in a chart 
by misleading features of the chart, intentional or otherwise.12 This is effec-
tively a variation on the “range compression” that Cox examined in detail. 
Using a particular method for computing the Lie Factor, they found that the 
ratio of distortions of data averaged across the various risk matrix designs 
was in excess of 100. To get a sense of what a Lie Factor of 100 means, con-
sider that when Edward Tufte explained this method he used an example 
that he classified as a “whopping lie”—it had a Lie Factor of 14.8.

Thomas et al. found that any design of a risk matrix had “gross incon-
sistencies and arbitrariness” embedded within it. Their conclusion is con-
sistent with the conclusions of everyone who has seriously researched risk 
matrices:

How can it be argued that a method that distorts the information under-
lying an engineering decision in non‐uniform and uncontrolled ways 
is an industry best practice? The burden of proof is squarely on the 
shoulders of those who would recommend the use of such methods to 
prove that the obvious inconsistencies do not impair decision making, 
much less improve it, as is often claimed.

They presented these findings in a webinar that was part of Stanford’s Stra-
tegic Decision and Risk Management lecture series. To drive home their 
finding, one of the PowerPoint slides in their presentations contained a 
large rectangular space titled “Heat Map Theory and Empirical Testing” (see 
Figure 5.2). Showing a little humor combined with a lot of seriousness, the 
rectangle was empty.

Heat Map Theory and Empirical Testing

Figure 5.2  Heat Map Theory and Empirical Testing
Source: P. Thomas, R. Bratvold, and J. E. Bickel, “The Risk of Using Risk Matrices,” 
Society of Petroleum Engineers Economics & Management 6, no. 2 (April 2014): 56–66.
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Again, if you are wondering whether these findings must somehow 
be limited to the oil and gas industry (the target audience of the journal 
where this research was published), consider the NASA example briefly 
mentioned in Chapter 4. Recall that the research showed how Monte Carlo 
and statistical regression‐based methods performed compared to “softer” 
methods. The softer method referred to was actually NASA’s own version of 
the 5 × 5 risk matrix. The mission scientists and engineers arguably had a  
subject‐matter advantage over the accountants—and yet, the accountants 
using Monte Carlo simulations and historical data were better at forecasting 
than the scientists and engineers using a risk matrix.

Last, these scales do not account in any way for the limitations of expert 
judgment as described in Chapter 4. The errors of the experts are simply 
further exacerbated by the additional errors introduced by the scales and 
matrices themselves. We agree with the solution proposed by Thomas et al. 
There is no need for cybersecurity (or other areas of risk analysis that 
also use risk matrices) to reinvent well‐established quantitative methods 
used in many equally complex problems. Thomas et al. recommend proper 
decision‐analysis tools that use explicit probabilities to represent uncer-
tainty. They compare RMs (risk matrices) to decision analysis in this way:

[T]he processes and tools drawn from decision analysis are consistent, 
do not carry the inherent flaws of the RMs, and provide clarity and trans-
parency to the decision‐making situation. Our best chance for providing 
high‐quality risk‐management decisions is to apply the well‐developed 
and consistent set of processes and tools embodied in decision science.

To make this distinction clear, just compare the risk matrix to the Loss 
Exceedance Curve presented in Chapter 3. Recall that the LEC captures all 
uncertainty about impact regardless of how wide the range might be, and 
that the risk tolerance curve provides an explicit record of how much risk 
an organization’s management accepts. So how does the risk matrix allow 
for more uncertainty about impact if impact doesn’t neatly fit in one cat-
egory? How does the risk matrix unambiguously capture the risk tolerance 
of management in a way that allows for clear evaluation of options?

Like the authors of this book, Thomas, Bratvold and Bickel state what 
should now be the obvious conclusion for anyone who considers all the 
research:

Given these problems, it seems clear that RMs should not be used for 
decisions of any consequence. 

Hopefully, that settles that.
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Exsupero Ursus and Other Fallacies

You might have heard the old joke about two hikers getting ready for a 
walk into the woods. (If you have heard it—probably many times—thanks 
in advance for your indulgence, but there is a point.) One hiker is wearing 
his running shoes instead of his regular hiking boots. The other asks, “Is 
there something wrong with your regular boots?” to which the first hiker re-
sponds, “No, I just heard there were bears in the woods today. I wore these 
shoes so I could run faster.”

His friend, confused, reminds him, “But you know you can’t outrun  
a bear.”

The hiker with the running shoes replies, “I don’t have to outrun a bear. 
I just have to outrun you.”

This old (and admittedly tired) joke is the basis for the name of a 
particular fallacy when it comes to evaluating models or decision‐making 
methods of any kind. We call it the Exsupero Ursus fallacy—or, if you can 
do without the hokey pseudo‐scholarly Latin term we just made up with 
Google Translate, you can call it the “beat the bear” fallacy. The basis of this 
fallacy goes something like this: If there is a single example of one method 
failing in some way or even having a minor weakness, we default to another 
method without ever investigating whether the alternative method has even 
worse weaknesses and track record.

We get many opportunities to meet managers and executives who have 
difficulty believing that quantitative models could possibly be an improve-
ment over expert intuition or qualitative methods. One such person was 
an operational risk officer who challenged quantitative methods by asking, 
“How can you possibly model all the factors?” Of course, models never 
model or even attempt to model “all” the factors. The risk officer was com-
mitting the Exsupero Ursus fallacy. Does he believe that when he uses his 
own judgment or a softer score‐based method that he is capturing literally 
all the factors? Of course not. He was simply comparing the quantitative 
method to some ideal that apparently captures all possible factors as op-
posed to comparing quantitative method to the actual alternatives: his own 
judgment or other methods he preferred.

Remember, the reason we are promoting the quantitative methods men-
tioned in this book is that we can point to specific research showing that 
they are superior (i.e., measurably superior) to specific alternatives like 
expert intuition. As the great statistician George Box is often quoted as 
saying, “All models are wrong, but some are useful.” And to take it further, 
the research clearly shows that some models are measurably more useful 
than others. That is, they predict observed results better and are more likely 
to lead to preferred outcomes. When someone points out a shortcoming 
of any model, the same standard must then be applied to the proposed 
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alternative to that model. The first model may have error, but if the alterna-
tive has even more error, then you stick with the first.

This fundamental fallacy seems to be behind several arguments against 
the use of quantitative, probabilistic methods. We only need to list a few 
and you will see how each of the objections can be countered with the 
same response.

Beliefs about the Feasibility of Quantitative Methods: A Hard Truth

Some cybersecurity experts in the survey (18%) said they agreed with the 
statement “Ordinal scales must be used because probabilistic methods are 
not possible in cybersecurity.” This can be disproven by virtue of the fact 
that every method we discuss in this book has already been used in real 
organizations many times. Holding a belief that these methods are not prac-
tical is sort of like telling an airline pilot that commercial flight isn’t practical. 
So where does this resistance really come from?

Our survey indicated one potential reason behind that position: Statisti-
cal literacy is strongly correlated with acceptance of quantitative methods. 
One set of questions in the survey tested for basic understanding of statisti-
cal and probabilistic concepts. We found that those who thought quantita-
tive methods were impractical or saw other obstacles to using quantitative 
methods were much more likely to perform poorly on statistical literacy.

The statistical literacy section of the survey had 10 questions related to 
basic statistical literacy. Many of those survey items were based on questions 
that had been used in other surveys on statistical literacy by Kahneman and 
others. Some of the questions involved common misunderstandings of cor-
relation, sample size, inferences from limited data, the meaning of “statisti-
cally significant,” and basic probabilities (see example in Table 5.4).

Table 5.4  Example Stats Literacy Question

Assume the probability of an event, X, occurring in your firm sometime in 
2016 is 20%. The probability of this event goes to 70% if threat T exists. There 
is a 10% probability that threat T exists. Which of the following statements is 
true?

A.	 �If the threat T does not exist, the probability of the event X must be less than 
20%.*

B.	 If the event X does not occur, then T does not exist.

C.	 �Given that the event X occurs, the probability that threat T exists must be 
greater than 50%.

D.	 There is insufficient information to answer the question.

E.	 I don’t know.

*Correct answer. (Chapter 8 covers the relevant rules—specifically rule 6.)
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For further details, we put the entire survey report available for down-
load on www.howtomeasureanything.com/cybersecurity.

We then compared stats literacy to the attitudes regarding the seven 
strongly anti‐quantitative questions in the ATQM section of the survey. A 
summary of the relationship between stats literacy and positive attitudes 
toward the use of quantitative methods is shown in Figure 5.3.

Note that a rating in the “Median or Lower” group on pro‐quant at-
titude doesn’t necessarily mean they were generally against quantitative 
methods. Most people were quite supportive of quantitative methods, and 
so the median number of supportive responses is still more supportive than 
not, although it shows more reservations about quantitative methods than 
those who had more than the median number of pro‐quant responses. For 
stats literacy, however, a median score (3 out of 10) was about how well 
someone would do if they were guessing (given the number of choices per 
question, randomly choosing any answer other than “I don’t know” would 
produce 2.3 correct out of 10, on average). Those who did even worse 
were not only worse than guessing, they believed common misconceptions. 
Those who did better than the median on stats literacy were doing better 
than guessing.

Now that we clarified that point, you can see that those who scored 
above the median on stats literacy were much more likely to be above the 
median on “pro‐quant” attitudes; likewise, those who were pro‐quant were 
more likely to be stats literate. This is true even for what may seem like a 
small number of questions in this quiz. Given the number of questions and 

Figure 5.3  Stats Literacy versus Attitude toward Quantitative Methods
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the number of potential choices per question, we can apply certain statisti-
cal tests. We find that—when we do the math—the relationship between 
stats literacy and pro‐stats attitudes is statistically significant even with the 
small number of questions per respondent. (For the particularly stats‐literate 
among the readers, these findings have a P‐value of less than 0.01.) The 
survey also provided some other interesting observations.

Various Other Survey Observations Related to Stats Literacy and  
Acceptance

■■ The most anti‐quantitative quartile of subjects (the bottom 25%) were 
twice as likely to simply skip the stats literacy quiz as those who were 
in the most pro‐quant quartile.

■■ More experience in cybersecurity was associated with positive attitudes 
toward quantitative methods. It also appears that those who had even 
tried quantitative methods like Monte Carlo simulations were much 
more likely to be pro‐quantitative. We found that 23% of the more 
pro‐quant group had tried Monte Carlo simulations, while only 4% of 
the anti‐quantitative group had done so. We aren’t saying that the pro‐
quantitative disposition drove the desire to try Monte Carlo simulations 
or that trying Monte Carlo made them pro‐quantitative. But the associa-
tion is strong.

■■ Those who performed the worst on the stats literacy quiz were more 
likely to overestimate their skills in statistics. This is consistent with a 
phenomenon known as the Dunning‐Kruger effect.13 That is, there is 
a tendency for people who perform poorly on any test (driving, basic 
logic, etc.) to believe they are better than they are at the measured task. 
In our survey we found that 63% of individuals with below‐average 
statistics literacy wrongly identified themselves as having average or 
above‐average proficiency in statistics. So those who are performing 
poorly on stats literacy won’t usually know they have misconceptions.

Actually, all this just confirms with empirical analysis the suspicions 
we’ve had based on multiple anecdotal observations. Those who believe 
quantitative methods are impractical in cybersecurity are not saying so be-
cause they know more about cybersecurity but because they know less 
about quantitative methods. If you think that you understand quantitative 
probabilistic methods but do not agree that these methods are feasible in 
cybersecurity, don’t shoot the messenger. We’re just reporting the observa-
tion. For those of you in the majority who believe better methods are fea-
sible and are supportive of exploring them, we don’t mean to preach to the 
choir. Perhaps you can use this information to diagnose internal resistance 
and possibly influence future training and hiring decisions to address unfa-
miliarity with quantitative methods in cybersecurity.
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It may be a hard pill to swallow for some, but the conclusion from our 
survey is as unavoidable as it is harsh. Cybersecurity is a critically important 
topic of growing concern and we don’t have the luxury of pulling punches 
when solving this problem. As we argued in Chapter 4 as well as earlier in 
this chapter, all models should be critically evaluated, including quantitative 
solutions, so it is not our objective to browbeat these voices into silence. 
But blanket objections to quantitative methods need to be recognized as 
nothing more than stats-phobia—born of stats illiteracy.

We are fairly sure we will get some e-mail on this point. But the math 
is sound and the arguments against the conclusion will contain critical flaws 
(we know this because we have already seen many of them). The person 
at Hubbard Decision Research who assisted with this analysis was one of 
HDR’s senior quantitative analysts, Jim Clinton. He has a PhD in cognitive 
psychology and has published scientific research specializing in the appli-
cation of advanced statistical methods to experimental psychology. So, yes, 
he knows what he is doing when he is assessing the statistical validity of a 
survey. We mention this in anticipation of objections to the survey methods, 
the number and type of questions we used, and the overall statistical signifi-
cance. The methods, the sample size, and the correct answers to the stats 
literacy questions are all quite sound. But we know from past experience 
and the results of this survey that there will be some people who—based on 
an incorrect belief of their understanding of statistical methods—presume 
that because the findings contradict the math they do in their heads, it must 
be the survey that was wrong. It’s not. We didn’t do the math in our heads. 
We did the actual math. Now let’s continue.

Same Fallacy: More Forms

The 29% who agreed with the statement “Ordinal scales or qualitative meth-
ods alleviate the problems with quantitative methods” were committing a 
type of Exsupero Ursus fallacy. The thinking here is that because quantita-
tive methods are imperfect, therefore we must use the alternative, which 
somehow corrects for these errors. But what is this alleged mechanism of 
correction? From what we see of the research previously presented, not 
only do ordinal scales and risk matrices not correct for the errors of quanti-
tative methods, they add errors of their own.

Again, we believe we should always ask tough questions of any method, 
including quantitative ones, and we’ve attempted to address this by citing 
overwhelming research to make our point. But we also apply the same 
skepticism to the preferred, softer alternatives promoted by so many stan-
dards organizations and consulting firms. We cited research that consistently 
finds flaws in these methods and finds a relative advantage in quantitative 
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methods. So, let’s use other responses in this survey to break down various 
sources of the anti‐quantitative positions and address them one by one.

“Probabilistic methods are impractical because probabilities need exact 
data to be computed and we don’t have exact data” is a common objection 
to the use of statistics in many fields, not just cybersecurity. In our survey, 
23% of respondents agreed with the statement. Yet, as we mentioned in 
Chapter 2, you have more data than you think and need less than you think, 
if you are resourceful in gathering data and if you actually do the math with 
the little data you may have. The Exsupero Ursus fallacy here, again, is that 
the alternative to the proposed quantitative method somehow alleviates 
the lack of data. On the contrary, it appears ordinal scales and expert intu-
ition may be useful in obfuscating the lack of data because they gloss over 
the entire issue. The previous research shows that ordinal scales and risk 
matrices might actually add error—that is, they literally reduce the limited 
information available to the intuition of the person using them.

Fortunately, like the other anti‐quant‐attitude questions, most respon-
dents disagreed. They are more willing than not to try better methods. 
However, 23% is a significant portion of cybersecurity professionals who 
have a fundamental misunderstanding of why probabilistic methods are 
used. One of those who agreed with the statement wrote the following in 
an open‐ended response section of the survey:

The problem I have always had with quantifying a security risk is that 
when you have a vulnerability, say, an unpatched server, there is such 
a wide range of things that could happen if that was to be exploited 
. . . So, what does it mean to go to your board and say, well, this could 
result in a loss in the range of $0–$500 million?

Before we respond, know that this is not a personal attack on anyone—
not the person who graciously participated in our survey or anyone else 
who agrees with the statement. But we aren’t helping cybersecurity by not 
providing an honest evaluation of the claim. We respect this claim enough 
to say it deserves a response. So here we go.

Of course, such losses are at least possible for organizations that are 
large enough, since we know of losses about that size that have happened 
in business. So, if this is the “possibility range,” then why not make the up-
per bound a billion dollars or more? But clearly these outcomes are not all 
equally likely. In contrast, a probability distribution communicates the prob-
abilities of various outcomes. We suspect that this analyst has more informa-
tion than this or could at least gather more information.

If that enormous range really is the extent of uncertainty about this 
loss, and if everything in that range was equally likely, how does the analyst 
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propose that, say, a conventional risk matrix would have alleviated that 
uncertainty? Of course, it would not. It would simply have glossed over the 
uncertainty. (In fact, the analyst probably would have plotted this risk in a 
single cell of the matrix, even though the stated range would have spanned 
most or all of the impact categories.)

Another interesting question is that if this were really the level of uncer-
tainty about potential losses, then what steps is the analyst taking to reduce 
that uncertainty by at least some amount? Surely, any risk with such a wide 
range of uncertainties would merit further investigation. Or does this analyst 
plan on simply continuing to hide this major uncertainty from the board by 
using ambiguous risk terminology? Remember from Chapter 2 that it is in 
precisely these cases of extreme uncertainty where uncertainty reduction 
is both easier and most valuable. We have already presented research on 
how decomposing a wide range like that (by thinking through estimates of 
individual consequences and running a simulation to add them up) is likely 
to reduce uncertainty.

Those who agree with the statement that probabilistic methods need 
exact data misunderstand a basic point in probabilistic methods. We use 
quantitative, probabilistic methods specifically because we lack perfect in-
formation, not in spite of it. If we had perfect information, we would not 
need probabilistic models at all. Remember, nothing we are proposing in 
this book is something the authors and other colleagues haven’t done many 
times in many environments. We have presented wide ranges many times 
to upper management in many firms, and we find they appreciate explicit 
statements of uncertainty.

We can make a similar response to the concern that cybersecurity is too 
complex to model quantitatively or that quantitative methods don’t apply 
where human opponents are involved. Just like the previous questions, we 
have to ask exactly how risk matrices and risk scores alleviate these issues. 
If it is too complex to model quantitatively, how do we propose that a non-
quantitative solution addresses this complexity? Remember, no matter how 
complex a system is, if you are making even purely subjective judgments 
about the system, you are modeling it. The Exsupero Ursus fallacy (i.e., it’s 
not a perfect method; it failed once before, so I can’t use it) still depends on 
failing to apply the same standard to the alternatives to probabilistic methods.

Many experts make an incorrect assumption that the more complex 
the problem, the worse quantitative methods will do compared to hu-
man experts. Yet, the findings of Meehl and Tetlock (reviewed in Chapter 
4) show that as problems get more complex, the human experts are not  
doing better compared to even naïve statistical models. So the complexity 
of the world we model is common to both quantitative and nonquantitative 
models. But, unlike the risk matrix and ordinal scales, the components of 
even a simplified quantitative method hold up to scientific scrutiny.
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Christopher “Kip” Bohn, an actuary for the insurance broker Aon, runs 
into this same objection and has the same reaction we do. Bohn has done a 
wide variety of risk analysis in many fields, but is one of a growing rank of 
actuaries who have been working on underwriting cybersecurity risks using 
the quantitative tools of analytics. He describes his response in an interview:

In every single presentation I give in analytics I have a slide regarding 
how to respond to people who say you can’t model that. Of course, 
they are actually building a model in their head when they make a deci-
sion. I tell them, “We just want the model out of your head.”

Well said, Kip. Complexity, the lack of data, unpredictable human ac-
tors, and rapidly changing technology are often used as excuses for not 
adopting more quantitative methods. Ironically, the de facto solution is often 
to somehow deal with these issues in the undocumented and uncalculated 
intuition of the expert. If a problem is extremely complex, that’s exactly the 
time to avoid trying to do it in your head. Aerodynamic simulations and 
power plant monitoring are also complex. But that is exactly why engineers 
don’t do that analysis their heads. Cybersecurity will deal with multiple, 
interacting systems and controls and multiple types of losses. Some of these 
systems will have different types of losses than others and some events are 
more likely than others. Then you have to roll it up into a portfolio to de-
termine overall risk. It’s not particularly hard math (especially since we are 
providing spreadsheets for just about every calculation we talk about), but 
you still don’t want to do that math in your head.

So, whenever you hear such an objection, just ask, “But how does 
your current method (risk matrix, ordinal scores, gut feel, etc.) allevi-
ate this shortcoming?” It only feels like the issue is addressed in softer  
methods because the softer methods never force you to deal with it. And if 
you are uncertain—even as uncertain as the $0 to $500 million impact range 
mentioned earlier—then you can specifically state that uncertainty and  
prioritize your security controls accordingly.

The Target Breach as a Counter to Exsupero Ursus

A final objection we will mention related to Exsupero Ursus is that there 
are numerous examples of quantitative methods failing, and it is therefore 
argued that they should be avoided. The idea is that events like the 2008 
financial crisis, the 2010 Deepwater Horizon rig explosion and oil leak in 
the Gulf of Mexico, the 2011 Fukushima Nuclear Power Plant disaster in 
Japan, and other events indicated the failure of quantitative methods. There 
are several problems with this objection, which Hubbard also discusses in 
The Failure of Risk Management, but we will summarize a couple of them.
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First, the anecdotes presume that an actual quantitative method was 
being used instead of intuition and if intuition were used it somehow would 
have averted the disaster. There is no basis for this claim and there is actu-
ally evidence that the opposite is true. For example, greed and incentives 
created and then obscured the risks of investments, and in some cases (such 
as the AIG crisis) it was in fact the lack of actuarially sound analysis by regu-
lators and auditors that allowed these systems to flourish.

The second problem with this objection is that they are selected anec-
dotes. How many examples of failures are there from methods based on 
pure intuition or soft methods? Even if these were legitimate examples of 
actual quantitative‐method failure (the authors would concede there are 
many), we still come back to how to avoid the basic fallacy we are discuss-
ing—that is, we need to compare them to the failure rate of nonquantitative 
methods. The fact is there are also many failures where nonquantitative 
methods were used in decision making. Indeed, how well did judgment and 
intuition perform in the financial crisis, the design of the Fukushima plant, 
or the management of Deepwater Horizon?

The massive data breach of the retailer Target in 2013 is a case in point. 
This breach is well known in the cybersecurity community, but perhaps 
what is less widely known are the methods Target used and failed to use 
to assess its risks. Hubbard and Seiersen interviewed a source who was 
employed by Target up to about a year prior to the event. According to our 
source, Target was about as far from a quantitative solution to cyber risks 
as any organization could be. Even though there were attempts to intro-
duce more quantitative methods, several people were entrenched in using 
a method based on assessing risks based on verbal “high, medium, and 
low” labels. There were executives who believed quantitative methods to 
be too complex and that they required too much time. They actually took 
the trouble to create a list of reasons against using quantitative methods—
the items on the list that we know about are those very objections we have 
been refuting in this chapter. (We were told that since the breach, there has 
been a significant change in cybersecurity leadership.)

Eventually the company recognized that credit card records of as many 
as 70 million people had been breached. The combined settlements to 
Master Card and Visa exceeded $100 million.14 Now, if we believed anec-
dotes were a sufficient basis for a comparison of methods, then we could 
definitely spend the time to find more examples. After all, were Anthem, 
Sony, Home Depot, the U.S. federal government, and other organizations 
that were hit by major cyberattacks using probabilistic methods instead of 
scales and risk matrices? We doubt it.

Of course, selected anecdotes are not the way to support the claim 
about which method is better. As we have done so far, the only way to 
properly avoid the Exsupero Ursus fallacy is to look at large sets, chosen in 
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an unbiased manner, and systematically compare failures of both methods. 
Even if one method has failures, it should be preferred over a method that 
has even more. The research we presented so far (see the endnotes for this 
chapter and Chapter 4) supports the claim that quantitative methods outper-
form human expert intuition and humans using scales or risk matrices. The 
only research available on risk matrices, on the other hand, supports the 
claim that risk matrices do no good at all and may even do harm.

Communication and Consensus Objections

Last, there are objections that are neither strictly Exsupero Ursus fallacies 
nor based on misconceptions about quantitative methods such as the belief 
that we need perfect data. Some objections boil down to the presumption 
of other conveniences, such as the idea that nonquantitative methods are 
better because they are easier to explain and, therefore, easier to agree with 
and act on. In the survey, we saw that 31% of respondents agreed with the 
statement “Ordinal scales used in most information risk assessments are 
better than quantitative because they are easy to understand and explain.” 
Also, a majority (64%) agreed with “Commonly used ordinal scales help us 
develop consensus for action.”

Yet, as we saw with Budescu’s research, seeming easy to understand 
and explain may just involve glossing over important content with ambigu-
ous terms. We would argue that Budescu’s “illusion of communication” may 
make someone think they have explained something, the explanation of 
which another someone believed they understood, and that they all agreed 
in the end. The authors have had multiple opportunities in many different 
types of firms to explain various quantitative methods to executive‐level 
management—including in situations where we were told that the execu-
tives would not understand it. However, we find far fewer situations where 
people fail to understand it than some other people would have us believe. 
It seems we are often warned by one group that another group will not  
understand something quantitative (rarely does anyone admit they them-
selves don’t understand it).

We propose the possibility that if a cybersecurity analyst says that some-
one else won’t understand it, the problem might be their own understand-
ing of it. We are told that management won’t get “theoretical” methods 
(even though every method we talk about here has been used on practical 
problems with senior management). So we find that calling probabilistic 
methods theoretical really just means “I don’t understand it” and perhaps 
“I feel threatened by it.” Hopefully, the example of the simple one‐for‐one 
substitution model in Chapter 3 can help address this hurdle. We made that 
approach as simple as possible while still using methods that show a mea-
surable improvement and producing actionable output.
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Although a majority in the survey believed ordinal scales helped build 
consensus, we propose that if communication is an illusion as Budescu 
shows, then consensus is also an illusion. The appearance of consensus 
may feel satisfying but, as we stated in Chapter 1, we think it is important 
whether the risk assessment method actually works in a way that has been 
measured. Perhaps the management at Target felt that what they were do-
ing was “working” because they believed risk was being communicated and 
that when they came to a consensus, they all understood what they were 
agreeing with. If the risk assessment itself is based on flawed methods, a 
little dissent should probably be preferable over illusory consensus.

Conclusion

Obstacles to the use of better quantitative methods have to be recognized 
as simply being misunderstandings based on common fallacies. Now let’s 
summarize:

■■ Nothing is gained by the use of the popular scales and matrices. They 
avoid none of the issues offered as a challenge to more quantitative 
methods (complexity of cybersecurity, human agents, changing techno
logy, etc.). In fact, they introduce vagueness of communication and just 
plain bad math. They must be abandoned in all forms of risk analysis.

■■ There is nothing modeled with the qualitative scales that can’t be mod-
eled with quantitative, probabilistic methods, even if we use only the 
same source of data as most qualitative methods (i.e., the cybersecurity 
expert). These methods show a measurable improvement based on 
previous research. Their performance can also be measured after im-
plementation since we can use standard statistical methods to compare 
their risk assessments to observed reality.

■■ Quantitative models have been implemented in many real environ-
ments. Dismissing these methods as “theoretical” is just a way of saying 
that they seem threatening to the person who used that label.

Cybersecurity has grown too important to simply leave to methods that 
the reader—after this extensive argument—should now recognize as obvi-
ously flawed. Businesses and governments can no longer afford the mis-
conceptions that keep them from adopting methods that work. We’ve spent 
quite a lot of text on this topic, so we appreciate your patience if you made 
it this far. We have cited a lot of sources on every point we make, but we 
thought we would end this chapter with one more voice of agreement from 
a leader in the cybersecurity field, Jack Jones. Read what Jack wrote in the 
following section, so we can put that topic to rest and get on with describ-
ing better methods.
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    Building acceptance for Better Methods   

 By Jack Jones, Guest Contributor 

  Jack Jones has worked in the information security fi eld for 26 years and 
has a decade of experience as a CISO. He is also the creator of the Factor 
Analysis of Information Risk (FAIR) framework.  

 Although almost everyone will agree that quantifi cation and metrics 
in general are a good thing, the topic of quantifying risk in the informa-
tion security realm can generate signifi cant debate and even hostility. 
Many people simply don’t believe it’s possible or practical. That being 
the case, why bother trying to quantify risk? Why not just avoid the fi re-
fi ghts and stick to counting vulnerabilities, awareness levels, and attacks 
against the organization? The reason is context. In other words, those 
and all of the other information security landscape elements you might 
choose to measure are only meaningful in how they affect risk (i.e., the 
frequency and magnitude of loss). 

 Inertia against risk quantifi cation can be especially strong when 
you’re dealing with information security professionals and auditors who 
have built their careers and reputations by thinking and acting in a 
certain way, particularly when their approach is common throughout 
the industry and its limitations aren’t widely recognized. It’s made even 
stronger when you include misconceptions regarding quantifi cation, 
and, worse yet, when fundamental nomenclature isn’t normalized (e.g., 
terms like “risk” don’t mean the same thing to everyone). Successfully 
overcoming this inertia requires a combination of tactics.   

 education—Normalize and Demystify 

 Education regarding risk quantifi cation has at least a couple of dimen-
sions, including: 

   Getting everyone on the same page regarding a meaningful defi nition 
for “risk” (hint—control defi ciencies and threats aren’t risks). With-
out this foundation in place, everything else will remain a struggle 
and likely not succeed. It can help to keep in mind that at the end 
of the day, the purpose of information security is to manage how 
often loss occurs and how bad it is when it does occur. 

   Helping people to understand that quantifi cation is not rocket science 
and does not require an advanced mathematics degree. In fact, 

(Continued)
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when approached properly, it is intuitive, conceptually simple, and 
pragmatic. That said, quantifi cation does require critical thinking, 
which can be a challenge because many people in our profession 
haven’t done a lot of critical thinking over the years when it comes 
to risk measurement. Wet fi ngers in the air predominate. This isn’t 
an indictment of their intelligence or innate capability for critical 
thinking, but it is an indictment of the methods our profession has 
relied on so heavily (e.g., checklist frameworks and ordinal “risk” 
ratings, to name two).     

 Small Wins, Fast 

 One of the big concerns many people have is that risk quantifi cation 
will require too much work. The best way to disprove that misper-
ception is to start out by analyzing smaller, more digestible problems. 
Instead of trying to measure something amorphous like “the risk of 
cloud computing,” measure more tightly defi ned issues like “the risk 
associated with a particular cloud provider’s service going down due to 
a cyberattack.” These clearer, less ambiguous scenarios are much faster 
and easier to analyze, and can be used to quickly demonstrate the prag-
matic value of quantitative risk analysis. 

 A series of these small analyses can also demonstrate how rapidly 
input data can become reusable from analysis to analysis, which can 
further accelerate results and effi ciency.   

 Leverage Quants 

 Many organizations of any size will have business functions that spe-
cialize in quantifi cation. Examples include some of the more mature 
risk disciplines (e.g., credit risk in fi nancial institutions) and business 
intelligence functions. Where these functions exist you can often fi nd 
well‐positioned executives who appreciate and will advocate for quan-
titative methods. These people can be important allies when swimming 
through tough political waters.   

 Keep It real 

 Some people believe risk quantifi cation is a switch you can throw—that 
when an organization quantifi es information security risk, it no longer 
sticks wet fi ngers in the air. This couldn’t be further from the truth. No 

(Continued)
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organization I’ve ever encountered has come close to quantifying all 
of the information security issues it faces. There simply aren’t the re-
sources or time. As a result, it is important to develop a triage process 
that helps your organization to identify when to quantify risk. 

 Depending on its resources and needs, an organization can choose 
where to start along the quantifi cation continuum. Perhaps at fi rst it 
only uses risk quantifi cation to develop business cases for major in-
formation security expenditures, or to prioritize what it believes are its 
most concerning issues. The bottom line is that risk quantifi cation can 
provide signifi cant value quickly and not be a boat anchor if it is ap-
plied thoughtfully and not in an attempt to boil the ocean.   

 Summary 

 Quantifying information security risk can represent a paradigm shift 
within an organization and, as with almost any paradigm shift, there 
will be inertia and pain to overcome. One of the keys to success is to 
realize that the most diffi cult part of the transition is cultural—both 
within the organization and (at least today) within the information se-
curity profession as a whole. And because culture is in large part a 
function of beliefs, you will need to focus on changing beliefs in order 
to be successful.  

 Notes      

   1.  Open Web Application Security Project, “OWASP Risk Rating Method-
ology,” last modifi ed September 3, 2015,  www.owasp.org/index.php/
OWASP_Risk_Rating_Methodology . 

   2.  IEC, “ISO 31010: 2009–11,”   Risk Management–Risk Assessment Tech-
niques  (2009). 

   3.  D. V. Budescu, S. Broomell, and H. Por, “Improving Communication of 
Uncertainty in the Reports of the Intergovernmental Panel on Climate 
Change,”  Psychological Science  20, no. 3 (2009): 299–308. 

   4.  Richards J. Heuer, Jr.,  Psychology of Intelligence Analysis  (Langley, VA: 
Center for the Study of Intelligence, Central Intelligence Agency, 1999). 

   5.  Rebecca M. Blank and Patrick D. Gallagher,  Guide for Conducting 
Risk Assessments , NIST Special Publication 800–30, Revision 1 (Gaith-
ersburg, MD: National Institute of Standards and Technology, 2012), 
 http://csrc.nist.gov/publications/nistpubs/800–30‐rev1/sp800_30_
r1.pdf . 

http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://csrc.nist.gov/publications/nistpubs/800%E2%80%9330%E2%80%90rev1/sp800_30_r1.pdf


110� Why Cybersecurity Needs Better Measurements for Risk

	 6.	 K. E. See, C. R. Fox, and Y. Rottenstreich, “Between Ignorance and 
Truth: Partition Dependence and Learning in Judgment under Uncer-
tainty,” Journal of Experimental Psychology: Learning, Memory and 
Cognition 32 (2006): 1385–1402.

	 7.	 G. Moors, N. D. Kieruj, and J. K. Vermunt, “The Effect of Labeling and 
Numbering of Response Scales on the Likelihood of Response Bias,” 
Sociological Methodology 44, no. 1 (2014): 369–399.

	 8.	 J. Chan, “Response‐Order Effects in Likert‐Type Scales,” Educational 
and Psychological Measurement 51, no. 3 (1991): 531–540.

	 9.	 L. A. Cox Jr., “What’s Wrong with Risk Matrices?” Risk Analysis 28, 
no. 2 (2008): 497–512.

	10.	 D. Hubbard and D. Evans, “Problems with Scoring Methods and Ordi-
nal Scales in Risk Assessment,” IBM Journal of Research and Develop-
ment 54, no. 3 (April 2010): 2.

	11.	 P. Thomas, R. Bratvold, and J. E. Bickel, “The Risk of Using Risk Ma-
trices,” Society of Petroleum Engineers Economics & Management 6, 
no. 2 (April 2014): 56–66.

	12.	 Edward R. Tufte and P. Graves-Morris, The Visual Display of Quantita-
tive Information (Cheshire, CT: Graphics Press, 1983).

	13.	 J. Kruger and D. Dunning, “Unskilled and Unaware of It: How Dif-
ficulties in Recognizing One’s Own Incompetence Lead to Inflated 
Self‐Assessments,” Journal of Personality and Social Psychology  77, 
no. 6 (1999): 1121–1134.

	14.	 Ahiza Garcia, “Target Settles for $39 Million over Data Breach,” CNN 
Money, December 2, 2015.



Part II
Evolving the Model of 

Cybersecurity Risk





113

Chapter 6
Decompose It

Unpacking the Details 

The everyday meanings of most terms contain ambiguities signifi-
cant enough to render them inadequate for careful decision analysis.

—Ron Howard, Father of Decision Analysis1

Recall the cybersecurity analyst mentioned in Chapter 5 whose estimate 
of a loss was “$0 to $500 million” and worried how upper management 

would react to such an uninformative range. Of course, if such extreme 
losses really were a concern, it would be wrong to hide it from upper man­
agement. Fortunately, there is an alternative: Just decompose it. Surely such 
a risk would justify at least a little more analysis.

Impact usually starts out as a list of unidentified and undefined out­
comes. Refining this is just a matter of understanding the “object” of mea­
surement as discussed in Chapter 2. That is, we have to figure out what we 
are measuring by defining it better. In this chapter, we discuss how to break 
up an ambiguous pile of outcomes into at least a few major categories of 
impacts.

In Chapter 3 we showed how to make a simple quantitative model that 
merely makes exact replacements for steps in the familiar risk matrix, but 
does so using quantitative methods. This is a very simple baseline, which 
we can make more detailed through decomposition. In Chapter 4 we dis­
cussed research showing how decomposition of an uncertainty especially 
helps when the uncertainty is particularly great—as is usually the case in 
cybersecurity. Now, in this chapter we will exploit the benefits of decom­
position by showing how the simple model in Chapter 3 could be given 
more detail.
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Decomposing the Simple One-for-One Substitution Model

Every row in our simple model shown in Chapter 3 (Table 3.2) had only 
two inputs: a probability of an event and a range of a loss. Both the event 
probability and the range of the loss could be decomposed further. We can 
say, for example, that if an event occurs, we can assess the probability of the 
type of event (was it a sensitive data breach, denial of service, etc.?). Given 
this information, we could further modify a probability. We can also break 
the impact down into several types of costs: legal fees, breach investigation 
costs, downtime, and so on. Each of these costs can be computed based 
on other inputs that are simpler and less abstract than some aggregate total 
impact.

Now let’s add a bit more detail as an example of how you could use 
further decomposition to add value.

Just a Little More Decomposition

A simple decomposition strategy for impact that many in cybersecurity 
are already familiar with is confidentiality, integrity, and availability or “C, 
I, and A.” As you probably know, “confidentiality” refers to the improper 
disclosure of information. This could be a breach of millions of records, or 
it could mean stealing corporate secrets and intellectual property. “Integ­
rity” means modifying the data or behavior of a system, which could re­
sult in improper financial transactions, damaging equipment, misrouting 
logistics, and so on. Last, “availability” refers to some sort of system outage 
resulting in a loss of productivity, sales, or other costs of interference with 
business processes. We aren’t necessarily endorsing this approach for ev­
eryone, but many analysts in cybersecurity find that these decompositions 
make good use of how they think about the problem. 

Let’s simplify it even further in the way we’ve seen one company do 
it by combining confidentiality and integrity. Perhaps we believe avail­
ability losses were fairly common compared to others, and that estima­
ting availability lends itself to using other information we know about the 
system, like the types of business processes the system supports, how 
many users it has, how it might affect productivity, whether it could impact 
sales while it is unavailable, and so on. In Table 6.1, we show how this 
small amount of additional decomposition could look if we added it to 
the spreadsheet shown in the one-for-one substitution model shown in 
Chapter 3. To save room, we’ve left off columns to the right that show how 
they are aggregated; to see the entire spreadsheet, as always, just go to  
www.howtomeasureanything.com/cybersecurity. In addition to the original 
model shown in Chapter 3, you will also see this one.

http://www.howtomeasureanything.com/cybersecurity
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Table 6.1  Example of Slightly More Decomposition

Type of Event if
One Occurs

Confidentiality and
Integrity 90%
Confidence
Interval ($000)

Availability 90% Confidence Intervals

Duration of Outage
(hours)

Cost per Hour
($000)
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Notice that the first thing we’ve done here is decompose the event by 
first determining what kind of event it was. We state a probability the event 
was only confidentiality and integrity (ConfInt) and a probability that it was 
only availability (Avail). The probability that it could be both is 1-ConfInt-
Avail. To show an example of how you might model this, we can use the 
following formula in Excel to determine which type of event it was or 
whether it was both. (We already determined that an event did occur, so we 
can’t have a result where it was neither type of event.)

= < < +If rand ConfInt 1 if rand ConfInt Avail 2 3( () , , ( () , , ))

The loss for confidentiality and integrity then will be added in if the 
value from this formula is a 1 (where confidentiality and integrity event oc­
curred) or 3 (when both confidentiality and integrity as well as availability 
occurred). The same logic is applied to availability (which is experienced 
when the equation’s output is a 2 or 3). We could also have just assessed the 
probabilities of the events separately instead of first determining whether 
an event occurred and then determining the type of event. There are many 
more ways to do this and so you should choose the decomposition that you 
find more convenient and realistic to assess.

When availability losses are experienced, that loss is computed by mul­
tiplying the hours of outage duration times the cost per hour of the outage. 
Just as we did in the simpler model in Chapter 3, we generate thousands 
of values for each row. In each random trial we randomly determine the 
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type of event and its cost. The entire list of event costs are totaled for each 
of the thousands of trials, and a loss exceedance curve is generated, as we 
showed in Chapter 3. As before, each row could have a proposed control, 
which would reduce the likelihood and perhaps impact of the event (these 
reductions can also be randomly selected from defined ranges).

If an “event” is an attack on a given system, we would know something 
about how that system is used in the organization. For example, we would 
usually have a rough idea of how many users a system has—whether they 
would be completely unproductive without a system or whether they could 
work around it for a while—and whether the system impacts sales or other 
operations. And many organizations have had some experience with system 
outages that would give them a basis for estimating something about how 
long the outage could last.

Now that you can see how decomposition works in general, let’s dis­
cuss a few other strategies we could have used. If you want to decom­
pose your model using a wider variety of probability distributions, see 
details on a list of distributions in Appendix A. And, of course, you can 
download an entire spreadsheet from www.howtomeasureanything.com/ 
cybersecurity that contains all of these random probability distributions 
written in native (i.e., without VBA macros or add-ins) MS Excel.

A Few Decomposition Strategies to Consider

We labeled each row in the simulation shown in Table 6.1 as merely an 
“event.” But in practice you will need to define an event more specifically 
and, for that, there are multiple choices. Think of the things you would nor­
mally have plotted on a risk matrix. If you had 20 things plotted on a risk 
matrix, were they 20 applications? Were they 20 categories of threats? Were 
they business units of the organization or types of users?

It appears that most users of the risk matrix method start with an appli­
cation-oriented decomposition. That is, when they plotted something on a 
risk matrix, they were thinking of an application. This is a perfectly legiti­
mate place to start. Again, we have no particular position on the method 
of decomposition until we have evidence saying that some are better and 
others are worse. But out of convenience and familiarity, our simple model 
in Chapter 3 starts with the application-based approach to decomposing the 
problem. If you prefer to think of the list of risks as being individual threat 
sources, vulnerabilities, or something else, then you should have no prob­
lem extrapolating the approach we describe here to your preferred model.

Once you have defined what your rows in the table represent, then 
your next question is how detailed you want the decomposition in each 
row to be. In each decomposition, you should try to leverage things you 
know—we can call them “observables.” Table 6.2 has a few more examples.

http://www.howtomeasureanything.com/cybersecurity
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Table 6.2  A Few More Examples of Potential Decompositions

Decomposing into a 
Range for:

. . . Leverages Knowledge of the Following (Either You 
Know Them or Can Find Out, Even If It Is Also Just 
Another 90% CI)

Financial theft You generally know whether a system even handles 
financial transactions. So some of the time the impact 
of financial theft will be zero or, if not zero, you can 
estimate the limit of the financial exposure in the 
system.

System outages How many users a system has, how critical it is to their 
work, and whether outages affect sales or other 
operations with a financial impact can be estimated. 
You may even have some historical data about the 
duration of outages once they occur.

Investigation and 
remediation costs

IT often has some experience with estimating how many 
people work on fixing a problem, how long it takes 
them to fix it, and how much their time is worth. You 
may even have knowledge about how these costs may 
differ depending on the type of event.

Intellectual property 
(IP)

You can find out whether a given system even has 
sensitive corporate secrets or IP. If it has IP, you can 
ask management what the consequences would be if 
the IP were compromised (again, ranges are okay).

Notification and 
credit monitoring

Again, you at least know whether a system has this 
kind of exposure. If the event involves a data breach 
of personal information, paying for notification and 
credit monitoring services can be directly priced on a 
per-record basis.

Legal liabilities 
and fines

You know whether a system has regulatory 
requirements. There isn’t much in the way of legal 
liabilities and fines that doesn’t have some publicly 
available precedent on which to base an estimate.

Other interference 
with operations

Does the system control some factory process that could 
be shut down? Does the system control health and 
safety in some way that can be compromised?

Reputation You probably have some idea whether a system 
even has the potential for a major reputation cost 
(e.g., whether it has customer data or whether it 
has sensitive internal communications). Once you 
establish that, reputation impact can be decomposed 
further (addressed again later in this chapter).
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If we modeled even some of these details, we may still have a wide 
range, but we can at least say something about the relative likelihood of 
various outcomes. The cybersecurity professional who thought that a range 
for a loss was zero to a half-billion dollars was simply not considering what 
can be inferred from what is known rather than dwelling on all that isn’t 
known. A little bit of decomposition would indicate that not all the values 
in that huge range could be equally likely. You will probably be able to go 
to the board with at least a bit more information about a potential loss than 
a flat uniform distribution of $0 to $500 million or more.

And don’t forget that the reason you do this is to evaluate alternatives. 
You need to be able to discriminate among different risk-mitigation strategies. 
Even if your range was that wide and everything in the range were equally 
likely, it is certainly not the case that every system in the list has a range that 
wide, and knowing which do would be helpful. You know that some systems 
have more users than others, some systems handle Personal Health Infor­
mation (PHI) or Payment Card Industry (PCI) data and some do not, some 
systems are accessed by vendors, and so on. All this is useful information in 
prioritizing action even though you will never remove all uncertainty.

This list just gives you a few more ideas of elements into which you 
could decompose your model. So far we’ve focused on decomposing im­
pact more than likelihood because impact seems a bit more concrete for 
most people. But we can also decompose likelihood. Chapters 8 and 9 will 
focus on how that can be done. We will also discuss how to tackle one of 
the more difficult cost estimations—reputation loss—later in this chapter.

More Decomposition Guidelines: Clear, Observable, Useful

When someone is estimating the impact of a particular cybersecurity breach 
on a particular system, perhaps they are thinking, “Hmm, there would at 
least be an outage for a few minutes if not an hour or more. There are 300 
users, most of which would be affected. They process orders and help with 
customer service. So the impact would be more than just paying wages for 
people unable to work. The real loss would be loss of sales. I think I re­
call that sales processed per hour are around $50,000 to $200,000 but that 
can change seasonally. Some percentage of those who couldn’t get service 
might just call back later, but some we would lose for good. Then there 
would be some emergency remediation costs. So, I’m estimating a 90% CI 
of a loss per incident of $1,000 to $2,000,000.”

We all probably realize that we may not have perfect performance 
when recalling data and doing a lot of arithmetic in our heads (and imagine 
how much harder it gets when that math involves probability distributions 
of different shapes). So we shouldn’t be that surprised that the researchers 
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we mentioned back in Chapter 4 (Armstrong and MacGregor) found that 
we are better off decomposing the problem and doing the math in plain 
sight. If you find yourself making these calculations in your head then stop, 
decompose, and (just like in school) show your math.

We expect a lot of variation in decomposition strategies based on de­
sired granularity and differences in the information different analysts will 
have about their organizations. Yet there are principles of decomposition 
that can apply to anyone. Our task here is to determine how to further de­
compose the problem so that, regardless of your industry or the uniqueness 
of your firm, your decomposition actually improves your estimations of risk.

This is an important question because some decomposition strategies 
are better than others. Even though there is research that highly uncertain 
quantities can be better estimated by decomposition, there is also research 
that identifies conditions under which decomposition does not help. We 
need to learn how to tell the difference. If the decomposition does not help, 
then we are better off leaving the estimate at a more aggregated level. As 
one research paper put it, decompositions done “at the expense of concep­
tual simplicity may lead to inferences of lower quality than those of direct, 
unaided judgments.”2

Decision Analysis: An Overview of How to Think about a Problem

A good background for thinking about decomposition strategies is the work 
of Ron Howard, who is generally credited for coining of the term “decision 
analysis” in 1966.3 Howard and others inspired by his work were applying 
the somewhat abstract areas of decision theory and probability theory to 
practical decision problems dealing with uncertainties. They also realized 
that many of the challenges in real decisions were not purely mathemati­
cal. Indeed, they saw that decision makers often failed to even adequately 
define what the problem was. As Ron Howard put it, we need to “transform 
confusion into clarity of thought and action.”4

Howard prescribes three prerequisites for doing the math in decision 
analysis. He stipulates that the decision and the factors we identify to inform 
the decision must be clear, observable, and useful.

■■ Clear: Everybody knows what you mean. You know what you mean.
■■ Observable: What do you see when you see more of it? This doesn’t 
mean you will necessarily have already observed it but it is at least pos­
sible to observe and you will know it when you see it.

■■ Useful: It has to matter to some decision. What would you do differently 
if you knew this? Many things we choose to measure in security seem 
to have no bearing on the decision we actually need to make.
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All of these conditions are often taken for granted, but if we start sys­
tematically considering each of these points on every decomposition, we 
may choose some different strategies. Suppose, for example, you wanted to 
decompose your risks in such a way that you had to evaluate a threat actor’s 
“skill level.” This is one of the “threat factors” in the OWASP standard, and 
we have seen homegrown variations on this approach. We will assume you 
have already accepted the arguments in previous chapters and decided to 
abandon the ordinal scale proposed by OWASP and others, and that you are 
looking for a quantitative decomposition about a threat actor’s skill level. So 
now apply Howard’s tests to this factor.

The Clear, Observable, and Useful Test Applied to “Threat Actor Skill 
Level”

■■ Clear: Can you define what you mean by “skill level”? Is this really an 
unambiguous unit of measure or even a clearly defined discrete state? 
Does saying, “We define ‘average’ threat as being better than an ama­
teur but worse than a well-funded nation state actor” really help?

■■ Observable: How would you even detect this? What basis do you have 
to say that skill levels of some threats are higher or lower than others?

■■ Useful: Even if you had unambiguous definitions for this, and even if 
you could observe it in some way, how would the information have 
bearing on some action in your firm?

We aren’t saying threat skill level is necessarily a bad part of a strategy 
for decomposing risk. Perhaps you have defined skill level unambiguously 
by specifying the types of methods employed. Perhaps you can observe the 
frequency of these types of attacks, and perhaps you have access to threat 
intelligence that tells you about the existence of new attacks you haven’t 
seen yet. Perhaps knowing this information causes you to change your esti­
mates of the likelihood of a particular system being breached, which might 
inform what controls should be implemented or even the overall cyberse­
curity budget. If this is the case, then you have met the conditions of clear, 
observable, and useful. But when this is not the case—which seems to be 
very often—evaluations of skill level are pure speculation and add no value 
to the decision-making process.

Avoiding “Over-Decomposition”

The threat skill level example just mentioned may or may not be a good 
decomposition depending on your situation. If it meets Howard’s criteria 
and it actually reduces your uncertainty, then we call it an “informative” 
decomposition. If not, then the decomposition is “uninformative” and you 
were better off sticking with a simpler model.
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Imagine someone standing in front of you holding a crate. The crate is 
about 2 feet wide and a foot high and deep. They ask you to provide a 90% 
CI on the weight of the crate simply by looking at it. You can tell they’re not 
a professional weightlifter, so you can see this crate can’t weigh, say, 350 
pounds. You also see that they lean a bit backward to balance their weight 
as they hold it. And you see that they’re shifting uncomfortably. In the end, 
you say your 90% CI is 20 to 100 pounds. This strikes you as a wide range, 
so you attempt to decompose this problem by estimating the number of 
items in the crate and the weight per item. Or perhaps there are different 
categories of items in the crate, so you estimate the number of categories 
of items, the number in each category, and the weight per item in that cate­
gory. Would your estimate be better? Actually, it could easily be worse. What 
you have done is decomposed the problem into multiple purely specula­
tive estimates that you then use to try to do some math. This would be an 
example of an “uninformative decomposition.”

The difference between this and an informative decomposition is 
whether you are describing the problem in terms of quantities you are 
more familiar with than the original problem. An informative decomposition 
would be decompositions that utilize specific knowledge that the cyberse­
curity expert has about their environment. For example, the cybersecurity 
expert can get detailed knowledge about the types of systems in their orga­
nization and the types of records stored on them. They would have or could 
acquire details about internal business processes so they could estimate the 
impacts of denial of service attacks. They understand what types of controls 
they currently have in place. Decompositions of cybersecurity risks that 
leverage this specific knowledge are more likely to be helpful.

However, suppose a cybersecurity expert attempts to build a model 
where they find themselves estimating the number and skill level of state-
sponsored attackers or even the hacker group “Anonymous” (about which, as 
the name implies, it would be very hard to estimate any details). Would this 
actually constitute a reduction in uncertainty relative to where they started?

Decompositions should be less abstract to the expert than the aggre­
gated amount. If you find yourself decomposing a dollar impact into factors 
like threat skill level then you should have less uncertainty about the new 
factors than you did about the original, direct estimate of monetary loss.

However, if decomposition causes you to widen a range, that might be 
informative if it makes you question the assumptions of your previous range. 
For example, suppose we need to estimate the impact of a system availability 
risk where an application used in some key process—let’s say order-taking—
would be unavailable for some period of time. And suppose that we initially 
estimated this impact to be $150,000 to $7 million. Perhaps we consider that 
to be too uncertain for our needs, so we decide to decompose this further 
into the duration of an outage and the cost per hour of an outage. Suppose 
further that we estimated the duration of the outage to be 15 minutes to 
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4 hours and the cost per hour of the outage to be $200,000 to $5 million. 
Let’s also state that these are lognormal distributions for each (as discussed 
in Chapter 3, this often applies where the value can’t be less than zero but 
could be very large). Have we reduced uncertainty? Surprisingly, no—not 
if what we mean by “uncertainty reduction” is a narrower range. The 90% 
CI for the product of these two lognormal distributions is about $100,000 
to $8 million—wider than the initial 90% CI of $150,000 to $7,000,000. But 
even though the range isn’t strictly narrower, you might think it was useful 
because you realize it is probably more realistic than the initial range. 

Now, just a note in case you thought that to get the range of the prod­
uct you multiply the lower bounds together and then multiply the upper 
bounds together, that’s not how the math works when you are generating 
two independent random variables. Doing it that way would produce a 
range of $50,000 to $20 million (0.25 hours times $200,000 per hour for the 
lower bound and 4 hours times $5 million per hour for the upper bound). 
This answer could only be correct if the two variables are perfectly corre­
lated—which they obviously would not be.

So decomposition might be useful just as a reality check against your 
initial range. This can also come up when you start running simulations on 
lots of events that are added up into a portfolio-level risk, as the spreadsheet 
shown in Table 6.1 does. When analysts are estimating a large number of in­
dividual events, it may not be apparent to them what the consequences for 
their individual estimates are at a portfolio level. In one case we observed 
that subject matter experts were estimating individual event probabilities at 
somewhere between 2% and 35% for about a hundred individual events. 
When this was done they realized that the simulation indicated they were 
having a dozen or so significant events per year. A manager pointed out 
that the risks didn’t seem realistic because none of those events had been 
observed even once in the last five years. This would make sense if the 
subject matter experts had reason to believe there would be a huge uptick 
in these event frequencies (it was over a couple of years ago and we can 
confirm that this is not what happened). But, instead, the estimators decided 
to rethink what the probabilities should be so that they didn’t contrast so 
sharply with observed reality.

A Summary of Some Decomposition Rules

The lessons in these examples can be summarized in two fundamental de­
composition rules:

■■ Decomposition Rule #1: Decompositions should leverage what you are 
better at estimating or data you can obtain (i.e., don’t decompose into 
quantities that are even more speculative than the first).
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■■ Decomposition Rule #2: Check your decomposition against a directly 
estimated range with a simulation, as we just did in the outage example. 
You might decide to toss the decomposition if it produces results you 
think are absurd, or you might decide your original range is the one 
that needs updating.

In practice there are a few more things to remember in order to keep 
whatever decomposition strategy you are using informative. Decomposition 
has some mathematical consequences to think about in order to determine 
if you actually have less uncertainty than you did before:

■■ If you are expecting to reduce uncertainty by multiplying together two 
decomposed variables, then the decomposed variables need to not 
only have less uncertainty than the initial range but often a lot less. 
As a rule of thumb, the ratios of the upper and lower bounds for the 
decomposed variables should be a lot less than a third the width of 
the ratio of upper and lower bounds of the original range. For the case 
in the previous section, the ratio of bounds of the original range was 
about 47 ($7 million / $150,000), while the other two ranges had ratios 
of bounds of 16 and 25, respectively.

■■ If most of the uncertainty is in one variable, then the ratio of the upper 
and lower bounds of the decomposed variable must be less than that of 
the original variable. For example, suppose you initially estimated that the 
cost of an outage for one system was $1 million to $5 million. If the major 
source of uncertainty about this cost is the duration of an outage, the up­
per/lower bound ratio of the duration must be less than the upper/lower 
bound ratio of the original estimate (5 to 1). If the range of the dura­
tion doesn’t have a lower ratio of upper/lower bounds, then you haven’t 
added information with the decomposition. If you have reason to believe 
your original range, then just use that. Otherwise, perhaps your original 
range was just too narrow and you should go with the decomposition.

■■ In some cases the variables you multiply together are related in a way 
that eliminates the value of decomposition unless you also make a 
model of the relationship. For example, suppose you need to multiply 
A and B to get C. In this case when A is large, B is small, and when B 
is large, A is small. If we estimate separate, independent ranges for A 
and B, the range for the product C can be greatly overstated. This might 
be the case for the duration and cost per hour of an outage. That is, 
the more critical a system, the faster you would work to get them back 
on line. If you decompose these, you should also model the inverse 
relationship. Otherwise, just provide a single overall range for the cost 
of the impact instead of decomposing it.

■■ If you have enough empirical data to estimate a distribution, then you 
probably won’t get much benefit from further decomposition.
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A Hard Decomposition: Reputation Damage

In the survey we mentioned in Chapter 5, some cybersecurity professionals 
(14%) agreed with the statement “There is no way to calculate a range of 
the intangible effects of major risks like damage to reputation.” Although a 
majority disagree with the statement and there is a lot of discussion about 
it, we have seen few attempts to model this in the cybersecurity industry. 
This is routinely given as an example of a very hard measurement problem. 
Therefore, we decided to drill down on this particular loss in more detail as 
an example of how even this seemingly intangible issue can be addressed 
through effective decomposition. Reputation, after all, seems to be the loss 
category cybersecurity professionals resort to when they want to create the 
most FUD. It comes across as an unbearable loss. But let’s ask the ques­
tion we asked in Chapter 2 regarding the object of measurement, or in this 
chapter regarding Howard’s observability criterion: What do we see when 
we see a loss of reputation?

The first reaction many would have is that the observed quantity would 
be a long-term loss of sales. Then they may also say that stock prices would 
go down. Of course, the two are related. If investors (especially the insti­
tutional investors who consider the math on the effect of sales on market 
valuation) believed that sales would be reduced, then we would see stock 
prices drop for that reason alone. So if we could observe changes in sales 
or stock prices just after major cybersecurity events, that would be a way to 
detect the effect of loss of reputation, or at least the effects that would have 
any bearing on our decisions.

It does seem reasonable to presume a relationship between a major 
data breach and a loss of reputation resulting in changes in sales, stock 
prices, or both. Articles have been published that implied such a direct re­
lationship between the breach and reputation, with titles like “Target Says 
Data Breach Hurt Sales, Image; Final Toll Isn’t Clear.”5 Forbes published an 
article in September 2014 by the Wall Street analysis firm Trefis, which noted 
that Target’s stock fell 14% in the two-month period after the breach, imply­
ing the two are connected.6 In that article, Trefis cited the Poneman Institute 
(a major cybersecurity research service using mostly survey-based data), 
which anticipated a 6% “churn” of customers after a major data breach. 
Looking at this information alone, it seems safe to say that a major data 
breach means a significant loss of sales and market valuation.

Yet perhaps there is room for skepticism about these claims. There were 
multiple studies prior to 2008 showing that there was a minor effect on stock 
prices the same day of a breach and no longer-term effect,7,8,9 but these studies 
may be considered dated since they were published long before big breaches 
like Target and Anthem. Since these are publicly traded companies, we thought 
we should just look up the data on sales before and after the breach.
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Of course, we know that changes can be due to many factors and a certain 
amount of volatility is to be expected even if there weren’t a breach. So the way 
to look at these sorts of events is to consider how big the changes are compared 
to historical volatility in sales and stock prices. Figure 6.1 shows changes— 
relative to the time of the breach—for the quarterly sales of three major retailers 
that had highly publicized data breaches: Home Depot, JCPenney, and Target. 
Figure 6.2 shows changes in stock prices for those firms and Anthem.
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Figure 6.1  Quarter-to-Quarter Change in Sales for Major Retailers with Major 
Data Breaches Relative to the Quarter of the Breach
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Figures 6.1 and 6.2 don’t appear to show significant changes after a 
breach compared to the volatility before the breach. To see the detail better, 
let’s just show changes relative to historical volatility. In Figures 6.3 and 6.4, 
historical volatility on sales and stock prices is shown as an interval rep­
resenting the fifth and ninety-fifth percentile of changes for three years up 
until the breach. The markers show the change after the breach compared 
to the range of historical volatility (the vertical dashed lines). The changes 
in sales and the changes in stock prices after the breach are shown relative 
to their historical volatility.

Figure 6.3  Changes in Stock Prices after a Major Breach for Three Major 
Retailers Relative to Historical Volatility
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Clearly, any relationship between a major data breach and sales or stock 
prices—even for breaches as large as Home Depot and Target—is weak at 
best. While it does look like they might have resulted in some downward 
movement on average, the movement is explainable as the historical “noise” 
of day-to-day or quarter-to-quarter changes. In March 2015, another analysis 
by Trefis published in Forbes magazine indicated that while Home Depot 
did not actually lose business in the quarters after the breach, management 
reported other losses in the form of expenses dealing with the event, includ­
ing “legal help, credit card fraud, and card re-issuance costs going forward.”10

How about the 14% price drop Target experienced in the two-month 
period after the breach? Well, that too needs to be put in context. Earlier 
in the same year as the Target breach, we can find another 14% drop in 
Target’s stock price in the two-month August-to-September period. And by 
November of 2014 the stock had surpassed the price just before the breach.

What about the survey indicating how customers would abandon retail­
ers hit by a major breach? All we can say is that the sales figures don’t agree 
with the statements of survey respondents. This is not inconsistent with 
the fact that what people say on a survey about their value of privacy and 
security does not appear to model what they actually do, as one Australian 
study shows.11 Trefis even applied a caveat on the observed decline in sales 
for Target, saying that “industry-wide foot traffic is already declining due to 
gradual customer shift to online channel, where Target’s presence is almost 
negligible.”12 Trefis also said of Home Depot:

In spite of dealing with a case that is bigger than the data breach at 
Target in late 2013, Home Depot is not expected to lose out on much 
revenue. Part of this is because the retailer will continue to reap the 
benefits of an upbeat U.S. economy and housing market. Furthermore, 
unlike Target, where consumers moved to the likes of Costco or Kohl’s, 
there are hardly any substitutes when it comes to buying material such 
as plywood, saws, cement, or the like.13

So apparently there could be other factors regarding whether a retailer 
sees any impact on customer retention. Perhaps as part of the real “loss of 
reputation,” it is also a function of where your customers could go for the 
same products and services. And yet even when these factors apply, as in 
the case of Target, it is still hard to separate the impact from routine market 
noise.

Finally, when we look back at past reports about the cost of data 
breaches, something doesn’t add up. The 2007 data breach at T.J. Maxx 
was estimated to cost over $1.7 billion.14 Enough time has passed that we 
should have seen even the delayed impacts realized by now. But if anything  
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approaching that amount were actually experienced, it seems well hidden 
in their financial reports. The firm was making an annual income from op­
erations of around $700 million or so in the years prior to the breach, which 
went up to about $1.2 billion at some point after the breach. Annual reports 
present accounting data at a highly aggregated level, but an impact even 
half that size should be clearly visible in at least one of those years. Yet we 
don’t see such an obvious impact in profit, expenses, or even cash or new 
loans. It certainly did cost T.J. Maxx something but there is no evidence it 
was anything close to $1.7 billion.

It’s not impossible to lose business as a result of a data breach, but the 
fact that it is hard to tease out this effect from normal day-to-day or even 
quarter-to-quarter variations helps inform a practical approach to modeling 
these losses. Marshall Kuypers, a PhD candidate in management science and 
engineering at Stanford, has focused his study on these issues. As Kuypers 
tells the authors:

Academic research has studied the impact of data breach announce­
ments on the stock price of organizations and has consistently found 
little evidence that the two are related. It is difficult to identify a rela­
tionship because signals dissipate quickly and the statistically significant 
correlation disappears after roughly 3 days.

A Better Way to Model Reputation Damage: Penance Projects

We aren’t saying major data breaches are without costs. There are real costs 
associated with them, but we need to think about how to model them dif­
ferently than with vague references to reputation. The actual “reputation” 
losses may be more realistically modeled as a series of very tangible costs 
we call “penance projects” as well as other internal and legal liabilities. 
Penance projects are expenses incurred to limit the long-term impact of 
loss of reputation. In other words, companies appear to engage in efforts 
to control damage to reputation instead of bearing what could otherwise 
be much greater damage. The effect these efforts have on reducing the real 
loss to reputation seem to be enough that the impact seems hard to detect 
in sales or stock prices. These efforts include the following:

■■ Major new investments in cybersecurity systems and policies to correct 
cybersecurity weaknesses.

■■ Replacing a lot of upper management responsible for cybersecurity  
(It may be scapegoating, but it may be necessary for the purpose of 
addressing reputation.)
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■■ A major public relations push to convince customers and shareholders 
the problem is being addressed (this helps get the message out that the 
efforts of the preceding bullet points will solve the problem).

■■ Marketing and advertising campaigns (separate from getting the word 
out about how the problem has been confidently addressed) to offset 
potential losses in business

These damage-control efforts to limit reputation effects appear to be 
the real costs here—not so much reputation damage itself. Each of these 
are conveniently concrete measures for which we have multiple historical 
examples. Of course, if you really do believe that there are other costs to 
reputation damage, you should model them. But what does reputation dam­
age really mean to a business if you can detect impacts on neither sales nor 
stock prices? Just be sure you have an empirical basis for your claim. Oth­
erwise, it might be simpler to stick with the penance project cost strategy.

So, if we spend a little more time and effort in analysis, it should be 
possible to tease out reasonable estimates even for something that seems as 
“intangible” as reputation loss.

Conclusion

A little decomposition can be very helpful up to a point. To that end, we 
showed a simple additional decomposition that you can use to build on 
the example in Chapter 3. We also mentioned a downloadable spreadsheet 
example and the descriptions of distributions in Appendix A to give you a 
few tools to help with this decomposition.

We talked about how some decompositions might be uninformative. 
We need to decompose in a way that leverages your actual knowledge—
however limited our knowledge is, there are a few things we do know—and 
not speculation upon speculation. Test your decompositions with a simula­
tion and compare them to your original estimate before the decomposition. 
This will show if you learned anything or show if you should actually make 
your range wider. We tackled a particularly difficult impact to quantify—loss 
of reputation—and showed how even that has concrete, observable conse­
quences that can be estimated.

So far, we haven’t spent any time on decomposing the likelihood of 
an event other than to identify likelihoods for two types of events (avail­
ability vs. confidentiality and integrity). This is often a bigger source of 
uncertainty for the analyst and anxiety for management than the impact. 
Fortunately, that, too, can be decomposed. We will review how to do that 
later in Part II.
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We also need to discuss where these initial estimates of ranges and 
probabilities can come from. As we discussed in earlier chapters, the same 
expert who was previously assigning arbitrary scores to a risk matrix can 
also be taught to assign subjective probabilities in a way that itself has 
a measurable performance improvement. Then those initial uncertainties 
can be updated with some very useful mathematical methods even when 
it seems like data is sparse. These topics will be dealt with in the next 
two chapters, “Calibrated Assessments” and “Reducing Uncertainty with 
Bayesian Methods.”
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Chapter 7
Calibrated Estimates

How Much Do You Know Now? 

The most important questions of life are indeed, for the most part, 
really only problems of probability.

—Pierre Simon Laplace, Théorie Analytique des Probabilités, 18121

The method described so far requires the subjective evaluation of quantita-
tive probabilities. For example, the cybersecurity expert will need to as-

sess a probability that an event will occur or how much will be lost if it does. 
This meets some resistance. Some cybersecurity experts who seem to have 
no issue with assigning a “medium” or a “2” to a likelihood will often wonder 
how it is possible to subjectively assess a quantitative probability of an event.

Of course, it is legitimate to ask whether subjective probabilities can be 
valid. Fortunately, as mentioned in Chapter 5, much research has already 
been done on this point and two findings are clear: (1) Most people are 
bad at assigning probabilities, but (2) most people can also be trained to 
be very good at it.

Yes, the validity of subjective estimates of probability can be and has 
been objectively measured (ironically, perhaps to some). To deny this is a 
rejection of scientifically validated facts. A cybersecurity expert can learn 
how to express his or her uncertainty with a subjective—but quantitative—
expression of uncertainty. In this chapter we will introduce the basic idea of 
using subjective estimates of probabilities. We will also show how your skill 
at doing this can be measured and improved with practice.

This chapter is largely duplicated from the calibration chapter in the 
original How to Measure Anything: Finding the Value of “Intangibles” in 
Business. If the reader is already familiar with the discussion of calibrated 
probability assessments in that book, then this chapter can be skipped or 
just quickly reviewed.
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Introduction to Subjective Probability

In the simplest method we have described so far, there are two types of 
probability assignments. One type applies to discrete “either/or” events such 
as whether there will be a major breach of customer credit card informa-
tion by a retailer. The other type applies to ranges of values, such as, how 
much will be lost in sales if there is a major breach of customer credit card 
information. These two types of probability assignments are summarized in 
Table 7.1.

In Chapter 3 we used both of these methods to express uncertainty 
about a cybersecurity event. Whether an event occurred in the first place 
was a type of discrete event. We assigned a probability (1%, 15%, etc.) to 
the event occurring within a given period of time. The monetary impact of 
that event was represented as a range.

Of course, we can make lots of combinations of these two basic 
forms of distributions. We can have discrete events with more than just 
two outcomes and we can have hybrids of discrete and continuous  

Table 7.1  Two Types of Subjective Probability Assignments Used in the Simple 
One‐for‐One Substitution Model (from Chapter 3)

Type of Probability 
Distribution Description Examples

Discrete binary 
(a.k.a. Bernoulli)

An either/or type of 
event, it happens or 
doesn’t; expressed 
as a probability the 
event will occur

■■ A coin flip
■■ A data breach happens in a 
given time period

■■ A system goes down
■■ “There is a 5% chance of a 
data breach of PHI that will be 
required to be reported on the 
HHS website”

Continuous A quantity with a range 
of possible values; 
expressed as a 
“confidence interval”

■■ The size of a future data 
breach

■■ The duration of a future 
system outage

■■ The change in sales due to 
a past data breach (a past 
event but the actual value was 
difficult to pin down)

■■ “The 90% confidence interval 
for the duration of a system 
outage in case X is 30 minutes 
to 4 hours”
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distributions. We can even construct a continuous distribution from a 
large number of binary distributions. In practice, however, this simple 
distinction is useful.

To express our uncertainty about a continuous number is to think of 
it as a range of probable values. As noted in Chapter 3, a range that has 
a particular chance of containing the correct answer is called in statistics 
a confidence interval (CI).2 A 90% CI is a range that has a 90% chance of 
containing the correct answer (there is a bit of a philosophical debate on 
this use of the term and for subjective probabilities in general—this will be 
addressed later in the chapter). Recall in Chapter 3 that we asked for a range 
to represent the uncertainty of a loss from a breach or other cybersecurity 
event. You may have computed these values with all sorts of sophisticated 
statistical inference methods, but you may have picked values based just on 
your experience. Either way, the values are a reflection of your uncertainty 
about this quantity.

You can also use probabilities to describe your uncertainty about spe-
cific future events, such as whether customer payment card information, 
personal health information, or other personal information will be stolen 
from the hack of a particular system. You may determine that there is a 
2% chance of a data breach in the next 12 months large enough to war-
rant some public announcement. (Note that when putting probabilities on 
future events, we must always state the period of time or the probability is 
meaningless.)

Of course, if this event does not occur, was the probability “right”? 
Clearly with a probability that is much less than 50% we weren’t expecting 
the event to occur, anyway. But a single event doesn’t determine whether a 
stated probability was right or wrong. We can only look at a number of data 
points. We can ask, “Of the large number of events we assigned a 5% prob-
ability to for a given year, did about 5% actually occur?” Likewise, where 
we thought an event was 20% or 1% likely in that same time period, did the 
event occur 20% or 1% of the time, respectively?

Unfortunately, as we mentioned in Chapter 4, extensive studies have 
shown that very few people are naturally calibrated estimators. Calibrated 
probability assessments were an area of research in decision psychology in 
the 1970s and 1980s and up to very recently. As we mentioned in Chapter 4, 
leading researchers in this area have been Daniel Kahneman, winner of the 
2002 Nobel Prize in Economic Sciences, and his colleague Amos Tversky.3 
Decision psychology concerns itself with how people actually make deci-
sions, however irrational, in contrast to many of the “management science” 
or “quantitative analysis” methods taught in business schools, which focus 
on how to work out “optimal” decisions in specific, well‐defined problems. 
This research shows that almost everyone tends to be biased either toward 
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“overconfi dence” or “underconfi dence” about their estimates; the vast ma-
jority being overconfi dent (see inset, “Two Extremes of Subjective Confi -
dence”). Putting odds on uncertain events or ranges on uncertain quantities 
is not a skill that arises automatically from experience and intuition.    

    two extremes of Subjective Confi dence  

Overconfi dence:  When an individual routinely overstates knowledge 
and is correct less often than he or she expects. For example, when 
asked to make estimates with a 90% confi dence interval, many fewer 
than 90% of the true answers fall within the estimated ranges. 
Underconfi dence:  When an individual routinely understates knowl-
edge and is correct much more often than he or she expects. For ex-
ample, when asked to make estimates with a 90% confi dence interval, 
many more than 90% of the true answers fall within the estimated 
ranges. 

 Fortunately, some of the work by other researchers shows that better 
estimates are attainable when estimators have been trained to remove their 
personal estimating biases.  4   Researchers discovered that odds makers and 
bookies were generally better at assessing the odds of events than, say, 
executives. They also made some disturbing discoveries about how bad 
physicians are at putting odds on unknowns like the chance that a tumor 
is malignant or that a chest pain is a heart attack. They reasoned that this 
variance among different professions shows that putting odds on uncertain 
things must be a learned skill. 

 Researchers learned how experts can measure whether they are sys-
tematically underconfi dent, overconfi dent, or have other biases about their 
estimates. Once people conduct this self‐assessment, they can learn several 
techniques for improving estimates and measuring the improvement. In 
short, researchers discovered that  assessing uncertainty is a general skill 
that can be taught with a measurable improvement.  That is, when calibrated 
cybersecurity experts say they are 95% confi dent that a system will not be 
breached, there really is a 95% chance the system will not be breached. 

 As mentioned earlier, there are competing philosophies over the defi -
nition, and both sides of the debate include many of the greatest minds 
in math, statistics, and science. We won’t go into detail here about that 
debate but if you want to read about it, see the original  How to Measure 
Anything  book, especially the third edition. The case Hubbard makes in 
that book—which merely repeats the same arguments already made by 
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great scientists and mathematicians like L. J. Savage, Edwin T. Jaynes, and 
Harold Jefferies—is that the subjectivist view of probability is actually the 
only one that can possibly apply in real‐world decision making. For your 
convenience, we have summarized part of this debate in the “Purely Philo-
sophical Interlude” section in this chapter.

Calibration Exercise

Let’s benchmark how good you are at quantifying your own uncertainty by 
taking a short quiz. Table 7.2 contains ten 90% CI questions and ten binary 
(i.e., true/false) questions. Unless you are a Jeopardy grand champion, you 
probably will not know all of these general knowledge questions with cer-
tainty (although some are very simple). But they are all questions you prob-
ably have some idea about. These are similar to the exercises Hubbard gives 
attendees in his workshops and seminars. The only difference is that the 
tests he gives have more questions of each type, and he presents several 
tests with feedback after each test. This calibration training generally takes 
about half a day.

But even with this small sample, we will be able to detect some impor-
tant aspects of your skills. More important, the exercise should get you to 
think about the fact that your current state of uncertainty is itself something 
you can quantify.

Table 7.2 contains 10 of each of these two types of questions.

	 1.	 90% Confidence Interval (CI). For each of the 90% CI questions, pro-
vide both an upper bound and a lower bound. Remember that the 
range should be wide enough that you believe there is a 90% chance 
that the answer will be between your bounds.

	 2.	 Binary. Answer whether each of the statements is “true” or “false,” 
then circle the probability that reflects how confident you are in your 
answer. For example, if you are absolutely certain in your answer, 
you should say you have a 100% chance of getting the answer right. If 
you have no idea whatsoever, then your chance should be the same 
as a coin flip (50%). Otherwise, it is one of the values between 50%  
and 100%.

Of course, you could just look up the answers to any of these questions, 
but we are using this as an exercise to see how well you estimate things 
you can’t just look up (e.g., how long a system will be down next year or 
whether one of the systems in your firm will experience a data breach).

Important hint: The questions vary in difficulty. Some will seem 
easy while others may seem too difficult to answer. But no matter how 
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Table 7.2  Sample Calibration Test

90% Confidence Interval

# Question Lower Bound Upper Bound

1 In 1938, a British steam 
locomotive set a new speed 
record by going how fast 
(mph)?

2 In what year did Sir Isaac 
Newton publish the Universal 
Laws of Gravitation?

3 How many inches long is a 
typical business card?

4 The Internet (then called 
“Arpanet”) was established 
as a military communications 
system in what year?

5 In what year was William 
Shakespeare born?

6 What is the air distance between 
New York and Los Angeles 
(miles)?

7 What percentage of a square 
could be covered by a circle 
of the same width?

8 How old was Charlie Chaplin 
when he died?

9 What is the weight, in pounds, 
of the first edition of How to 
Measure Anything?

10 The TV show Gilligan’s Island 
first aired on what date?

Statement
Answer 
(True/False)

Confidence That You 
Are Correct (Circle One)

1 The ancient Romans were 
conquered by the ancient 
Greeks.

50% 60% 70% 80% 90% 
100%

2 There is no species of three‐
humped camels.

50% 60% 70% 80% 90% 
100%

3 A gallon of oil weighs less than 
a gallon of water.

50% 60% 70% 80% 90% 
100%



Calibrated Estimates� 139

difficult the question seems, you still know something about it. Focus 
on what you do know. For the range questions, you know of some 
bounds beyond which the answer would seem absurd (e.g., you prob-
ably know Newton wasn’t alive in ancient Greece or in the twentieth 
century). Similarly, for the binary questions, even though you aren’t 
certain, you have some opinion, at least, about which answer is more 
likely.

After you’ve finished, but before you look up the answers, try a small 
experiment to test if the ranges you gave really reflect your 90% CI. Con-
sider one of the 90% CI questions, let’s say the one about when Newton 
published the Universal Laws of Gravitation. Suppose you were offered a 
chance to win $1,000 in one of these two ways:

	A.	 You win $1,000 if the true year of publication of Newton’s book turns 
out to be between the dates you gave for the upper and lower bound. 
If not, you win nothing.

	B.	 You spin a dial divided into two unequal “pie slices,” one comprising 
90% of the dial and the other just 10%. If the dial lands on the large 
slice, you win $1,000. If it lands on the small slice, you win nothing 
(i.e., there is a 90% chance you win $1,000). (See Figure 7.1.)

Answer  
(True/False)

Confidence That You 
Are Correct (Circle One)

4 Mars is always farther away  
from Earth than Venus.

50% 60% 70% 80% 90% 
100%

5 The Boston Red Sox won the 
first World Series.

50% 60% 70% 80% 90% 
100%

6 Napoleon was born on the 
island of Corsica.

50% 60% 70% 80% 90% 
100%

7 “M” is one of the three most 
commonly used letters.

50% 60% 70% 80% 90% 
100%

8 In 2002, the price of the average 
new desktop computer 
purchased was under $1,500.

50% 60% 70% 80% 90% 
100%

9 Lyndon B. Johnson was a 
governor before becoming 
vice president.

50% 60% 70% 80% 90% 
100%

10 A kilogram is more than a 
pound.

50% 60% 70% 80% 90% 
100%

Table 7.2  (continued)
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Which do you prefer? The dial has a stated chance of 90% that you win 
$1,000 and a 10% chance that you win nothing. If you are like most people 
(about 80%), you prefer to spin the dial. But why would that be? The only 
explanation is that you think the dial has a higher chance of a payoff. The 
conclusion we have to draw is that the 90% CI you first estimated is really 
not your 90% CI. It might be your 50%, 65%, or 80% CI, but it can’t be your 
90% CI. We say, then, that your initial estimate was probably overconfident. 
You express your uncertainty in a way that indicates you have less uncer-
tainty than you really have.

An equally undesirable outcome is to prefer option A, where you win 
$1,000 if the correct answer is within your range. This means that you think 
there is more than a 90% chance your range contains the answer, even though 
you are representing yourself as being merely 90% confident in the range. In 
other words, this is usually the choice of the underconfident person.

The only desirable answer you can give is if you set your range just 
right so that you would be indifferent between options A and B. This means 
that you believe you have a 90% chance—not more and not less—that the 
answer is within your range. For an overconfident person (i.e., most of 
us), making these two choices equivalent means increasing the width of 
the range until options A and B are considered equally valuable. For the 
underconfident person, the range should be narrower than first estimated.

You can apply the same test, of course, to the binary questions. Let’s 
say you were 80% confident about your answer to the question about  
Napoleon’s birthplace. Again, you give yourself a choice between betting on 
your answer being correct or spinning the dial. In this case, however, the 
dial pays off 80% of the time. If you prefer to spin the dial, you are probably 
less than 80% confident in your answer. Now let’s suppose we change the 

Win
0

Option B:

Spin the Dial!

Figure 7.1  Spin to Win!
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payoff odds on the dial to 70%. If you then consider spinning the dial just 
as good (no better or worse) as betting on your answer, then you should 
say that you are really about 70% confident that your answer to the ques-
tion is correct.

In Hubbard’s calibration training classes, he has been calling this 
the “equivalent bet test.” (Some examples in the decision psychology 
literature refer to this as an “equivalent urn,” involving drawing random 
lots from an urn.) As the name implies, it tests to see whether you are 
really 90% confident in a range by comparing it to a bet that you should 
consider to be equivalent. Research indicates that even just pretending 
to bet money significantly improves a person’s ability to assess odds.5 
In fact, actually betting money turns out to be only slightly better than 
pretending to bet.

Methods like the equivalent bet test help estimators give more realistic 
assessments of their uncertainty. People who are very good at assessing 
their uncertainty (i.e., they are right 80% of the time they say they are 
80% confident, etc.) are called “calibrated.” There are a few other simple 
methods for improving your calibration, but first, let’s see how you did 
on the test. The answers are shown at the end of this chapter after the 
citations.

To see how calibrated you are, we need to compare your expected 
results to your actual results. Since the range questions you answered 
were asking for a 90% CI, you are, in effect, saying that you expect 9 out 
of 10 of the true answers to be within your ranges. We need only to com-
pare how many answers were actually within your stated ranges to your 
expected number, 9. If expectations closely match outcomes, then you 
may be well calibrated. This very small sample is not, of course, conclu-
sive for one individual. But since tests like this have been given to over 
1,000 people, a pattern can be seen even with only this many questions.

Figure 7.2 shows the actual and expected distribution of answers that 
were within the stated CI on 10-question tests (the data in this figure ac-
tually shows results from multiple variations of the 10-question tests and 
results are similar across all versions). If the entire set of respondents were 
perfectly calibrated, we would expect most respondents (75%) to get 8, 9,  
or 10 of the 10 answers within their stated 90% CIs. This is literally the dis-
tribution we would expect if we rolled a 10‐sided die 10 times, counted up 
the number of times the result was 9 or less, and repeated that a thousand 
times. But instead we see that most people are providing ranges that are 
more like a 40% or 60% CI, not a 90% CI. Those who happened to get 8 
or more answers within their stated ranges are mathematically consistent 
with an uncalibrated but lucky “upper tail” of the uncalibrated population, 
not a group of people who were already calibrated when they took the 
first test.
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 The expected outcome for your answers to the true/false questions, how-
ever, is not a fixed number since your confidence could be different for each 
answer. For each of the answers, you said you were between 50% and 100% 
confident. If you said you were 100% confident on all 10 questions, you are 
expecting to get all 10 correct. If you were only 50% confident on each ques-
tion (i.e., thought your odds were no better than a coin flip), you expected to 
get about half of them right. To compute the expected outcome, convert each 
of the percentages you circled to a decimal (i.e., .5, .6, .7, .8, .9, 1 and add 
them up. Let’s say your confidence in your answers was 1, .5, .9, .6, .7, .8, .8, 1, 
.9, and .7, totaling to 7.9. This means your “expected” number correct was 7.9.

If you are like most people, the number of questions you answered 
correctly was less than the number you expected to answer correctly. This 
is a very small number of questions for measuring your skill at assessing 
your uncertainty, but most people are so overconfident that even this small 
number can be illuminating.

One way to frame the performance on a test like this is to determine 
how likely it would be for a person who really was calibrated (i.e., each 
90% CI really had a 90% chance of containing the real value) to get the ob-
served result. A calculation would show that for such a calibrated person, 
there is only a 1 in 612 chance that he or she would be so unlucky as to 
get only 5 or fewer out of 10 of the 90% CIs to contain the real answers. 
See www.howtomeasureanything.com/cybersecurity for a spreadsheet ex-
ample of this calculation and for examples of longer tests. But since over 
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http://www.howtomeasureanything.com/cybersecurity
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half of those who take these tests perform that badly (56%), we can safely 
conclude that it is systemic overconfidence and not a rash of bad luck 
combined with a small sample size. It is not just that these questions were 
too difficult, since these results reflect findings from a variety of tests with 
different questions over the past several years. Even with this small sample, 
if you got fewer than 7 answers within your bounds, you are probably 
overconfident; if you got fewer than 5 within your bounds, you are very 
overconfident.

People tend to fare slightly better on the true/false tests, but, on aver-
age, they still tend to be overconfident—and overconfident by enough that 
even a small sample of 10 can usually detect it. On average, people expect 
to get 74% of true/false questions like these correct, but, in reality, answer 
just 62% of them correct. Nearly one‐third of the participants expected to 
get 80% to 100% correct on 10‐question true/false tests like this; of those, 
they correctly answered only 64% of the questions. Part of the reason you 
may have performed better on the true/false test is because, statistically, this 
test is less precise. (It is easier for a calibrated person to be unlucky and for 
an uncalibrated person to appear calibrated in this small sample of ques-
tions.) But if your actual number correct was lower by 2.5 or more than the 
expected correct number, you are still probably overconfident.

Further Improvements on Calibration

The academic research so far indicates that training has a significant ef-
fect on calibration. We already mentioned the equivalent bet test, which  
allows us to pretend we are tying personal consequences to the outcomes. 
Research proves that another key method in calibrating a person’s abil-
ity to assess uncertainty is repetition with feedback. To test this, we ask 
participants a series of trivia questions similar to the quiz you just took. 
They give their answers, then they are shown the true values, and they 
test again.

However, it doesn’t appear that any single method completely corrects 
for the natural overconfidence most people have. To remedy this, we com-
bined several methods and found that most people could be nearly per-
fectly calibrated.

Another one of these methods involves asking people to identify argu-
ments against each of their estimates. For example, your estimate of losses 
due to legal liabilities may be based on another example in your firm. But 
when you think about how varied reported losses were in other companies 
and perhaps some surprising rulings by courts, you may reassess the initial 
range. Academic researchers found that this method by itself significantly 
improves calibration.6
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Hubbard also asked experts who are providing range estimates to 
look at each bound on the range as a separate “binary” question. A 90% 
CI interval means there is a 5% chance the true value could be greater 
than the upper bound and a 5% chance it could be less than the lower 
bound. This means that estimators must be 95% sure that the true value 
is less than the upper bound. If they are not that certain, they should 
increase the upper bound until they are 95% certain. A similar test is ap-
plied to the lower bound. Performing this test seems to avoid the problem 
of anchoring, first mentioned in Chapter 4. Recall that anchoring is the 
observation that once we have a number stuck in our head, our other 
estimates tend to gravitate toward it. Some estimators say that when they 
provide ranges, they think of a single number and then add or subtract 
an “error” to generate their range. This might seem reasonable, but it 
actually tends to cause estimators to produce overconfident ranges (i.e., 
ranges that are too narrow). Looking at each bound alone as a separate 
binary question of “Are you 95% sure it is over/under this amount?” cures 
our tendency to anchor.

You can also force your natural anchoring tendency to work the other 
way. Instead of starting with a point estimate and then making it into a range, 
start with an absurdly wide range and then start eliminating the values you 
know to be extremely unlikely. If you have no idea how much losses from a 
breach of intellectual property (IP) data might be, start with a range of $100 
to $10 billion. Then you realize that if IP is lost there will at least be an effort 
at evaluating the loss so you raise the lower bound. You also recognize that 
the value of IP can’t exceed all profits from the given product and new tech-
nology reduces the longevity of IP so perhaps you lower the upper bound. 
And keep narrowing it from there as you eliminate absurd values.

We sometimes call this the “absurdity test.” It reframes the question 
from “What do I think this value could be?” to “What values do I know 
to be ridiculous?” We look for answers that are obviously absurd and 
then eliminate them until we get to answers that are still unlikely but 
not entirely implausible. This is the edge of our knowledge about that 
quantity.

After a few calibration tests and practice with methods like listing pros 
and cons, using the equivalent bet, and anti‐anchoring, estimators learn to 
fine‐tune their “probability senses.” Most people get nearly perfectly cali-
brated after just a half‐day of training. Most important, even though subjects 
may have been training on general trivia, the calibration skill transfers to 
any area of estimation.

We’ve provided additional calibration tests of each type—ranges and 
binary—on this book’s website at www.howtomeasureanything.com/ 
cybersecurity. Using these tests, try applying the methods summarized in 
Table 7.3 to improve your calibration.

http://www.howtomeasureanything.com/cybersecurity
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Conceptual Obstacles to Calibration

The methods just mentioned don’t help if someone has irrational ideas 
about calibration or probabilities in general. While most people in deci-
sion‐making positions seem to have or are able to learn useful ideas about 
probabilities, some have surprising misconceptions about these issues. We 
addressed some general conceptual obstacles in Chapter 5, but let’s focus 
a bit further on misconceptions about the use of subjective probabilities. 
Here are some comments Hubbard received while taking groups of people 
through calibration training or eliciting calibrated estimates after training:

■■ “My 90% confidence can’t have a 90% chance of being right because 
a subjective 90% confidence will never have the same chance as an 
objective 90%.”

■■ “This is my 90% confidence interval but I have absolutely no idea if 
that is right.”

■■ “We couldn’t possibly estimate this. We have no idea.”
■■ “If we don’t know the exact answer, we can never know the odds.”

The first statement was made by a chemical engineer and is indicative 
of the problem he was initially having with calibration. As long as he sees 
his subjective probability as inferior to objective probability, he won’t get 
calibrated. However, after a few calibration exercises, he did find that he 
could subjectively apply odds that were correct as often as the odds im-
plied; in other words, his 90% confidence intervals contained the correct 
answers 90% of the time.

The rest of the objections are fairly similar. They are all based in part on 
the idea that not knowing exact quantities is the same as knowing nothing of 

Table 7.3  Methods to Improve Your Probability Calibration

Repetition and feedback. Take several tests in succession, assessing how well you 
did after each one and attempting to improve your performance on the next 
one.

Equivalent bets. For each estimate, set up the equivalent bet to test if that range or 
probability really reflects your uncertainty.

Consider two pros and two cons. Think of at least two reasons why you should be 
confident in your assessment and two reasons you could be wrong.

Avoid anchoring. Think of range questions as two separate binary questions of 
the form “Are you 95% certain that the true value is over/under (pick one) the 
lower/upper (pick one) bound?”

Reverse the anchoring effect. Start with extremely wide ranges and narrow them 
with the “absurdity test” as you eliminate highly unlikely values.
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any value. And, again, note that none of these types of objections would be 
answered in any way at all by substituting subjective—but clearly defined—
probabilities and ranges with the ambiguous language of “high” or “medium” 
likelihood or loss. Whatever the challenges of using calibrated probability as-
sessments might be, we can’t help them by avoiding the issue with language 
that introduces further imprecision.

Even calibrated experts will initially need some coaching to overcome 
these misconceptions. The following example is based on a conversation 
Hubbard Decision Research had with the information security staff at the U.S. 
Department of Veterans Affairs (first mentioned in Chapter 2) back in 2000. 
The expert initially gave no range at all and instead insisted that it could 
never be estimated. He went from saying he knew “nothing” about a variable 
to later conceding that he actually is very certain about some bounds.

Analyst:	 If your systems are being brought down by a computer 
virus, how long does the downtime last? As always, all 
I need is a 90% confidence interval.

Security Expert:	 We would have no way of knowing that. Sometimes we 
were down for a short period, sometimes a long one. 
We don’t really track it in detail because the priority is 
always getting the system back up, not documenting 
the event.

Analyst:	 Of course you can’t know it exactly. That’s why we only 
put a range on it, not an exact number. But what would 
be the longest downtime you ever had?

Security Expert:	 I don’t know, it varied so much. . .
Analyst:	 Were you ever down for more than two entire 

workdays?
Security Expert:	 No, never two whole days.
Analyst:	 Ever more than a day?
Security Expert:	 I’m not sure . . . probably.
Analyst:	 We are looking for your 90% confidence interval of a 

future downtime. If you consider all the downtimes you’ve 
had due to a virus, are they usually more than a day?

Security Expert:	 I see what you mean. I would say the average is usually 
less than a day.

Analyst:	 So your upper bound for an event would be . . . ?
Security Expert:	 Okay, I think almost all system outages would be 

resolved in 24 hours.
Analyst:	 Great. Now let’s consider the lower bound. How small 

could it be?
Security Expert:	 Some events are corrected in a couple of hours. Some 

take longer.



Calibrated Estimates� 147

Analyst:	 Okay, but does a system ever get back online in less 
than an hour?

Security Expert:	 I suppose it has taken less than 30 minutes at times.
Analyst:	 Good. So your 90% confidence interval for the duration 

of a single outage is 30 minutes to 24 hours?
Security Expert:	 Yes, but I suppose a system could be out for three days.
Analyst:	 Sure. That’s why we call it a 90% confidence interval. 

We allow for a 5% chance it is below the lower bound 
and a 5% chance it is above the upper bound. In our 
simulations, we will get values below 30 minutes or 
greater than 24 hours a total of 1 in 10 times. Depend-
ing on the distribution we choose, we could get dura-
tions of a few days on rare occasions.

Security Expert:	 Then I would say that sounds about right.

This is a typical conversation for a number of highly uncertain quanti-
ties. Initially the experts resist giving any range at all, perhaps because they 
have been taught that in business, the lack of an exact number is the same 
as knowing nothing, or perhaps because they will be “held accountable for 
a number.” But the lack of having an exact number is not the same as know-
ing nothing. The security expert knew that it is definitely not true that most 
outages would be solved in less than 30 minutes or that most would last 
longer than a week. He at least knew those were rarer extremes. He was 
uncertain, of course, but the uncertainty was not boundless.

This example is one reason we don’t like to use the word “assumption” 
in our analysis. An assumption is a statement we treat as true for the sake 
of argument, regardless of whether it is true. Assumptions are necessary if 
you have to use deterministic accounting methods with exact points as val-
ues. You could never know an exact point with certainty, so any such value 
must be an assumption. But if you are allowed to model your uncertainty 
with ranges and probabilities, you do not have to state something you don’t 
know for a fact. If you are uncertain, your ranges and assigned probabilities 
should reflect that. If you have “no idea” that a narrow range is correct, you 
simply widen it until it reflects what you do know.

It is easy to get lost in how much you don’t know about a problem and 
forget that there are still some things you do know. There is literally nothing 
we will ever need to measure where our only bounds are negative infinity 
to positive infinity.

The dialog is an example of the absurdity tests in the reverse‐anchoring 
approach we mentioned earlier. We apply it whenever we get the “There 
is no way I could know that” response or the “Here’s my range, but it’s 
a guess” response. No matter how little experts think they know about a 
quantity, it always turns out that there are still values they know are absurd. 
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Again, the point at which a value ceases to be absurd and starts to become 
unlikely but somewhat plausible is the edge of their uncertainty about the 
quantity. As a fi nal test, we give them an equivalent bet to see if the result-
ing range is really a 90% CI. 

 You will likely encounter more conceptual objections as you imple-
ment more quantitative methods that will rely, at some point, on subjective 
estimates of probabilities. As the survey in Chapter   5   showed, curious dis-
positions about the use of probabilities seem to affect some small percent-
age of professionals in cybersecurity. One more example of this observed 
by Hubbard is the case where the expert responded that every event was 
100% likely. His own colleagues argued with him regarding what seemed 
like an obviously absurd position. He responded that he had to act  as if  
each of these events was going to happen. His colleagues sitting next to him 
pointed out that if that were the case, he would have to treat every event as 
equally likely, and since his resources were limited, he would have to assign 
them arbitrarily. He seemed to be confl ating the likelihood of the event with 
risk tolerance and what to do about it.    

    a purely philosophical Interlude   

 Does 90% Confi dence Mean 90% probability?    

   All possible defi nitions of probability fall short of the actual practice.  
—William Feller (1906–1970), American mathematician     7  

   It is unanimously agreed that statistics depends somehow on prob-
ability. But, as to what probability is and how it is connected with 
statistics, there has seldom been such complete disagreement and 
breakdown of communication since the Tower of Babel.  

—L. J. Savage (1917–1971), American mathematician     8  

 Throughout this book, we will refer to a 90% CI as a range of 
values (indicated by an upper and lower bound) that has a 90% prob-
ability of containing the true value. We will use this defi nition regardless 
of whether the CI was determined subjectively or—as Chapter   9   will 
show—with sample data. By doing so, we’re using a particular interpre-
tation of probability that treats it as an expression of the uncertainty or 
“degree of belief” of the person providing the estimate. 

 Some (not all) statistics professors hold a different interpretation 
that contradicts this. If we computed the 90% CI of, say, the estimate 
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of the population of users following a security protocol correctly, to be 
25% to 40%, they would argue that it is incorrect to say there is a 90% 
probability that the true population mean is within the interval. They 
would say the true population mean is either in the range or not. 

 This is one aspect of what is called the “frequentist” interpretation 
of confi dence intervals. Students and many scientists alike fi nd this a 
confusing position. A frequentist would argue that the term “probability” 
can apply only to events that are purely random, “strictly repeatable,” 
and have an infi nite number of iterations. These are three conditions 
that, if we pin a frequentist down on the defi nitions, make probability 
a purely mathematical abstraction that never applies to any situation in 
practical decision making. 

 Most decision makers, however, behave as if they take the position 
we use in this book. They are called ”subjectivists,” meaning that they use 
probabilities to describe a personal state of uncertainty, whether or not it 
meets criteria like being ”purely random.” This position is also sometimes 
called the “Bayesian” interpretation (although this interpretation and the 
Bayes formula we will discuss in Chapter   8   often have nothing to do with 
each other). To a subjectivist, a probability merely describes what a per-
son knows, whether or not the uncertainty involves a fi xed fact, such as 
the true mean of a population, as long as it is unrevealed to the observer. 
Using probabilities (and confi dence intervals) as an expression of uncer-
tainty is the practical approach for making risky decisions. 

Suppose you and a colleague bet on how many people will lose a 
laptop next month (we’re not proposing you start such betting pools; 
this is just an example). You state your 90% CI for laptops lost is be-
tween 2 and 10 next month. Suppose you also have the choice to make 
a bet instead, on a spin of a dial where you have a 90% chance of win-
ning. Whatever bet you would be willing to make on one you would 
be willing to make on the other. Until new information, such as the true 
number of lost laptops, is revealed to you, you treat the confi dence in a 
confi dence interval as a probability. If real money was on the line, we 
suspect an experiment involving frequentist statisticians betting on vari-
ous confi dence intervals and dial‐spins would show they would also 
act like subjectivists. 

 In many published works in the empirical sciences, physicists,  9   epi-
demiologists,  10   and paleobiologists  11   explicitly and routinely describe a 
confi dence interval as having a  probability  of containing the estimated 
value. Yet it appears that nobody has ever had to retract an article be-
cause of it—nor should anyone. It is important to note, however, that 

(Continued)



150 evolving the Model of Cybersecurity risk

either interpretation is pure semantics and is not a function of math-
ematical fundamentals or empirical observation that can be proven true 
or false. This is why these positions are called merely “interpretations” 
and not “theorems” or “laws.” 

 But there is one pragmatic, measurable, real‐world difference be-
tween these two interpretations: Students fi nd the frequentist interpre-
tation much more confusing.  Some  statistics professors understand this 
perfectly well and therefore teach both the subjectivist and frequentist 
interpretations. Like most decision scientists, we will act as if a 90% con-
fi dence interval has a 90% probability of containing the true value (and 
we never run into a mathematical paradox because of it).  

(Continued)

 the effects of Calibration 

 One of the authors, Doug Hubbard, started calibrating people in 1995, 
gathering data on how well people do on trivia tests and even how well‐
calibrated people do in estimating real‐life uncertainties after those events 
have come to pass. The calibration methods and tests have evolved but 
have been fairly consistent since 2001. Since then, Hubbard and his team at 
Hubbard Decision Research have trained well over 1,000 people in 
calibration methods and have recorded their performance, both their ex-
pected and actual results on several calibration tests, given one after the 
other during a half‐day workshop. 

 The data gathered over these participants gave some insight into 
the aggregated data often published in various peer‐reviewed scientifi c 
studies. The academic research usually shows aggregated results for all 
the participants in the research, so we can see only an average for a 
group. When Hubbard aggregated the performance of participants in the 
same way, he got a result very similar to the prior research. But because 
he could break down the data by specifi c subjects, he saw another inter-
esting phenomenon. Hubbard observed that most perform superbly by 
the end of the training; it is a few poor performers who bring down the 
average. 

 To determine who is calibrated we have to allow for some deviation 
from the target, even for a perfectly calibrated person. Also, an uncalibrated 
person can get lucky. Accounting for this statistical error in the testing, fully 
80% of participants are ideally calibrated after the fi fth calibration exercise. 
They are neither underconfi dent nor overconfi dent. Their 90% CIs have 
about a 90% chance of containing the correct answer. 
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Another 10% show significant improvement but don’t quite reach ideal 
calibration. And 10% show no significant improvement at all from the first 
test they take.12 The analysis shows there are different groups of perfor-
mance among the individuals, which does not fit the model of everyone  
being slightly uncalibrated. This group cannot be explained as just ran-
domly unlucky participants, and those who were calibrated cannot just be 
a lucky but uncalibrated majority. Why is it that about 10% of people are 
apparently unable to improve at all in calibration training? Whatever the rea-
son, it turns out not to be that relevant. Every single person we ever relied 
on for actual estimates was in the first two groups, and almost all were in 
the first, ideally calibrated group. Those who seemed to resist any attempt 
at calibration were, even before the testing, never considered to be the rel-
evant expert or decision maker for a particular problem. It may be that they 
were less motivated, knowing their opinion would not have much bearing. 
Or it could be that those who lacked aptitude for such problems just don’t 
tend to advance to the level of the people we need for the estimates. Either 
way, it’s academic.

We see that training works very well for most people. But does proven 
performance in training reflect an ability to assess the odds of real‐life un-
certainties? The answer here is an unequivocal yes. Hubbard tracked how 
well‐calibrated people do in real‐life situations on multiple occasions, but 
one particular controlled experiment done in the IT industry still stands 
out. In 1997, Hubbard was asked to train the analysts of the IT advisory 
firm Giga Information Group (since acquired by Forrester Research, Inc.) 
in assigning odds to uncertain future events. Giga was an IT research firm 
that sold its research to other companies on a subscription basis. Giga had 
adopted the method of assigning odds to events it was predicting for clients, 
and it wanted to be sure it was performing well.

Hubbard trained 16 Giga analysts using the methods described earlier. 
At the end of the training, the analysts were given 20 specific IT industry 
predictions they would answer as true or false and to which they would 
assign a confidence. The test was given in January 1997, and all the ques-
tions were stated as events occurring or not occurring by June 1, 1997 (e.g., 
“True or False: Intel will release its 300 MHz Pentium by June 1,” etc.). As 
a control, the same list of predictions was also given to 16 of their chief 
information officer (CIO) clients at various organizations. After June 1 the 
actual outcomes could be determined. Hubbard presented the results at 
Giga World 1997, their major IT industry symposium for the year. Figure 7.3 
shows the results. Note that some participants opted not to answer all of 
the questions, so the response counts on the chart don’t add up to 320 (16 
subjects times 20 questions each) in each of the two groups.

The horizontal axis is the chance the participants gave to their pre-
diction on a particular issue being correct. The vertical axis shows how 
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many of those predictions turned out to be correct. An ideally calibrated 
person should be plotted right along the dotted line. This means the per-
son was right 70% of the time he or she was 70% confident in the predic-
tions, 80% right when he or she was 80% confident, and so on. You see 
that the analysts’ results (where the points are indicated by small squares) 
were very close to the ideal confidence, easily within allowable error. The 
results appear to deviate the most from perfect calibration at the low end 
of the scale, but this part is still within acceptable limits of error. (The 
acceptable error range is wider on the left of the chart and narrows to 
zero at the right.) Of all the times participants said they were 50% confi-
dent, they turned out to be right about 65% of the time. This means they 
might have known more than they let on and—only on this end of the 
scale—were a little underconfident. It’s close; these results might be due 
to chance. There is a 1% chance that 44 or more out of 68 would be right 
just by flipping a coin.

The deviation is a bit more significant—at least statistically if not 
visually—at the other end of the scale. Where the analysts indicated a high 
degree of confidence, chance alone would have allowed for only slightly 
less deviation from expected, so they are a little overconfident on that end 
of the scale. But, overall, they are very well calibrated.

In comparison, the results of clients who did not receive any calibra-
tion training (indicated by the small triangles) were very overconfident. The 
numbers next to their calibration results show that there were 58 instances 
when a particular client said he or she was 90% confident in a particular 

Figure 7.3  Calibration Experiment Results for 20 IT Industry Predictions in 1997
Source: Hubbard Decision Research
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prediction. Of those times, the clients got less than 60% of those predic-
tions correct. Clients who said they were 100% confident in a prediction 
in 21 specific responses got only 67% of those correct. All of these results 
are consistent with what has typically been observed in a number of other 
calibration studies over the past several decades.

Equally interesting is the fact that the Giga analysts didn’t actually get 
more answers correct. (The questions were general to the IT industry, not 
focusing on analyst specialties.) They were simply more conservative—but 
not overly conservative—about when they would put high confidence on a 
prediction. Prior to the training, however, the calibration of the analysts on 
general trivia questions was just as bad as the clients were on predictions 
of actual events. The results are clear: The difference in accuracy is due 
entirely to calibration training, and the calibration training—even though it 
uses trivia questions—works for real‐world predictions.

Many of Hubbard’s previous readers and clients have run their own 
calibration workshops and saw varying results depending on how closely 
they followed these recommendations. In every case where they could not 
get as many people calibrated as observed in Hubbard’s workshops, it was 
found that they did not actually try to teach all of the calibration strategies 
mentioned in Table 7.3. In particular, they did not cover the equivalent bet, 
which seems to be one of the most important calibration strategies. Those 
who followed these strategies and practiced with them on every exercise 
invariably saw results similar to those observed by Hubbard.

Motivation and experience in estimating may also be a factor. Hubbard 
usually gives his training to experienced managers and analysts, most of 
whom knew they would be called on to make real‐world estimates with 
their new skills. Dale Roenigk of the University of North Carolina–Chapel 
Hill gave this same training to his students and noticed a much lower rate 
of calibration (although still a significant improvement). Unlike managers, 
students are rarely asked for estimates; this may have been a factor in their 
performance. As observed in Hubbard’s own workshops, those who did not 
expect their answers to be used in the subsequent real‐world estimation 
tasks were almost always those who showed little or no improvement.

There is one other extremely important effect of calibration. In addition 
to improving one’s ability to subjectively assess odds, calibration seems to 
eliminate objections to probabilistic analysis in decision making. Prior to 
calibration training, people might feel any subjective estimate was useless. 
They might believe that the only way to know a CI is to do the math they 
vaguely remember from first‐semester statistics. They may distrust proba-
bilistic analysis in general because all probabilities seem arbitrary to them. 
But it is rare for a person to offer such challenges after being calibrated. 
Apparently, the hands‐on experience of being forced to assign probabilities, 
and then seeing that this was a measurable skill in which they could see 
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real improvements, addresses these concerns. Although this was not an 
objective when Hubbard first started calibrating people, it became clear 
how critical this process was in getting them to accept the entire concept of 
probabilistic analysis in decision making.

You now understand how to quantify your current uncertainty by learn-
ing how to provide calibrated probabilities. This skill is critical to the next 
steps in measurement.
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How to Measure Anything: Finding the Value of “Intangibles” in Busi-
ness because we continued to gather new samples (i.e., participants in 
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Answers to Trivia Questions for Calibration Exercise 

Confidence Intervals: (1) 203 (2) 1685 (3) 8.9 (4) 1969 (5) 1564 (6) 
3,944 (7) 78.5% (8) 88 (9) 0.56 (10) 1964 True/False: (1) True (2) 
True (3) True (4) False (5) True (6) True (7) False (8) True (9) False  
(10) True





157

Chapter 8
Reducing Uncertainty with 

Bayesian Methods

We are now in possession of proven theorems and masses of worked‐
out numerical examples. As a result, the superiority of Bayesian 
methods is now a thoroughly demonstrated fact in a hundred dif-
ferent areas.

—E. T. Jaynes, Quantum Physicist and Outspoken Bayesian 
Proponent, in Probability Theory: The Logic of Science: 

Principles and Elementary Applications

The previous chapter showed how the performance of subjective 
probabilities are objectively measurable—and they have been mea-

sured thoroughly in published scientific literature. These subjective 
“prior probabilities” (“priors” for short) are the starting point of all of 
our analyses. This is the best way to both preserve the special knowl-
edge and experience of the cybersecurity expert and produce results 
that are mathematically meaningful and useful in simulations. Stating 
our current uncertainty in a quantitative manner allows us to update our 
probabilities with new observations using some powerful mathematical 
methods.

The tools we are introducing in this chapter are part of Bayesian 
methods in probability and statistics, named after the original eighteenth‐
century developer of the idea, Reverend Thomas Bayes. It has multiple 
advantages that are particularly well suited to the problems the cybersecu-
rity expert faces. First, it exploits existing knowledge of experts. This is in 
contrast to conventional methods the reader may have been exposed to in 
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first‐semester statistics, which assume that literally nothing else is known 
about a measurement before the sample data was acquired. Second, be-
cause it uses this prior knowledge it can make inferences from very little 
data. These inferences may be just slight reductions in the cybersecurity 
expert’s uncertainty, but they can still have a big impact on risk mitiga-
tion decisions. If you do have a lot of data, the Bayesian solution and the 
measurements from basic sampling methods that ignore prior knowledge 
will converge.

In this chapter we will introduce some of the basic Bayesian reason-
ing and how it might apply to one problem in cybersecurity. We will, for 
now, focus on fundamental mechanics to lay a foundation. The basics 
we are covering will be trivial for some. We assume nothing more than 
that the reader is familiar with basic algebra. But there is a lot of detail 
to cover, so, if you find this trivial, feel free to skim quickly. If you find 
it overwhelming, bear in mind that you still, as always, have access to 
the calculations done for you in our downloadable spreadsheet (www 
.howtomeasureanything.com/cybersecurity). If you can make it through 
this chapter, the reward is access to some very powerful tools in the next 
chapter.

We will put this in context by starting with an example of a concern to 
everyone in cybersecurity—the major data breach.

A Major Data Breach Example

Imagine this hypothetical, and overly simplified, scenario. As CISO for com-
pany ABC, you find yourself responsible for securing a large portfolio of 
cloud‐deployed products. These products all process critical data—data 
that must be secure. The associated databases include financial data and 
even sensitive data. Let’s say this is a large organization and each of the 
cloud applications process millions of records of critical data daily. Also, the 
company has 500 developers updating code regularly from several global 
locations. Your company additionally has embraced a DevOps approach, 
which supports multiple software‐feature releases on a daily basis in rapid 
succession. Last, you have invested in a series of security defenses and  
security staff.

In short, you have lots of risk in your systems, you create a lot of new 
risk daily via development, but you also are heavily armored and believe 
you are ready for battle. Unexpectedly, you have been asked into the CEO’s 
office for a quick talk.

http://www.howtomeasureanything.com/cybersecurity
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CEO:	 I just heard about financial company XYZ getting hacked right 
through the front door of their website—huge data loss and a lot 
of liability! What is the chance that someone can hack any one of 
our websites and steal our customers’ data?

CISO:	 You pull out your mobile device and open the Naïve Bayesian Calcu-
lator spreadsheet you downloaded from www.howtomeasureanything 
.com/cybersecurity. You say, “1.24% over the next year, but I reserve 
the right to update that number after our next comprehensive third‐
party penetration test.”

CEO:	 That sounds like an impossibly precise number.
CISO:	 Actually it’s a probability. It represents my uncertainty about what 

the “precise” outcome will be. In this case, this probability was 
derived from other subjective probability estimates I’ve provided. 
My staff and I have been calibrated so we’ve measured how good 
we are at assessing subjective probabilities.

CEO:	 You now have me curious. How much will you change your mind 
if your test finds something? Or, what if your test finds nothing—
would you change that rather specific number?

CISO:	 We’ve done other pen tests, but now the pen testers are looking 
for a particular set of remotely exploitable vulnerabilities. If they 
find them in our cloud products and are able to steal protected 
data without us knowing about it, then I would say my belief 
in possible future loss goes up to 24%. If the pen testers get no 
treasure, then 1.01%. The bigger question is, if they succeed or 
even get close, what is the likelihood that we have already been 
breached? And, perhaps even more importantly, when should we 
take our forensics to determine if there was a loss? Forensics is 
very expensive. . .

CEO:	 Please let me know the results of the test and your recommended 
decisions in light of those results. Let’s make it fast . . . we have an 
opportunity here. Now, let me see that spreadsheet, I have a lot of 
other questions for it!

Questions like the CEO’s about future loss are normal. When big 
breaches like Sony, JPMorgan, Target, and RSA happen, executives naturally 
wonder, “Could that be us?” They are wondering about a highly uncertain, 
and possibly dangerous, future loss. Reframing the question in quantitative 
terms such as “What is the probability of having a massive data breach?” is 
reasonable.

To make this example real, imagine we’ve identified three specific terms 
(defined well enough that they meet our clarity tests), downloaded the 
aforementioned spreadsheet, and entered those terms accordingly.

http://www.howtomeasureanything.com/cybersecurity
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Defining the Binary Terms

We are introducing the idea of modifying a probability based on a 
condition. That is, you have a probability that something will happen, 
learn one new thing, and you update that probability. We are actually 
introducing a way to decompose that a little further by showing that 
the condition itself can be an uncertain state that is also conditional on 
something else.

In this simple example we will limit the analysis to three discrete, binary 
states—each is something that is either true or false. The three terms we are 
defining are:

■■ The occurrence in a given year of a “major data breach” (MDB)
■■ The existence of a currently unknown but possible “remotely exploit-
able vulnerability” (REV)

■■ A result on a penetration test that would indicate the existence of some 
remotely exploitable vulnerability, called a “positive pen test” (PPT)

Let’s assume MDB, REV, and PPT have been defined for us in unambig-
uous terms that are clear, observable, and useful for practical decisions. In 
this simple case, the CEO and other stakeholders (decision makers) wanted 
to evaluate the risk of an MDB like the ones they read about in the news. 
They agreed that to be considered a massive data breach it must be 1 mil-
lion records or more. Also, they agreed on specific terms for what REV 
means by identifying types of weaknesses in their web application, cloud 
infrastructure, and/or security operations that would allow an external mali-
cious party to steal data remotely. Finally, the penetration test is a defined 
campaign with potential results and the meaning of those results are specifi-
cally identified.

If our stakeholders know precisely what the terms mean, how they are 
observed, and what consequences they would have for action, then we 
have a useful decomposition of the problem. If we decomposed this risk 
to “nation‐state threat actor wielding a zero day,” we would have made the 
error of “useless decompositions,” in which case what we do, and how we 
know for sure, are put far out of reach.

The Bayesian example we are going to describe involves two “stages” of 
analysis. The existence of a remotely exploitable vulnerability changes the 
probability of a major data breach. Furthermore, the outcome of a penetra-
tion test changes the probability of a remotely exploitable vulnerability. In 
this way, we have made a simple decomposition of the likelihood of a major 
data breach. But otherwise, this example is contrived to make the Bayesian 
solution as simple as we can make it.
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A Brief Introduction to Bayes and Probability Theory

The claim has often been correctly made that Einstein’s equation  
E = mc 2 is of supreme importance because it underlies so much of 
physics. . . . I would claim that Bayes equation, or rule, is equally 
important because it describes how we ought to react to the acquisition 
of new information.

—Dennis V. Lindley1

In our model, we started with the CISO’s beliefs about our key variables 
and how they relate. Specifically, he provided a calibrated estimate for the 
probability for having a massive data breach in light of a remotely exploit-
able vulnerability.

The Language of Probabilities: A Basic Vocabulary

If we give you a little notation now, we can avoid longer and potentially 
more confusing verbal expressions. This may be trivial to some readers, 
but if you are the least bit rusty, look this over to get back up to speed on 
how to write in the language of probabilities. For now, we will just mention 
a few handy rules from probability theory. This is not the complete list of 
fundamental axioms from probability theory, and it’s definitely not a com-
prehensive list of all theorems that might be useful. But it is enough to get 
through this chapter.

	 1.	 How to write “Probability.”

P(A) = probability of A. P(A) has to be some value between 0 and 1, 
inclusive.

P(∼A) = the probability of not A. Read the “∼” sign as “no,” “not,” or 
“is/will not.”

If P(MDB) is the probability of a major data breach in a given year, 
then P(∼MDB) is the probability there won’t be a major data breach.

	 2.	 The “Something has to be true but contradictory things can’t both be 
true” rule.

The probabilities of all mutually exclusive and collectively exhaustive 
events or states must add up to 1. If there are just two possible out-
comes, say A or not A, then:

P(A) + P(∼A) = 1

For example, either there will be a major data breach or not. If we 
defined this term unambiguously (which we assume we have in this 
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specific case), it has to be one or the other and it can’t be both (i.e., 
we can have MDB happen and NOT happen)

	 3.	 How to write the probability of “More than one thing happens.”

P(A,B) means both A and B are true. If A and B are “independent,” 
meaning the probability of one does not depend on the other, then 
P(A,B) = P(A)P(B). This may not be the case for MDB, REV, and PPT, 
so we can’t say P(MDB,REV,PPT) = P(MDB)P(REV)P(PPT).

	 4.	 How to write, and compute, probability when “It depends” (condi-
tional probability).

P(A | B) = conditional probability of A given B. For example,  
P(MDB | REV) is how we can write the probability of a major data 
breach given a remotely exploitable vulnerability. It is also true that 
P(A | B) = P(A,B) / P(B). If A can change based on two or more 
things, we can write P(A | B,C).

	 5.	 How to decompose “More than one thing happens” into a series of “It 
depends.”

We can use rule 4 to turn a larger joint probability of two things 
into P(A,B)=P(A|B)P(B) and if we have a joint probability of three 
things we can write P(A,B,C)=P(A|B,C)P(B|C)P(C ) and so on. This 
is called the “chain rule.”

	 6.	 How to add up “It can happen different ways” rule.

We can extend Rule 4 to working out the probability based on all the 
conditions under which it could happen and the probabilities of each 
of those conditions.

P(A) = P(A | B)P(B) + P(A | ∼B)P(∼B)

For example, a positive penetration test has some bearing on the 
probability of a major data breach. Using this rule, the probability of 
a major data breach can be written like this:

P(MDB) = P(MDB | PPT)P(PPT) + P(MDB | ∼PPT) P(∼PPT)

	 7.	 How to “flip” a conditional probability: Bayes’s Rule

We will often want to “flip” a conditional probability. That is, we 
might start out with P(A | B) but what we really want is P(B | A). 
These two things are only equal if P(A) = P(B), which is often not 
the case. So in order to flip them we have to apply Bayes’s Rule, 
which is written as:

P(A | B) = P(A)P(B | A) / P(B)

Sometimes the form of this is referred to as the “general” form of 
Bayes by computing P(B) according to the rule stated in Rule 3. If we 
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consider just two conditions for P(B), then Rule 4 allows us to substi-
tute P(B) so that:

P(A | B) = P(A)P(B | A)/[P(B | A)P(A) + P(B | ∼A)P(~A)]

In our particular case, we want to know the probability of a major 
data breach given some additional information, like the discovery of 
a particular remotely exploitable vulnerability. We can write this as:

P(MDB|REV ) = 
P(MDB)P(REV |MDB)

P(REV |MDB)P(MDB) + P(REV |~MDB)P(~MDB)

In short, Bayes’s Rule allows you to determine P(MDB | REV) from 
P(REV | MDB) or vice versa. This means that you can determine the prob-
ability of your evidence given an event and, conversely, the probability of 
an event given your evidence. To see how these are different, consider the 
following:

■■ “What is the probability we have had a breach in light of the fact that 
we found several malware specimens that were beaconing to black-
listed command and control servers for the last six months?”

Written: P(Breach | Malware Beaconing To Blacklisted Server)

■■ Equally important is, “What is the probability that we have malware 
beaconing to blacklisted servers owned by organized crime given that 
we discovered millions of corporate e‐mails, user IDs, Social Security 
numbers, and other protected data being sold in the netherworld by 
organized crime—that is, that we had a breach?”

Written: P(Malware Beaconing To Blacklisted Server | Breach)

Did you see how these are different? The first led with asking, “What 
is the probability of the event (Breach) given the evidence?” The second is 
asking, “What is the probability of the evidence given the fact that the event 
has occurred?” (Getting these two confused is also known as the “Prosecu-
tor’s Fallacy” if you want to study this further.)

This “flip” is what Bayes’s Rule is all about, and we will find it becomes 
a very important foundation of reasoning under uncertainty. Bayesian prob-
ability becomes a “consistency” yardstick for measuring your beliefs about 
some uncertain event as you get more data. In particular, it makes the pro-
cess of updating those beliefs reasonable. 
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A Brief Note on Priors

All of the operations just described require some source of an input. In 
this example, we will be using the calibrated estimates of the CISO. Since 
the CISO is using his previous experience and his calibrated probability‐
assessment skill to generate the inputs, we call them an “informative prior.” 
Again, “prior” is short for “what you already believe about something.” An 
informative prior is a fancy way for saying that your prior is generated by a 
subject matter expert who knows something, is well calibrated, and is will-
ing to state how some things are more likely than others.

We could also start with an “uninformative prior.” The idea here is to 
have a prior that assumes a maximum possible level of uncertainty at first; 
any changes to that will be informed by the data. It is considered a more 
conservative starting point since it can’t be influenced by the mistaken be-
liefs of the expert—on the other hand, it can’t take into account perfectly 
legitimate beliefs, either.

It could be argued that an uninformative prior on a discrete binary 
event is 50%. There is actually a philosophical debate about this, which we 
won’t get into, but, mathematically speaking, that is the most uncertainty we 
can have in a system with only two possible states. Of course, the selection 
of a prior in either case is subjective. The uninformative prior is considered 
more conservative by some people but it is probably also less realistic than 
the informative (i.e., you usually don’t really have zero prior information). 
Whatever the mix you have on the subjective to objective scale, probability 
theory can help make your reasoning far more consistent.

Proving Bayes

If you’ve absorbed all of that to the point of its being intuitive, there are 
some more concepts you can pick up if you understand where Bayes’s Rule 
comes from. To do that let’s expand on the chain rule (item #5 in the basic 
vocabulary list).

Consider all the possible combinations of remotely exploitable vulner-
ability and major data breach, such as both are true (REV, MDB), neither 
is true (∼REV, ∼MDB), and one or the other is true but not both, (∼REV, 
MDB) and (REV,∼MDB). Think of these as branches on a “chain rule tree” 
as shown in Figure 8.1.

Starting from the left, a branch in each level is multiplied by a single 
branch in the next level, leading to all four combinations we need. From left to 
right, following the top branch, we get P(REV)P(MDB | REV) = P(REV,MDB). 
It shows the flow of probability from left to right using multiplication. Each 
branch ends in what decision analysts call “elemental probabilities.” This is just 
another way to decompose a probability similar to what we did with impacts  
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in Chapter 6. You don’t have to use it explicitly, but you can see how by fill-
ing in some of the nodes of this tree, you can infer others. So now let’s look 
at how we come up with Bayes’s Rule in the first place.

Proving Bayes

	 1.	 P(MDB,REV) = P(REV,MDB)—Same as 3 × 2 = 2 × 3 or the “commuta-
tive property”

	 2.	 P(MDB,REV) = P(MDB)P(REV | MDB)—See tree in Figure 8.1, first 
branch

	 3.	 P(REV,MDB) = P(REV)P(MDB | REV)—True because of 1 and 2.
	 4.	 P(MDB)P(REV | MDB) = P(REV)P(MDB | REV)—True because of 1, 2, 

and 3
	 5.	 P(REV | MDB) = P(REV)P(MDB | REV) / P(MDB)—Divide #4 by P(MDB)
	 6.	 P(MDB | REV) = P(MDB)P(REV | MDB) / P(REV)—Divide #4 by P(REV)

Please don’t feel you need to memorize these; just understand them as 
sub‐rules. We reference these throughout our analysis.

Bayes Applied to the Cloud Breach Use Case

Now that you have the basics of probability manipulation in hand, we 
will analyze how the calculator builds its outputs using all the equations 
we have provided. We have added a larger chain rule tree as a crutch for 
understanding the flow of probability. If you get all of this, which requires 

Elemental Probabilities

P(MDB |REV) P(REV,MDB)

P(REV)

P(~MDB |REV) P(REV,~MDB)

P(MDB |~REV) P(~REV,MDB)

P(~REV)

P(~MDB |~REV) P(~REV,~MDB)

Figure 8.1  A Chain Rule Tree
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no more than seventh‐grade algebra, you will be well on your way toward 
modeling using any technological medium. Also, these are purposefully 
simple so you can see the mathematical proofs. Computational tools we 
provide hide all of this complexity, but you can use them to study the re-
lationships further.

Figure 8.2 shows a spreadsheet calculation you can download from the 
website. The table on the left shows the inputs of calibrated experts and the 
table on the right shows some derived values that were calculated based 
on those inputs.

Before we get into how each of these probabilities is derived, you might 
ask why we would necessarily know the items in the “Calibrated Expert In-
puts” and not “Derived Values.” Actually, we could have chosen many com-
binations of different inputs and outputs. The calibrated expert simply starts 
with the quantities they feel they are better able to estimate. Or, if they feel 
they have some idea for many of the derived values, they can check to see 
if their estimates of probabilities in the second table are at least consistent 
with those in the first.

We also could have decided to estimate P(MDB | PPT) directly with-
out using REV as a middle step. But we wanted to show how uncertainties 
about different states can be linked together. Now let’s show how we did 
the math with these values one‐by‐one for each of the values shown in 
“Derived Values” in Figure 8.2.

Calibrated Expert Inputs Derived Values

P(MDB |REV) 25.00% P(REV|MDB) 20.15%

P(MDB|~REV) 1.00% P(REV|~MDB) 0.76%

P(REV|PPT) 95.00% P(~MDB|REV) 75.00%

P(REV|~PPT) 0.05% P(MDB) 1.24%

P(PPT) 1.00% P(REV) 1.00%

P(MDB|PPT) 23.80%

P(MDB|~PPT) 1.01%

Figure 8.2  Major Data Breach Decomposition Example with Conditional 
Probabilities
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	 1.	 What is the probability of this remotely exploitable vulnerability?

P(REV) = P(PPT)P(REV | PPT) + P(∼PPT)P(REV | ∼PPT)

= (.01)(.95) + (1 – .01)(.0005) = 1.0%

	 2.	 What is the probability of P(MDB)?

P(MDB) = P(REV)P(MDB | REV) + P(∼REV)P(MDB | ∼REV)

= (.01)(.25) + (1 – .01)(.01) = 1.24%

	 3.	 What is the probability of a remotely exploitable vulnerability given 
the probability there is a massive data breach?

P(REV | MDB) = P(MDB | REV)P(REV)/P(MDB)

= (.25)(.01)/(.0124) = 20.16%

Note: You can now see that P(MDB | REV) ≠ P(REV | MDB), as we 
pointed out before.

	 4.	 Probability of a remotely exploitable vulnerability given the probability 
there isn’t a massive data breach?

P(REV | ∼MDB) = P(∼MDB | REV)P(REV)/P(∼MDB)

Using the complements of the calibrated probabilities we were given  
by the CISO—that is, P(∼MDB | REV) = 1  –  P(MDB | REV) and P(∼MDB) = 
1  –  P(MDB)—we continue with

= (1  –  .25)(.01) / (1  –  .0124) = 0.76%

Now here is what we really wanted to know all along: How much 
should the penetration test results change our probability of a massive data 
breach?

	 5.	 Probability of a massive data breach given a positive penetration test.

P(MDB | PPT) = P(REV | PPT) P(MDB | REV) + (1  –  P(REV | PPT))
P(MDB | ∼REV)

= (.95)(.25) + (.05)(.01) = 23.8%

	 6.	 Probability of a massive data breach given the penetration test failed.

P(MDB | ∼PPT) = P(REV | ∼PPT)P(MDB | REV) + (1  –  P(REV | ∼PPT))
P(MDB | ∼REV)

= (.0005)(.25) + (1 – .0005)(.01) = 1.01%

Knowing the outcome of the penetration test was informative since 
P(MDB | PPT) > P(MDB) > P(MDB | ∼PPT). Think of informative conditions 
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like a teeter‐totter with the original prior in the middle. If a condition increases 
the probability, the opposite of that condition must decrease it, and vice versa. 
(By the way, this is the reason for the stats literacy answer shown in Chapter 5, 
Table 5.4.)

We just showed how a Bayesian analysis can be applied to update a 
prior probability of a major data breach based on an observed pen test.  
To make it as simple as possible, the entire calculation has been provided 
in a spreadsheet. This spreadsheet, and all others, can be found at www 
.howtomeasureanything.com/cybersecurity. We first applied the clarity test 
to our three variables (REV, MDB, and PPT), but this is only a launching 
point into advanced models that combine beliefs with evidence for the pur-
pose of reducing uncertainty.

Note

	 1.	 Dennis V. Lindley,  Understanding Uncertainty (Hoboken, NJ: John 
Wiley & Sons, 2006).

http://www.howtomeasureanything.com/cybersecurity
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Chapter 9
Some Powerful Methods Based  

on Bayes

If one fails to specify the prior information, a problem of inference is 
just as ill-posed as if one had failed to specify the data . . . In realistic 
problems of inference, it is typical that we have cogent prior infor-
mation, highly relevant to the question being asked; to fail to take it 
into account is to commit the most obvious inconsistency of reason-
ing, and it may lead to absurd or dangerously misleading results.

—Edwin T. Jaynes

Recall that in our survey, 23% of respondents agreed with the statement 
“Probabilistic methods are impractical because probabilities need exact 

data to be computed and we don’t have exact data.” This is just a minority, 
but even those who rejected that claim probably have found themselves 
in situations where data seemed too sparse to make a useful inference. 
In fact that may be why the majority of the survey takers also responded 
that ordinal scales have a place in measuring uncertainty. Perhaps they feel 
comfortable using wildly inexact and arbitrary values like “high, medium, 
and low” to communicate risk while ironically still believing in quantitative 
approaches. Yet someone who thoroughly believed in using quantitative 
methods would roundly reject ordinal scales when measuring highly un-
certain events. When you are highly uncertain you use probabilities and 
ranges to actively communicate your uncertainty—particularly when you 
are relying on subject matter expertise. Having read the earlier research in 
this book, you know how even subjective estimates can be decomposed 
and made more consistent before any new “objective” data is applied, and 
how even a single data point (such as the outcome of one penetration test) 
can be used to update that belief.
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Now that we’ve laid some groundwork of Bayesian empirical methods 
with an (admittedly) oversimplified example, we can show solutions to 
slightly more advanced—and more realistic—problems.

Computing Frequencies with (Very) Few Data Points:  
The Beta Distribution

Here is a slightly more elaborate derivative of Bayes’s Rule that should come 
up frequently in cybersecurity. Let’s say you are one of the big retailers we 
discussed in Chapter 6, and again we would like to assess the probability of 
a major data breach. In this case our new empirical data is not the outcome 
of some penetration test, but the observed (in fact, widely publicized) major 
data breaches themselves. Of course, you would like to leverage these news 
reports to estimate the chance that your firm would have such a breach. In 
a perfect world, you would have the equivalent cybersecurity version of an 
actuarial table as used in insurance products like life, health, and property. 
You would have thousands of firms in your own industry diligently report-
ing data points over many decades. You would use this to compute a data 
breach “rate” or “frequency.” This is expressed as the percentage of firms 
that will have a data breach in a given year. As in insurance, we would use 
that as a proxy for the chance of your firm having such an event.

For your actuarial table of breaches, you don’t have that many data 
points. Fortunately, we may need less data than we think if we use a par-
ticular statistical tool known as the beta distribution. With the beta distribu-
tion, we can make an inference about this annualized rate of a breach even 
with what seems like very little data.

And, as we first said in Chapter 2, you have more data than you think. 
In the case of reputation loss, for example, saying that we lack data about 
major data breaches is curious since we actually have all the data. That is, 
every major, large-retail data breach with massive costs that has occurred 
was public. Many of the costs are, in fact, because it was widely publicized. 
(If there was a major data breach that was somehow not public, then that 
retailer has, so far, avoided some or most of the main costs of a breach.)

If we look at the Verizon Data Breach Investigations Report (DBIR) and 
other sources of data on breaches, we can see a number of breaches in each 
industry. But that information alone doesn’t tell us what the probability of a 
breach is for a single firm in a given industry. If there were five breaches in 
a given industry in a given year, is that 30% of the industry or 5%? If we want 
to compute this, we need to know (decompose) the size of the population 
those firms were drawn from, including those that didn’t have breaches.

Now, this is where some cybersecurity experts (who recall just enough 
stats to get it all wrong) will give up on this by saying that the few breaches 
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are not “statistically significant” and that no inferences could be made. Oth-
ers (especially those, we hope, who have read this book) will not give up 
so easily. The fact is that, again, we have more data than we think and need 
less than we think—especially if we have access to the beta distribution.

Calculations with the Beta Distribution

The beta distribution is useful when you are trying to estimate a “population 
proportion. A population proportion is just the share of a population that 
falls in some subset. If only 25% of employees are following a procedure 
correctly, then the “25%” refers to a population proportion. Now suppose 
you don’t know whether it is exactly 25% but you would like to estimate it. 
If we could conduct a complete census of the population we would know 
the proportion exactly. But you may only have access to a small sample. If I 
were only able to sample, say, 10 people, would that tell me anything? This 
is where beta distribution comes in. And you may be surprised to find that, 
according to the beta distribution, we may not need very many samples to 
tell us something we didn’t know already.

As counterintuitive as this might sound, you can use a beta distribution 
to estimate a range for a population proportion even with very little data. 
This would apply to many situations in cybersecurity, including the likeli-
hood of a risk that relatively few organizations have experienced. A beta 
distribution has just two parameters that seem at first to be a little abstract: 
alpha and beta (we will explain them shortly). In Excel we write this as 
=betadist(x,alpha,beta), where x is the population proportion you want to 
test. The formula produces the probability that the population proportion is 
less than x—we call this the “cumulative probability function” (cpf) since for 
each x it gives the cumulative probability up to that point.

There is also an “inverse probability function” in Excel for the beta 
distribution written as =beta.inv(p,alpha,beta), where p is a probability, and 
the formula returns the population proportion just high enough such that 
there is a p probability that the true population proportion is lower.

The alpha and beta parameters in the beta distribution seem very ab-
stract and many stats texts don’t offer a concrete way to think about them. 
However, there is a very concrete way to think of alpha and beta if we think 
of them as being related to “hits” and “misses” from a sample. A “hit” in a 
sample is, say, a firm that had a breach in a given time period, and a “miss” 
is a firm that did not.

To compute alpha and beta from hits and misses we need to establish 
our prior probability. Again, an informative prior probability could simply be 
a calibrated subject matter expert estimate. But if we want to be extremely 
conservative, we can use an uninformative prior by simply using a uniform 
distribution of 0% to 100%. This can be done with the beta distribution by 
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setting both alpha and beta to a value of 1. This approach indicates we have 
almost no information about what a true population proportion could be. 
This is the “uninformative” prior. All we know is the mathematical constraint 
that a proportion of a population can’t be less than 0% and can’t exceed 
100%. Other than that, we’re simply saying everything in between is equally 
likely as shown in Figure 9.1.

Note that this figure shows the uniform distribution in the more familiar 
“probability density function” (pdf) where the area under the curve adds 
up to 1. Since the betadist() function is a cumulative probability, we have to 
slice up a bunch of increments by computing the difference between two 
cumulative probability functions close to each other. Just think of the height 
of a point on a pdf to represent the relative likelihood compared to other 
points. Recall that a normal distribution is highest in the middle. This just 
means that values near the middle of a normal distribution are more likely. 
In the case of this uniform distribution, we show that all values between the 
min and max are equally likely (i.e., it is flat).

Now, if we have a sample of some population, even a very small sample, 
we can update the alpha and beta with a count of hits and misses. You 
can download the beta distribution spreadsheet from howtomeasureanything 
.com/cybersecurity to do this calculation. Again, consider the case where we 
want to estimate the share of users following certain security procedures. We 
randomly sample six and find that only one is doing it correctly. Let’s call 
the one a “hit” and the remaining five “misses.” I simply add hits to our prior 
alpha and misses to our prior beta to get:

= betadist(x, prior alpha + hits, prior beta + misses)

Figure 9.2 shows what a pdf would look like if we added a sample of 
6 with one “hit” to our prior uniform distribution. To create this picture you 
can use the calculation below:

= betadist(x+i/2, prior alpha + hits, prior beta + misses) − betadist(x-i/2, 
prior alpha + hits, prior beta + misses)

where “i” is the size of an increment we are using (the increment size is arbi-
trary but the smaller you make it the finer detail you get in your pictures of 
distributions). Again, you have an example in the spreadsheet if you need help.

Figure 9.1  A Uniform Distribution (a Beta Distribution with alpha=beta=1)
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How does the beta distribution do this? Doesn’t this contradict what we 
learned in first semester statistics about sample sizes? No. The math is sound. In 
effect, the beta distribution applies Bayes’s Rule over a range of possible values. 
To see how this works, consider a trivial question, like, “What is the probability 
of getting 1 hit out of 6 samples if only 1% of the population were following 
the procedure correctly?” If we assume we know a population proportion and 
we want to work out the chance of getting so many “hits” in a sample, we 
apply something called a binomial distribution. The binomial distribution is a 
kind of complement to the beta distribution. In the former, you estimate the 
probabilities of different sample results given the population proportion. In 
the latter, you estimate the population proportion given a number of sample 
results. In Excel, we write the binomial distribution as =binomdist(hits,sample 
size,probability,0). (The “0” means it will produce the probability of that exact 
outcome, not the cumulative probability up to that point.)

This would give us the chance of getting the observed result (e.g., 1 out 
of 6) for one possible population proportion (in this case 1%). We repeat 
this for a hypothetical population proportion of 2%, 3%, and so on up to 
100%. Now Bayes lets us flip this into what we really want to know: “What 
is the probability of X being the population proportion given that we had  
1 hit out of 6?” In other words, the binomial distribution gave us P(observed 
data | proportion) and we flip it to P(proportion | observed data). This is a 
neat trick that will be very useful, and it is already done for us in the beta 
distribution.

One more thing before we move on: Does 5.3% to 52% seem like 
a wide range? Well, remember you only sampled six people. And your 

Figure 9.2  A Distribution Starting with a Uniform Prior and Updated with a 
Sample of 1 Hit and 5 Misses
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previous range was even wider (on a uniform distribution of 0% to 100%, a 
90% CI is 5% to 95%). All you need to do to keep reducing the width of this 
range is to keep sampling and each sample will slightly modify your range. 
You could have gotten a distribution even if you had zero hits out of three 
samples as long as you started with a prior.

If you need another example to make this concrete, let’s consider one 
Hubbard uses in How to Measure Anything. Imagine you have an urn filled 
with red and green marbles. Let’s say you think the proportion of red mar-
bles could be anywhere between 0% and 100% (this is your prior). To 
estimate the population proportion, you sample 6 marbles, one of which 
was red. We would estimate the result as we did in the security procedure 
example above—the range would be 5.3% to 52%. The reason this range is 
wide is because we know we could have gotten 1 red out of 6 marbles from 
many possible population proportions. We could have gotten that result if 
just, say, 7% were red and we could have gotten that result if half were red. 
Now let’s see how to extrapolate this example to breaches.

Applying the Beta to Breaches

Think of a breach as drawing a red marble from the urn example. Every 
firm in your industry is randomly drawing from the “breach urn” every year. 
Some firms draw a red marble, indicating they were breached. But there 
could have been more and there could have been less. You don’t really 
know breach frequency (i.e., the portion of marbles that are red). But you 
can use the observed breaches to estimate the proportion of red marbles. 
Now, we have a list of reported breaches from the DBIR, but it doesn’t tell 
us the size of the population. This is sort of like knowing there are 100 
red marbles in the urn but without knowing the total number of marbles 
we can’t know the population proportion of red marbles. However, we 
could still randomly sample a set of marbles and just use the number of 
red marbles in that sample compared to the size of the sample instead of 
the unknown total population size. Likewise, knowing that there were X 
breaches in our industry only helps if we know the size of the industry. So 
we find another source—not the DBIR—for a list of retailers. It could be 
the retailers in the Fortune 500 or perhaps a list from a retailers association. 
That list should have nothing to do with whether an organization had a 
breach reported in the DBIR, so many of those in that list will not have been 
mentioned in the DBIR. That list is our sample (how many marbles we draw 
from the urn). Some of those, however, will be mentioned in the DBIR as 
having experienced a breach (i.e., drawing a red marble).

Let’s say we found 60 retailers in an industry list that would be relevant to 
you. Of that sample of 60, you find that in the time period between the start 
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of 2014 and the end of 2015, there were two reported major data breaches. 
Since we are estimating a per year chance of a breach, we have to multiply 
the number of years in our data by the number of firms. To summarize:

■■ Sample Size: 120 “company years” of data (60 firms × 2 years)
■■ Hits: 2 breaches in that time period
■■ Misses: 118 company years where there was no major breach
■■ Alpha: prior + hits = 1 + 2 = 3
■■ Beta: prior + misses = 1 + 118 = 119

When we plug this into our spreadsheet we get a distribution like the 
one shown in Figure 9.3.

Think of the observed breaches as a sample of what could have hap-
pened. Just because we drew 120 marbles and two of them were red, that 
doesn’t mean that exactly 1.67% of the marbles in the urn were red. If we 
drew that from the urn, we would estimate that there is a 90% chance that 
the true population proportion of red marbles in the urn is 0.7% to 5.1%. 
Likewise, just because we had 2 breaches out of 60 firms in two years (120 
company years), doesn’t mean we treat the per-year annual breach frequency 
as exactly 1.67%. We are only estimating the probability of different frequen-
cies from a few observations. Next year we could be more lucky or less lucky 
even if the long-term frequency is no different.

Even the mean of the beta distribution isn’t exactly 1.67% since the 
mean of a beta distribution is alpha / (alpha + beta) or 2.46%. The reason 

Figure 9.3  The Per-Year Frequency of Data Breaches in This Industry
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these are different is because the beta distribution is affected by your prior. 
Even if there were no breaches, the beta would have an alpha of 1 and a 
beta of 121 (120 misses + 1 for the prior beta), giving us a mean of 0.8%.

Another handy feature of the beta distribution is how easily it is up-
dated. Every year that goes by—in fact every day that goes by—either with 
or without data breaches can update the alpha and beta of a distribution 
of breaches in your relevant industry population. For every firm where an 
event occurred in that period we update the alpha, and for every firm where 
it didn’t occur we update the beta parameter. Even if we observe no events 
for a whole year, we still update the beta parameters and, therefore, our as-
sessment of the probability of the event.

Note that you don’t have to use an uninformative prior like a uniform 
distribution. If you have reason to believe, even before reviewing new data, 
that some frequencies are much less likely than others, then you can say so. 
You can make up a prior of any shape you like by trying different alphas 
and betas until you get the distribution you think fits your prior. You can 
start finding your prior by starting with alpha and beta equal to 1 and then, 
if you think the frequency is closer to zero, add to beta. Keep in mind the 
mean you want must be alpha / (alpha + beta). You can also add to alpha 
to move the frequency a little further away from zero. The larger the total 
alpha + beta, the narrower your range will be. Test your range by using the 
inverse probability function for beta in Excel: =beta.inv(.05,alpha,beta) and 
=beta.inv(.95,alpha,beta) will be your 90% confidence interval. After that, 
updating your distribution based on new information follows the same pro-
cedure—add hits to alpha and misses to beta.

The Effect of the Beta Distribution on Your Model

If we didn’t use the beta distribution and instead took the observed fre-
quency of 1.67% literally, we could be seriously underestimating risks for 
this industry. If we were drawing from an urn that we knew was exactly 
1.67% red marbles (the rest are green), then we would still expect variation 
from draw to draw. If we drew 120 marbles, and assumed that the propor-
tion of red marbles was 1.67%, we can compute that there is only a 14% 
chance that we would draw more than three red marbles (using the formula 
in Excel: 1-binomdist(3,120,.0167,1)). On the other hand, if we merely had 
a 90% CI that 0.7% to 5.1% are red, then the chance of drawing more than 
three red marbles increases to over 33%.

If we apply this thinking to security risks in an industry or a firm, the 
chance of multiple events increases dramatically. This could mean a higher 
chance in one year of multiple major breaches in the industry or, using data 
at the company level, multiple systems compromised out of a portfolio of 
many systems. In effect, this “rotates” our loss exceedance curve counter-
clockwise as shown in Figure 9.4. The mean is held constant while the risk 
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of more extreme losses increases. This may mean that your risk tolerance is 
now exceeded on the right end of the curve.

We believe this may be a major missing component of risk analysis in 
cybersecurity. We can realistically only treat past observations as a sample 
of possibilities and, therefore, we have to allow for the chance that we were 
just lucky in the past.

To see how we worked this out in detail, and to see how a beta distri-
bution can be used in the simple one-for-one substitution and how it might 
impact the loss exceedance curve, just download the spreadsheet for this 
chapter on the website.

A Beta Distribution Case: AllClear ID

AllClear ID, a leading firm in customer-facing breach response in the cyber-
security ecosystem, uses a beta distribution to estimate cybersecurity risks 
using industry breach data. The company offers three solutions: AllClear 
Reserved Response™, Customer Communication services that include cus-
tomer support and notification, and Identity Protection services for consum-
ers. They handle incidents of all sizes including some of the biggest data 
breaches that have happened in recent history.

The capacity to respond to incidents is guaranteed for Reserved Re-
sponse clients, making risk estimation critical to ensuring adequate resources 
are in place to meet service requirements. To help estimate the risk of a major 
breach, not just for a single client, but for their entire client base, AllClear ID 
contacted Doug Hubbard’s firm, Hubbard Decision Research, to model the 
data breach risks in all of the industries they support, including the chance 
that multiple large clients could experience breaches in overlapping periods 
of time. This model is one of the many tools used by AllClear ID in their risk 
estimation analysis.

Figure 9.4  Example of How a Beta Distribution Changes the Chance of Extreme 
Losses
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HDR applied the beta distribution to industry breach data in the Verizon 
Data Breach Investigations Report (DBIR). There were 2,435 data breaches 
reported in the 2015 DBIR but, as we explained earlier in this chapter, this 
alone does not tell us the per-year frequency of breaches for a given num-
ber of firms. Applying the same method explained earlier, we started with a 
known list of firms from the industries AllClear ID supports. We then cross 
referenced that with the DBIR data to determine how many of those had 
breaches. In the case of one industry, there were 98 firms in the Fortune 
500 list. Of those, several had a breach in the two-year period between the 
beginning of 2014 and until the end of 2015. So, 98 organizations over a 
two-year period give us a total of 196 “organization years” of data where 
there were “hits” and “misses” (misses are firms that did not have a breach 
in a year). Now we can estimate the probability of a breach for the Fortune  
500 firms in that industry.

In a Monte Carlo simulation, HDR used a beta distribution with an 
alpha and a beta. This produced a 90% confidence interval for the an-
nual frequency of events per client. If the rate of breaches is at the up-
per bound, then the chance of multiple client breaches overlapping goes 
up considerably. The Monte Carlo model showed there is a chance that 
the peak activity period of multiple Reserved Response clients would 
overlap. This knowledge is one input to help AllClear ID to plan for the 
resources needed to meet the needs of clients even though the exact 
number and timing of breaches cannot be known with certainty.

Although breaches are unpredictable events, the simulation gave us in-
valuable insight into the risks we could potentially encounter and the 
intelligence to help mitigate those risks.

—Bo Holland, Founder & CEO of AllClear ID

Decomposing Probabilities with Many Conditions

In the Chapter 8 examples we were using a conditional probability with 
just one condition at a time. But often we want to consider a lot more 
conditions than that, even in the simplest models. One way to address 
this is to create what is called in Bayesian methods a “node probability 
table” (NPT). An expert is given every combination of conditions and is 
asked to provide a calibrated estimate of a probability of some defined 
event. Table 9.1 shows what just a few of the rows in such a table could 
look like.
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The columns in Table 9.1 are just an example. We have seen companies 
also consider the type of operating system, whether software was inter-
nally developed, whether a vendor has access, the number of users, and so 
on. We leave it up to you to determine the ideal considerations. They just 
need to be values that meet Ron Howard’s conditions of clear, observable, 
and useful (in this case, useful means it would cause you to change your 
estimate). For now, we will just focus on how to do the math regardless of 
what the indicators of risk might turn out to be.

Now suppose we continued the conditions (columns) on Table 9.1 to 
more than just four. Our previous modeling experience in cybersecurity at 
various firms generated 7 to 11 conditions. Each of those conditions would 
have at least two possible values (i.e., sensitive data or not), but some, 
as the example shows, could have three, four, or more. This leads to a 
large number of combinations of conditions. If, for example, there were just 
seven conditions, three of which had two possible values and the rest of 
which had three, then that is already 648 rows on an NPT (2 × 2 × 2 × 3 × 
3 × 3 × 3). In practice the combinations are actually much larger since there 
are often multiple conditions with four or more possible values. The models 
that have been generated at some HDR clients would have produced thou-
sands or tens of thousands of possible combinations.

Ideally, we would have data for many instances of failures. For measure-
ments we prefer more data points, but cybersecurity professionals would like 
to keep the number of breaches, denial of service, and other such events low. 
As always, if we lack the data we can go back to our subject matter experts, 
who could provide an estimate of an event given each of the conditional states. 
We could ask for the estimate of a probability given that standard security  

Table 9.1  A Few Rows from a (Much Larger) Node Probability Table

P(Event | A,B,C,D) 
per Year with Cost 
Greater than $10K

A: Standard 
Security 
Controls 
Applied

B: Sensitive 
Data*

Multi-Factor 
Authentication

Corp DMZ 
Internet 
Facing, Third 
Party/Cloud, 
Internal Only

.008 Yes No No DMZ

.02 No Yes Yes Cloud

.065 No No No Internal

.025 Yes No No Cloud

.015 No Yes No Internal

.0125 No Yes Yes Cloud

*This may be data related to include Payment Card Industry (PCI), Protected Health Informa-
tion (PHI), Personally Identifiable Information (PII), intellectual property, and so on.
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controls are applied, it contains PHI data, it does not use multi-factor authen-
tication, and the data is kept in a domestic data center owned by their firm. 
Then they would do the next combination of conditions, and so on. Obvi-
ously, as we showed with the number of possible combinations of condi-
tions in even a modest-sized NPT, it would be impractical for subject matter 
experts to estimate each probability with a typical NPT.

Fortunately, there are two useful methods for experts to fill in an entire 
NPT—no matter how large—just by estimating a limited set of condition 
combinations. These methods are the log odds ratio method and the Lens 
method.

The One Thing at a Time Approach: The Log Odds Ratio

The log odds ratio (LOR) method provides a way for an expert to estimate 
the effects of each condition separately and then add them up to get the 
probability based on all the conditions. This is a variation on what is known 
as “logistic regression” in statistics. But we are going to use it in a fairly 
simple form.

An LOR of a probability P(x) is simply log(P(x)/(1 − P(x)). (Often, we  
assume the log is a natural log “ln()” but it works in other logs, too.) This pro-
duces a negative value when the P(x) < .5, a positive value when P(x) > .5, and 
a zero when P(x) = .5. Computing an LOR is useful because an LOR allows 
you to “add up” the effects of independent different conditions on a proba-
bility. The procedure below goes into the details of doing this. It gets detailed 
but, as always, you can find a spreadsheet for this entire calculation at www 
.howtomeasureanything.com/cybersecurity

	 1.	 Identify participating experts and calibrate them.

	 2.	 Determine a baseline probability of a particular asset experiencing 
some defined event in a given period of time, assuming no additional 
information is available other than that it is one of your organization’s 
assets (or applications, or systems, or threats, etc. depending on the 
framework of your decomposition). This is P(Event).

Example: P(Event) per year given no other information about the 
asset is .02

	 3.	 Estimate the conditional probability of the asset having this defined 
event given that some condition had a particular value. We can write 
this as P(E | X); that is, the probability of event E, given condition X.

Example: P(Event | Sensitive Data) = .04

	 4.	 Estimate the conditional probability of the asset having this defined 
event given some other value to this condition. Repeat this step for 
every possible value of this condition.

Example: P(Event | No Sensitive Data) = .01

http://www.howtomeasureanything.com/cybersecurity
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	 5.	 Convert the baseline probability and each of the conditional probabili-
ties to LOR. We will write it as L(Probability).

Example:

LOR(P(Event))  =  ln(P(Event))  /  (1  –  P(Event))  =  ln(.02  /  .98)  
= –3.89182

LOR(P(Event | Sensitive Data)) = ln(.04 / .96)= –3.17805

. . . and so on for each condition

	 6.	 Compute the “delta LOR” for each condition; that is, the difference 
between the LOR with a given condition and the baseline LOR.

Example: delta LOR(Sensitive Data) = L(P(Event | Sensitive Data)) – 
LOR(P(Event))= –(–3.18) – (–3.89) = +.71

	 7.	 Repeat steps 3 to 6 for each condition.
	 8.	 When delta LOR has been computed for all possible values of all 

conditions, set up a spreadsheet that will look up the correct delta log 
odds for each condition when a value is chosen for that condition. 
When a set of condition values are chosen, all delta LOR for each con-
dition are added to the baseline LOR to get an adjusted LOR.

Example: Adjusted LOR = –3.89 + .71 + .19 – .45 + 1.02 = –2.42

	 9.	 Convert the adjusted LOR back to a probability to get an adjusted 
probability.

Example: Adjusted probability = 1 / (1 + 1 / exp(–2.42)) = .08167

	10.	 If any condition makes the event certain or makes it impossible (i.e., 
P(Event | Condition) = either 0 or 1) then skip computing LOR for the 
condition and the delta log odds (the calculation would produce an 
error, anyway). Instead, you can simply apply logic that overrides this.

Example: If condition applies, then adjusted probability = 0

When the condition does not occur, then compute the adjusted 
probability as shown in previous steps.

Again, if someone tells you this or anything else we discuss isn’t prag-
matic, be aware that we’ve had an opportunity to apply this and many other 
methods in many situations, including several in cybersecurity. When some-
one says this isn’t pragmatic, they often just mean they don’t know how to 
do it. So to illustrate how it can be done, we will show another conversa-
tion between an analyst and a cybersecurity expert. The analyst will check 
the expert’s estimates for consistency by using the math we just showed. 
Of course, he is using a spreadsheet to do this (available on the website).

Risk Analyst:	 As you recall, we’ve broken down our risks into 
a risk-by-asset approach. If I were to randomly 
select an asset, what is the probability of a breach 
happening next year?
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Cybersecurity Expert:	 Depends on what you mean by breach—it could 
be 100%. And there are a lot of factors that would 
influence my judgment.

Risk Analyst:	 Yes, but let’s say all you know is that it is one 
of your assets. I just randomly picked one and 
didn’t even tell you what it was. And let’s further 
clarify that we don’t just mean a minor event 
where the only cost is a response from cyberse-
curity. It has to interfere with business in some 
way, cause fines, and potentially more—all the 
way up to one of the big breaches we just read 
about in the news. Let’s say it’s something that 
costs the organization at least $50K but possibly 
millions.

Cybersecurity Expert:	 So how would I know the probability of an event 
if I don’t know anything about the asset?

Risk Analyst:	 Well, do you think all of your assets are going to 
have a significant event of some sort next year?

Cybersecurity Expert:	 No, I would say out of the entire portfolio of 
assets there will be some events that would 
result in losses of greater than $50,000 just if I 
look at system outages in various business units. 
Maybe a bigger breach every couple of years.

Risk Analyst:	 Okay. Now, since we have 200 assets on our list, 
you don’t expect half of the assets to experience 
breaches at that level next year, right?

Cybersecurity Expert:	 No. The way I’m using the term “breach” I might 
expect it to happen in 3 to 10.

Risk Analyst:	 Okay, then. So if I simply randomly chose an 
asset out of the list there wouldn’t be a 10% 
chance of it having a breach. Maybe closer to 1% 
or 2%.

Cybersecurity Expert:	 I see what you mean. I guess for a given asset 
and I didn’t know anything else, I might put the 
probability of a breach of some significant cost 
at 2%.

Risk Analyst:	 Great. Now, suppose I told you just one thing 
about this asset. Suppose I told you it contained 
PCI data. Would that modify the risk of a breach 
at all?

Cybersecurity Expert:	 Yes, it would. Our controls are better in those 
situations but the reward is greater for attackers. 
I might increase it to 4%.
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Risk Analyst:	 Okay. Now suppose I told you the asset did not 
have PCI data. How much would that change the 
probability?

Cybersecurity Expert:	 I don’t think that would change my estimate.
Risk Analyst:	 Actually, it would have to. Your “baseline” prob-

ability is 2%. You’ve described one condition that 
would increase it to 4%. To make sure this bal-
ances out, the opposite condition would have to 
reduce the probability so that the average still 
comes out to 2%. I’ll show you a calculation in a 
moment so you can see what I mean.

Cybersecurity Expert:	 Okay, I think I see what you mean. Let’s call it 
1%.

Risk Analyst:	 Okay, great. Now, what percentage of all assets 
actually have PCI data?

Cybersecurity Expert:	 We just completed an audit so we have a pretty 
good figure. It’s 20 assets out of 200.

Risk Analyst:	 So that’s 10% of the assets we are listing. So in 
order to see if this adds up right, I have to com-
pute the baseline probability based on these 
conditional probabilities and see if it agrees with 
the baseline you first gave me.

The Risk Analyst computes a baseline as: P(Event|PCI)*P(PCI)+P(Event| 
No  PCI)*P(No  PCI)  =  .04*.1+.01*.9=.013.  (A  spreadsheet  at  www 
.howtomeasureanything.com/cybersecurity will contain this calculation and 
the other steps in this interview process, including computing delta LOR.)

Risk Analyst:	 So our computed baseline is a bit lower than 
what you originally had. The probabilities we 
have so far aren’t internally consistent. If we can 
make our estimates consistent, then our model 
will be better. We could say the original prob-
ability was wrong and we just need to make it 
1.3%. Or we could say the conditional probabili-
ties could both be a little higher or that the share 
of assets with PCI is too low. What do you feel 
makes more sense to change?

Cybersecurity Expert:	 Well, the share of PCI assets is something we 
know pretty well now. Now that I think about it, 
maybe the conditional probability without PCI 
could be a little higher. What if we changed that 
to 1.5%?

http://www.howtomeasureanything.com/cybersecurity
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Risk Analyst:	 (Doing a calculation) Well, if we make it 1.8% 
then it comes out to almost exactly 2%, just like 
your original estimate of the baseline.

Cybersecurity Expert:	 That seems about right. But if you would have 
asked me at a different time, maybe I would have 
given a different answer.

Risk Analyst:	 Good point. That’s why you aren’t the only person 
I’m asking. Plus when we are done with all of the 
conditions, we will show you how the adjusted 
probability is computed and then you might decide 
to reconsider some of the estimates. Now let’s go 
to the next condition. What if I told you that the 
asset in question was in our own data center . . .

And so on.
Some caveats on the use of LOR. It is a very good estimate of the prob-

ability given all conditions if the conditions are independent of each other. 
That is, they are not correlated and don’t have complex interactions with 
each other. This is often not the case. It may be the case, for example, that 
some conditions have a much bigger or much smaller effect given the state 
of other conditions. The simplest solution to apply is that if you think condi-
tions A and B are highly correlated, toss one of them. Alternatively, simply 
reduce the expected effects of each condition (that is, make the conditional 
probability closer to the baseline). Check that the cumulative effect of sev-
eral conditions doesn’t produce more extreme results (probabilities that are 
too high or too low) than you would expect.

The Lens Method: A Model of an Expert That Improves on the Expert

We have another very useful way to fill in a large NPT by sampling some of 
the combinations of conditions and having our subject matter experts esti-
mate those. This approach requires that we build a type of statistical model 
that is based purely on emulating the judgments of the experts—not by us-
ing historical data. Curiously, the model of the experts seems to be better at 
forecasting and estimating than the experts themselves.

This involves using “regression” methods—specifically, a “logistic regres
sion.” Discussing regression methods in enough detail to be useful is out-
side the scope of this book so we make the following suggestion: If you 
are not familiar with regression methods, then stick with the LOR method 
explained above. If you already understand regression methods, then we 
believe we can describe this approach in just enough detail that you can 
figure it out without requiring that we go into the mechanics.

With that caveat in mind, let’s provide a little background. This method 
dates back to the 1950s, when a decision psychology researcher named 
Egon Brunswik wanted to measure expert decisions statistically. Most of 
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his colleagues were interested in the hidden decision-making process that 
experts went through. Brunswik was more interested in describing the de-
cisions they actually made. He said of decision psychologists: “We should 
be less like geologists and more like cartographers.” In other words, they 
should simply map what can be observed externally and not be concerned 
with what he considered hidden internal processes.

This became known as the “Lens Model.” The models he and subse-
quent researchers created were shown to outperform human experts in 
various topics such as the chance of repayment of bank loans, movement of 
stock prices, medical prognosis, graduate student performance, and more. 
Hubbard has also had the chance to apply this to forecasting box office 
receipts of new movies and battlefield logistics and, yes, in cybersecurity. In 
each case, the model was at least as good as human experts, and in almost 
all cases, it was a significant improvement.

As discussed back in Chapter 4, human experts can be influenced by 
a variety of irrelevant factors yet still maintain the illusion of learning and 
expertise. The linear model of the expert’s evaluation, however, gives per-
fectly consistent valuations. Like LOR, the Lens Model does this by removing 
the error of judge inconsistency from the evaluations. Unlike LOR, it doesn’t 
explicitly try to elicit the estimation rules for each variable from the experts. 
Instead, we simply observe the judgments of the experts given all variables 
and try to infer the rules statistically.

The seven-step process is simple enough. We’ve modified it somewhat 
from Brunswik’s original approach to account for some other methods 
we’ve learned about since Brunswik first developed this approach (e.g., 
calibration of probabilities). Again, we are providing just enough informa-
tion here so that someone familiar with different regression methods could 
figure out how this is done.

	 1.	 Identify the experts who will participate and calibrate them.
	 2.	 Ask them to identify a list of factors relevant to the particular item they 

will be estimating (e.g., like the factors we showed in the NPT), but 
keep it down to 10 or fewer factors.

	 3.	 Generate a set of scenarios using a combination of values for each 
of the factors just identified—they can be based on real examples or 
purely hypothetical. Make 30 to 50 scenarios for each of the judges 
you are surveying. Each of these will be a sample in your regression 
model.

	 4.	 Ask the experts to provide the relevant estimate for each scenario 
described.

	 5.	 Average the estimates of the experts together.
	 6.	 Perform a logistic regression analysis using the average of expert 

estimates as the dependent variable and the inputs provided to the 
experts as the independent variable. Depending on the input variables 
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used, you may need to codify the inputs or use multinomial regression 
methods. Since in this case you are estimating a probability, logistic 
regression methods may apply. (This is technical language but if you 
know regression methods, you know what this means.)

	 7.	 The best fit formula for the logistic regression becomes the Lens Model.

When you have completed the procedure above, you will be able to 
produce a chart like the one shown in Figure 9.5. This shows the regression 
model estimate of average expert judgment vs. the average of expert judg-
ments themselves for each of the scenarios. You can see that the model, of 
course, doesn’t exactly match the expert judgments but it is close. In fact, 
if you compare this to the measure of expert inconsistency you will usually 
find that most of the deviation of the model from expert judgments is due to 
expert inconsistency. That means the Lens Model would agree even better if 
only the experts were more consistent. This inconsistency is eliminated by 
the Lens method.

If you decided to tackle the Lens method, the model you just produced 
is actually better than a single expert in several ways. It is actually an emu-
lation of the average of your best calibrated experts if they were perfectly 
consistent.

To estimate inconsistency we can use the “duplicate pair” method we 
showed back in Chapter 4. On several conditions instead of asking experts 
for the effect of individual conditions, for example, the seventh scenario in 
the list may be identical to the twenty-ninth scenario in the list. After look-
ing at a couple of dozen scenarios, experts will forget that they already 
answered the same situation and often will give a slightly different answer. 
Thoughtful experts are fairly consistent in their evaluation of scenarios. Still, 
as we showed in Chapter 4, inconsistency accounts for about 21% of the 
total variation in expert judgments (the remaining 79% due to the data the 

Figure 9.5  Example of Regression Model Predicting Judge Estimates
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experts were provided to base their judgments on). This error is completely 
removed by the Lens method.

Comparing the Lens Method and LOR

There are pros and cons to these two methods of decomposing multiple 
conditions in an estimate of likelihood:

	 1.	 LOR takes (a little) less time. The Lens method requires experts to 
answer a large number of samples in order to make it possible to build 
a regression model.

	 2.	 The Lens method can pick up on more complex interactions between 
variables. The experts’ responses could indicate that some variables 
only matter if other variables have a particular value.

	 3.	 LOR is a bit simpler. The Lens method depends on building a regres-
sion model that predicts the judgments of experts well. While Excel 
has tools to simplify this, actually building a good regression often 
requires several approaches. Perhaps you should make it a nonlinear 
model by having two variables show a compounding effect. Perhaps 
you should combine some of the discrete values of a variable (e.g., 
does “server location” really need to differentiate domestic managed by 
us, domestic managed by third party, or foreign instead of “we manage 
it” and “somebody else manages it”?). This is not technically difficult, 
especially for people who may have the background for this, but it 
can still be a bit time consuming. Also, all the math you will need for 
the LOR method is in one spreadsheet at www.howtomeasureanything 
.com/cybersecurity.

	 4.	 The LOR tends to give much more variation in estimates than the Lens 
method. The experts will sometimes be surprised how the effects of 
multiple conditions quickly add up to make an estimated likelihood 
very high or very small. When the same expert estimates likelihoods in 
a Lens method, they will tend to vary their answers a lot less. Perhaps 
the expert is underestimating the cumulative effect of independent 
variables in the LOR method, or perhaps they are being too cautious in 
modifying their estimates based on the information they are given for 
a Lens method. It will be up to you to decide which is more realistic.

	 5.	 Both methods help reduce inconsistency, but the Lens method pro-
vides a more convenient way to measure it. As mentioned earlier, 
measuring inconsistency is useful because we know that this error is 
eliminated by the quantitative model and, if we eliminate it, we can es-
timate how much error was reduced. Since the Lens method requires 
multiple estimates (at least dozens), then inconsistency can be easily 
estimated with the duplicate pair method.

http://www.howtomeasureanything.com/cybersecurity
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The bottom line is that if you are looking for a quick solution, use the 
LOR method for decomposing probabilities based on multiple conditions. 
But check how much the answers vary when you change conditions be-
tween two extremes (one where all conditions are set to values that increase 
the likelihood, and one where all conditions are set to values that decrease 
likelihood). If the extremes seem entirely unrealistic, then you might con-
sider reducing the estimates of effects of individual variables, as mentioned 
earlier. 

There is some evidence that people tend to overreact to signals when 
there are several signals, especially when they are highly correlated. One 
study calls this a “correlation neglect” when considering conditional proba-
bilities.1 If two signals A and B are perfectly correlated (i.e., if you tell me the 
value for one, I know exactly the value for the other), then you don’t need to 
know both A and B to estimate some probability X: P(X | A,B) = P(X | A) =  
P(X | B). However, even when someone is told that A and B are highly 
correlated, they tend to view them as independent (and therefore reinforc-
ing) signals and they will overreact when estimating the new conditional 
probability of X. As we mentioned with LOR earlier, if you suspect two 
conditions are highly correlated, the simplest fix is to just not use one  
of them.

Still, even when we use a Lens method, we have found it useful to 
start with LOR just to get the cybersecurity experts to start thinking how 
knowledge of individual conditions can modify their probabilities. It also 
helps to eliminate some conditions the experts originally thought might 
be informative. For example, suppose we are in a workshop and the cy-
bersecurity team is listing conditions they think could be informative for 
an estimate in a Lens Model. One of the participants in a workshop might 
say they think the type of operating system an asset uses could inform the 
probability of a breach of the data on that asset. To test this, we employ 
the LOR process described earlier by asking how much the experts would 
change the baseline probability (the probability of a cybersecurity event 
given no information about the asset other than it was one of their own) 
if they were told that the operating system was Linux, and then what they 
would change it to if they were told the operating system was Microsoft. 
They might realize that this information would not have caused them to 
modify the baseline probability. If so, then we can eliminate it from the 
Lens Model.

Both the Lens and LOR methods raise interesting conceptual obstacles 
for some experts. They may lack confidence in the process because they 
have a misunderstanding of how it works. We do not find that most experts 
we have worked with will have an objection to the process based on one of 
these misconceptions, but some will. If we know how to address them, then 
we can help them better understand why their input is needed.
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Let’s consider the following reaction: “With the Lens method, I feel 
like I am picking answers at random.” If this were the case for most 
people, we would not see the data that we see. If people who are esti-
mating probabilities used in the Lens method truly were picking values at 
random, then we would be unable to find correlations that are as strong 
as we typically find in these models. It would also be a mystery as to 
why experts—who have plenty of disagreement—actually agree as much 
as they do. Clearly, different experts working independently who were 
picking estimates at random would not agree with each other about how 
much one condition or another changes the likelihood of an event. And 
yet we do observe some level of agreement, and the level is far beyond 
what could be explained by chance. So the expert who has this concern 
may be expressing that when he or she is faced with individual situa-
tions, he or she could have estimated a 5% chance or perhaps 2% or 8%. 
This is no doubt true. The individual choice seems like you could have 
estimated a slightly different value and still be satisfied. But, of course, 
the Lens method does not depend on a single estimate or even a single 
expert. When a large number of data points are brought together a pattern 
inevitably forms, even when the experts felt they had some randomness in 
their responses for individual cases.

We may also hear the reaction “These variables alone tell me nothing. 
I need a lot more information to make an estimate.” Whether answering 
how a single condition can change a probability for a LOR method, or 
answering how estimates changed based on multiple (but still just a few) 
conditions, some experts will object that without knowing more—indeed, 
some will say without knowing everything—they cannot provide an esti-
mate. In other words, “Knowing how frequent patches are made will only 
tell me something about a probability if I also know several other [usually 
unidentified and endless] things.” This can’t be true and it can be disproven 
mathematically. There is a more formal version of this proof in the original 
How to Measure Anything, but for now, just know that this position isn’t 
mathematically logical. Another problem with this position is that we know 
relatively simple models will turn out to be decent predictors of expert 
judgment. Often, we even end up eliminating one or more variables from 
a model because they turned out to be unnecessary to predict the expert’s 
judgment. This means that a variable the experts at one point thought was 
something they considered in their judgments does not appear to have any 
bearing on their judgment at all. They just discovered what we called in 
previous chapters an “uninformative decomposition.” We all tend to imagine 
that our subjective judgments are a result of fairly elaborate and deliberate 
processing of options. A more realistic description of our judgment is more 
like a small set of variables in a very simple set of rules added to a lot of 
noise and error.
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Reducing Uncertainty Further and When To Do It

We don’t have to rely on calibrated estimates and subjective decompositions 
alone. Ultimately, we want to inform estimates with empirical data. For exam-
ple, conditional probabilities can be computed based on historical data. Also, 
the beta distribution and other methods for computing conditional probabili-
ties can be combined in interesting ways. We can even make rational decisions 
about when to dive deeper based on the economic value of the information.

Estimating the Value of Information for Cybersecurity: A Very Simple Primer

Hubbard’s first book, How to Measure Anything, gets into a lot more detail 
about how to compute the value of information than we will cover here. 
But there are some simple rules of thumb that still apply and a procedure 
we can use in a lot of situations specific to cybersecurity.

Information has value because we make decisions with economic con-
sequences under a state of uncertainty. That is, we have a cost of being 
wrong and a chance of being wrong. The product of the chance of being 
wrong and the cost of being wrong is called the Expected Opportunity Loss 
(EOL). In decision analysis, the value of information is just a reduction in 
EOL. If we eliminate uncertainty, EOL goes to zero and the difference in 
EOL is the entire EOL value. We also call this the Expected Value of Per-
fect Information (EVPI). We cannot usually eliminate uncertainty, but the 
EVPI provides a useful upper limit for what additional information might be 
worth. If the EVPI is only $100, then it’s probably not worth your time for 
any amount of uncertainty reduction. If the EVPI is $1 million, then reduc-
ing uncertainty is a good bet even if you can reduce it only by half for a cost 
of $20,000 (the cost could simply be your effort in the analysis).

In cybersecurity, the value of information will always be related to de-
cisions you could make to reduce this risk. You will have decisions about 
whether to implement certain controls, and those controls cost money. If 
you choose to implement a control, the “cost of being wrong” is spending 
money that turns out you didn’t need to spend on the control. If you reject 
the control, the cost of being wrong is the cost of experiencing the event 
the control would have avoided.

In www.howtomeasureanything.com/cybersecurity we have also pro-
vided a spreadsheet for computing the value of information. Table 9.2 
shows how values in the spreadsheet’s payoff table would be structured. 
Note that we’ve taken a very simple example here by assuming that the pro-
posed control eliminates the possibility of the event. But if we wanted we 
could make this a bit more elaborate and consider the possibility that the 
event still happens (presumably with a reduced likelihood and/or impact) 
if the control is put in place.

The same spreadsheet also captures conditional probabilities like the 
ones we computed before: P(MDB), P(MDB | PPT), and P(MDB | ∼PPT). 

http://www.howtomeasureanything.com/cybersecurity
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(Recall from Chapter 8 that MDB means “Massive Data Breach” and PPT 
means “Positive Penetration Test.”) The calculation is simple. Based on the 
P(MDB), the cost of the control, and the cost of an event without the control, 
we compute an EOL for each strategy—implementing or not implementing 
the control. That is, based on the strategy you choose, we simply compute 
the cost of being wrong and the chance of being wrong for each strategy.

You can try various combinations of conditional probabilities, costs of 
events, and costs of controls in the spreadsheet. But it still comes down to 
this: If you reject a control, the value of information could be as high as the 
chance of the event times the cost of the event. If you accept a control, then 
the cost of being wrong is the chance the event won’t occur times the cost 
of the control. So the bigger the cost of the control, the bigger the event it is 
meant to mitigate, and the more uncertainty you have about the event, the 
higher the value of additional information.

Futher Reducing Uncertainty by Using Empirical  
Data to Derive Conditional Probabilities

Let’s suppose we’ve built a model, computed information values, and deter-
mined that further measurements were needed. Specifically, we determined 
that we needed to reduce our uncertainty about how some factor in cyber-
security changes the likelihood of some security event. You have gathered 
some sample data—perhaps within your own firm or perhaps by looking 
at industry data—and you organized it as shown in Table 9.3. We can call 

Table 9.2  Cybersecurity Control Payoff Table

Event Didn’t Occur Event Occurs

Decided to Implement the 
Control

The cost of the control The cost of the control

Decided against the Control Zero The cost of the event

Table 9.3  Table of Joint Occurrences of an Event and a Condition

Defined Security Event 
Occurred on This Server

A Stated Condition Exists on 
That Server

1 0

1 1

0 0

0 1

1 1

1 1

0 1
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the occurrence of the event Y and the condition you are looking at X. Using 
this, we can compute the conditional probability P(Y | X) by dividing the 
number of rows where Y = Yes and X = No by the total number of rows 
where X = No. That is, P(Y | X) = count of Y and X / count of X (as shown 
in Rule 4—the “it depends” rule—in Chapter 8).

This could be a list of servers for each year showing whether some event 
of interest occurred on that server and, say, whether it was located offshore 
or perhaps the type of operating system it had. Or perhaps we wanted to 
estimate the probability of a botnet infestation on a server based on some 
continuous value like the amount of traffic a server gets. (One of our guest 
contributors, Sam Savage, has shown an example of this in Appendix B.)

If you are handy with pivot tables in Excel, you could do this analysis 
without too much trouble. But we propose an even easier analytical method 
using the Excel function =countifs(); the Countifs() formula counts the rows 
in a table where a set of conditions are met. If we count the rows where 
both columns are equal to “1,” we have the number of times both the event 
and the condition occurred. This is different from “Countif()” (without the 
“s”) which only counts the number in a given range that meet one crite-
rion. Countifs(), on the other hand, can have multiple ranges and multiple 
criteria. We need both to compute a conditional probability from a set of 
historical data.

Counting just the number of 1’s in the second column gives us all of 
the situations where the condition applies regardless of whether the secu-
rity event occurred. So, to compute the conditional probability of an event 
given a condition, P(Event|Condition) in Table 9.3 we use the following 
calculation:

= countifs(column A, “=1”, column B, “=1”)/countif(column B,”=?1”)

(Note, where we say “column A” or “column B” insert the range where 
your data resides in Excel.)

Now you are empirically estimating a conditional probability. Again, 
we’ve provided a spreadsheet on the website to show how to do this. There 
is quite a lot of interesting analysis you can do with this approach once you 
get handy with it.

We’ve already put as many detailed statistical methods into this book 
as we think most cybersecurity experts would want to deal with—but the 
reader could go much further if motivated to do so. Instead of loading more 
methods at this point, let’s just paint a picture of where you could go from 
here if you feel you are mastering the methods discussed so far.

First, we can combine what we’ve talked about in much more elaborate 
and informative ways. For example, instead of using calibrated estimates as 
inputs for the LOR method, we can use conditional probabilities computed 
from data in this way as inputs. As with LOR before, as long as the condi-
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tions are independent we can add up the conditional probability with a 
large number of conditions.

We can also leverage the beta distribution with the empirically derived 
conditional probability using the data in Table 9.3. If we are using simple 
binary outcomes (Y) and conditions (X) we can think of them as “hits” 
and “misses.” For example, you could have a data center where you have 
layers of controls in place from the network on the host: Network Fire-
walls, Host Firewalls, Network Intrusion Prevention Systems, Host Intru-
sion Prevention, and so forth. Lots of investments either way. Suppose 
we define the outcome variable “Y” as “security incident.” This is very 
general, but it could be malware, hacking, denial of service, and so on. X, 
of course, represents the “conditions” we just articulated in terms of layers 
of controls. If we count 31 cases where Y and X occur together (security 
event and controls in place) and 52 total cases of X, then we can estimate 
the conditional probability with the beta distribution using 31 hits and 21 
misses, added to your prior. This allows us to think of our data, again, as 
just a sample of possibilities and not a reflection of the exact proportion. 
(More specifically to our example case, we can start forecasting what our 
controls are saying about the probability of having security incidents.) 
Instead of adding LORs for fixed conditional probabilities, we randomly 
draw from a beta distribution and compute the LOR on that output. (This 
will also have the effect of rotating your LEC in a way that increases the 
chance of extreme losses).

Think about how handy this can be if you deal with multiple massive 
data centers deployed globally. You want to have a sense of the probability 
of incidents in light of controls. It’s an easy step then to determine EVPI in 
relationship to making a potential strategic change in defenses in light of 
the simple sample data. Again, you have more data than you think!

Once again, we have provided the spreadsheets at  
www.howtomeasureanything.com/cybersecurity for detailed examples.

Leveraging Existing Resources to Reduce Uncertainty

Recall the measurement maxims: It’s been measured before, you have more 
data than you think, and you need less data than you think. In this chapter 
so far we’ve focused a bit more on the last maxim. Now let’s spend a little 
bit of time on the other two.

If you are aware of some of the resources you have available to you, 
you will realize that there is quite a lot of data and that some very clever 
people have already analyzed this data for you. Some of it is even public 
domain. Each of the examples that follow was submitted by contributors to 
this book.

http://www.howtomeasureanything.com/cybersecurity
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■■ Vivosecurity, Inc. collects mostly publicly available data on breaches 
and other cybersecurity incidents. Using data from the U.S. Depart-
ment of Health and Human Services Breach Portal website (a.k.a. 
the HHS “Wall of Shame”), they’ve found an interesting relationship 
between number of employees in a firm and the chance of a breach. 
The HHS Breach Portal2 shows PHI record breaches of 500 records or 
more. This data can be downloaded into a spreadsheet. The rate of 
data breaches as of 2015 appears to be about a 14% chance per 10,000 
employees per year (this is higher than data on major data breaches 
since it includes breaches as small as 500 records). This is up slightly 
from about 10% in 2012. Vivosecurity’s detailed analysis is shown in 
Appendix B.

■■ Anton Mobley, a data scientist at GE Healthcare (and a colleague of one 
of the authors, Richard Seiersen, at GE), has done an interesting analy-
sis of the effect of password strength policy and probability of pass-
word compromise. His analysis is based in part on empirical surveys 
of passwords (e.g., passwords like “password” or “work”) and the rules 
they adhere to, and the relative difficulty of finding those passwords 
with widely available password-search algorithms. He also shows em-
pirical data on the types of password hints people use that make such 
searches much easier (e.g., “my last name” or “my company’s street”). 
He shows that a firm with 2,000 employees is virtually certain to have a 
password compromised if they don’t enforce password standards. The 
same company would have about a 5% chance of being compromised 
if there was a requirement for 15-letter, multi-type passwords (e.g., 
“AnNtx5#undR70!z”). Anton has also provided a detailed analysis of this 
in Appendix B.

■■ Marshall Kuypers (who we met in Chapter 6 and who, at the time of 
this writing, was finishing his PhD at Stanford, specializing in the sta-
tistical data analysis of cybersecurity), along with Dr. Paté‐Cornell of 
Stanford, presented a statistical analysis at SIRACon 2015 that showed 
multiple interesting trends (a few of which are shown in Figure 9.6) that 
can inform much cybersecurity risk analysis:

◆◆ The rate at which data has been compromised due to lost or stolen 
devices has been constant over the last several years and is propor-
tional with the number of employees. The numbers are consistent 
with what the authors observed based on an analysis of HHS data.

◆◆ The rate of malware is going down but not the impact of malware, 
which has a “fat-tailed” distribution.

◆◆ The investigation time of incidents follows a highly consistent 
“power law” pattern (the power law is a distribution where the 
log of the frequency of an event and the log of the impact create 
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a straight, downward-sloping line—this distribution is described in 
Appendix A).

Wrapping Up Bayes

These last two chapters were an introduction to some simple and then 
some slightly more advanced empirical methods using Bayes. By leveraging  
already developed spreadsheets for some of the more detailed explanations, 
we covered quite a lot of ground.

We’ve shown how the use of Bayesian methods and its derivatives  
allow cybersecurity to update initial calibrated estimates with new infor-
mation. We’ve shown how the use of the Bayesian methods can apply to 
a simple update problem but we’ve also shown how much more elabo-
rate methods like the beta distribution can still be practically employed by  

Figure 9.6  Distribution of Investigation Time for Cybersecurity Incidents

Investigation Time (Hours)

Lost Devices

Investigation Time (Hours)

E-Mail

100 101 102

100 101 102

100 101 102 103

100 101 102 103

10–5

10–4

10–3

10–2

10–1

100

C
C

D
F

10–5

10–4

10–3

10–2

10–1

100
C

C
D

F

10–4

10–3

10–2

10–1

100

C
C

D
F

10–4

10–3

10–2

10–1

100

C
C

D
F

Investigation Time (Hours)

Malware

Investigation Time (Hours)

Website



196�E volving the Model of Cybersecurity Risk

using existing features of Excel. We’ve shown how multiple conditions can 
be combined using LOR methods and the Lens method, and we’ve shown 
how LOR and beta can be combined.

You don’t have to adopt all of this at once. Take a one-step-at-a-time 
approach if necessary and add new methods as you master them. You have 
a variety of choices for how you model something and how you leverage 
new information—all of which are surely better than guessing or using 
methods without any mathematical foundation. Now, Part III will introduce 
some additional concepts and discuss practical considerations in rolling out 
these methods in an organization.

Notes

	 1.	 Benjamin Enke and Florian Zimmermann, “Correlation Neglect in Belief 
Formation,” Discussion Paper No. 7372 (Bonn, Germany: Institute for 
the Study of Labor, 2013), http://ftp.iza.org/dp7372.pdf.

	 2.	 U.S. Department of Health and Human Services, Office for Civil Rights, 
Breach Portal, “Breaches Affecting 500 or More Individuals,” accessed 
March 21, 2016, https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf.

http://ftp.iza.org/dp7372.pdf
https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf
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Chapter 10
Toward Security Metrics Maturity 

As you look to improve in any endeavor, it helps to have a view of where 
you are and a vision for where you need to go. This improvement will 

need to be continuous and will need to be measured. The requirement of 
being “continuous and measurable” was stated as one of the main outcomes 
of this how‐to book. Continuous measurements that have a goal in mind 
are called “metrics.” To that end, this chapter provides an operational secu-
rity‐metrics maturity model. Different from other analytics‐related maturity 
models (yes, there are many), ours starts and ends with predictive analytics.

This chapter will begin to introduce some issues at a management and 
operations level. Richard Seiersen, the coauthor who is familiar with these 
issues, will use this chapter and the next to talk to his peers using language 
and concepts that they should be familiar with. Richard will only selectively 
introduce more technical issues to illustrate practical actions. To that end, 
we will cover the following topics:

■■ The Operational Security Metrics Maturity Model: This is a maturity 
model that is a matrix of standard questions and data sources.

■■ Sparse Data Analytics (SDA): This is the earliest metrics stage, which 
uses quantitative techniques to model risk based on limited data. This 
can specifically be used to inform new security investments. We pro-
vide an extended example of SDA using the R programming language 
at the very end of this chapter. This is optional material that demon-
strates analytics outside of Excel as well as illustrates SDA.

■■ Functional Security Metrics: These are subject‐matter‐specific metrics 
based on early security investments. Most security metrics programs 
stop at this point of maturation.

■■ Security Data Marts: This section focuses on measuring across security do-
mains with larger data sets. The following chapter will focus on this topic.

■■ Prescriptive Security Analytics: This will be a brief discussion on an 
emerging topic in the security world. It is the amalgam of decision and 
data science. This is a large, future book‐length topic.
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Introduction: Operational Security Metrics Maturity Model

Predictive analytics, machine learning, data science—choose your data 
buzzword—are all popular topics. Maturity models and frameworks for ap-
proaching analytics abound. Try Googling images of “Analytics Maturity 
Models”; there are plenty of examples. Our approach (see Figure 10.1) 
is different. We don’t require much data or capability to get started. And 
in fact, the practices you learned in previous chapters shine at this early 
stage. They help define the types of investments you will need to make to 
mature your program. So, there is no rush to invest in a “big data” solution 
and data science. Don’t get us wrong—we are big advocates of using such 
solutions when warranted. But with all these “shiny” analytics concepts and 
technology come a lot of distractions—distractions from making decisions 
that could protect you from the bad guys now. To that end, our perspective 
is that any analytic maturity model and framework worth its salt takes a  
decision‐first approach—always.

Figure 10.1  Security Analytics Maturity Model
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Sparse Data Analytics

N (data) is never enough because if it were “enough” you’d already be 
on to the next problem for which you need more data. Similarly, you 
never have quite enough money. But that’s another story.

—Andrew Gelman1

You can use predictive analytics now. Meaning, you can use advanced 
techniques although your security program may be immature. All of the mod-
els presented in Chapters 8 and 9 fit perfectly here. Just because your ability 
to collect broad swaths of security evidence is low does not mean that you 
cannot update your beliefs as you get more data. In fact, the only data you 
may have is subject matter expert beliefs about probable future losses. In 
short, doing analytics with sparse evidence is a mature function but is not 
dependent on mature security operations.

From an analytics perspective, Sparse Data Analytics (SDA) is the ex-
clusive approach when data are scarce. You likely have not made an invest-
ment in some new security program. In fact, you may be the newly hired 
CISO tasked with investing in a security program from scratch. Therefore, 
you would use SDA to define those investments. But, once your new in-
vestment (people, process, technology) is deployed, you measure it to de-
termine its effectiveness to continually improve its operation. For a more 
technical example of SDA please refer to the “SDA Example Model: R Pro-
gramming” at the end of the chapter.

Functional Security Metrics

After you have made a major investment in a new enterprise‐security ca-
pability, how do you know it’s actually helping? Functional security met-
rics (FSMs) seek to optimize the effectiveness of key operational security 
areas. There will be key performance indicators (KPIs) associated with 
operational coverage, systems configuration, and risk reduction within 
key domains. There are several security metrics books on the market that 
target this level of security measurement. One of the earliest was Andrew 
Jaquith’s Security Metrics.2 It brought this important topic to the forefront 
and has a solid focus on what we would call “coverage and configura-
tion” metrics. Unfortunately, most companies still do not fully realize this 
level of maturity. They indeed may have tens, if not hundreds, of mil-
lions of dollars invested in security staff and technology. People, process, 
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and technology for certain silo functions may in fact be optimized, but a 
view into each security domain with isometric measurement approaches 
is likely lacking.

Most organizations have some of the following functions, in some form 
of arrangement:

■■ malware defense
■■ vulnerability management
■■ penetration testing
■■ application security
■■ network security
■■ security architecture
■■ identity and access management
■■ security compliance
■■ data loss prevention
■■ incident response and forensics
■■ and many more

Each function may have multiple enterprise and standalone secu-
rity solutions. In fact, each organization ideally would have sophisticated  
security metrics associated with each of their functions. These metrics would 
break out into two macro areas:

	 1.	 Coverage and Configuration Metrics: These are metrics associated 
with operational effectiveness in terms of depth and breadth of enter-
prise engagement. Dimensions in this metric would include time se-
ries metrics associated with rate of deployment and effective configu-
ration. Is the solution actually working (turned on) to specification 
and do you have evidence of that? You can buy a firewall and put it in 
line, but if its rules are set to “any:any” and you did not know it—you 
likely have failed. Is logging for key applications defined? Is logging 
actually occurring? If logging is occurring, are logs being consumed 
by the appropriate security tools? Are alerts for said security tools 
tuned and correlated? What are your false positive and negative rates, 
and do you have metrics around reducing noise and increasing actual 
signal? Are you also measuring the associated workflow for handling 
these events?

	 2.	 Mitigation Metrics: These are metrics associated with the rate at which 
risk is added and removed from the organization. An example metric 
might be “Internet facing, remotely exploitable vulnerabilities must be 
remediated within one business day, with effective inline monitoring 
or mitigation established within 1 hour.”
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Security Data Marts

Note: Chapter 11 is a tutorial on security data mart design. The section be-
low only introduces the concept as part of the maturity model.

“Data mart” is a red flag for some analysts. It brings up images of 
bloated data warehouses and complex ETL (extraction, transformation, 
load) programs. But when we say “data mart” we are steering clear of any 
particular implementation. If you wanted our ideal definition we would say 
it is “a subject‐matter‐specific, immutable, elastic, highly parallelized and 
atomic data store that easily connects with other subject data stores.” Enough 
buzzwords? Translation: super‐fast in all its operations, scales with data 
growth, and easy to reason over for the end users. We would also add, “in 
the cloud.” That’s only because we are not enamored with implementation 
and want to get on with the business of managing security risk. The reality is 
that most readers of this book will have ready access to traditional relational 
database management system (RDBMS) technology—even on their laptops.

Security Data Marts (SDM) metrics answer questions related to cross‐program 
effectiveness. Are people, process, and technology working together effectively 
to reduce risk across multiple security domains? (Note: When we say “security 
system” we typically mean the combination of people, process, and technology.) 
More specifically, is your system improving or degrading in its ability to reduce 
risk over time? An example question could be “Are end users who operate systems 
with security controls XYZ less likely to be compromised? Or, are there certain 
vendor controls, or combinations of controls, more effective than others? Is there 
useless redundancy in these investments?” By way of example related to endpoint  
security effectiveness, these types of questions could rely on data coming from 
logs like the following:

■■ Microsoft’s Enhanced Mitigation Experience Toolkit (EMET)
■■ Application whitelisting
■■ Host intrusion prevention systems
■■ File integrity monitoring
■■ System configuration (CIS benchmarks, etc.)
■■ Browser security and privacy settings
■■ Vulnerability management
■■ Endpoint reputation
■■ Antivirus
■■ Etc. . . .

Other questions could include “How long is exploitable residual risk sitting 
on endpoints prior to discovery and prioritization for removal? Is our ‘system’ fast 
enough? How fast should it be and how much would it cost to achieve that rate?”
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Data marts are perfect for answering questions about how long hidden 
malicious activity exists prior to detection. This is something security infor-
mation and event management (SIEM) solutions cannot do—although they 
can be a data source for data marts. Eventually, and this could be a long 
“eventually,” security vendor systems catch up with the reality of the bad 
guys on your network. It could take moments to months if not years. For 
example, investments that determine the good or bad reputation of external 
systems get updated on the fly. Some of those systems may be used by bad 
actors as “command and control” servers to manage infected systems in 
your network. Those servers may have existed for months prior to vendor 
acknowledgment. Antivirus definitions are updated regularly as new mal-
ware is discovered. Malware may have been sitting on endpoints for months 
prior to that update. Vulnerability management systems are updated when 
new zero‐day or other vulnerabilities are discovered. Vulnerabilities can ex-
ist for many years before software or security vendors know about them. 
During that time, malicious actors may have been exploiting those vulner-
abilities without your knowledge.

This whole subject of measuring residual risk is a bit of an elephant 
in the room for the cybersecurity industry. You are always exposed at any 
given point in time and your vendor solutions are by definition always late. 
Ask any security professional and they would acknowledge this as an obvi-
ous non‐epiphany. If it’s so obvious, then why don’t they measure it with 
the intent of improving on it? It’s readily measurable and should be a prior-
ity. Measuring that exposure and investing to buy it down at the best ROI is 
a key practice in cybersecurity risk management that is facilitated by SDM 
in conjunction with what you learned in previous chapters. In Chapter 11, 
we will introduce a KPI called “survival analysis” that addresses the need 
to measure aging residual risk. But here’s a dirty little secret: If you are not 
measuring your residual exposure rate, then it’s likely getting worse. We 
need to be able to ask cross‐domain questions like these if we are going to 
fight the good fight. Realize that the bad guys attack across domains. Our 
analytics must break out of functional silos to address that reality.

Prescriptive Analytics

As stated earlier, prescriptive analytics is a long book-length topic in and of 
itself. Our intent here is to initialize the conversation for the security indus-
try. Let’s describe prescriptive analytics by first establishing where it belongs 
among three categories of analytics:

■■ Descriptive Analytics: The majority of analytics out there are de-
scriptive. They are just basic aggregates like sums and averages 
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against certain groups of interest like month‐over‐month burn up 
and burn down of certain classes of risk. This is a standard descrip-
tive analytic. Standard Online Analytical Processing (OLAP) fares 
well against descriptive analytics. But as stated, OLAP business in-
telligence (BI) has not seen enough traction in security. Functional 
and SDM approaches largely consist of descriptive analytics except 
when we want to use that data to update our sparse analytic mod-
els’ beliefs. 

■■ Predictive Analytics: Predictive analytics implies predicting the future. 
But strictly speaking, that is not what is happening. You are using past 
data to make a forecast about a potential future outcome. Most security 
metrics programs don’t reach this level. Some security professionals 
and vendors may protest and say, “What about machine learning? We 
do that!” It is here that we need to make a slight detour on the topic of 
machine learning, a.k.a. data science versus decision science.

Using machine learning techniques stands a bit apart from decision 
analysis. Indeed, finding patterns via machine learning is an increasing-
ly important practice in fighting the bad guy. As previously stated, ven-
dors are late in detecting new attacks, and machine learning has prom-
ise in early detection of new threats. But probabilistic signals applied to 
real‐time data have the potential to become “more noise” to prioritize. 
“Prioritization” means determining what next when in the heat of battle. 
That is what the “management” part of SIEM really means—prioritiza-
tion of what to do next. In that sense, this is where decision analysis 
could also shine. (Unfortunately, the SIEM market has not adopted de-
cision analysis. Instead, it retains questionable ordinal approaches for 
prioritizing incident‐response activity.) 

■■ Prescriptive Analytics: In short, prescriptive analytics runs multiple 
models from both data and decision science realms and provides opti-
mized recommendations for decision making. When done in a big data 
and stream analytics context, these decisions can be done in real time 
and in some cases take actions on your behalf—approaching “artificial 
intelligence.”

Simply put, our model states that you start with decision analysis and 
you stick with it throughout as you increase your ingestion of empirical evi-
dence. At the prescriptive level, data science model output becomes inputs 
into decision analysis models. These models work together to propose, and 
in some cases dynamically make, decisions. Decisions can be learned and 
hence become input back into the model. An example use case for prescrip-
tive analytics would be in what we call “chasing rabbits down holes.” As 
stated, much operational security technology revolves around detect, block, 
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remove, and repeat. At a high level this is how antivirus software and vari-
ous inline defenses work. But when there is a breach, or some sort of out-
break, then the troops are rallied. What about that gray area that precedes 
breach and/or may be an indication of an ongoing breach? Meaning, you 
don’t have empirical evidence of an ongoing breach, you just have evidence 
that certain assets were compromised and now they are remediated.

For example, consider malware that was cleaned successfully, but prior 
to being cleaned, it was being blocked from communicating to a command‐
and‐control server by inline reputation services. You gather additional  
evidence that compromised systems were attempting to send out messages 
to now blocked command and control servers. This has been occurring 
for months. What do you do? You have removed the malware but could 
there be an ongoing breach that you still don’t see? Or, perhaps there was 
a breach that is now over that you missed? Meaning, do you start forensics 
investigations to see if there is one or more broader malicious “campaigns” 
that are, or were, siphoning off data?

In an ideal world, where resources are unlimited, the answer would be  
“yes!” But the reality is that your incident response team is typically 
100% allocated to following confirmed incidents as opposed to “likely” 
breaches. It creates a dilemma. These “possible breaches” left without 
follow‐up could mature into full‐blown, long-term breaches. In fact, you 
would likely never get in front of these phenomena unless you figure out 
a way to prioritize the data you have. We propose that approaches similar 
to the ones presented in Chapter 9 can be integrated near real time into 
existing event detection systems. For example, the Lens Model is compu-
tationally fast by reducing the need for massive “Node Probability Tables.” 
It’s also thoroughly Bayesian and can accept both empirical evidence com-
ing directly from deterministic and non‐deterministic (data science) based 
security systems and calibrated beliefs from security experts. Being that 
it’s Bayesian, it can then be used for learning based on the decision out-
comes of the model itself—constantly updating its belief about various 
scenario types and recommending when certain “gray” events should be 
further investigated. This type of approach starts looking more and more 
like artificial intelligence applied to the cybersecurity realm. Again, this is 
a big, future book-length topic and we only proposed to shine a light on 
this future direction.

SDA Example Model: R Programming

We want to give you yet another taste for SDA. In this case we will use 
the R programming language. (You could just as easily do this in Excel, 
Python, etc.) This will not be an exhaustive “R How‐To” section. We will 
explain code to the extent that it helps explain analytic ideas. An intuitive 
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understanding of the program is our goal. The need for intuition cannot be 
overemphasized. Intuition will direct your creativity about your own prob-
lems. To that end, we believe Excel and scripting are great ways for new-
comers to risk analytics to develop intuition for analytics quickly. In fact, if 
any concepts in previous chapters still seem opaque to you, then take more 
time with the Excel tools. A picture, and a program, can be worth several 
thousand words. That same concept applies here: Download R and give it 
a spin; all of this will make much more sense if you do.

We recommend you use the numerous books and countless online 
tutorials on R should your interest be piqued. We will be leveraging an R 
library, “LearnBayes,” that in and of itself is a tutorial. The author of this 
module, Jim Albert, has a great book3 and several tutorials all available 
online that you can reference just as we have done here. If you don’t have 
R, you can go here to download it for your particular platform: https://
cran.rstudio.com/index.html.  We also recommend the RStudio; it will make 
your R hacking much easier: https://www.rstudio.com/products/rstudio/
download/.

Once you have downloaded R Studio, you will want to fire it up. Type 
install.packages(“LearnBayes”) at the command line.

For our scenario, here are the facts:

■■ You are now part of a due diligence team that will evaluate a multibillion‐
dollar acquisition.

■■ The company in question has a significant global cloud presence.
■■ You were told that they have several hundred cloud applications servic-
ing various critical industries with millions of users.

■■ You have been given less than one week, as your CEO says, to “deter-
mine how bad they are, find any ‘gotchas,’ and moreover how much 
technical debt we are absorbing from a security perspective.”

■■ Your organization is one of several that are making a play for this com-
pany. It’s a bit of a fire sale in that the board of the selling company is 
looking to unload quickly.

■■ You will not have all the disclosures you might want. In fact, you will 
not get to do much of any formal assessment.

Since you want your work to be defensible from a technical assess-
ment perspective, you choose to focus on a subset of the Cloud Security 
Alliances Controls Matrix. It’s correlated to all the big control frameworks 
like ISO, NIST, and so forth. You reduce your list to a set of five macro 
items that represent “must haves.” Lacking any one of these controls could 
cost several hundreds of thousands of dollars or more per application to 
remediate.

https://cran.rstudio.com/index.html
https://cran.rstudio.com/index.html
https://www.rstudio.com/products/rstudio/download/
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After a bit of research, you feel 50% confident that the true proportion 
of controls that are in place is less than 40%. Sound confusing? It’s because 
we are trying to explain a “proportional picture.” The best way to think 
about this is in shape terms on a graph. You see a bell shape that has its 
highest point slightly to the left of center—over the 40% mark on the x‐axis. 
You are also 90% sure that the true value (percentage controls in place) is 
below the 60% mark on the graph. This moves things a bit further to the 
left on the graph. If you were 90% sure that the controls state was below 
50%, that would make your prior look thinner and taller—denser around 
the 40% mark.

Let’s assume you conduct your first set of audit/interviews for 10 appli-
cations. You find that 3 of the 10 applications have basic controls in place. 
With this, you input your “prior beliefs” about the company and add the 
newly acquired data into R:

> library(LearnBayes)
>
> beta.par <- beta.select(list(p=0.5, x=0.40), list(p=0.90, 
x=.60))
> triplot(beta.par, c(3,7))

As stated, your prior beliefs show that you think the control state for 
most of the cloud applications in question bunch up around 40%. As you 
get more data, your ideas start “taking shape.” That is what the posterior 
reflects. The posterior is what you get after you run your analytics. The 
posterior, if used as input into another analysis, would then be called your 
“prior.” The data you start with in your prediction is “prior” to getting your 
output, which is the “posterior.” Your beliefs are getting less dispersed; that 
is, denser and hence more certain. Of course this is only after 10 interviews.

Note the “Likelihood” plot. It is a function that describes how likely it 
is, given your model (hypothesis), that you observed the data. Formally this 
would be written: P(Data | Hypothesis). In our case, we had 3 passes and 7 
fails. If our model is consistent, then the probability that our model reflects 
our data should be relatively high.

In terms of the preceding code, the beta.select function is used to cre-
ate (select) two values from our prior probability inputs. The two values 
go by fancy names: a and b or alpha and beta. They are also called “shape 
parameters.” They shape the curve, or distribution, seen in Figure 10.2. 
Think of a distribution as clay and these two parameters as hands that 
shape the clay. As stated in Chapter 9, the formal name of this particular 
type of distribution (shape) is called the “beta distribution.” As a and b 
get larger, our beliefs, as represented by the beta distribution, are getting 
taller and narrower. It just means there is more certainty (density) regard-
ing your beliefs about some uncertain thing. In our case, that uncertain 
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thing is the state of controls for roughly 200 cloud applications. You can 
see how the two lists hold the beliefs the CISO had: beta.select(list(p=0.5, 
x=0.40), list(p=0.90, x=.60)). Those inputs are transformed by the beta.
select function into a and b values and stored into the beta.par variable. We 
can print these values to screen by typing the following:

> beta.par
[1] 4.31 6.30

From your vantage point you are only dealing with your beliefs and the 
new data. The alpha and the beta values work in the background to shape 
the beta distribution as you get more data. We then use the triplot function 
to combine our new information (3,7; 3 successes and 7 fails) with our prior 
beliefs to create a new posterior belief:

> triplot(beta.par, c(3,7))

Let’s assume you conduct 35 total audits with only 5 cloud applications 
meeting the most fundamental “defense in depth” controls requirements. 
There are over 200 applications that did not get audited. You now update 
your model with the new data (see Figure 10.3).

> triplot(beta.par, c(5,30)) 

You still have a lot of uncertainty about the real state of the company’s 
cloud security posture. In fact, it’s looking significantly worse than you had 
guessed. Therefore, to help your inferences you decide to simulate a large 
number of outcomes based on your new beliefs (posterior). That’s a fancy way 
of saying, “I don’t have time to audit everything. What if I use what I know 
as input into a simulation machine? This machine would simulate 1,000 audits 
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Figure 10.2  Bayes Triplot, beta(4.31, 6.3) prior, s=3, f=7
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and give me an idea where my future audit results might fall, constrained by 
what I already know.” Additionally, you frame up your result in terms of your 
90% CI, meaning, “I am 90% confident that the true value of company XYZ’s 
cloud security state is between x% and y%.” Let’s get our 90% CI first:

> beta.post.par <- beta.par + c(5, 30)
> qbeta(c(0.05, 0.95), beta.post.par[1],beta.post.par[2])
[1] 0.1148617 0.3082632

Pretty straightforward—we get the alpha and beta from our new pos-
terior and feed it into a simple function called qbeta. The first parameter 
c(0.05,0.95) simply tells us the 90% CI. Now that we have that, let’s simulate 
a bunch of trials and get the 90% CI from that for thoroughness.

> post.sample <- rbeta(1000, beta.post.par[1], beta.post 
.par[2])
> quantile(post.sample, c(0.05, 0.95))
 5% 95%
0.1178466 0.3027499

It looks like the proportion in question is likely (90% confident) to land 
between 12% and 30%. We can take this even further and try to predict what 
the results might be on the next 200 audits. We run that this way:

> num <- 200
> sample <- 0:num
> pred.probs <- pbetap(beta.post.par, num, sample)
> discint(cbind(sample, pred.probs), 0.90)
> [1] 0.9084958
> $set
 [1] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
 [20] 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
 [39] 55 56
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Figure 10.3  Bayes Triplot, beta(4.31, 6.3) prior, s=5, f=30
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Your model is telling you that you should be 91% confident that the 
next 200 audits will have between 17 and 56 successful outcomes. You have 
some financial modeling to do both in terms of remediation cost and the 
probability of breach. This latter issue is what is most disconcerting. How 
much risk are you really inheriting? What is the likelihood that a breach may 
have occurred or may be occurring?

This was a very simple example. It could have easily been done in Ex-
cel, Python, or on a smart calculator. But the point is that you can start do-
ing interesting and useful measurements now. As a leader, you will use this 
type of analytics as your personal form of hand‐to‐hand combat far more 
than any other types of metric.

Notes

	 1.	 Andrew Gelman, “N Is Never Large,” Statistical Modeling, Causal Infer-
ence, and Social Science (blog), July 31, 2005, http://andrewgelman
.com/2005/07/31/n_is_never_larg/.

	 2.	 Andrew Jaquith, Security Metrics: Replacing Fear, Uncertainty, and 
Doubt (Upper Saddle River, NJ: Pearson Education, 2007).

	 3.	 Jim Albert, Bayesian Computation with R (New York: Springer Science 
& Business Media, 2009).
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Chapter 11
How Well Are My Security 

Investments Working Together?

In Chapter 10, we shared an operational security-metrics maturity model. 
The model started with sparse data analytics. That really is the main 

theme of this book: “how to measure and then decide on what to invest 
in when you have a lot of uncertainty caused by limited empirical data.” 
Chapters 8 and 9 represent the main modeling techniques used in sparse 
data analytics. The goal is to make the best decision given the circum-
stances. And as you may recall, a decision is an “irrevocable allocation of 
resources.” In short, you know you’ve made a decision when you have 
written a check. Is measurement all over once you have made an invest-
ment? Certainly not!

What do you measure once you have made a decision (i.e., an invest-
ment)? You determine if your investment is meeting the performance goals 
you have set for it. For the security professional this is the realm of op-
erational security metrics. Once you have made a security investment, you 
need to measure how well that investment is doing against certain targets. 
That target is often considered a KPI. 

Assuming you have made a serious outlay of cash, this would war-
rant some form of continuous “automated” measurement for optimization 
purposes. Likely you may have made a number of investments that work 
together to affect one or more key risks. When it comes to integrating 
data sources for the purpose of measuring historical performance, we are 
now talking security metrics that start to look more like business intel-
ligence (BI). There are many great books on business intelligence. Most 
of them are large and in some cases cover multiple volumes. So why do 
we need more on this topic, and what could we hope to achieve in just 
one chapter?
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Specifically, we are not aware of any books that advocate BI for 
cybersecurity metrics. This is a profound shame. In fact, Jaquith’s book 
Security Metrics advocated against such an approach. Over 10 years ago 
we too might have held the same opinion. (Although at that time one of 
the authors was rolling out security data marts like hotcakes.) But risks 
and technology have evolved, and we need to as well. Analytic technol-
ogy has improved, particularly open source, and more and more security 
systems “play well with others.” Most all enterprise security solutions 
have APIs and/or direct database connectivity to extract well-formed and 
consistent data. It could not be any easier. So our first goal is to expose 
and encourage the reader to investigate this classical form of process 
modeling.

Our goal in this chapter is to give a basic, intuitive explanation in terms 
of a subset of business intelligence: dimensional modeling.

Dimensional modeling is a logical approach to designing physical data 
marts. Data marts are subject-specific structures that can be connected to-
gether via dimensions like Legos. Thus they fit well into the operational 
security metrics domain.

Figure 11.1 is the pattern we use for most of our dimensional modeling 
efforts. Such a model is typically referred to as a “cube” of three key dimen-
sions: time, value, and risk. Most operational security measurement takes this 
form, and in fact the only thing that changes per area is the particular risk 
you are studying. Time and value end up being consistent connective tissue 
that allows us to measure across (i.e., drill across) risk areas. Just remember 
that this is a quick overview of dimensional modeling. It’s also our hope that 
dimensional approaches to security metrics will grow over time. With the  
growth of big data and related open source analytic-based applications, 
now is the right time.

Risk

Value Time

Figure 11.1  The Standard Security Data Mart
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Addressing BI Concerns

At the mention of BI, many readers may see images of bloated data ware-
houses with complex ETLs (extraction, transformation, and load). And 
indeed ETLs and even visualizations can take quarters to deliver value. 
That problem stems from the complexities underlying relational database 
infrastructure. It also stems from how analytic outcomes are framed. On  
the infrastructure side of things, this has largely been solved. Most cloud 
providers have big data solutions. Specifically, companies like Amazon, 
Google, and Microsoft have mature cloud database products that scale. 
Even Excel is apparently getting more batteries, as it is able to scale up to 
billions of records using the “PowerPivot” feature. 

If you want to stay clear of a single vendor, then open source solu-
tions like Apache Drill provide a unified SQL (Structured Query Language) 
interface to most all data stores, including NoSQL databases, various file 
types (CSV, JSON, XML, etc.), and Open Database Connectivity connectors 
for legacy databases (including Excel). The idea is to completely remove 
end user analytics barriers caused by complex ETLs. This is similar to 
what we saw over a decade ago in data visualization. Visualization tools 
brought the barrier to entry for end user analytics way down. Of course, 
this presupposed a well-formed and readily understandable data source. 
Unfortunately, recent maturations in data sources like Hadoop and other 
NoSQL stores largely did not solve this issue. In fact, data access complex-
ity actually increased. But now that same “no friction” approach seen in 
visualization is materializing for data access. In summary, the technical 
barriers in terms of size, speed, and interface are completely eroding. 
What persists after the technical concerns are resolved? The logical fram-
ing of analytic problems and selecting the right approaches for those 
problems.

In terms of prejudices toward an analytic approach, you may have 
heard the following about business intelligence: “BI is like driving the busi-
ness forward by looking through the rear view mirror.” You may also hear 
things like, “Business intelligence is dead!” But to us this is like saying, 
“Descriptive analytics is dead!” or “Looking at data about things that hap-
pened in the past is dead!” What’s dead, or should be, is slow, cumbersome 
approaches to doing analytics that add no strategic value. Those who make 
those declarations are simply guilty of the “Beat the Bear” or “Exsupero 
Ursus” fallacy we mentioned in Chapter 5. Of course, all predictive analyt-
ics are predicated on things that happened in the past so as to forecast the 
future! In short, there is always some latency when it comes to observable 
facts that make up a predictive model. We are even seeing stream analytic 
solutions that create micro-cubes (mini–data marts) in memory. It’s an excit-
ing time for business intelligence!
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Now that we have hopefully blown up any prejudice associated with 
BI versus big data versus NoSQL versus predictive analytics, we can get on 
with the true core of this chapter: how to determine if security investments 
are working well together by using dimensional modeling.

Just the Facts: What Is Dimensional Modeling and  
Why Do I Need It?

When you are asking dimensional questions about historical facts that allow 
for both aggregation and drilling down to atomic events, then you are doing 
BI. A meta-requirement typically includes data consistency, meaning that 
the problem you are modeling requires some consistency from a time-series 
perspective: day to day, month to month, and so forth. Many modeling exer-
cises don’t have time series consistency as a goal. Security metrics measure 
operational processes and require some amount of consistency; thus they 
are perfect for BI. Now, if you use that data to simulate or forecast how 
the data will be shaped in the future, then you are indeed doing predictive 
analytics—or as we like to call it, “statistics.” But your underlying source for 
those predictions was based on BI, and the design process for doing BI is 
dimensional modeling.

Dimensional modeling is a logical design process for producing data 
marts. It deals with two macro objects: facts and dimensions. A group-
ing of dimensions that surround a list of facts is a data mart. Figure 11.2 
is a simple logical data mart for vulnerabilities. Note that it follows the 
same pattern from Figure 11.1. Vulnerability in this case is a particular 
risk dimension. Asset is a value dimension, value being something that is 
worth protecting. We also have a date dimension, which exists in most all 
models.

In the middle of your dimensional tables is something called a “fact 
table.” A fact table holds pointers to the dimension tables. The fact table 
could be in the millions if not billions of rows. If your asset dimension is 
in the hundreds of thousands if not millions, and that is exclusively what 
one of the authors has modeled, then your fact table would certainly be in 
the billions. Do the math; there could be N vulnerabilities per asset that ex-
ist at a given time. Also note that we said “logical.” This is a reminder that 
we will not necessarily create physical objects like dimension tables and 
fact tables. With modern approaches, when you query against various data 
sources it may be all virtualized into one simple in-memory data object. 
So, don’t let these various schemas fool you; they are just for our brains so 
we can get clear about our metrics questions.
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Conforming or shared dimensions allow you to connect data marts 
together to ask new and interesting questions. Probably the most popular 
conforming dimension is “date time.” The second most popular, at least in 
security, would be “asset.” Asset can be decomposed in a variety of man-
ners: portfolio, application, product, server, virtual server, container, micro 
service, data, and so on. An asset represents value that gets protected by 
controls, attacked by malicious threats, and used for intended purposes 
by authorized users. To that end, you will likely want to have data marts 
related to the state of vulnerabilities, configurations, and mitigation. Each of 
those data marts may share the same concept of asset. That “sharing” across  
security domains is what allows us to ask both horizontal and vertical  
questions. Or, as we like to say in the BI world, conforming dimensions  
allow us to drill across.

In terms of a drill-across use case, let’s say you have a metric called “full 
metal jacket.” A full metal jacket, as shown in Figure 11.3, represents a series 
of macro-hardening requirements for certain classes of assets. Specifically, 
you have KPIs in terms of least privilege (config), patch status, speed of mit-
igations to end points, and availability of blocking controls on the network. 
This is all really control coverage metrics in relationship to some concept 
of value (asset). The simple structure below would give you guidance in 
that regard. You could determine where you have completely unmitigated, 
known-exploitable, residual risk versus what is controlled via configuration 
or mitigation.

What is missing from this model is some concept of “threat”: how well 
your macro concept of protecting value (full metal jacket) is doing against 
certain vectors of threat. Here, in Figure 11.4, is a simple extension of the 
model. In this case, you integrate your malware-analysis data mart to your 
conforming data marts. This is simple, because your malware mart conforms 
on asset and date.

Vulnerability
Dimension

Asset
Dimension

Vulnerability
Fact

Date
Dimension

Figure 11.2  Vulnerability Mart
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Figure 11.3  Expanded Mart with Conforming Dimensions
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Figure 11.4  Malware Dimension
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This mart could answer hundreds if not thousands of questions about the 
value of various forms of defense against malware. For example, on the mitiga-
tion dimension, you could ask questions about the performance of host-based 
versus inline defenses against spearfishing. Or, in the same vein, how often did 



How Well Are My Security Investments Working Together?� 219

application whitelisting have impact where all other controls failed—that is, is 
there a class of malware where application whitelisting is the last line of de-
fense? (Note, application whitelisting is a control that only allows approved ap-
plications to run. Thus, if something malicious attempts to install itself or run, 
in theory, the application whitelisting control would stop it.) Is it increasingly 
the last line of defense, meaning other investments are deteriorating? Or are 
there new strains of malware that all your protections are failing at finding in a 
timely manner, thus hinting at a possible new investment and/or de-investment 
opportunity? In short, are you getting the ROI on whitelisting you predicted 
when you modeled it as an investment? With models like this it becomes  
obvious which protections are underperforming, which stand out and deserve 
more investment, and which are retirement candidates, providing opportunity 
for new, innovative investments to address unmitigated growing risks.

Interestingly, in dimensional modeling, a fact in a fact table is also known 
as a “measure.” They’re called a measure because they measure a process 
at the atomic level. “Atomic” means you cannot decompose the event being 
measured any further. A typical fact in business would be the sale of some 
product like a can of beans. The measure in this fact would be the sale price. 
You might want to know how much of a particular product you sold at a 
particular time and place. Additionally you may want to watch its sales per-
formance quarter by quarter. Perhaps you want to compare the profitability 
of a certain product versus another, given certain geographical markets and/
or store placements, and so forth. This is all traditional BI.

What is a “security fact”? It is simply an event that happened. It could be 
that a firewall rule was changed, or it could be that an intrusion prevention 
system blocked a particular attack. It could be the state of a particular piece 
of software in a cloud application at a particular time. The point is that we 
are recording that an event (or state change) happened or did not happen. 
State could change by the millisecond or by the year. Because of this on/
off metric, as opposed to a monetary measure, the security fact is said to be 
“factless.” You are essentially summing up a bunch of “1”s as opposed to 
dollars and cents. A fact table in the traditional sense would look something 
like Table 11.1, for a simple vulnerability data mart.

Table 11.1  A Fact Table with Multiple Vulnerabilities for One Asset at a Given 
Time

Vuln_Dim_ID Asset_Dim_ID Date_Dim_ID Event

1 43 67987 1

2 43 67987 1

3 43 67987 1

4 43 67987 1
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In old school data marts the first three columns are IDs that are refer-
ences to dimensional tables. You would sum(event) based on dimensional 
criteria. While perhaps going into a little optional technical detail, Table 11.2 
is what that same data structure might look like with the IDs revolved (note 
that date is an epoch).

We have various CVEs, which is short for “common vulnerabilities and 
exposures.” The vulnerability dimension table would hold all the salient 
characteristics of the vulnerability that could additionally constrain a query. 
We have an IP address, but yet again there could be an additional 100 char-
acteristics in the asset dimension we might use for our interrogation. Last, 
there is the timestamp.

A dimension is a decomposition of something of interest. It’s a bunch of 
descriptive characteristics of some fact that allow you to ask many and varied 
questions. For example, in our asset dimension we could also have things 
like operating system or service pack version. In fact, if storage is no object 
you could in theory track a complete list of installed software and its versions 
related to a particular concept of asset over time. This asset could in turn be-
come one or more data marts with facts that you track. You just need to be 
sure that you have an analytic that requires that level of decomposition. While 
BI is getting significantly easier, this is an area where useless decompositions 
can lead to a lot of wasted effort. Brainstorm with your stakeholders and 
shoot for agile results first. Apply the KISS model (Keep It Simple, Stupid).

Table 11.3 is a small example of what a dimension object might look 
like; note that it could be 100 or more columns wide.

Table 11.3  Asset Dimension

Asset_ID IP FQDN OS Type Service Pack BuildNum

1 10.0.0.1 thing1.foo.org Win10 Laptop n/a 14257

2 10.0.0.2 thing2.foo.org Win10 Laptop n/a 14257

3 10.0.0.3 thing3.foo.org Win10 Laptop n/a 14257

4 10.0.0.4 thing4.foo.org Win10 Laptop n/a 14257

Table 11.2  Vulnerability Facts with Dimensional References Resolved

Vulnerability Asset Date Event

CVE-2016–0063 10.0.10.10 1455148800 1

CVE-2016–0060 10.0.10.10 1455148800 1

CVE-2016–0061 10.0.10.10 1455148800 1

CVE-2016–0973 10.0.10.10 1455148800 1
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Now that we have covered some of the very basics of dimensional mod-
eling, we are going to create a dimensional model. Our goal in this case  
is to keep the explanation simple, intuitive, and nontechnical. No need to 
create the Dimensional Model to Rule the Universe that anticipates any 
and all possible questions. You can add those values as you have need for 
them.

Dimensional Modeling Use Case: Advanced Data Stealing Threats

For this use case let’s assume you developed a KPI around a new distinction 
you are calling “Advanced Data Stealing Threats” or ADST for short. Your 
definition of this threat is “malware that steals data and that your commer-
cial off-the-shelf security solutions originally miss,” meaning the ADST is 
active for some time prior to your investments “catching up” and stopping 
it. Let’s assume you used Excel, R, or Python to do a quick analysis on a 
few samples of ADST over the last year. Specifically you performed what is 
called a “survival analysis” to get the graph shown in Figure 11.5.

What is survival analysis? It’s the analysis of things that have a life span, 
for which there is eventually some change in status inclusive of end of life. 
While survival analysis originates in the medical sphere, it has application 
to engineering, insurance, political science, business management, econom-
ics, and even security. The heart of survival analysis is the survival func-
tion. In our case, this ends up being a curve that maps a time variable to a 

Figure 11.5  Days ADST Alive Before Being Found
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proportion. This way we can make inferences about the life expectancy of 
certain phenomena, like ADSTs.

Note the two instances called out, where financial impact occurred. 
For a lack of better options you decide you want to “improve the overall 
curve,” particularly in relationship to those two losses. So your KPI becomes  
“Improve on 20% of advanced threats surviving for 70 days or greater.” You 
have decided that this is something that you should be measuring closely 
for the foreseeable future. (This is indeed something we do recommend mea-
suring as a fundamental security metric.) How do you move from a strate-
gic analytic model that informed some new investments to security metrics? 
To get there we will need to apply some dimensional design thinking.

Fortunately enough, the dimensional models we have been working on 
thus far do have application here. To that end, we list the various “dimen-
sions” we have and how they would accommodate an ADST survival analysis 
mart (see Table 11.4). Our goal is to understand how what we have invested 
in is actually stopping ADST or not. Is there an opportunity to optimize a 
particular solution based on what we are learning? Is a particular vendor  
solution outperforming others, or is one lagging? More specifically, was there 
a configuration change, a patched vulnerability, a new mitigating control, or 
a new piece of anti-malware particularly effective in stopping ADSTs?

Table 11.4  ADST Dimension Descriptions

Dimension Description

Asset An asset could be a computer, an application, a web server, 
a database, a portfolio, or even data. While it’s tempting to 
capture every potential jot and tittle related to the concept of an 
asset, we recommend only selecting a minimal subset of fields 
to start with. To that end, we’re looking to focus on the end 
user’s system. This is not to say that server-class and/or larger 
applications are out of scope over time. Therefore this dimension 
will solely focus on desktop and laptop computers and/or any 
other systems on the network that browse, get mail, and so forth. 

HTTP  
Blocked

This is a list of all known bad-reputation sites that your reputation 
systems are aware of. At a previous engagement we built a 
dimensional table for this same purpose that tracked pure egress 
web traffic. It was well over 100 billion records. This sort of table 
that just logs endlessly and is used to create other dimensions 
is formally called a “junk dimension.” The idea is that you are 
throwing a lot of “junk” into it without much care.

This “junk dimension” looks backward in HTTP history to see 
when a particular asset first started attempting communication 
with a now known malicious command-and-control server. 
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Dimension Description

Vulnerability This is a standard vulnerability dimension, typically all of the 
descriptive data coming from a vulnerability management system. 
Perhaps it’s something coming from a web application scanner 
like Burp Suite or some other form of dynamic analysis. One of 
the authors has built vulnerability dimensions well in excess of 
50 fields. 

Configuration We put this here as a loose correlation, but the reality is that this 
would be a drill-across for meta metrics. This is why there is a 
dotted line in the dimensional model in Figure 11.6. You could 
have 100–200 controls per control area be it OS, Web Server, 
Data Base and so forth. If you have 100,000 assets, and you 
track changes over time, this would certainly be in the several 
hundreds of millions of records quickly.

Mitigation This is a complete list of all dynamic blocking rules from various 
Host Intrusion Prevention Systems (HIPS), Network Intrusion 
Prevention Systems (NIPS), Reputation Services, Web Application 
Firewalls (WAF), local Firewall (FW) rules, etc. and when they 
fired in relationship to the ADST. 

Malware: A list of all malware variants that various malware systems 
are aware of. Anti-malware could in theory be lumped into 
mitigations, but it is a large enough subject that it likely warrants 
its own mart. 

Table 11.4  (continued)

The data mart as shown in Figure 11.6 leverages the existing marts and 
brings in HTTP-related data from web proxies. This mart would suffice for 
complete ADST analysis.

In looking at Table 11.5, you can see how simple our fact table ends 
up being. Dimensions tend to be wide and facts are relatively thin. Here is 
how the fact table works:

■■ If mitigation is responsible for blocking, then the mit_id field will be 
populated with the ID of the particular mitigation vendor solution that 
was responsible for thwarting the attack; otherwise it will be 0. The 
mitigation ID points back to the mitigation dimension.

■■ If malware defense is responsible for closure, then the mal_id will be 
populated with the ID for the particular piece of anti-malware coming 
from the malware dimension.

■■ The http_id points to the URL for the particular command-and-control 
server that the asset was attempting to talk to at the time of being 
thwarted.
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Figure 11.6  ADST High Level Mart
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■■ date_http_start_id points to the date dimension indicating when the 
ADST was first noticed. Nine times out of ten this will require query-
ing back through HTTP proxy logs after the mitigation system and/
or the malware system becomes aware of the threat. This is easily 
automated, but as previously stated the logs would likely be in a big 
data system.

■■ date_https_end_id would be the same as the previous but for when the 
ADST was thwarted.

■■ asset_id points to the asset in question.
■■ vuln_id is populated if there is a correlation to a known vulnerability. 
If it is the only populated ID, other than the date and asset fields, then 
it would indicate that a patch was responsible for thwarting the ADST 
instance.

Table 11.5  ADST Blocked Fact

mit_id mal_id http_id date_http_start_id date_http_end_id asset_id vuln_id
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Modeling People Processes

Dimensional models are perfect for security metrics because they are 
designed to measure processes, and security absolutely is a process. Of 
course the ADST use case is a technical process. But what if you have a 
need to measure processes that are more people based? What if the pro-
cess has multiple gates and/or milestones? This, too, is easily modeled 
dimensionally. This particular type of model is called an “accumulating 
snapshot.” What you “accumulate” is the time that each process phase has 
been running.

From a security perspective this is key for measuring pre- and post-
product development, remediation activity, or both. For example, if you 
have implemented a Security Development Lifecycle program (and we hope 
you have), then you will likely want to measure its key phases. The macro 
phases are Secure by Design, Secure by Default (development), and Secure 
in Deploy. And it does not matter if you are using waterfall, agile, or a mix 
of both that looks more “wagile.” You can instrument the whole processes. 
Such instrumentation and measurement is key if you are operating in a 
continuous integration and continuous development (CICD) context. CICD 
supports an ongoing flow of software deploys daily. New development and 
remediation occur continuously. This is one of many functions that can 
and likely should be dimensionally modeled, measured, and optimized ad 
infinitum.

In Figure 11.7 we have a high-level logical accumulating snapshot for 
security remediation. It could be one large data mart across a variety of 
risks, or associated with a particular risk type. For example, one of these 
could model system vulnerability remediation. Perhaps another could 
model web application remediation, and so forth. The risk dimension is just 
a generalization for any sort of vulnerability type that could be substituted 
here. “Asset” also is generalized. It could be an application or perhaps even 
an OS. The remediation dimension presupposes some sort of enterprise 
ticketing system that would contain a backlog of items, including data on 
the various people involved with the remediation. Time is the most com-
plex in this case. You can see that there are four gates that are measured 
and one overarching gate. There are well over 20 dates associated with this 
measurement. In each of the five groups there is a final field like: “Days_
Existing” or “Analysis_Days_Reviewing.” These are accumulators that add 
days by default while something is still open and then stop when the final 
data field for each area is filled in with a date. The accumulator makes for 
much faster queries and additional aggregates when analyzing remediation 
processes.
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This model becomes a simple template that can be reused to model a 
number of security processes with multiple steps. It leverages dimensions 
that you use to model your technical solutions as well. Thus we stay close 
to the KISS model, agility and reuse.

In this chapter we provided a very brief glimpse into a powerful logical 
tool for approaching operational security metrics: dimensional modeling. 
This level of effectiveness metrics is little practiced in security, which as 
stated is a crying shame. We think analyzing the effectiveness of your in-
vestments is a close second to using predictive analytics when deciding on 
investments. We, in fact, would say that you are giving advantage to both 
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Figure 11.7  Remediation Workflow Facts
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the enemy and underperforming vendors when you don’t go about mea-
suring operations this way. With the advent of big data and simplification 
in data access, high-dimensional security metrics should become the main 
approach for measurement and optimization.

This chapter attempted to explain, at a very high level, a much needed 
approach for cybersecurity metrics. Our hope is that your interest has been 
piqued.

The final chapter will focus on the people side of “cybersecurity risk 
management” for the enterprise. It will outline various roles and responsi-
bilities, and give perspectives for effective program management.
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Chapter 12
A Call to Action

How to Roll Out Cybersecurity Risk Management 

There are three general themes to this book:

	 1.	 What measurement is
	 2.	 How to apply measurement
	 3.	 How to improve measurement

What distinguishes this tome from its predecessors, How to Measure 
Anything: Finding the Value of “Intangibles” in Business and The Failure of 
Risk Management, is that this book is domain focused. More than that, it’s 
designed to be a road map for establishing cybersecurity risk management 
as the C-level strategic technology risk practice. To this point, we believe 
cybersecurity as an operational function should be redefined around quan-
titative risk management. This book has provided more evangelism and 
proof to that quantitative end. If you are of the mind that cybersecurity risk 
management (CSRM) should be a program as opposed to a grab bag of 
quantitative tricks, then this chapter is a high level proposition to that end. 
We will lay out what such an organization might look like, and how it could 
work alongside other technology risk functions.

Establishing the CSRM Strategic Charter

This section answers the question “What should the overarching corporate 
role be for CSRM?” What we are framing as the CSRM function should become 
the first gate for executive, or board-level, large-investment consideration.  
Leaders still make the decisions, but they are using their quantitative nap-
kins to add, multiply, and divide dollars and probabilities. Ordinal scales 
and other faux risk stuff should not be accepted. 
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The CSRM function is a C-level function. It could be the CISO’s function, 
but we actually put this role as senior to the CISO and reporting directly to 
the CEO or board. Of course, if the CISO reports to those functions then 
this may work, but it requires an identity shift for the CISO. “Information 
and Security” are subsumed by “Risk” and that risk is exclusively understood 
as likelihood and impact in the manner an actuary would understand it. In 
terms of identity or role changes we have seen titles like “chief technology 
risk officer” (CTRO); this also could be a “chief risk officer” (CRO) function. 
Unfortunately, the latter is typically purely financial and/or legal in function.  
Whatever the job title, it should not be placed under a CIO/CTO. That 
becomes the fox watching the henhouse. A CSRM function serves at the 
pleasure of the CEO and board, and is there to protect the business from 
bad technology investments.

The charter, simply put, is as such:

■■ The CSRM function will report to the CEO and/or board of directors. 
The executive title could be CTRO, CRO, or perhaps CISO, as long as the 
role is quantitatively redefined.

■■ The CSRM function reviews all major initiatives for technology risk in-
clusive of corporate acquisitions, major investments in new enterprise 
technology, venture capital investments, and the like. “Review” means 
to quantitatively assess and forecast losses, gains, and strategic mitiga-
tions and related optimizations.

■■ The CSRM function will also be responsible for monitoring and anal-
ysis for existing controls investments. The purpose is optimization 
of technology investments in relation to probable future loss. The 
dimensional modeling practices and associated technology covered 
in Chapter 11 are key. Operationally the goal of this function is an-
swering “Are my investments working well together in addressing 
key risks?”

■■ The CSRM function will use proven quantitative methods inclusive of 
probabilities for likelihoods and dollars as impact to understand and 
communicate risk. Loss exceedance curves will be the medium for dis-
cussing and visualizing risks and associated mitigation investments in 
relationship to tolerance. This includes risks associated with one appli-
cation and/or a roll-up of one or more portfolios of risk.

■■ The CSRM is responsible for maintaining corporate risk tolerances 
in conjunction with the office of the CFO, General Counsel, and the 
board. Specifically, “risk tolerance exceedance” will be the KPI used to 
manage risk.

■■ The CSRM function will be responsible for managing and monitoring 
technology exception-management programs that violate risk tolerances.
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■■ The CSRM function will maintain cyberinsurance policies in conjunc-
tion with other corporate functions like legal and finance. CSRM pro-
vides the main parameters that inform the insurance models.

Organizational Roles and Responsibilities for CSRM

Figure 12.1 shows an example of an organizational structure for cyber
security risk. The structure is more appropriate for a large (Fortune 1000) 
organization that is managing hundreds of millions of dollars, if not many 
billions of dollars, at risk. It presupposes that technology investments are 
key strategic initiatives, which is easy enough in this day and age. It also 
presupposes that cybersecurity risks are considered a top-five, if not top-
three, board-level/CEO risk.

Quantitative Risk Analysis

The quantitative risk analysis (QRA) team consists of trained analysts with a 
great bedside manner. You could call them consultants or advisors, but the 
distinction is that they have quantitative skills. They essentially are decision 
scientists that can program and communicate clearly with subject matter 
experts and leaders. This is a highly compensated function, typically with 
graduate work in statistics and/or a quantitative MBA. While degrees are 
nice, quantitative skill and business acumen are key. The more readily avail-
able statistics and quantitative business experts will need to work side-by- 
side with security SMEs and leadership. As the reality of cybersecurity as a 
measurement discipline (as most sciences are) sets in, this role and skill set 
will be more plentiful.

Chief Technology
Risk Officer

(CTRO)

Quantitative
Risk Analysis

(QRA)

Training &
Development

Analytics
Technology

Program
Management

Figure 12.1  Cybersecurity Risk Management Function
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You will want the right ratio of QRAs to risk assessment engagements. 
Practically speaking, there are only so many models that can be run and 
maintained at any given time. Ratios like 10:1 in terms of new models to each 
QRA may be appropriate. It depends on the complexity of the models. Also, 
ongoing risk tracking against tolerances is required for completed models. 
Enterprise technology of course will help in terms of scaling this out. But even 
with advanced prescriptive analytics there will be ongoing advisory work 
based on exceedance of risk tolerances. That is, if a particular portfolio of 
risk needs optimization, perhaps through acquisition of new technology and/
or decommissioning of failing investments, that all takes time. A QRA will be 
involved in ongoing risk-framing discussions, development of models using 
statistics and statistics tools (R, Python, etc.), and coordinating with technolo-
gists in the organization to design and build real-time risk monitoring systems.

Training and Development

You can certainly use your QRA team to provide quantitative training mate-
rial and even actual training delivery. But the goal here is to build its DNA at 
various layers of the broader organization. This is similar to building general 
security DNA in engineering and IT teams (we assume you do this already). 
You can only hire so many QRA folks—they are rare, expensive, and prone 
to flight due to demand. You need to build tools and skills broadly if you 
are to fight the good fight with the bad guys. You will need a leader for this 
function and a content and delivery team. Using technology to deliver is key 
for large, distributed organizations.

Analytics Technology

This will be the most expensive and operationally intensive function. It 
presupposes big data, stream analytics, and cloud-deployed solutions to 
support a myriad of analytics outcomes. The analytics team will manage the 
movement of large swaths of data and the appropriate deployment of telem-
etry into systems. If you have any hope of implementing the practices from 
Chapter 11 in an agile manner, this is the group to do it. This group consists 
of systems engineers, big data database administrators, programmers, and 
the like. It is an optimized IT organization focused on analytic outcomes.

Program Management

When an activity involves multiple functions across multiple organizations, 
it’s a program. The CSRM function typically will be deployed to a variety of 
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organizations. The QRA team will be the technical face, but tying everything 
together—from engagement to training and development to technology—is 
a program management function. No need to go overboard on this one, but 
don’t skimp on program management; you will fail if you do.

We could have gone deep on every single role and function, building 
out various matrices, job descriptions, Gantt charts, and the like. That is 
not necessary. All the practices revealed throughout this book provide a 
glimpse into the core content of a larger cybersecurity risk management 
function. The roles and responsibilities have some flexibility. You can start 
lean-targeting one or two projects just using the spreadsheets provided. But 
if you are serious about fighting the bad guy with analytics, then you need 
a plan. Start by identifying where you are on the maturity model provided 
in the beginning of Part III. Then chart a course to build both the skills  
and organization that lead to prescriptive analytics capability. Having a plan 
removes a key roadblock to success; as Benjamin Franklin said, “Those who 
fail to plan, plan to fail!”

While there are many potential barriers to success like failed planning, 
there is one institutional barrier that can obstruct quantitative analysis: 
compliance audits. In theory, audits should help ensure the right thing is 
occurring at the right time and in the right way. To that extent, we think 
audits are fantastic. What makes compliance audits a challenge is when 
risk management functions focus on managing to an audit as opposed 
to managing to actual risks. Perhaps this is why the CEO of Target was 
shocked when they had their breach; he went on record claiming they 
were compliant to the PCI (payment card industry) standard. That is com-
pliance versus risk-management mindset and it is a deadly error in the face 
of our foes.

What if there was an audit function that assessed—actually measured—
the effectiveness of risk management approaches? That is, would it deter-
mine the actual impact on risk reduction of soft methods versus quantitative 
methods? And what if scoring algorithms were put to the test? Of course, 
advanced methods like Monte Carlo simulations, beta distributions, and the 
like would also need to be tested. Good! Again, we think one of the reasons 
we lose is because of untested soft methods. 

There is, however, a risk that this will backfire. For example, what if 
methods that were predicated on measuring uncertainty got audited be-
cause they were viewed as novel but methods using risk matrix, ordinal 
scales, and scoring systems got a pass? That would become a negative in-
centive to adopting quantitative methods. Unfortunately, this is a reality in at 
least one industry, as described hereafter. We bring it up here as an example 
of compliance audit gone wild in a nefarious manner that could have a pro-
found negative impact on cybersecurity risk management.
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Getting Audit to Audit

Audit plays a key role in ensuring quality of risk models, especially in heav-
ily regulated industries like banking and insurance. If new quantitative mod-
els are developed that have any influence at all on financial transactions, 
then audit is a necessary checkpoint to make sure that models don’t have 
unintended consequences—possibly as a result of simple errors buried in 
complex formulae. Such scrutiny should be applied to any model proposed 
for financial transactions and certainly for decisions regarding the exposure 
of the organization to risks like market uncertainty and cyberattacks.

Auditors might get excited when they see a model that involves more 
advanced math. The auditors have been there at one point in their careers. 
It’s interesting to finally get to use something for which so much study and 
time was spent mastering. So they will eagerly dive into a model that has 
some statistics and maybe a Monte Carlo simulation—as they should. If the 
method claims to be based on some scientific research they haven’t heard 
of, they should demand to see reference to that research. If the model is 
complex enough, perhaps the audit ought to be done twice on each cal-
culation by different people. If an error is found, then any modeler whose 
primary interest is quality should happily fix it.

But even well-intentioned and qualified auditors inadvertently discour-
age the adoption of better models in decision making. In some cases the 
more sophisticated model was replacing a very soft, unscientific model. In 
fact, this is the case in every model the authors have developed and intro-
duced. The models we have developed replaced models that were based 
on the methods we have already made a case against: doing arithmetic with 
ordinal scales, using words like “medium” as a risk assessment, heat maps, 
and so on. Yet these methods get no such scrutiny by auditors. If another 
method were introduced for cybersecurity that merely said we should sub-
jectively assess likelihood and impact, and then only represent those with 
subjective estimates using ambiguous scales, the auditors are not demand-
ing research showing the measured performance of uncalibrated subjective 
estimates, or the mathematical foundations of the method, or the issues with 
using verbal scales as representations of risk.

So what happens when they audit only those methods that involve a bit 
more advanced calculations? The manager who sticks with a simple scoring 
method they just made up that day may not be scrutinized the same way as 
one who uses a more advanced method would be simply because it isn’t 
advanced. This creates a disincentive for seeking improvement with more 
quantitative and scientifically sound methods in risk management and deci-
sion making.

For audit to avoid this (surely unintended) disincentive for improving 
management decision making, they must start auditing the softer methods 
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with the same diligence they would for the methods that allow them to flex 
some of their old stats education.

How Auditors Can Avoid Killing Better Methods
■■ Audit ALL models. All decision making is based on a model, whether 
that model is a manager’s intuition, a subjective point system, a deter-
ministic cost/benefit analysis, stochastic models, or a coin flip. Don’t 
make the mistake of auditing only things that are explicitly called mod-
els in the organization. If a class of decisions are made by gut feel, then 
consider the vast research on intuition errors and overconfidence and 
demand to see the evidence that these challenges somehow don’t ap-
ply to this particular problem. 

■■ Don’t make the mistake of auditing the model strictly within its context. 
For example, if a manager used a deterministic cost/benefit model in a 
spreadsheet to evaluate cybersecurity controls, don’t just check that the 
basic financial calculations are correct or ask where the inputs came 
from. Instead, start with asking whether that modeling approach really 
applies at all. Ask why they would use deterministic methods on deci-
sions that clearly rely on uncertain inputs.

■■ Just because the output of a model is ambiguous, don’t assume that you 
can’t measure performance. If the model says a risk is “medium,” you 
should ask whether medium-risk events actually occur more often than 
low-risk and less often than high-risk events. Attention is often focused 
on quantitative models because their output is unambiguous and can 
be tracked against outcomes. The very thing that makes auditors more 
drawn to investigate statistical models more than softer models is actu-
ally an advantage of the former.

■■ Ask for research backing up the relative performance of that meth-
od versus alternatives. If the method promotes a colored heat map, 
look up the work of Tony Cox. If it relies on verbal scales, look up 
the work of David Budescu and Richard Heuer. If they claim that 
the softer method proposed somehow avoids the problems identi-
fied by these researchers, the auditors should demand evidence 
of that.

■■ Even claims about what levels of complexity are feasible in the organi-
zation should not be taken at face value. If a simpler scoring method 
is proposed based on the belief that managers won’t understand any-
thing more complex, then demand the research behind this claim (the 
authors’ combined experience seems to contradict this).

One legitimate concern is that this might require too much of audit. 
We certainly understand they have a lot of important work to do and are 
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often understaffed. But audit could at least investigate a few key methods, 
especially when they have some pseudo-math. If at least some of the softer 
models get audited as much as the models with a little more math, orga-
nizations would remove the incentive to stick with less scientifically valid 
methods just to avoid the probes of audit.

What the Cybersecurity Ecosystem Must Do to Support You

Earlier in this book we took a hard look at popular risk analysis methods 
and found them wanting. They do not add value and, in fact, appar-
ently add error. Some will say that at least such methods help “start the 
conversation” about risk management, but since lots of methods can do 
that, why not choose one based on techniques that have shown a mea-
surable improvement in estimates? Nor can anybody continue to support 
the claim that quantitative methods are impractical, since we’ve actually 
applied them in real environments, including Monte Carlos, Bayesian em-
pirical methods, and more advanced combinations of them as discussed 
in Chapters 8 and 9. And, finally, nothing in the evidence of recent major 
breaches indicates that the existing methods were actually helping risk 
management at all.

But we don’t actually fault most cybersecurity professionals for adopt-
ing ineffectual methods. They were following the recommendations of stan-
dards organizations and following methods they’ve been trained in as part 
of recognized certification requirements. They are following the needs of 
regulatory compliance and audit in their organizations. They are using tools 
developed by any of a myriad of vendors that use the softer methods. So, if 
we want the professionals to change, then the following must change in the 
ecosystem of cybersecurity.

	 1.	 Standards organizations must end the promotion of risk matrices as 
a “best practice” and promote evidence-based (scientific) methods in 
cybersecurity risk management unless and until there is evidence to 
the contrary. We have shown that the evidence against non–evidence-
based methods is overwhelming.

	 2.	 To supplement the first point, standards organizations must adopt 
evidence-based as opposed to testimonial-based and committee-based 
methods of identifying best practices. Only if standards organizations 
can show empirical evidence of the effectiveness of their current 
methods sufficient to overturn the empirical evidence already against 
them (which seems unlikely given such evidence), then they should 
reinstate them.
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	 3.	 An organization could be formed to track and measure the performance 
of risk assessment methods themselves. This could be something mod-
eled after the NIST National Vulnerability Database—perhaps even 
part of that organization. (We would argue, after all, that the poor 
state of risk assessment methods certainly counts as a national vulner-
ability.) Then standards organizations could adopt methods based on 
informed, evidence-based analysis of alternative methods.

	 4.	 Certification programs that have been teaching risk matrices and ordi-
nal scales must pivot to teaching both proper evidence-based methods 
and new methods as evidence is gathered (from published research 
and the efforts just mentioned).

	 5.	 Auditors in organizations must begin applying the standards of model 
validity equally to all methods in order to avoid discouraging some of 
the best methods. When both softer methods and better quantitative 
methods are given equal scrutiny (instead of only assessing the latter 
and defaulting to the former if any problem is found), then we are 
confident that better methods will eventually be adopted.

	 6.	 Regulators must help lead the way. We understand that conservative 
regulators are necessarily slower to move, but they should at least start 
the process of recognizing the inadequacies of methods they currently 
consider “compliant” and encouraging better methods.

	 7.	 Vendors, consultants, and insurance companies should seize the busi-
ness opportunities related to methods identified in this book. The 
survey mentioned in Chapter 5 indicated a high level of acceptance of 
quantitative methods among cybersecurity practitioners. The evidence 
against some of the most popular methods and for more rigorous 
evidence-based methods grows. Early promoters of methods that can 
show a measurable improvement will have an advantage. Insurance 
companies are already beginning to discover that the evidence-based 
methods are a good bet. Whether and how well an insurance custom-
er uses such methods should eventually be part of the underwriting 
process.

Can We Avoid the Big One?

The “Big One” we referred to in Chapter 1 is an extensive cyberattack that 
affects multiple large organizations. It could involve, in concert, interruption 
of basic services, such as utilities and communications. This, combined with 
a significant reduction in trust in online and credit card transactions, could 
actually have an impact on the economy well beyond the costs to a single 
large company—even the biggest firms hit so far.



238� Cybersecurity Risk Management for the Enterprise

The nature of the attack on Target is one indicator of the nature of the 
risk. They were attacked in a way that exposed a threat common to many 
firms: that companies and their vendors are connected to each other, and 
many of those companies and vendors are connected through networks to 
many more. Even government agencies are connected to these organiza-
tions in various ways. All of these organizations may only be one or two 
degrees of separation away from each other. If it is possible for a vendor 
to expose a company, and if that vendor has many clients and those clients 
have many vendors, then we have a kind of total network risk that—while 
it has not yet been exploited—is entirely possible.

Analyzing the risks of this kind of situation is far too complex to 
evaluate with existing popular methods or in the heads of any of the leading 
experts. Proper analysis will require real, quantitative models to compute the  
impacts of these connections. Organizations with limited resources (which 
are, of course, all of them) will have to use evidence-based, rational meth-
ods to decide how to mitigate such risks. If we begin to accept that, then we 
may improve our chances of avoiding—or at least recovering more grace-
fully from—the Big One.
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Appendix A 
Selected Distributions

Distribution Name: Triangular
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Figure A.1  Triangular Distribution

 Parameters:

■■ UB (Upper bound)
■■ LB (Lower bound)
■■ Mode—this may be any value between UB and LB.

Note that UB and LB are absolute outer limits—a 100% CI.
For a triangular distribution, the UB and LB represent absolute limits. 

There is no chance that a value could be generated outside of these bounds. 
In addition to the UB and LB, this distribution also has a mode that can 
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vary to any value between the UB and LB. This is sometimes useful as a 
substitute for a lognormal, when you want to set absolute limits on what the 
values can be but you want to skew the output in a way similar to a lognor-
mal. It is useful in any situation where you know of absolute limits but the 
most likely value might not be in the middle, like the normal distribution.

■■ When to Use: When you want control over where the most likely value 
is compared to the range, and when the range has absolute limits.

■■ Examples: Number of records lost if you think the most likely number 
is near the top of the range and yet you have a finite number of records 
you know cannot be exceeded.

■■ Excel Formula:

=IF(Rand()<=Mode,1,0)*((Mode-LB)^2)/((UB-LB)*(Mode-LB))
+IF(Rand()>Mode,1,0)*(1-((UB-Mode)^2)/((UB-LB)*(UB-Mode)))

■■ Mean: = (LB+Mode+UB)/3

Distribution Name: Binary 

Figure A.2  Binary Distribution
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Parameters:

■■ P (Event probability)

Note that P is between 0 and 1. It represents how frequently the simula-
tion will randomly produce an event.

Unlike the other distributions mentioned here, a discrete binary distribu-
tion (also known as a Bernoulli distribution) generates just two possible out-
comes: success or failure. The probability of success is p and the probability  
of failure is q = (1 – p). For example, if success means to flip a fair coin 
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heads‐up, the probability of success is p = .5, and the probability of failure 
is q = (1 – .5) = .5. 

■■ When to Use: This is used in either/or situations—something either 
happens or it doesn’t.

■■ Example: The occurrence of a data breach in a given period of time.
■■ Excel Formula: =if(rand() < P,1,0)
■■ Mean: =P

Distribution Name: Normal 

Parameters:

■■ UB (Upper bound)
■■ LB (Lower bound)

Note that LB and UB in the Excel formula below represent a 90% CI. There 
is a 5% chance of being above the UB and a 5% chance of being below the LB.

A normal (or Gaussian) distribution is a bell‐shaped curve that is sym-
metrically distributed about the mean.

	 1.	 Many natural phenomena follow this distribution but in some applica-
tions it will underestimate the probability of extreme events. 

	 2.	 Empirical rule: Nearly all data points (99.7%) will lie within three stan-
dard deviations of the mean.

■■ When to Use: When there is equal probability of observing a result 
above or below the mean.

■■ Examples: Test scores, travel time.

90%

0 1 million 2 million 3 million 5 million4 million

Figure A.3  Normal Distribution
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■■ Excel Formula: =norminv(rand(),(UB + LB)/2,(UB‐LB)/3.29)
■■ Mean: =((UB + LB)/2)

Distribution Name: Lognormal 

90%

0 1 million 2 million 3 million 5 million4 million

Figure A.4  Lognormal Distribution

Parameters:

■■ UB (Upper bound)
■■ LB (Lower bound)

Note that LB and UB in the Excel formula below represent a 90% CI. 
There is a 5% chance of being above the UB and a 5% chance of being 
below the LB.

The lognormal distribution is an often preferred alternative to the 
normal distribution when a sample can only take positive values. Con-
sider the expected future value of a stock price. In the equation S

1
 = 

S
0
e(r), S

1
 is the future stock price, S

0
 is the present stock price, and r is 

the expected rate of return. The expected rate of return follows a nor-
mal distribution and may very well take a negative value. The future 
price of a stock, however, is bounded at zero. By taking the exponent 
of the normally distributed expected rate of return, we will generate a 
lognormal distribution where a negative rate may have an adverse effect 
on the future stock price, without ever leading the stock price below 
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the zero bound. It also allows for the possibility of extreme values on 
the upper end and, therefore, may fit some phenomena better than a 
normal.

■■ When to Use: To model positive values that are primarily moderate in 
scope but have potential for rare extreme events.

■■ Examples: Losses incurred by a cyberattack, the cost of a project.
■■ Excel Formula: =lognorm.inv(rand(),(ln(UB) + ln(LB))/2, (ln(UB)‐
ln(LB))/3.29)

■■ Mean: = ((ln(UB)+ln(LB))/2)

Distribution Name: Beta 

Figure A.5  Beta Distribution
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Parameters:

■■ Alpha (1 + Number of hits)
■■ Beta (1 + Number of misses)

Beta distributions are extremely versatile. They can be used to generate 
values between 0 and 1 but where some values are more likely than others. 
This result can also be used in other formulas to generate any range of 
values you like. They are particularly useful when modeling the frequency 
of an event, especially when the frequency is estimated based on random 
samples of a population or historical observations. In this distribution it is 
not quite as easy as in other distributions to determine the parameters based 
only on upper and lower bounds. The only solution is iteratively trying dif-
ferent “alpha” and “beta” values until you get the 90% CI you want. If alpha 
and beta are each greater than 1 and equal to each other, then it will be 
symmetrical, where values near .5 are the most likely and less likely further 
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away from .5. The larger you make both alpha and beta, the narrower the 
distribution. If you make alpha larger than beta, the distribution will skew 
to the left, and if you make beta larger, it skews to the right.

To test alpha and beta, just check the UB and LB of a stated 90% 
CI by computing the fifth and ninety‐fifth percentile values. That is 
betainv(.05,alpha,beta) and betainv(.95,alpha,beta). You can check that  
the mean and mode are what you expect by computing the following:  
mean=alpha/(alpha+beta), and mode (the most likely value) is mode= 
(alpha‐1)/(alpha+beta‐2). Or you can just use the spreadsheet at www 
.howtomeasureanything.com/cybersecurity to test the bounds, means, and 
modes from a given alpha and beta to get good approximations of what 
you are estimating.

■■ When to Use: Any situation that can be characterized as a set of “hits” 
and “misses.” For each hit, increase alpha by 1. For each miss, increase 
beta by 1.

■■ Examples: Frequency of an event (such as a data breach) when the 
frequency is less than 1 per time unit (e.g., year), the proportion of 
employees following a security procedure correctly.

■■ Excel Formula: =betainv(rand(),alpha,beta)
■■ Mean: =(alpha/(alpha + beta))

Distribution Name: Power Law 

Figure A.6  Power Law Distribution
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http://www.howtomeasureanything.com/cybersecurity
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Parameters:

■■ Alpha (Shape parameter)
■■ Theta (Location parameter)

The power law is a useful distribution for describing phenomena with ex-
treme, catastrophic possibilities—even more than lognormal. For events such 
as forest fires, the vast majority of occurrences are limited to an acre or less 
in scope. On rare occasions, however, a forest fire may spread over hundreds 
of acres. The “fat tail” of the power law distribution allows us to acknowledge 
the common small event, while still accounting for more extreme possibilities.

■■ When to Use: When you want to make sure that catastrophic events, 
while rare, will be given nontrivial probabilities.

■■ Examples: Phenomena like earthquakes, power outages, epidemics, 
and other types of “cascade failures” have this property.

■■ Excel Formula: =(theta/x)^alpha
■■ Mean: =(alpha*theta/(alpha‐1))

Distribution Name: Truncated Power Law 

90%
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Truncated
Limit

Figure A.7  Truncated Power Law Distribution

Parameters:

■■ Alpha (Shape parameter)
■■ Theta (Location parameter)
■■ T (Truncated limit)
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The truncated power law distribution mirrors the power law distribu-
tion, but with an upper limit that is imposed by the user. While the heavy 
tail of the power law distribution allows us to account for the rare cata-
strophic event, there may be a theoretical bound to the size of such an 
event. If this upper limit is not factored into the model, we may produce a 
misleading and unnecessarily grim forecast.

■■ When to Use: The power law distribution should be truncated if an  
upper bound on the severity of an event is known.

■■ Example: Losses of records may follow a power law but you know you 
only have a finite number of records to lose.

■■ Excel Formula: =(alpha*theta^alpha/(x^(alpha+1)))/(1‐(theta/T)^alpha)
■■ Mean: =(alpha*theta/(alpha‐1))
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 Appendix B
Guest Contributors 

You are not alone! The number of people applying statistics to the 
security problem is increasing. More people are taking what may be 

considered sparse data and using it to make inferences about large risks. 
This is not to say “big data” and “data science” are excluded; rather, making 
actionable inferences using limited empirical data, beliefs, and simulations 
are increasingly important for informing strategy and even prioritizing tacti-
cal decisions. To that end, we have included a number of short papers from 
various researchers in industry and academia on this topic. Also, stay tuned 
to www.howtomeasureanything.com/cybersecurity, as we will be including 
more and more research like this on our book’s website. 

http://www.howtomeasureanything.com/cybersecurity
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Aggregating Data Sources  
for Cyber Insights 

Jim Lipkis, VP and GM at VivoSecurity Inc.

Chuck Chan, chief researcher at VivoSecurity Inc.

Thomas Lee, PhD, founder and CEO at VivoSecurity Inc.

Actuarial science provides a wellspring of metrics and insights that are 
invaluable for managing cybersecurity in a business context. Relevant 

historical data can be obtained from a wide variety of industry and govern-
ment sources, and combining data from different sources can lead to unex-
pected, powerful results. We use an actuarial approach to forecast cyber risk 
in dollar terms and generate a profile showing concentrations of business 
risk across various dimensions of the enterprise IT infrastructure.

Cyber risk encompasses three broad factors: the at‐risk value of assets 
(particularly data assets), the expected occurrence of different types of 
cyber incidents, and the expected financial impact of each incident type 
relative to specific data assets. All three can be estimated by observing 
long‐term trends in historical data, deriving statistical predictions from the 
trends, and applying those predictions according to empirically derived 
characteristics and risk indicators of a specific organization. This section 
includes three examples: two relating to frequency of breaches, and one 
to financial impact.

Aggregating data sources is often needed simply for normalization; that 
is, finding a denominator so as to convert an absolute count into a rate. But 
with some creativity many useful correlations can be found. For example, 
here is an unexpected result that sheds light on the frequency of cyber‐
espionage attacks, and some effective ways of mitigating that risk.

Forecasting—and Reducing—Occurrence of Espionage Attacks

Studies have shown that a high percentage of external espionage attacks 
enter via phishing,1 and install malware on the phished user’s computer. 
One technique for countering these attacks is anti‐phish decoy training, 
using fake phishing e-mails.2 But a decoy program can be expensive and 
even politically sensitive. Actuarial data led us to an unexpected but even 
more effective approach.
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Crucial data in this case came from Microsoft’s published data3 on mal-
ware clean rates on various operating systems. Unsurprisingly, the data 
show that more recent versions of Windows are substantially more secure 
against malware attacks, and MacOS and Linux are more secure than Win-
dows. What is perhaps unexpected is the degree to which the OS version 
can affect the frequency of successful attack.

Figure B.1 shows an analysis of a high‐tech company in a highly com-
petitive industry where espionage is a very real business risk. We estimated 
the probability (expected frequency) of espionage attack at about 12%, as 
shown by the leftmost bar in the graph. (In other words, given eight simi-
lar companies, it should be expected that about one of them will incur a 
successful espionage attack every year.) This estimate arises from the com-
pany’s industry, number of employees, and IT infrastructure; the calculation 
was based on several trends and correlations gleaned from successive years 
of the Verizon Data Breach Investigations Report,4 the U.S. Census Bureau, 
and other sources.

Decoy training reduces the expected frequency of attack substantially, 
as seen on the next bar to the right: the 12% drops to 2%. But moving 
further rightward we see an even more dramatic countermeasure: upgrad-
ing all of this company’s Windows 7 computers to Windows 8 reduces the 
espionage probability to about 1%, even without decoy training (at time 
of writing no data was yet available on Windows 10). Combining the OS 
upgrade with decoy training, or using MacOS in lieu of Windows, yields 
probability levels far below 1%.
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Figure B.1  Probability of an Espionage Incident with Modeled Changes to 
Training and Operating Systems

OS upgrades have a cost as well, and it might make sense to upgrade 
only computers used by system administrators or others with unusual  
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access to sensitive data. Visibility on incident likelihood allows management 
to weigh costs and risks and make decisions based on data.

Skyrocketing Breaches?

One often hears that the rate of breaches in the healthcare industry is sky-
rocketing. Indeed, well over 30 million patient records have been breached 
in the United States alone since mandatory reporting was instituted in 2009. 
But the wild‐eyed claims of soaring breach rates are not borne out by the 
data. Breach occurrence has been quite stable over the past five years, when 
measured in an actuarial context, and can be reasonably projected for future 
years.

Our research shows a strong correlation between breach rate and num-
ber of employees working in an organization such as a healthcare provider. 
(This is true in other industries as well.) We used the U.S. Department of 
Health and Human Services database of PHI breaches reported under the 
2009 HITECH Act,5 and broke down the breach occurrence rate for each 
year by state. Plotting against the healthcare employment data by state in 
Figure B.2 shows a linear relationship.

Figure B.2  Average Data Breaches per Year by State
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Can the slope in Figure B.2 (average breach count per employee) be 
used to confidently predict expected incident frequency for an organization 
going forward?

To answer that question, we show the trend over time in Figure B.3. 
The rate of breaches per employee shot up when reporting first became 
mandatory in 2009, but has since been quite steady. Only in one year (2013) 
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did the rate increase, and then at a rather modest 31%. This stable trend 
is perhaps explained by the fact that the most common cause of breaches 
is accidents, not external attacks. The projected incident frequency can be 
combined with measurements of the at‐risk value of data assets for a cred-
ible, dollar‐quantified picture of an organization’s risk.

Figure B.3  Data Breach Rate by Year as a Function of Number of Employees
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Financial Impact of Breaches

We now turn from the expected frequency to the financial impact of cyber 
breaches. The expense of a breach stems from the at‐risk value of the 
breached assets, and that value may have a number of cost components: 
notification and remediation; forensic, legal, and liability; and reputation 
and long‐term business impact. Studies of breach cost are available from a 
variety of sources, such as the Ponemon Institute.6 We have found, however, 
that care is required in deploying this data in actuarial forecasting.

Estimating at‐risk value of data assets is beyond the scope of this essay, 
but a simple example shows some of the challenges. Consider a database of 
custodial data (e.g., customer, employee, or patient data) containing sensi-
tive personal, financial, or health information. It is tempting simply to count 
records and quote breach cost on a per‐record basis. But this assumes that 
cost per record is constant, which turns out not to be the case.

Figure B.4 shows cost per record plotted against breach size on a log‐
log scale, and we see that breach cost per record declines logarithmically 
as the number of records breached increases. This is perhaps unsurprising 
as there are economies of scale in some of the cost elements. The key here 
was to bring in data from companies’ SEC filings, in particular 10‐K reports, 
which often include extensive detail on both short‐ and long‐term costs of 
major breaches.7
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Figure B.4  Data on Breached Records: SEC Filings versus Ponemon
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In sum, we see actuarial science as fertile ground for credible forecast-
ing that can bring cybersecurity up to the level of sophistication in business 
risk management long enjoyed in most other areas of risk.
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The Flaw of Averages in Cyber 
Security

Sam Savage, PhD, is the founder of ProbabilityManagement.org, author of The Flaw 
of Averages: Why We Underestimate Risk in the Face of Uncertainty, and consulting 
professor at Stanford. © Copyright 2015, Sam L. Savage.

The Flaw of Averages is a set of systematic errors that occur when uncer-
tain assumptions are replaced with single “average” numbers. The most 

serious of these, known as Jensen’s Inequality by mathematicians, states 
roughly that “plans based on average assumptions are wrong on average.” 
The essence of cybersecurity is the effective mitigation of uncertain adverse 
outcomes. I will describe two variants of the Flaw of Averages in dealing 
with the uncertainties of a hypothetical botnet threat. I will also show how 
the emerging discipline of probability management can unambiguously 
communicate and calculate these uncertainties.

Botnets

A “botnet” is a cyberattack created by malware that penetrates numerous 
computers, which may then be directed by a command‐and‐control server 
to form a network that carries out illegal activity. Eventually this server 
will be identified as a threat, whereupon future communication with it is 
blocked. Once the dangerous site is discovered, the communications history 
of the infected computers can pinpoint the first contact with the offending 
server and yield valuable statistics.

Suppose you have invested in two layers of network security. There is a 
60% chance that a botnet virus will be discovered by the first layer, in which 
case the time to detection averages 20 days, with a distribution as displayed 
in the left side of Figure B.5. Note that the average may be thought of as the  
balance point of the graph, marked by . In the remaining 40% of cases 
the virus is not discovered until the second layer of your security system, in 
which case the average detection time is 60 days, with distribution shown 
on the right of Figure B.5.
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Window of Vulnerability for a Single Botnet

The average overall detection time of this botnet virus may be computed 
as the weighted average 60% × 20 days + 40% × 60 days = 36 days. So on 
average we are vulnerable to a single botnet for 36 days. The discipline of 
probability management8 provides additional insights by explicitly repre-
senting the entire distribution as a set of historical or simulated realizations 
called SIPs.9 Figure B.6 displays the SIPs (in this example, 10,000 simulated 
outcomes) of both distributions in Figure B.5. Performing calculations with 
SIPs (SIPmath) can be done in numerous software environments, including 
the native spreadsheet.
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Figure B.5  The Distribution of Detection Times for Layers 1 and 2 of a Security 
System
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Figure B.6  SIPs of 10,000 Trials of Layer 1 and Layer 2 Detection Times

Recently Microsoft Excel has become powerful enough to process SIPs 
of thousands of trials using its Data Table function.10 Figure B.7 displays 
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such a SIPmath model that combines the two distributions of Figure B.5 to 
create a distribution of overall time to detection across both security layers.

Figure B.7  A SIPmath Excel Model to Calculate the Overall Detection 
Distribution

This workbook takes the two SIPs of Figure B.6 as input, and then per-
forms 10,000 calculations of cell C6 that randomly chooses the Layer 1 dis-
tribution 60% of the time and the Layer 2 SIP 40% of the time. The resulting 
distribution clearly displays the two modes of detection. Press the calculate 
key (F9 in Windows,  = on Mac) to perform a new simulation of 10,000 
trials. Note that the simulated average is very close to the theoretical value 
of 36 days, yet 36 is a very unlikely outcome of the distribution. Also note 
that because the distribution is asymmetric, the chance of vulnerability of 
less than the average of 36 days is not 50%, but 63%. Experiment with the 
chance of discovery at Layer 1 in cell D3 and the number of days in B11 to 
see how the distribution, average, and chance change.

The formula used for calculating the average detection time over both 
layers was technically correct in that it yielded 36 days, but it provides no 
clue about the distribution. This is what I call the weak form of the Flaw of 
Averages. The strong form is considerably worse, in that you don’t even get 
the right average. The model of Figure B.7 created a SIP of its own, which 
we can now use to explore the impact of multiple simultaneous botnet  
attacks.

Window of Vulnerability for Multiple Botnets

Suppose we put a new system online, which is immediately attacked by 
multiple viruses that all have the same distribution of detection times. Since 
each virus is detected in an average of 36 days, you might think that the 



258� Appendix B

average vulnerability is again 36 days, as it was for the single virus. But it 
is not, because your system remains vulnerable until the last of the botnets 
is detected.

Figure B.8 displays the SIPs of 10 botnet detection times generated by 
the simulation of Figure B.7. They all have the same numbers, but the order 
has been scrambled in each to make them statistically independent.

Figure B.8  The Detection Time SIPs of 10 Independent Botnets
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These SIPs are used in the model in Figure B.9, which calculates the 
distribution of the maximum of the detection times of all botnets in cell C14. 
Note that you can adjust the number of botnets from between 1 and 10 with 
the spinner control in column E. Before experimenting with this model, 
close the model of Figure B.7, as it contains a Rand() formula, which can 
slow down the calculation.

Figure B.9  Simulation of Multiple Botnets

Note that the average days of vulnerability increase as the number of 
simultaneous attacks goes up, and that the chance of coming in at less than 
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36 days diminishes. This is an example of the strong form of the Flaw of 
Averages, and for 10 botnets, the average is 78 days, with a 1% chance of 
being less than 36.

Such modeling could easily be generalized to reflect different variants 
of viruses attacking at random times instead of all at once. Such insights into 
the proportion of time when you would expect your system to be vulner-
able are vital to making investment decisions involving mitigation strategies.
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Password Hacking

Anton Mobley, data scientist at GE Healthcare

Major breaches causing huge financial and brand damage have occurred 
in recent years. The attackers are varied, including hacktivists, nation‐

states, and cyber criminals. The targets and data types breached include 
Target and Home Depot (personal credit information), Anthem/Wellpoint 
(personal health information), the U.S. Office of Personnel Management, 
Booz Allen Hamilton and HBGary (military and intelligence information), 
and Ashley Madison and Adult Friend Finder (private information). Malware 
and phishing attacks are typically the focus of cybersecurity professionals, 
but these breaches pose a secondary risk to enterprises due to credential 
loss. The credential databases from these breaches often find themselves 
posted on hacker forums, TOR, and torrents.

Using the 2013 Adobe breach as a case study, enterprise exposure can 
be modeled as a function of enterprise size and password policy. In October 
201311 Adobe announced that hackers had stolen source code for major 
Adobe products and customer credentials for over 153 million users. The 
credential database became very easily accessible. Some amount of users in 
the data set are likely made up or missing passwords, but the data set was 
still one of the largest known credential dumps to date.

The database contained e‐mail addresses, encrypted passwords, and 
a cleartext password hint if the user chose to use one. Note that the pass-
words were not hashed or salted; they were 3DES block‐encrypted. This 
implies that a key loss would compromise the entire database; however, the 
key is not publicly known as of now. Since no salt was used, the same pass-
word encrypts to the same encrypted password. The password hints were 
stored in cleartext, meaning that an attacker can aggregate on an encrypted 
password to get all applicable hints for the same password. Frequently in 
the database, password hints such as “work,” “sso,” “outlook password,” and 
“lotus notes password” are given, implying password reuse, and pivoting off 
the encrypted password to the set of applicable hints makes guessing the 
password trivial. Additionally, the passwords were block‐encrypted, mean-
ing that an attacker could breach pieces of passwords and use them to  
attack other users’ credentials in the database.

To model enterprise exposure, we define an enterprise to be exposed 
if the following criteria are met:

	 1.	 The password used by an employee e‐mail is the same password used 
by the employee for a critical type of work function.
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	 2.	 The password can be easily backed out of the Adobe database by 
aggregating hints on encrypted passwords.

It follows, then, that the probability of exposure for an enterprise of n 
employees can be modeled, as the following assuming that employees are 
independent and that password reuse rate is independent of the employee 
password being vulnerable.

P(employees exposed >= 1)
= 1 – P(Any employee password is reused AND same  
password is vulnerable by hint aggregation)n

= 1 – (1 – P(password is reused)P(Single password  
is vulnerable to hint aggregation))n

Security experts have varying opinions on the rate of password reuse 
between accounts. Some studies put the rate in the 12% to 20% range,12 
but a Princeton study using limited data put the reuse rate at 49%.13 Using 
previous results in this type of analysis, a rate of Uniform(0.15,0.25) is used 
for this model.

Modeling the likelihood that a single password is vulnerable to hint 
aggregation is a bit more difficult. To be able to do this, an understanding 
of how users choose passwords must be developed. Since many password 
leaks have happened in the past, we choose a former leak with minimal 
password restrictions to model the password selection space. We use the 
2009 hack of RockYou, a company that developed plugins and widgets for 
social media sites and from which 34 million passwords were leaked. The 
aggregated password set (no user information) was taken from https://wiki 
.skullsecurity.org/Passwords. The parameter for the rate at which a hint is 
given that breaks a password is chosen as 0.0001. This parameter is un-
known, however; this is a very conservative estimate. Typically only 10 to 
20 hints are needed before a password becomes easy to guess. This pa-
rameter is also a function of the number of people sharing passwords, but 
for simplicity the point estimate is used. By conditioning on the number of 
users that share a password and the RockYou password space as the prob-
ability mass function of how people choose passwords, we can model the 
single employee exposure as the following:

V = event a password is vulnerable to being guessed
X = event that X employees share an encrypted password with the user
N = Adobe User Base in breach: ~153 million

P
RY

 = �Density function for each password from the RockYou data 
breach

h = �probability that a password hint is weak enough to allow the 
password to be guessed correctly

https://wiki.skullsecurity.org/Passwords
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These results are dependent on the RockYou password space PMF. 
Taking password policy into account by taking the conditional distribution 
from RockYou that is compliant with the password policy, the initial set of 
passwords that a user will pull from comes from a much higher entropy 
distribution.

A simulation of various password policies and number of matches is 
run using replacement for the number of matches to a password to empiri-
cally estimate the cumulative distribution functions under various password 
policies. The number of vulnerable passwords—that is, passwords that have 
a weak hint associated with them, based on the number of people shar-
ing the password and the event that the password is reused—is used to 
calculated the maximum likelihood estimate and 95% CIs for the single 
employee’s rate of compromise.

Combining the reuse rate distribution with the single‐employee expo-
sure distribution results in a range of outcomes (given in Figure B.10). The 
solid lines show the MLE of the probability of exposure and the dotted lines 
show the lower and upper bounds when using the 95% CI results with the 
low and high values of the reuse rate distribution.

Figure B.10  Probability of Compromise by Company Size and Password Policy
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This model gives an idea of the risk of compromised credentials for 
an enterprise given employee accounts and password policies. There are a 
few points that can and should be corrected to improve the fidelity of the 
model, including the following two:

	 1.	 The password‐hint reuse rate is definitely a function of password com-
plexity; that is, people who choose good passwords don’t give them 
away in hints as often, and this isn’t corrected for. Additionally, com-
bining hints makes weak hints very valuable, and this isn’t accounted 
for.

	 2.	 Forcing a password policy on a user base would likely result in a 
lower entropy distribution than the RockYou conditional distribution. 
For example, I imagine an increase in passwords that look like the fol-
lowing if a length/character type policy is implemented: P@ssw0rd123, 
pr!ncess123, and TrustNo0ne!
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Cyber‐CI

Douglas A. Samuelson, DSc, president and chief scientist at InfoLogix, Inc.

One especially interesting area in cybersecurity is cyber‐counterintelligence: 
the detection of security threats, particularly insider threats. Since the 

Snowden revelations, federal agencies have been under an executive order 
to develop programs to limit insider threats. Only a few agencies to date have 
come up with meaningful responses.

What one such agency, arguably the leader in the insider threat area, 
did institute is a computer‐based system to identify potential insider threats. 
This system uses information such as logins, badge‐ins, frequency and times 
of access to certain files and facilities, and possibly related activities such 
as minor reported security violations, foreign relatives, financial difficulties, 
and patterns of foreign travel. The general idea is much like credit scor-
ing or medical claims fraud and abuse analysis; the computer can identify 
patterns of activity that differ from the usual and resemble the patterns of 
known past culprits.

The key innovation is tuning the recognition of resemblance to past 
culprits—to use a data mining term, supervised rather than unsupervised 
search. Computer pattern‐analysis methods are very good at turning up 
unusual patterns of activity, but still quite bad at distinguishing which un-
usual patterns of activity are meaningful. Close cooperation with field in-
vestigators yielded useful insights to identify some of the more frequently 
occurring “unusual patterns” that were, in fact, of little interest upon fur-
ther investigation. Modifying the system to downplay these sets of patterns 
yielded a much more useful set of cases for further human follow‐up.

The subjects are cleared personnel, so they have relinquished many 
of their usual privacy rights as citizens. Still, the agency seeks to avoid 
excessive intrusion and expedite the exonerations that usually result from 
investigations of apparent anomalies. The primary goal is prevention, not 
prosecution.

Many pattern‐recognition, association, and rule‐based methods are ap-
plicable. The most productive uses involve correlating multiple approaches 
and multiple topics, incorporating feedback from follow‐on investigations 
by humans. This approach highlights assemblies of pieces of information 
that are most likely innocuous by themselves but may become interest-
ing in combination: for example, unusual behavior toward co‐workers and 
financial problems and sudden increase in foreign travel. Extensive coding 
and analysis of behavioral traits, down to the level of biological markers, 
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is possible with these methods and can become part of the analysis, along 
with more conventional markers.

This agency has built a watch station to provide the capability to ob-
serve and correlate many streams of information in one place, at one time. 
In particular, movements and accesses by persons apparently of interest 
(from situational data) can be called to the human monitor’s attention and 
examined more closely. Other agencies have expressed strong interest and 
are likely to copy or share this watch station.

New work in progress at the same agency involves a virtual reality de-
piction of big data that represents behaviors of interest. The system gener-
ates a space in which the human analyst can explore, exploiting humans’ 
still‐superior ability to notice unusual patterns.

Captures of actual major security violators are rare and never discussed 
openly until afterward, often well afterward to avoid compromising pros-
ecution, and then with many details of the detection and investigation omit-
ted. Preventions of violations are less rare, and more desirable, but even 
more rarely discussed openly. Revelation of sources and methods by which 
security‐related information is developed and used is considered one of 
the most serious and harmful security violations. Nevertheless, what can be 
reported is that the agency in question has realized a significant contribu-
tion from these methods, as reflected in two of the most reliable measures 
of merit in any organizational context: They are buying more of it, and their 
people—including a number of former skeptics—are eager to learn more 
about how to use it.
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How Catastrophe Modeling Can Be 
Applied to Cyber Risk

Scott Stransky, assistant vice president and principal scientist at AIR Worldwide

Tomas Girnius, PhD, manager and principal scientist at AIR Worldwide

One may wonder how a company proficient in building models to esti-
mate losses from hurricanes and other natural disasters can use their 

techniques to build a similar model for estimating losses from cyberattacks.
Hurricane Andrew spawned the catastrophe‐modeling industry. Al-

though catastrophe models existed prior to that storm in 1992, they were 
not used by decision makers, nor were they used to their full potential. 
When the storm struck south Florida, AIR issued modeled loss estimates on 
the order of $13 billion, a figure that the insurance industry scoffed at for 
being far too high. As the claims for Andrew started to pile up, 11 insurers 
went out of business, and the rest of the industry began to see the value 
in running models. The “Hurricane Andrew of Cyber” has yet to strike the 
cyber insurance industry, and when it does, those companies using models 
will be far better off than those using so‐called underwriting judgment.

AIR is employing the same stochastic modeling framework (Figure B.11) 
that it has reliably used for its catastrophe model for nearly 30 years. This is 
best described by analogy to hurricane modeling. Hurricanes can be visual-
ized and have been widely studied. We begin with historical data on hurri-
cane events, publicly available from the National Hurricane Center and other 
sources, and determine distributions for various parameters, such as how 
many storms there will be per year, where along the coastline those storms 
will hit, how intense they will be, and so forth. We then do a Monte Carlo 
simulation using all of these distributions to develop our stochastic “catalog” 
of events. This catalog contains 100,000 simulated hurricane seasons—not 
predicting 100,000 years into the future, but instead looking at plausible ver-
sions of next year’s hurricane season. For cyber, we have data from collabora-
tors that will allow us to determine distributions for the number of attacks per 
year, which industries they are targeting, whether they are impacting larger or 
smaller companies, and in the case of a data breach, how many records have 
been stolen. This is in addition to information on the type of data that tends 
to be impacted, the types of actors doing the attacks, and any ramifications 
of the attack—for example, whether data is stolen, businesses experience 
downtime, or are sued. We will use this for our Monte Carlo simulation for 
cyber events by drawing from these distributions to create a catalog of events.

The next phase of the model is the vulnerability component, in which 
the catalog, together with information about the risk itself, is used to 
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determine damage. For wind perils, we can use data from wind tunnels, 
computational fluid dynamics, postdisaster surveys, and engineering stud-
ies. For cyber, we are working with data that helps differentiate the risks 
between various industries, company sizes, company locations, and other 
features. The final step of the model is to estimate losses, including average 
annual losses, 1 in 100 losses, 1 in 250 losses—for individual accounts as 
well as entire portfolios of accounts. To do this, we need historical loss data. 
We are working with several primary insurers to get such data, in return for 
cyber‐risk consulting studies and early model results. This data allows us to 
calibrate and validate the loss results that the model produces.

The recent vintage of available cyberattack data—essentially available 
for only a few years—effectively ensures the “left censoring” referred to by 
Andrew Jaquith. The extremely large number of cyber events during the 
past few years ensures that the pool of data available is not impoverished 
as a result. The large amounts of basic cyber data define the size and shape 
of the bodies of fitted statistical distributions, very much akin to traditional 
actuarial methods. That large volume of data assures that the parameters 
fitted to those distributions are sufficiently robust to allow for sampling 
from the tails. Here, catastrophe modeling diverges from traditional actuarial 
practice—it is, indeed, the occasional Monte Carlo sample from the tail of 
the distribution that results in the extreme scenarios that are the purview 
of catastrophe modeling. It is only because the body of the distribution has 
been fitted well that we have confidence in the structure of the tail. This 
addresses the issue of determining extreme individual events in the catalog. 

Figure B.11  The AIR Worldwide Catastrophe Modeling Framework
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