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1 PURPOSE, STRUCTURE AND CLASSIFICATION 
OF ERROR-CONTROL CODES 

1.1 Error-control codes in transmission systems 

In theory of modern transmission systems the considerable attention to coding 
methods of information is given. 

Coding – the operation of an identification of the symbols or groups of 
symbols from one code by symbols or groups of symbols to other code. Necessity of 
coding arises, first of all, from requirement to adapt a message form to the given 
communication channel or to any other device intended for transformation or storage 
of the information. The typical block diagram of digital telecommunication system is 
resulted on figure 1.1. The source produces messages which it is necessary to transfer 
through the channel of a telecommunication systems. It can be discrete messages 
(data, cable messages etc.) or continuous messages (speech, audio, TV, etc.), 
transformed to the digital signals. The real messages contain redundancy and for 
matching of the information source with a transmitting channel usually the source 
encoder is used. Together with decoder they form source codec. The source coding 
methods were studied in Module №2. The primary goal of any telecommunication 
system is the information transmitting with given fidelity and rate. These 
requirements are in contradict and increasing of information rate leads to decreasing 
of the noise immunity and transmitting fidelity. In agree with well known Shannon 
theorems, as is wished considerable increase of fidelity of information transfer if a 
transmitting rate through channel Rch does not exceed the channel capacity Cch 
basically is possible. It is reached by using of the enough long error-correcting codes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Error-control code  is the code which allow to detect and correct errors 
arising from messages transition in the communication channels. With this purpose 
the redundancy is entered into structure of an error-correcting codes. Codec of error-
control code (channel encoder and decoder) is shown on figure 1.1.  

In real conditions the length of a code is limited by admissible complexity of 
coding/decoding devices. Therefore the result from using of error-control codes 
depends on the code parameters and restrictions on realization of the channel codec. 

Figure 1.1 – Typical block diagram of a digital telecommunication system 
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The modern theory offers a wide set of error-control codes, various on 
structure, construction principles and error detection and correction capability. In 
the subsequent chapters the important classes of the codes with effective 
coding/decoding algorithms are considered.  

1.2 Classification of error-control codes 

The error-control codes can be classified to various signs. The structure of 
codes classification is resulted on figure 1.2. On a way of formation the error-control 
codes are subdivided on block and continuous codes. Formation of the block codes 
provides splitting of transferred digital sequences into separate blocks which move to 
encoder input. To each such block on an encoder output there corresponds the block 
of code symbols which work is defined by a rule named as the coding algorithm. 
Formation of the continuous codes is carried out continuously in time, without 
division into blocks as defines the name of this code class. 

Block codes historically have been discovered and studied earlier, at beginning 
of coding theory development. In a class of continuous codes it is necessary to note 
the convolutional codes which exceed on characteristics of the block codes, and, for 
this reason, find wide application in a transmission systems. 

Many codes carry names of scientists which have discovered and investigated 
them. Such example is the continuous Fink-Hagelbarger’s code offered by Soviet 
scientist L. Fink and German expert R. Hagelbarger. Long time this code was in the 
literature as indicative example of a continuous code with simple encoding/decoding 
algorithms, but after elaborating the convolutional code has given way to them. For 
the description of procedures of coding/decoding both block and convolutional codes 
usually use an adequate mathematical apparatus. For the description of linear codes 
the well developed linear algebra is used. Formation of nonlinear codes is made 
with application of nonlinear procedures. Such approach allows to construct in some 
cases nonlinear codes with a number of special properties. In the error-control coding 
theory the problem of realisation complexity of encoding/decoding procedure and in 
particular decoding procedure is important. Therefore some classes of codes 
(Hamming codes, Bose-Chaudhuri-Hochquenghem codes, Reed-Solomon codes etc.) 
have been developed together with the decoding algorithms connected with structural 
properties of these codes. And on contrary the elaborating of a new decoding 
algorithms for convolutional codes (Viterbi algorithm, sequential decoding, threshold 
decoding) initiated searches of corresponding codes. Distinctive advantages of error-
control codes induced searches of new approaches to realization of ways to increase 
of noise immunity and efficiency of transmission systems. On figure 1.2 new 
methods of encoding/decoding (coded modulation, turbo-codes, time-space coding) 
are noted accordingly. 

Questions 
1.1 What is a purpose of the error-control coding by transmitting of a digital 

signal?  
1.2 What elements does the codec of error-control code consists?  
1.3 What is difference of coding procedures between block and continuous 

codes?  
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Tasks 
1.1 Represent the block diagram of telecommunication system and describe a 

purpose of its separate blocks.  
1.2 Give classification of error-control codes by ways of formation and 

structural properties. 
1.3 Give the scheme of inclusion of the encoder and decoder of a error-control 

code in the digital transmission system. Explain a purpose of scheme elements.  
 

2 PARAMETERS OF BLOCK ERROR-CONTROL CODES 
 

There are the following parameters of the block codes. The size of a code 
alphabet m is the number of the various symbols used by a coding. In practice the 
codes with m = 2 are used. These are binary codes. For construction of binary code 
word binary alphabet with symbols {0, 1} is used. Wide practical using of binary 
codes is defined for a reason of simplicity of binary logic elements construction in 
codec memory devices. The block code consists of set of fixed length vectors named 
code word. The code word length is the number of elements in the vector and is 
denoted with n.  

Figure 1.2– Structure of the code classification 
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Redundancy in the block code words can be entered as follows. Let on a block 
encoder input the block of information symbols a = {a1, a2, a3, …, ak} arrives. By 
the block coding code word on the encoder output can look like:  

b = {a1, a2, a3, …, ak, c1, c2, c3, ..., cn–k},  
where (c1, c2, c3, …, cn–k) – additional symbols. Values of additional symbols are 
defined by coding rules. Such code is called as systematic code. Each code word of 
length n symbols contains in a systematic codes k information symbols. Thus to an 
information symbols are added r = n – k additional symbols which are depend on 
information symbols and used by the decoding for detection and correction of an 
errors. By nonsystematic codes information symbols in an explicit form in a code 
word do not contain. 

The total quantity of the possible code words of the block error-control code is 
defined by the formula:  

 M = mn = 2n. (2.1) 

For a possibility of detection and correction of an errors these M code words 
not completely use for an information transfer. From these 2n code words we may 
select M0 = 2k code words (k < n) to the forming a code. Thus block of k information 
bits is mapped into a code word of length n selected from the set of M0 = 2k code 
words. These words named as allowed code word as they are allowed for an 
information transfer. We refer the resulting block code as an (n, k) code, and the 
ratio 

 
n

k
R =code   (2.2) 

is defined to be the code rate. 
The rate of a error-control code is defined also by the ratio  

 Rcode = (log2M0)/(log2M). (2.3) 

In nonredundancy code M0 = M (or k = n) and the rate is 

 Rcode = 1. (2.4) 

Quantity of the allowed code words is equal M0 = 2k. 
In the error-control code possible words are used not completely i.e. M0 < M. It 

illustrates redundancy of a code. Redundancy of a systematic code Kred is a relative 
share of the number of additional symbols n – k in a code word on its length n 
symbols:  

 Kred = 1 – Rcode = (n–k)/n. (2.5) 

For simple (nonredundancy) code n = k, and Kred = 0. 
Exercise 2.1 As it is known, in a binary channels under the noises and 

distortions there are an errors in form of transitions of a transferred symbols to an 
opposite symbols. For example, by transfer of a symbol 1 transition (1→0) is possible 
and accordingly transitions (0→1) are possible also. Consider the possibilities of the 
binary error-control code construction intended for transfer of messages with symbols 
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from alphabet with volume of MA, and allowing by the receiving to detect the channel 
errors. Specify the encoding and decoding methods of such code. For the developed 
algorithm of a coding define rate and redundancy of such codes. 

Instructions. The providing of an errors detection in the transmitted code 
words will be possible if for the allowed code words to give a forms which are 
changed by errors in symbols of this words. Then detection of errors (i.e. decoding) 
can be made by check of conformity of received words to this in advance known 
forms. At the first development times of the error-detecting codes the maintenance in 
the transmitted allowed words of «even number of unit symbols» was considered as 
simple way. So the «Code with even number of units » has been invented.  

Decision. Consider a construction variant of the binary systematic code 
intended for transferring letters, chosen from the alphabet of volume MA. According 
to above considered rule the information block a = {a1, a2, a3, a4, …, ak} of each 
word should contain k binary symbols ai. The total quantity of information blocks 
should be precisely equal to volume of the source alphabet MA. That is the equality 
MA = 2k guarantees transfer of each source symbol and the corresponding to it code 
words of systematic code. The quantity of units in an information blocks depends 
from a primary simple code and can be both even and odd. It appears that for 
realization of encoding and decoding of such code words it is convenient to use the 
procedure «module-2 addition» [3]. This procedure defines the simple way to find of 
the parity of units number in a code word. To everyone information block we will 
attribute one additional symbol (r = 1) so that the quantity of units in again formed 
word was even. Encoding it is made in such sequence: 

1 Let information block a is represented by a primary code: a1→101010; 
2 By consecutive module-2 addition of the primary code symbols defines an 

additional symbol с = 1; 
3 We form allowed code words, finishing an additional symbol to the block of 

information symbols b = 1010101. It is visible, that the coding rule is carried out, 
since the number of units remains even; 

4 By the other form of a primary code it is received: a2→101011, с = 0 and 
b2 =1010110; 

5 It is obvious, that any transition ((1→0) or (0→1)) changes number of units 
in the received words. If by decoding to use procedure of calculation of units number 
it is possible to detect errors. 

Remark. It appears, such code allows to detect not any errors configurations. 
The simple analysis shows, that two-multiple change of symbols cannot change 
parity and such errors in this code are impossible to detect. It is recommended to 
make such analysis for other variants of error combinations independently. 

The rate and redundancy of a code with even units number and by parameters 
(k, r = 1, n = k+r  = k + 1) are defined by formulas: 

 
1code +

==
k

k

n

k
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It is visible, that for the big lengths of the information block k>>1 rate of such 
code is close to Rcode = 1, and redundancy by transfer for example letters from the 
Russian text with alphabet volume MA = 32 (k = 5) will be small 61red =K . 

Questions 
2.1 What is the reason of wide application of binary codes in transmission 

systems? 
2.2 Is the placing of additional symbols in front of the block of information 

symbols in a systematic code possible? Will it change redundancy of a code? 
 

3 ERROR DETECTION AND CORRECTION CAPABILITY OF BLOC K 
CODES  

Let's establish dependence of detecting and correcting capability of the block 
codes from a code parameters. It is useful to consider a binary code with parameters 
n = 3, k = 2. All words of this code (M = 8) it is possible to divide by sign «parity of 
units number in a code words» on two groups:  

– words with even number of units, 
– words with odd number of units. 
The code constructed by this principle named “Code with even number of 

units” is considered in the Exercise 2.1. 
Example 3.1 A binary code (m = 2, n = 3) with even number of units. 
In table 3.1 the full set of binary words (m = 2, n = 3, M = 8) is divided into a 

set of the allowed code words (M0 = 4) containing words with even number of units 
(including the word 000 (number 0 – even)), and the set of the forbidden words with 
odd number of units. Their total quantity is equal to difference Mforbid = M – M0 = 4. 

Table 3.1 – Code with even number of units 

Full set of a words (M =  8): 
{000, 001, 010, 011, 100, 101, 110, 111} 

The allowed code words 
(with even number of units), 

M0=4: 
{000, 011, 101, 110} 

The forbidden words 
(with odd number of units), 

Mforbid = M – M0 = 4: 
{001, 010, 100, 111} 

Code parameters: code rate Rcode =1/2, 
code distance dmin = 2, 
code can detect qdet = 1 error 

 

Allowed code words are used for an information transfer through channel (are 
allowed for transfer). 

Forbidden code words are not used for an information transfer through 
channel (are forbidden for transfer). 

In the coding theory the concept «distance between code words» plays the 
important role. Everyone binary block error-control code are characterized by a 
parameter code distance. The code distance dmin is one of the major parameters of 
error-control codes. 
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The code distance of the binary error-control code dmin is the minimal 
Hamming distance [3] between the allowed code words. Let consider a pairs of 
allowed code words from table 3.1. It is possible to establish that for this code a 
minimal distance is dmin = 2. Such distance allows to detect a single errors in the 
channel. If the transmitted code word is b = (1 1 0), and channel error is characterized 
by a word (error vector) e = (0 1 0) the received word b

)
 with error on the channel 

exit is defined by module-2 addition: 
b = 1 1 0, 
e = 0 1 0, 

b
)

 =(a⊕⊕⊕⊕ e) = 1 0 0. 
From this it is visible, that the symbol «1» in error vector e changes a 

corresponding symbol in transmitted word b to an opposite symbol. 
For the characteristic of quantity of channel errors enter concept the 

multiplicity of an errors. Multiplicity of an errors q is a quantity of the channel errors 
within a codeword. For example, for words from table 3.1 the error vector variants 
with multiplicity q = 1 are: e = 100, 010, 001. And the double errors are: 110, 011, 
101. 

The code capability to detect and to correct of errors depends from code 
distance dmin.  

Error detection is the fixing by decoding of an error presence of certain 
multiplicity in received word b

)
. 

Error correction  is the detection by decoding of an errors in certain symbols 
of received words and their subsequent correction. 

According to these definitions error-control codes are subdivided into 
following classes: 

1 Error-detecting codes which detect a channel errors.  
2 Error-control codes which correct a channel errors and named in literature 

as codes with direct correction of errors (i.e. with errors correction by a code 
methods). 

The relation between code distance dmin and error control ability of a code we 
will establish on an example of code with even number of units (see table 3.1). It is 
convenient to use a geometrical representation of code words on figure 3.1. Let's 
represent a code words by set from three symbols (x, y, z) and values of these 
symbols will choose from the binary alphabet {0, 1}. It is possible to represent all 
possible code words by the points in the Cartesian system with coordinates (x, y, z). 
Thus words will form tops of a three-dimensional cube. On figure 3.1 these tops are 
marked as follows: 

– By the sign "•" notes the allowed code words, 
– By the sign "r" notes the forbidden code words. 

It is visible, that code structure is that between the allowed code words are 
forbidden words. They form the «protective interval». Therefore the action of any 
single error translates any allowed word to the nearest forbidden words. This property 
leads to such decoding rule of a code with even units number and detection of any 
single errors: reception from the channel output of the forbidden code words allows 
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to assert that in the channel there was any single error. It is easy to be convinced that 
this code does not allow to detect double errors (because «protective interval» is 
nonsufficient). By induction it is possible to prove, that any binary code with even 
number of units allows to detect any errors if their multiplicity is odd and does not 
detect any errors if their multiplicity is even. The concept of «a protective interval» is 
easily applicable for a study of the relation between code distance and code ability to 
correct of an errors. If the minimum distance between allowed code words (code 
distance) is dmin, that as is shown from figure 3.2 the protective interval contains 
(dmin - 1) forbidden words and for "transfer" of each allowed word to nearest allowed 
word it is necessary by errors to make (dmin – 1) "steps". Clearly, that all errors with 
multiplicity q=1, 2, 3, ..., (dmin – 1) can be detected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From here follows, that if code distance of a binary code is dmin code ability to 
detect of errors with multiplicity qdet is defined as: 

 )1( mindet −≤ dq   (3.1) 

Let's take advantage of similar representation for estimations of ability to 
correct of errors. On figure 3.3 layout of the allowed code words ballow.1 and ballow.2 is 
shown. Between them are allocated (dmin – 1) the forbidden words. Let's divide all set 
of the words on two allowed subset as is shown in a figure 3.3. If for example the 
received word b

)
 is allocated into «allowed decoding subset of a word ballow.1» that 

during the decoding becomes decision about transmitting of the word ballow.1, i.e. 
thereby the error transitions of word ballow.1 to the nearest forbidden words are 
corrected. It is similarly possible to explain error control process by the transmission 
of the word  ballow.2. It is visible, that distance of each allowed subset is (dmin – 1)/2 
(by dmin is odd). It defines code error control ability. For even values dmin the distance 
of each allowed subset is [(dmin/2) – 1], that also defines error-control ability of a 
code.  
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Figure 3.1 – Illustration of a code correction ability 
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Thus, if code distance of a binary error control code is dmin code ability to 
correct of errors is defined by expressions: 

 
2

1min
corr

−≤ d
q , if (dmin – odd) and 1

2
min

corr −≤ d
q , if (dmin – even). (3.2) 

 
 
 
 
 
 
 
 
 
 

4 ALGEBRAIC DESCRIPTION OF BLOCK CODES 
 

For description of the linear block codes use a mathematical apparatus of the 
general algebra [3]. By the block coding form code words b = (b1, b2, ..., bn). Choose 
symbols of binary codes from the Galois field GF(2). The set of words forms n-
dimensional vector space over field GF(2). For elements of this space (vectors) the 
addition and multiplication operations and operation of multiplication of a vector and 
also scalar product of a vectors are defined. Some vectors subset of the space Bn 
which satisfy to the vector space axioms organizes subspace Ak. 

The binary block code with block length n and 2k allowed code words is called 
as the linear (n, k) code if its code words form k-dimensional vector subspace Ak of 
n-dimensional space Bn. Subspace Ak is generated by the basis from k linearly 
independent vectors, which organize the lines of a generator matrix of the (n, k) 
code: 
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Figure 3.2 – To illustration of an error detecting ability 
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It is possible to present code words in the systematic form, forming separately 
informational part  from k numerals and check part from r = (n – k) additional 
numerals. 

The generator matrix of a systematic code looks like: 
 
 
 
 
 
 
 
 
 

Matrix Gsyst contains identity matrix  I k which defines the information part of 
code words and matrix P defines the additional symbols. Transition to the 
systematic form is made by a linear combination of rows from the matrix (4.1). Such 
transition is illustrated by a following example. 

Example 4.1 Matrix transformation of the nonsystematic code. The 
nonsystematic block code (7,4) is set by the generator matrix: 

 

1111000

1100100

1010010

0101101

ns

ns

ns

ns

nonsyst ==

g4

g3

g2

g1

G . (4.3) 

Using a method of the linear combination of rows from matrix (4.3) we will 
transform it to the systematic form (4.2). For forming of a systematic generator 
matrix the rows of an initial matrix (4.3) it is convenient to present in the form of a 
table 4.1, in which rows g1ns, g2ns, g3ns and g4ns are shown. 

Table 4.1 – Rows of the nonsystematic generator matrix  

g1ns 1 0 1 1 0 1 0 
g2ns 0 1 0 0 1 0 1 
g3ns 0 0 1 0 0 1 1 
g4ns 0 0 0 1 1 1 1 

 

Using modulo-2 addition rules the elements of these rows by exhaustive search 
of rows in various combinations it is established that by the most suitable variants for 
forming of matrixes rows for the systematic code are following: 

 g1syst = (g1ns ⊕g3ns ⊕g4ns),  g2syst = (g2ns ⊕  g3ns),  g3syst = g3ns,  g4syst = g4ns. 

The outcome of an evaluation of the matrixes rows of the systematic code is 
reduced in table 4.2. 
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Table 4.2 – The matrixes rows of the systematic code 

g1syst 1 0 0 0 1 1 0 
g2syst 0 1 0 0 1 0 1 
g3syst 0 0 1 0 0 1 1 
g4syst 0 0 0 1 1 1 1 

 

The matrix of the systematic code in the standard form low given: 

 

1111000

1100100

1010010

0110001

syst =G . (4.4) 

The concept weight of a code word plays the important role in the block codes 
theory. 

Hamming weight wH of the binary code word is equal to an amount of units in 
a code word. 

Example 4.2 An evaluation of Hamming weights of a code words.  
We will define values of Hamming weights for the code words by table 4.3: 
Table 4.3 – The Hamming weights of code words 

Binary code words Weight wH(bi) 
b1 1 0 1 1 0 1 4 
b2 0 1 0 0 0 1 2 

 

Structure of a generator matrix allows to define the minimum distance of the 
block codes. This position is illustrated by following exercises. 

Exercise 4.1 Definition of the code distance by its generator matrix. 
Generator matrixes of the error-control codes by (4.3) or (4.4) are set. Show 

how to define code distance of a codes by known generator matrix. 
Instruction. By elaborating of the method for definition of code distance it is 

necessary to consider that zero combination b0 = (0000000) is also allowed. 

Decision. It is above noticed, that allowed code words are defined by linear 
combinations of a generator matrix rows. As zero word b0 = (0000000) also is 
allowed, and rows of a generator matrix g1, g2, g3, g4 also are the allowed words 
then Hamming distances from these words to a zero word b0 it is defined their 
weights dH (gi, b0) =wH(gi), i = (1,…k). Further it is necessary to find the minimum 
weight, i.e. the minimum distance. Such conclusion from here follows.  

Code distance as the value of minimum distance between allowed code words 
is defined by the least weight of rows of generator matrix.  

Example 4.3 Definition of Hamming weights of the generator matrix rows of a 
systematic code. 

Define values of row weights of a generator matrix from the Example 4.1 
(table 4.2). Outcomes of evaluations are reduced in table 4.4. 
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Table 4.4 – The Hamming weights of generator matrix rows for systematic code 

The generating matrix rows Weights wH(gi) 
g1syst 1 0 0 0 1 1 0 3 
g2syst 0 1 0 0 1 0 1 3 
g3syst 0 0 1 0 0 1 1 3 
g4syst 0 0 0 1 1 1 1 4 

 

The analysis of data makes definition of the minimum distance of systematic 
code from table 4.4 dmin syst = min{wH (gi)} = 3. 

Exercise 4.2 Define by the same way the code distance of nonsystematic code 
from an Example 4.1 (table 4.1). 

Instruction. The statement about code distance of block code from Exercise 
4.1 is fair both for systematic nonsystematic codes. 

Decision. We will apply a technique from the Example 4.3. Outcomes of 
evaluations the weights of rows are reduced in table 4.5. 

Table 4.5 – The Hamming weights of the generator matrix rows for 
nonsystematic code 

Generator matrix rows Weights wH(gi) 
g1ns 1 0 1 1 0 1 0 4 
g2ns 0 1 0 0 1 0 1 4 
g3ns 0 0 1 0 0 1 1 3 
g4ns 0 0 0 1 1 1 1 4 

 

The analysis of these data makes definition of the minimum distance of 
nonsystematic code from table 4.5 dmin ns = min {wH (gi)} = 3. The received outcomes 
allow to state that systematic and nonsystematic codes from the Example 4.1 on the 
value of code distance are equivalent.  

Thus, the code distance of a block code is a least weight of nonzero rows 
from the code generator matrix. The above noted dependence between the minimum 
distance of block codes and weights of nonzero rows can be used for forming of a 
generator matrix of block code with the beforehand set code distance. This is 
illustrated by outcomes of Examples 4.4 and 4.5. 

Example 4.4 A generator matrix of a code with even number of units. 
Let's form the generator matrix of the systematic (n, k) code which detect a 

single errors (qdet = 1). Such code should have code distance dmin =  qdet + 1 = 2. 
Hence the nonzero rows of generator matrix of this code should have minimum 
weight wH = 2. According to the standard form (4.4) each row of systematic code 
matrix already contains a numeral 1 (defined by the submatrix I k), the weight should 
be increased the weight of every rows to 2 having added in last numerals every rows 
(as a part of submatrix P) a numeral 1. 

For example the generator matrix such (7,4) codes with k = 4 will look like 
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0011000

0010100

0010010

0010001

=G , (4.5) 

and unit in submatrix P can be in any place of a line. 
Exercise 4.5 Generator matrixes of codes which can detect double errors. 
Form generator matrix of the systematic code which can detect double errors. 
Instruction. From the theory it does not follow that such code there can be 

only one. It is recommended to consider at first a principle construction of a matrix at 
least one code and then on this basis to give generalization and to find matrixes of 
several more codes. 

Decision. The code can detect errors with multiplicity qdet = 2 should have the 
minimum distance dmin = qdet = 2 + 1 = 3. Hence rows of generator matrix of such 
code should have minimum weight wH = 3. From general view of generator matrix of 
a systematic code (4.2) follows what to get such weight it is possible by choice of 
rows of the additional symbols submatrix P and one of row from this submatrix 
should have the weight equal 2. Following variants of submatrix P are possible:  

 

111

101

011

110

=P1 ;  

101

111

110

011

=P2 ,  

110

011

101

111

=P3 ,  (4.6) 

which differ by rows permutations. As the minimum of each weight rows of these 
matrixes is equal to 2, they can be used for forming of systematic codes with minimum 
distance dmin = 3. In particular, the generator matrix of one of such codes looks like: 

 

1111000

1010100

0110010

1100001

=G . (4.7) 

Questions 
4.1 Codes with generator matrixes (4.3) and (4.4) have the identical minimum 

distance. What is it explained by?  
4.2 Are error-control properties of a block code varied by permutation of 

columns of a generator matrix?  
4.3 Is it the only one method of transformation from nonsystematic generator 

matrix to the systematic code matrix for forming which is considered in the Example 4.1?  
Task 

4.1 Follow method stated in Exercise 4.3 form generator matrix of the 
systematic code which correct triple errors. Is this code the only one? 
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5 CODING AND DECODING OF BLOCK CODES 

5.1 Coding and decoding of block code 

In the center of the block coding theory is the concept of a generator matrix 
(4.1) and (4.2). If a = |a0, a1, ..., ak| – row-matrix of a primary code the coding rule of 
a block code is defined by the product 

 b = aG, (5.1) 

where a = |a0, a1, ..., ak| – row-matrix of primary code at encoder input, 
b = |b0, b1, ..., bn| – row-matrix of block code word at encoder output, 
G – generator matrix of linear (n, k) code. 
Example 5.1 The encoder of code (7,4). 
The encoder structure of a systematic code (7,4) is defined by generator matrix 

(4.4) and coding rule (5.1). If on encoder input is the symbols row of a primary code 
a = (a1, a2, a3, a4) then symbols of allowed code word on its output 

b = (b1, b2, b3, b4, b5, b6, b7) are defined by following equalities:  

b1 = a1, b2 = a2, b3 = a3, b4 = a4,  
b5 = a1⊕a2⊕a3⊕a4, b6 = a1⊕a2⊕a4, b7 = a1⊕a3⊕a4. (5.2) 

On figure 5.1 the structure of encoder of systematic code (7,4) with equalities 
(5.2) is shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 

By the decoding of block codes the check relations establish with use of the 
parity check matrix H which space of rows is orthogonal to space of rows of 
generator matrix, that is: 

 G����HT = 0. (5.3) 

Here T– an index a transposition.  

If generator matrix is set in the form (4.2) for performance of a orthogonality 
condition the parity check matrix  should look like: 

 H = (PTI n-k), (5.4) 

where PT– transposed submatrix P of generator matrix G,  
I n-k – identity matrix a size (n – k) × (n – k). 
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Figure 5.1 – Encoder structure of systematic code  
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Exercise 5.1 The parity check matrix of a systematic code (7,4). 
The generator matrix of systematic code (4.7) is set: 

1111000

1010100

0110010

1100001

syst =G . 

According to rule (5.4) form parity check matrix of this code. 
Solution. Sequentially we discover the submatrixes entering into the formula 

(5.4). The transposed submatrix by size (n – k) × k: 

1101

1011

1110
T =P , 

The identity submatrix by size (n – k) × (n – k): 

100

010

001

=−knI . 

We unite submatrixes in the uniform parity check matrix of code: 

 

1001101

0101011

0011110

syst =H . (5.5) 

From orthogonality condition of generator and parity check matrixes of linear 
code (5.3) follows that each allowed word of linear code generated by rule b = a⋅⋅⋅⋅G 
also satisfies to the orthogonality condition:  

 b�HT = a�G�HT = 0. (5.6) 

By transmission through the channel code symbols are distorted. The received 
words look like b

)
= b ⊕ e, where b = (b0, b1, ..., bn), and an error vector  

е = (е0, е1, ..., еn). By decoding calculate a syndrome vector 

 S =b
)
�HT = (s0, s1, ..., sn–k–1). (5.7) 

The syndrome depends only on an error vector:  

 S =b
)
�HT = (b ⊕ e) HT = b

)
�HT ⊕ e�HT. 

As the condition of orthogonality b
)

·HT=0 is satisfied, the syndrome is equal: 

 S = e�HT (5.8) 

From here the simple rule of the error detection follows: 
1 If the syndrome S = 0 then an error vector е = 0, i.e. in the channel there 

were no errors and the received word belongs to set of the allowed code words. 
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2 If S ≠ 0 word b
)

 contains errors. It is possible by the syndrome symbols to 
define a configuration of the error vector. 

This principle underlies syndrome decoding. 

5.2 Syndrome decoding of the block codes 

The pprinciple of syndrome decoding we will consider on an example of 
simple block code. 

Example 5.3. The syndrome decoder of systematic code (7, 4).  
According to a rule (5.8) for realization of the syndrome decoder it is necessary 

to form the transposed parity check matrix of a code (7, 4). The parity check 
matrix of this code looks like (5.5). Applying to it a rule of a transposition of 
matrixes it is received: 

 

1001101

0101011

0011110

syst =H ;         

100

010

001

111

101

011

110

T
systH . (5.9) 

It is convenient to note the single errors in transmission channel so: 

 e1 = (100…0), e2 = (010…0), e3 = (001..0), …, en = (000..1). (5.10) 

In such form the error vector ei represents a symbol set from n elements in 
which on a place with number i the symbol of an error 1 (at the left) is arranged and 
on remaining places zero symbols are arranged. Error vectors can be presented in the 
form of an identity matrix: 

 

1000000

0100000

0010000

0001000

0000100

0000010

0000001

2

1

==

⋅

⋅
⋅

= n

n

i

I

e

e

e

e

E , (5.11) 

which each row is the single error vector. Using properties of identity matrixes, it is 
easy to show, that the matrix of syndromes coincides with the transposed parity check 
matrix of this code (5.9) is: 

 S = E�HT = I n�HT = HT. (5.12) 

By the syndrome decoding of a block code the matrix of syndromes S 
coincides with the transposed parity check matrix of a code HT. It is the foundation 
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for tabling of syndromes. The more low reduced table 5.1 of syndromes for a code 
(7,4) is made according to rows of the transposed parity check matrix (5.9). In the 
table to each vector of an error there corresponds the vector of the syndrome 
specifying a location of an error symbol in the received code word. 

Table 5.1 – Syndromes for decoding of the code (7,4)  
Syndromes 011 110 101 111 100 010 001 

Errors e1 e2 e3 e4 e5 e6 e7 
 

It allows to formulate of syndrome decoding algorithm:  
1 Forming of the transposed parity check matrix of a code HT. 
2 Tabling of syndromes for decoding of (n, k) code. 
3 An evaluation of syndromes (as table 5.1) on structure of code transposed parity 

check matrix HT and error symbols vector of a decoded codeword by rule (5.12). 
4 Forming of a vector of an error ei on the basis of the syndromes table. 
5 Error correction in the received code word by a rule: ieba ⊕= ˆˆ .  
The structure of syndrome decoder of code (7,4) realizing this algorithm is 

reduced on figure 5.2. According to rule (5.12) received channel symbols move to 
modulo-2 adders. The connections with lines of channel symbols are available there 
where in rows of transposed parity check matrix the symbol 1 is arranged. In the 
scheme of syndrome analyzer with according to given table 5.1 there is 
transformation of syndrome vectors S = (s0, s1, ..., sn–k–1) in the corresponding error 
vectors e which then move to the error corrector.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3 Majority decoding of block codes 

Some block codes suppose realization of simple majority algorithm  which is 
based on a possibility to express each information code symbol of a word by several 
ways through other received symbols. Let’s consider a systematic code (7,3): 

Figure 5.2 – The structure of the syndrome decoder of the code (7,4) 
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1011100

1110010

0111001

=G  . (5.13) 

To this matrix corresponds transposed parity check matrix: 

 

1000

0100

0010

0001

1011

1110

0111

T =H . (5.14) 

Let's designate the received from the channel code word as  

 b = (b1, b2, b3, b4, b5, b6, b7). 

As considered code – systematic, first three symbols (b1, b2, b3) are information 
symbols. Using structural properties of this code, it is possible to form during 
decoding both trivial and compound estimations of information symbols which are 
presented to table 5.2. On the basis of columns of parity check matrix (5.15) we will 
write down verifying parities:  

 b1 ⊕ b3 ⊕ b4 = 0, b1 ⊕ b2 ⊕ b3 ⊕ b5 = 0, b1 ⊕ b2 ⊕ b6 = 0, b2 ⊕ b3 ⊕ b7 = 0, (5.15) 

which allow to form compound estimations. For example, on the basis of the first 
equality from (5.15) follows the compound estimation of the first information 
symbol b1 = b3 ⊕ b4. The trivial estimation  of this symbol also is, actually, this 
symbol b1 = b1, as a code is systematic. Expressions for other information symbols 
are made similarly. They are presented in the table5.2. 

Table 5.2 – Majority decoding of block code 

Estimations of information symbols 
Symbol b1 Symbol b2 Symbol b3 

T r i v i a l  
b1 = b1 b2 = b2 b3 = b3 

C o m p o u n d  
b1 = b3 ⊕ b4 
b1 = b5 ⊕ b7 
b1 = b2 ⊕ b6 

b2 = b4 ⊕ b5 

b2 = b6 ⊕ b1 

b2 = b3 ⊕ b7 

b3 =b5 ⊕ b6 

b3 =b7 ⊕ b2 

b3 =b4 ⊕ b1 
 

After formation of estimations they move on a majority element in which the 
decision on each information symbol is taken out on «the majority of voices». 

For example, if estimations of information symbol b1 look like: 

 b1 = b1 = 1,  b1 = b3 ⊕ b4 = 1,  b1 = b5 ⊕ b7 =1,  b1 = b2 ⊕ b6 = 0, 
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in which the quantity of estimations «1» exceeds quantity of estimations «0» the 
majority element passes the decision «on the majority»: b1 = 1. The compound 
estimations enumerated in table 5.2 are called as orthogonal estimations as 
incoincident numerals enter into them. The number of orthogonal estimations N and a 
multiplicity of errors qcorr, corrected by majority decoding are in the ratio: 

 qcorr. ≤ (N – 1)/2. (5.16) 

The code with  generator matrix (5.13) allows to form N = 3 orthogonal 
estimations and, accordingly, to correct unitary errors in information symbols by 
considerable simplification of decoding algorithm. It is necessary to notice that 
formation rules of estimations can have cyclic properties that simplifies decoding 
procedure.  

Example 5.4 Structure of the majority decoder for the code (7, 3). 
Let's generate structure of majority decoder of code (7, 3) on the basis of 

estimations system from table 5.2. It is easy to see, that checks have cyclic properties.  
For example, indexes in compound estimations b1 = b3 ⊕ b4, b2 = b4 ⊕ b5 and 

b3 =b5 ⊕ b6 change on 1 towards increase. Taking it into account the decoder 
structure of code (7, 3) realizing majority decoding algorithm looks like shown on 
figure 5.3. The decoder consists of the shift register, the switchboard on the input, 
operated from system for block synchronization, schemes of estimations formation 
and the majority element. The decoder works as follows. At the beginning the 
switchboard on an input is established in position «1» and decoded code word b = 
(b1, b2, b3, b4, b5, b6, b7) is entered in shift register cells. Thus on inputs of majority 
element the compound estimations defined by table 5.2 operate both trivial and 
compound estimations. The decision about transmitted information symbol b1 is read 
out from an exit of majority element. Then the switchboard is established in position 
«2» and there is on one symbol shift of word. On this step, owing to cyclic properties 
of estimations the second information symbol are formed and the decision on an 
information symbol b2 is read out from exit of majority element. Further process 
repeats up to reception on a output symbol b3 etc.  
 
 
 
 
 
 
 
 
 
 
 
 

Block synchronization 

       

Majority element 

C y c l i c  s h i f t  o f  a  w o r d  

Record of a word 
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Output 

Figure 5.3 – Structure of the majority decoder of a code (7, 3) 
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Questions 
5.1 What kind will a matrix of double errors have? How will it change in 

comparison with a matrix of single errors (5.11)? 
5.2 How are parameters of binary syndrome representation (see table 5.1) 

connected with general number of possible configurations variants which detected 
and corrected errors by syndrome decoding? 

5.3 How will the syndrome format change if to apply a method of syndrome 
decoding to decoding double errors? 

5.4 Give the generalized block diagram of syndrome decoder of a block (n, k) 
code. What is the function of syndrome analyzer? 

Tasks 
5.1 By the principles stated in the Example 5.1 represent structure a systematic 

block code intended for detection of double errors with the generating matrix (4.6). 
5.2 The generator matrix of a code (7,4) is set: 



















=

1011000

1110100

1100010

0110001

G . 

Define allowed code word of this code b if the word of a primary code on a coder 
input a = (1110) is set. 

5.3 Define code distance of a code (7, 4) with a generator matrix from the Task 5.2. 
5.4 Represent a encoder structure of a code (7, 4) with the same generator matrix. 
 

6 BOUNDARIES OF BLOCK CODES PARAMETERS  
The problem of the coding theory is the search of codes which at given block 

length n and rate Rcode provides a maximum of code distance dmin. Limits of these 
parameters are defined by the code boundaries.  

6.1 Hamming upper bound 

The conclusion of the upper bound is based on reasons of spherical packing 
(bound of spherical packing). At given minimum distance between the allowed code 
words dmin. The greatest rate can be reached, if the spheres surrounding each word 

will be most densely packed. Volume of each sphere is equal∑
−

=

1

0

mind

i

i
nC and the 

number of spheres (number of code words) is equal 2k. For best code the total 
quantity of spheres and number of all possible words 2n should coincide. Equality is 
reached for densely packed (perfect) codes. Area of each code word represents 
sphere with radius (dmin – 1)/2, and these areas of such codes not being crossed 
densely fill with themselves all n-dimensional space of code words. The inequality 
from here follows: 
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n
d

i

i
n

k C 22
1

0

min
≤∑

−

=
. 

After simple transformations it is possible to receive obvious expression for 
rate of the perfect code: 

 ∑
−

=
≥−

1

0
2code

min
log

1
1

d

i

i
nC

n
R  . (6.1) 

The dependence of Hamming upper bound is shown on figure 6.1 (curve 
«Hamming upper bound»). Hamming bound is fair both for linear and nonlinear 
codes.  

6.2 Varshamov-Gilbert lower bound 

For block codes it is possible to get the Varshamov-Gilbert lower bound 
which defines the possibility of codes existence with both parameters Rcode and dmin. 
The asymptotic form (for long codes) of this bound looks like: 

 Rcode ≥ 1 – H(dmin /n), (6.2) 

where H (x) – binary entropy.  
Dependence of Varshamov-Gilbert lower bound for binary codes is shown 

on figure 6.1 (curve «Varshamov-Gilbert lower bound»). The bound guarantees 
existence of the codes which performances correspond to points arranged at least on a 
curve (or above it). Search of the codes ensuring the given minimum distance dmin 
and high enough rate Rcode at n→∞, ensuring at the same time a possibility of 
algorithms decoding realization with low complexity is one of important problem of 
the theory of coding. 
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Figure 6.1 – Code boundaries of block codes 
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6.3 Complexity of coding and decoding algorithms 

The using of code control ability depends on decoding algorithm. By full 
decoding use all possibilities to correct errors following from properties of a code. 

According to Shannon fundamental theorem the error-control codes used for 
correction of channel errors should get out long enough. However with growth of a 
code word length n increases complexity of realization procedures both of encoding 
and decoding that causes difficulty of practical realization of codecs. In the coding 
theory of along with estimations of code error-control ability of can estimate 
complexity of realization of encoding/decoding procedures which can be realized by 
software or hardware. Thus as argument of complexity function the length of a 
codeword n should act. 

Coding complexity of a block codes Ccod with use of generator matrix (n, k) 
code with a size nk = n2(1 – Rcode) usually estimate in the value which is proportional 
to number of elements of the generator matrix 

 Ccod = nk = n2(1 – Rcode). (6.3) 

The decoding algorithms appear more difficult. Among them it is considered to 
be the most difficult full-search algorithm according to which the decoder by the 
full searching compares the received code word with the set of all possible words and 
the decision on that transmitted from the allowed word which appears on the 
minimum distance from the received word (decoding by a minimum distance) 
passes. It is considered to be complexity of full-search decoding algorithm 
proportional to quantity of all possible code words to volume of full search: 

 Cdecod = mn = 2n. (6.4) 

It is sUSBC˜â	̂																							ã	ã decoding 
increases «as an exponent» with growth of code length. Clearly, that full-search 
decoding algorithms are practically difficult for r ealising for long codes.  

Questions 
6.1What is practical significance of use of Hamming upper bound and 

Varshamov-Gilbert lower bound for an estimation of block error-control codes 
performances? 

6.2 To what bound (upper or lower) is it necessary to aspire by elaborating of 
new block codes? 

 
7 IMPORTANT CLASSES OF BLOCK CODES 

The big number of codes, various on structure, construction principles and 
control ability is known. In this Chapter the classes of effective block codes with 
simple decoding algorithms are considered. 

7.1 Hamming codes 

Hamming codes (by R. Hamming) – systematic block codes with parameters: 

– Code word length n = 2r – 1; 
– Quantity of information symbols k = 2r – r – 1;  (7.1) 
– Number of additional symbols r = n – k;  
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– Minimum distance dmin = 3,  r = 2, 3, 4. 
Hamming codes – perfect codes which correct single errors. 
By parameters choice r = 2, 3, 4 according to formulas (7.1) it is possible to set 

all known binary Hamming codes. For example, at r = 3 the parameters of a code 
(7, 4) will be the following:  

– Length of the code word n = 3;  
– Quantity of information symbols k = 4;  
– Minimum distance dmin = 3;  
– Code rate Rcode = (2r – r – 1)/(2r – 1) = 4/7. 
Generator and check matrixes of this code have been considered earlier, in 

Section 4.1 (formulas (4.4) and (4.7)). As it has been noted earlier, this code allows to 
detect double errors also. Structures of encoder and syndrome decoder of Hamming 
code have been considered earlier in Section 5.1 (figures 5.1, 5.2). According to the 
formula (3.5) transposed parity check matrix of this code looks like: 

 

100

010

001

111

110

101

011

T =H . (7.2) 

7.2 Cyclic codes 

The considerable part of block codes belongs to the class of cyclic codes. It 
defines a simplification of both encoding and decoding procedures on the basis of a 
cyclical properties of code words. If b = (b0, b1, ..., bn) – the allowed code word of 
the cyclic code so its cyclical shift on arbitrary number of symbols also is the 
allowed code word. For example, a word b1 = (bn, b0, b1, ..., bn–1) corresponds to 
cyclical shift of a word b = (b0, b1, ..., bn–1, bn) on one symbol to the right. Thus 
according to a rule of cyclical permutation combination symbols b are displaced on 
one numeral to the right, and the right numeral bn takes a place of a left numeral b0. 
Properties of the cyclic code are convenient for studying, representing code words in 
the form of polynomials on degrees of a formal variable x which factors are symbol 
numerals in a code word b(x) =b0 + b1⋅x + b2⋅x` + ... + bn⋅xn. Mathematical operations 
(addition, multiplication and division of polynomials) make by rules of polynomials 
algebra which stated in Section 5 of manual [3]. If addition and multiplication of 
polynomials is made by the modulo of polynomial (xn – 1) so all possible 
polynomials of degree (n – 1) and less organize an algebraic ring of polynomials Rn 
with the properties stated in the manual [3]. For construction of a cyclic code in a ring 
Rn choose a subset of polynomials an ideal I. The polynomial of the minimum degree 
g(x) in this subset is called as the generator polynomial of cyclic code. As generator 
polynomials of the cyclic code choose the prime polynomial. In algebra of 
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polynomials of the whole degree prime polynomial play the same role what prime 
number play in the algebra of integers. The detailed table of generating polynomials 
of cyclical codes is reduced in Attachment А.1. Generator polynomials of short cyclic 
codes are given in table. 7.1. 

Table 7.1 – Generator polynomials of short cyclic codes  

Maximum degree of a 
generator polynomial 

Generator polynomial g(x) 

3 x3 + x2 + 1 x3 + x + 1  
4 x4 + x + 1 x4 + x3 + 1  
5 x5 + x2 + 1 x5 + x3 + 1 x5 + x4 + x2 + 1 
6 x6 + x + 1 x6 + x5 + 1 x6 + x5 + x3 + x2 + 1 

 

All polynomials of the ideal I  corresponding to the allowed code words of 
cyclic codes are divided on generator polynomial g(x) without remainder that allows 
to formulate a following coding rule: 

Coding rule of nonsystematic cyclic code looks like: 

 b(x) = a(x)⋅g(x). (7.3) 

Systematic cyclic codes are used often in practice 
Coding rule of systematic cyclic code (n, k) looks like: 

 b(х) = a(х)⋅хn–k +  r(х),  (7.4) 

where r(x) – remainder of division a(x)⋅xn-k on g(x). The coding rule (7.4) can be 
realized by such coding algorithm for systematic cyclic code: 

1 To the word of a primary code a on the right (п – k) zeros are added. It is 
equivalent to polynomial multiplication a(х) on xn–k. 

2 Product a(x)⋅xn–k divides on the generator polynomial g(x). As a result of 
division remainder r(x) is defined. 

3 The calculated remainder is summarized with the displaced combination  
a(х)⋅хn–k. Therefore the allowed code word is formed as (7.4).  

Example 7.2 Forming of code word of cyclic code (10, 5). 
For the given primary code word a = (10110) we will generate a code word of 

a cyclic code (10, 5). Polynomial representation of the primary code word will be  
a(x) = x4 + x2 +  x. Given cyclic code has parameters: п = 10, k = 5, r = (п – k) =5. 
From the table 7.1 for example the generator polynomial g(x) = x5 + x4 + x2 + 1 is 
chosen. Next we will fulfill mathematical operations according to algorithm (7.5): 

1) a(х)⋅х(n–k) = (x4 + x2 + x)⋅x5 = x9 +  x7 + x6;  
2) Division a(х) х(n–k)/ g(x) 

 
 
 
 
 
 

3) Polynomial of allowed code word is 

x9 + x7 + x6          | x5 + x4 + x2 + 1 
x9 + x8 + x6 + x4     x4 + x3 + 1 

x8 + x7 + x4 
x8 + x7 + x5+ x3 

x5 + x4 + x3 
x5 + x4 + x2 + 1 

x3 + x2 + 1 = r(x) 

⊕

⊕

⊕
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b(х) = a(х)⋅хn–k ⊕ r(х) = х9 + x7 + x6 + x3 + х2 + 1. 
To polynomial b(х) = х9 + x7 + x6 + x3 + х2 + 1 there corresponds a word of 

binary symbols b = (1011001101) in which first four symbols are informational and 
remaining – additional. Property of divisibility  of allowed code words on the 
generator polynomial is widely used for detection of errors in transmission systems. 

If b
)
(x) = b(x) + e(x) – the received code word containing the errors polynomial 

e(x) = e0 + e1x + ... + en x
n as a result of division it is received: 

 b
)
(x)/g(x) = q(x) + s(x). (7.5) 

Here q(x) – an arbitrary polynomial ("whole"), s(x) – the polynomial of a syndrome 
equal to remainder of division b

)
(x) on g(x). It has degree not above (n – k – 1).  

By absence of errors a syndrome s(x) = 0. On syndrome form it is possible to 
establish a location of errors in the received code word and to use this information 
for decoding with error-correction. 

Example 7.3 Syndrome decoding of a cyclic code (7, 4). 
The word of binary primary code a = (1010) as subject to transmission via the 

channel with single errors is set. Let's choose the cyclic code ensuring errorless 
transmission this word in these conditions. From table А.1 we define, that the task can 
be solved by using of the cyclic code with a generator polynomial g(x) = x3 + x2 + 1 and 
parameters n = 7, k = 4, qcor = 1. We will show, how the method of syndrome 
decoding for correction of single errors is realized. Using algorithm of encoding 
(7.4), we will generate allowed word b(x) = (x6 + x4 + 1). Suppose, that in the channel 
the single error e(x) = x6 operates. In this case the received word looks like b

)
(x) = 

b(x)+ e(x) = x6 +  x4 + 1 + x6 = x4 + 1. We use a rule (7.5) for determination of a 
syndrome. By syndrome decoding on the syndrome form it is possible to establish an 
error location (i.e. to fulfill syndrome decoding). For this purpose it is necessary to 
make the table of syndromes and of errors polynomials corresponding to them. For 
compiling of such table it is necessary to take advantage of the equality implying 
from (7.5) by q(x) = 0: 

 s(x) = e(x)/g(x). (7.6) 

Outcomes of evaluations are presented to table 7.2 under this formula of 
syndrome polynomials s(x) for various polynomials of an errors. With a view of 
presentation a value of syndromes are presented in the form of binary words. 

Table 7.2 – Correspondence between syndromes and error polynomials  

Error polynomial e(x) x6 x5 x4 x3 x2 x 1 
Syndrome s(x) x2 + x x + 1 x2 + x + 1 x2 + 1 x4 x2 1 
Binary syndrome 
representation  

110 011 111 101 100 010 001 

 

Let the polynomial of the received from the 
channel word look like b

)
(x) = x4 + 1. We will 

fulfill operation of division b
)
(x)/g(x): 

x4 + 1              | x3 + x2 + 1 
x4 + x3 + x         x + 1 

x3 + x + 1  
x3 + x2 + 1 

x2 + x = s(x) 

⊕

⊕
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From table 7.2 it is discovered, that to such syndrome there error polynomial 
e(x) = x6 corresponds. Error correction consists of addition of the received code word 
with an error polynomial  

b
)
(x) + e(x) = x4 + 1 + x6 = x6 + x4 + 1  

that coincides with the transmitted allowed word b(x) = x6 + x4 +  1. To it there a 
binary word b = (1010101) corresponds, in which first four symbols are errorless 
transmitted symbols of primary code a)  = (1010) (as the used code is systematic). 

Such codes with cyclic properties find application in practice: 
1 Goley code (23, 12) – perfect cyclic code with a generator polynomial 

g(x) =x11 + x10 + x6 + x5 + x4 + x2 + 1 and minimal distance dmin = 7. 
2 Expanded Goley code (24, 12) with minimal distance dmin = 8 which is 

received by addition of the general parity checking. 
3 Bose-Chaudhuri-Hochuenghem codes (BCH codes) which form extensive 

class of a cyclic codes. Bynary BCH codes have parameters: n = 2m – 1, (n – k) ≥ mt, 
dmin = 2t + 1, where m (m ≥ 3) and t – any positive integers. Theoretical data on BCH 
codes is given in Section 10.4 of the textbook [1].  

4 Reed-Solomon codes (RS codes) – a subclass of nonbinary BCH codes with 
parameters: code symbols are got out of field GF(q), q = 2m, m – integer; length of 
word n = (q – 1), quantity of information symbols k = (n – 2qcorr), the minimum 
distance dmin = (2qcor + 1). The extension of a code to n = q or to n = (q + 1) is also 
possible. 

The effective using of cyclic properties of allowed words cyclic codes allows 
to realize enough simple decoding algorithms. It is considered, that realization 
complexity of cyclic codes decoding algorithms is described by power function 
Cdecod = nk, where the k – small number which size depends on concrete algorithm 
realization. Examples of encoding/decoding algorithms are more low resulted. Thus 
the mathematical apparatus of sedate polynomials algebra and the description the 
discrete linear filters, is presented in Sections 5 and 6 of the manual [3] is widely 
used.  

Example 7.4 Encoder structure of the systematic cyclic code. 
Using algorithm (7.5) we will form the block diagram of a cyclic encoder 

(15, 11), with a generator polynomial g(x) = x4 + x + 1 which is chosen from table 
7.1. The scheme of encoder is resulted on figure 7.1.  
 
 
 
 
 
 
 
 
 
 
 

1 

S1 

S2 

2 

1 

2 
D 

D D D 

D D 

b(x) 

a(x) 

D 

D ⊕⊕⊕⊕ ⊕⊕⊕⊕ 

Figure 7.1 – Encoder of systematic cyclic code(15,11)  
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According to an algorithm (7.4) encoder works as follows. Originally switches 
S1 and S2 are in position 1. Eleven information symbols of a coded prime word a(x) 
are entered at the left into chain of division into a polynomial g(x) = x4 + x + 1. 
Simultaneously they through consistently connected delay elements arrive on a 
encoder exit, forming an information part of the allowed code word a(x)⋅xn–k. On first 
four steps in register cells the divider scheme on a generator polynomial the 
remainder of a division r(x) is formed. Then switches S1 and S2 are established in 
position 2, division process stops, and remainder is read out from an exit of divider 
and finished in a checking part of final code word b(x) =  a(х)⋅хn–k +  r(х). 

Example 7.5 Encoder structure of the nonsystenatic cyclic code 
Using a coding rule (7.3) for nonsystematic cyclic code we will form the coder 

block diagram for generator polynomial g(x) = x4 + x + 1. The coding rule (7.3) 
provides multiplication of polynomials a(x) and g(x). Using structure of a multiplier 
for polynomials from section 6.1 of manual [3] the encoder scheme we will present 
on figure 7.2. The important element of coders schemes for cyclic codes is the 
scheme of division polynomial on a polynomial for an evaluation of a division 
remainder by coding of systematic code by algorithm (7.4) and also for syndrome 
evaluation by syndrome decoding on algorithm (7.5). The structure of such divider 
schemes is considered in Section 6.1 from the manual [3]. 
 
 
 
 
 
 
 
 
 

Questions 
7.1 What are the key parameters of Hamming codes? 
7.2 What are the advantages of cyclic codes? 
7.3 Is it possible to use Hamming codes and cyclical codes for correction of 

single errors? What will parameters of these codes be? 
Tasks 

7.1 The generator matrix of a code (7, 4) is set: 



















=

1011000

1110100

1100010

0110001

G . 

Define the allowed code word of this code b if word of simple code on encoder 
input a = (1110) is set. 

7.2 The parity check matrix of a code (7, 4) is set: 

Figure 7.2 – Encoder of the nonsystematic cyclic code  

D D D D 

⊕⊕⊕⊕ 
b(x) 

a(x) 
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















=
1

0

0

0

1

0

0

0

1

1

0

1

1

1

1

1

1

0

0

1

1

H . 

Give a functional chart of the decoder of this code. 
7.4 Consider an example of formation of a allowed code word if a word of a 

simple code is a = (10010). 
7.5 By analogy to an example of Section 7.1 make the table of Hamming codes 

parameters for values r = 2, 3, 4. As these codes have identical minimum distance, 
compare them on suitability for realization in practical systems. Formulate the 
recommendation and a substantiation of application of the best (in your opinion) code 
from this list. 

7.6 For Hamming code recommended in the previous Section, form generator 
and parity check matrixes. 

7.7 By the rules stated in Exercise 4.1 define value of minimum distance by a 
generator matrix of code from the Task 7.5.  

 
8 DECODING NOISE IMMUNITY OF BLOCK CODES  

8.1 Decoding noise immunity of block codes 

Let's define of an error probability by decoding of block codes in the binary 
symmetric channel. We will consider code (n, k) with minimal distance dmin. In such 
channel errors in sequentially transmitted code symbols (signals) occur independently 
with probability p (decoding in discrete channel without memory). Then the 
probability of that on length of the block n will occur a error multiplicity q, will be 
equal 

 ( ) ( ) qnqq
n ppCqP −−= 1 . 

Here q
nC  – number of combinations from n elements on q. If the code corrects 

all errors of multiplicity qcorr = (dmin – 1)/2 (dmin – odd) and less then the probability of 
reception on decoder output the word with not corrected errors will be equal 

( )∑
+=

=
n

qq
qPP
1

worderr
corr

. 

Hence, the probability of erroneous decoding of block will satisfy to an 
inequality: 

 qnq
n

qq

q
n ppCP −

+=
−≤ ∑ )1(

1
worderr

corr

. (8.1) 

In this expression equality takes place, if the perfect code is used. Parities 
between parameters n, k and qcorr are defined by the concrete chosen code.  

Expression (8.1) allows to define the upper estimation of error probability  
of a code words by decoding of block codes in binary symmetric channel without 
memory. For calculation of probability of an error in concrete information (or 
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additional) symbols it is necessary to know used decoding algorithm and structure of 
an error-control code(in particular, a set of distances from a transmitted code word to 
all allowed words). Such data for block codes are not published in a code tables and 
for calculations of error probability decoding of code symbols (information or 
additional) use the approximated formula [1]: 

 qnq
n

qq

q
n ppC

n

d
p −

+=
−= ∑ )1(

1

min
d

corr

. (8.2) 

For channels with coherent receiving of signals BPSK the probability of an 
signal error reception is defined by the formula: 

 ( )s2hQp = , (8.3) 

where 0s
2
s NEh =  – the ratio of the energy spent on transfer of one binary symbol Es 

to power spectral density of noise N0 on a demodulator input;  

( ) dt
t

zQ
z

)
2

exp(
2

1 2

∫
∞

−
π

= – gaussian Q-function (probability integral) which 

tables contain the handbooks on probability theory and statistical calculations. For 
practical calculations it is convenient to use enough exact approximation: 

 Q(z) = 0,65 exp[–0,44(z + 0,75)2]. (8.4) 

The introduction of redundancy by using of error-control coding leads to 
expansion of a frequency band that occupied with coded signal. If the frequency band 
in system without coding is ∆Fs (Hz), the using of the code with a rate Rcode= nk  
demands expansions of a frequency band 

 ( )Hzcodecode RFF s∆=∆ . (8.5) 

I.e. there is an expansion of a frequency band in knK F =∆  time. For codes 
with low code rate ( 1>kn ) such expansion can appear appreciable. Therefore the 
problem of a code choice by designing of transmission system consists of search of 
a compromise between desirable degree of a noise immunity and expansion of a 
frequency band of the coded signal. Under formulas (8.2) and (8.3) taking into 
account expansion of a frequency band of coded signal according to the formula (8.5) 
following conclusions allow to draw on efficiency of application error-control 
coding:  

1 With growth of a code word length n the error probability of an decoding pd 
goes down. 

2 Codes with the big redundancy (small code rate Rcode) provide considerable 
decreasing of a decoding probability error. 

3 By using of error-control codes in transmission systems as a payment for 
noise immunity increasing is expansion of frequency band of transmitted signal, 
caused by the redundancy entered by coding on size: 
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k

n
K F =∆ . (8.6) 

8.2 Energy coding gain 

For practice the question about expediency of application of error-control 
codes in telecommunications is important. This question is decided with the taking 
into account the following. Introduction of redundancy by encoding changes not only 
expenses of a frequency band for transmitting of coded signals, but also demands the 
account of a redundancy by energy calculations. Really, according to the formula 
(8.3) for probability of error registration of channel signals (code symbols) is defined 
by their energy Es which with taking into account redundancy of a code appears a 
little bit less energy Eb spent for transfer of one information symbol (bit). It is 
followed from equality kEb = nEs, i.e. Es = EbRcode. Therefore in all power calculations 
of systems with coding using as a rule the value of the ratio of signal energy spent for 
transmitting of one information binary symbol (bit) to noise power spectral density 
Eb/N0. The probability of erroneous decoding of the block is defined by formulas 
(8.1) and (8.3) which in argument of function Q(z) include value Es – the energy of a 
signal spent for transmitting through the channel of one binary signal (a code 
symbol). Really, according to formula (8.3) probability of an error registration of 
channel signals (code symbols) is defined by their energy Es which taking into 
account redundancy of a code, appears a little bit less energy Eb spent for transmitting 
of one information symbol (bit). Then used in power calculations of systems with 
coding the relation of energy Eb to noise power spectral density N0 can be designated 

as 0
2 NEh bb = .Taking into account relation of signal energy Es and bit energy Eb 

(8.3) the value entering into settlement formula will be 2
scode

2
b hRh = . Then taking 

into account expenses of energy for transmitting of additional symbols of a 
redundancy code (8.3) it is possible to present the formula as follows: 

 )2( bcodehRQp = , (8.7) 

and bit error probability by expression (8.2). If necessary to define probability of an 
error in channel without coding it is enough to take advantage of the formula (8.3), 
having put Rcode = 1: 

 )2( bhQp = . (8.8) 

Exercise 8.1 Decoding noise immunity of block code. 
Let's take advantage of the formula (8.8) for calculations of an error probability 

with optimum receiving of signals BPSK in channel without coding. Results of 
calculations are resulted in table 8.1. Initial parameter for calculations is the relation a 

signal/noise on demodulator input 2bh . The used in practice value )dB(2
bh  is defined 

by formula 2
b

2
b lg10)dB( hh = . In table 8.1 settlement data by definition of error 

probability by optimum receiving of signals BPSK (formula (8.8)) including 
argument z of the function Q(z). 
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The dependence curve p = f (
2
bh , dB) constructed on these data (BPSK) is 

resulted on figure 8.1. 
Under formulas (8.2), (8.7) we will define of an bit error probability by 

decoding in the channel with BPSK words of cyclic code average length (31, 26) with 
parameters Rcode =0,84, dmin = 3, qcor = 1. The code is chosen from table А.1. 

Results of calculations are presented on figure 8.1 (curve «Code (31,26)»). 
Table 8.1 – Calculation of signals BPSK noise immunity  

2
bh , dB hb Rcode z p 

1 1,12 1 1,59 5,8·10–2 
2 1,26 1 1,18 3,9·10–2 
3 1,41 1 2,00 2,4·10–2 
4 1,59 1 2,24 1,3·10–2 
5 1,78 1 2,52 6,1·10–3 
6 2,00 1 2,82 2,4·10–3 
7 2,51 1 3,17 7,9·10–4 
8 2,82 1 3,99 2,0·10–4 
10 3,16 1 4,47 4,2·10–6 

 

Table 8.2 – Calculation of a decoding noise immunity of the cyclic code 
Modulation method BPSK, cyclic code (31, 26) 

2
bh , dB hb Rcode z 2

31C  pd 

1 1,122 0,84 1,454 465 0,26 
2 1,259 0,84 1,632 465 0,13 

3 1,413 0,84 1,831 465 5,4·10–2 

4 1,585 0,84 2,054 465 1,9·10–2 

5 1,778 0,84 3,305 465 5,1·10–3 

6 1,995 0,84 2,586 465 1,0·10–3 

7 2,239 0,84 2,902 465 1,5·10–4 

8 2,512 0,84 3,562 465 1,4·10–5 

9 2,818 0,84 3,653 465 7,2·10–7 

10 3,162 0,84 4,099 465 1,9·10–8 

 

In all energy calculations of systems with coding it is used as a rule value of 
the relation of energy of the signal spent for transmitting of one information binary 

symbol (bit) to power spectral density of noise 2
bh  which is considered as a uniform 

criterion of power expenses for an information transfer through channel with coding 

and without it. Size change 2bh  shows efficiency of application of error-control 

code. The effect of errors decrease on decoder exit can be used on a miscellaneous. 
Error-control coding provides reduction of the error probability  in the 

received messages. It is well visible from comparison of curves p = f (Eb/N0) on figure 
8.1 for cases of an information transfer by method uncoded BPSK and with using of a 
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cyclic code (31, 26). It is visible, that by using of an error-correcting code it is 
possible to admit certain decrease in a channel signal/noise ratio and to receive 
accordingly a energy coding gain g (dB). The energy coding gain from error-control 
coding g is equal to a difference of values Eb/N0 necessary for maintenance of bit 
error probability in transmitted data by both absence and using encoding. The value 
of gain can be defined at various levels of bit error probability p on demodulator and 
decoder outputs. Told it is illustrated by the curves of a noise immunity presented on 
figure 8.1. 

In particular, for the data resulted on figure 8.1 value gain is g = 1,55 dB at 
p = 10-5.  

Gain values g is widely used for a choice of codes by designing of 
transmission systems. Values g received at use of cyclic codes in channels with 
BPSK are resulted in table А.2 of Attachment А.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 8.1 Optimisation of a cyclic code parameters.  
Let's consider the optimisation procedure of cyclic codes parameters used in 

the binary symmetric channel with signals BPSK for purpose of a maximum energy 
coding gain from error-control coding provided by factor of signal spectrum band 
expanding will not exceed K∆F = 2 (double expansion of a signal frequency band in 
the channel). Preliminary, under table А.2 of Attachment А.1 we will make selection 

Figure 8.1 – Decoding noise immunity of cyclic code  

0,01 

0,1 

1 

1        2        3         4        5        6         7        8        9       10   2bh , dB 

10–3

10–4

10–5

10–6 

10–7

10–8 

g 

BPSK + cod (31,26) 

BPSK 



 

 

37 

of cyclic codes which can meet requirements on band expansion factor (K∆F < 2,  
Rcode > 0,5). Results of such selection are shown in table 8.3. In table columns values 
of code rate are specified. In cells in the lines the gain values (in dB) for various 
lengths of code word n are presented. Under table А.1 of Attachment А.1 we select 
the cyclic codes with block length n = 255 with rate which is closed to optimum rate 
Rcode = 0,8. It is visible, that the greatest value of gain g = 4,0 dB is reached at using 
enough long cyclic codes with word length n = 255. In table 8.4 parameters of the 
optimum cyclic code are shown. 

Table 8.3 – Parameters of a cyclic codes meeting requirements on a code rate 
Code rate Rcode Word length n 

0,5 0,6 0,7 0,8 
63 2,7 2,8 2,7 2,1 
127 3,4 3,5 3,3 2,8 
255 3,9 4,0 3,8 3,3 

Table 8.4 – Characteristics of an optimum cyclic code 

n k qcorr Code rate Rcode Gain g, dB 
255 207 6 0,811 4,0 

 

The selected code (255, 207) provides a power gain 4,0 dB at rate 
Rcode = 0,811. Factor band expansion K∆F = 1,23 not exceeding preset value 
max K∆F = 2. 

Questions 
8.1 What parameters of block error-control codes is the error probability by 

decoding in binary symmetric channel defined? 
8.2 How is the energy coding gain defined? 
8.3 What are the reasons of signal frequency band expansion with coding? 

Tasks 
8.1 By a technique stated in the Example 8.1 define parameters and generator 

polynomial of the cyclic code providing the minimum expansion of a signal 
frequency band by energy coding gain g > 3,0 dB.  

8.2 By data from table А.2 Attachment А.2 construct the dependence family of 
a energy coding gain g from code rate for various lengths of the code word for the 
cyclic code. Draw conclusions on influence of length of the block on the gain value. 

8.3 By data table А.2 of Attachment А.2 construct dependences of a necessary 
code rate from a demanded energy coding gain g for various lengths of the code word 
for the cyclic code. Draw conclusions on influence of a word length on the exchange 
parities between gain and factor of signal band expansion. 

 
9 STRUCTURE AND CHARACTERISTICS OF CONVOLUTIONAL CO DES 

9.1 Description methods of convolutional codes 

Convolutional codes (CC) form a subclass of continuous codes. The name 
«convolutional code» occurs that the result of coding on encoder exit is formed as 
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convolution of coded information sequence with pulse response of encoder. Encoder 
of CC contains one or several registers from delay elements and converter of 
information sequences into code sequences. Coding process is made continuously. 
The scheme of simple encoder is shown on figure 9.1. 

Information binary symbols a arrive on input 
of the register with K delay elements D. On exits of 
Module-2 adders code symbols b(1) and b(2) are 
formed. Inputs of adders are connected to certain 
inputs of encoder register elements. The switch K on 
a encoder exit establishes send sequence of code 
symbols to channel. During one input information 
symbol it is formed two output code symbols.  

Code rate is Rcode = k/n, where k – number of 
the information symbols simultaneously arriving on 

inputs of encoder, and n – number of code symbols corresponding to them on encoder 
exits. Code rate in this example is equal Rcode = 1/2. Coding with other speeds is 
possible. Convolutional encoder as a finite state machine with final number of states 
can be described by state diagram. It is considered to be state as symbol set on the 
inputs of register delay elements. For example, symbols (s1, s2) designate encoder 
state on figure 9.1. The state diagram represents the directed graph who describes 
all possible transitions of encoder from one state into another and also contains 
encoder output symbols of the which accompany these transitions. 

Example of the encoder state diagram is 
shown on figure 9.2. It contains four possible 
encoder states (s1s2) = 00, 10, 11 and 01 and 
possible transitions.  

Symbols about arrows designate symbols 
on a encoder output (b(1)b(2)) corresponding to the 
given transition. Continuous lines note the 
transitions made at receipt on encoder input of the 
information symbol 0 and dotted – by the receipt 
of a symbol 1. Originally the encoder is in state 

00, and receipt on its input of information symbol a = 0 translates it also in state 00. 
Thus on an encoder output there will be symbols (b(1)b(2)) = 00. On diagram this 
transition is designated by loop "00" leaving a state 00 and again coming back in this 
state. Further, at symbol receipt a = 1 the encoder passes in state 10 thus on output 
there will be symbols b(1)b(2) = 11. This transition is designated by dashed line from a 
state 00 into state 10. Further, receipt on an input of the coder of information symbols 
0 or 1 is possible. Thus the coder passes into state 01 or 11, and symbols on output 
will be 10 or 01 accordingly. Process of the diagram forming comes to an end, when 
all possible transitions from each state in all others will be seen. The trellis diagram 
(trellis) is development of the state diagram in a time. On trellis the states are shown 
by knots. The states are connecting by lines. After each transition from one state into 
another there is a displacement on one step to the right. Example of trellis diagram is 
shown on figure 9.3. Trellis diagram gives evident representation of all allowed ways 

00 

10 01 

11 

(00) 

(10) 

(11) 

(00) 

(01) (01) 

(11) 

(10) 

Figure 9.2 – State diagram 
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Figure 9.1 – Encoder of CC 
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which are analogues of allowed code words of a block codes. On them the encoder 
can move ahead by encoding. A unique way through a trellis corresponds to each 
information sequence on a encoder input. 

In particular by a dotted line the way on a trellis …11100001… is shown 
corresponding to input information sequence …1011… For description of encoder 
work the sequence of input and output symbols it is convenient to representing with 
use of delay operator D in the form of infinite series 

a(i)(D) = a(i)0D
0 + a(i)1D

1 + a(i)2D
2 + ..., 

b(j)(D) = b0
(j)D0 + b1

(j)D1 + b2
(j)D2 + ...  

Here indexes in brackets designate: 
i – number of encoder input, 1 ≤ i ≤ k; 
j – number of encoder output, 1 ≤ j ≤ n.  
Indexes without brackets (0, 1, 2, ...) designate discrete time moments. 

 
 
 
 
 
 
 
 
 
 
 
 
 

For exposition of convolution coding it is used concept of the generator 
polynomial. 

The convolution code will be completely set, if encoder scheme is known:  
– An amount of encoder inputs k;  
– An amount of encoder outputs n;  
– Lengths of each registers Ki;  
– Connections of adders with register cells are specified. 
For codes with rate R = 1/n connection of j-th adder (1 ≤ j ≤ n) with cells of 

shift register is described by the representation of generator polynomial: 

 g(j)(D) = g0
(j) + g1

(j)D + g2
(j)D2 + ... + gν

(j)Dν. (9.1) 

Here gk
(j) = 1 if connection of j-th adder with k-th register cell exists, and 

gk
(j) = 0 if such connection is absent. 

Coding process can be presented as multiplication of a generator polynomial 

( )
( )( )Dj
ig  on an input information sequence a(i)(D): 

 ( )( ) ( )( ) ( )
( )( ) njkiDDD j
ii

j ≤≤≤≤= 1,1,gab . (9.2) 

Figure 9.3 – Trellis diagram 
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For example, the encoder on figure 9.1 is characterised by generator 
polynomials g(1)(D) = 1 + D +  D2 and g(2)(D) = 1 + D2 or, noting sequence of a 
factors gk in the form of binary words, we receive g(1) = (111) and g(2) = (101). For 
long codes it is used often the octal form. In this case generator polynomials will be 
presented so: 

g(1) = (7) and g(2) = (5), or G = (g(1), g(2)) = (7, 5). 
Coding process can be described also with using of generator matrixes 

(accordingly, check matrixes). It is possible to familiarise with this material under the 
manual [2, Section 3.4, p. 114] more in detail. 

9.2 Key parameters and classification of convolutional codes 

Code rate is defined as  

 nkR =code , (9.3) 

where k – an amount of information symbols simultaneously arriving on k encoder 
inputs, n – an amount of code symbols corresponding to them on n encoder outputs. 

It is used several parameters for definition of memory length by coding. The 
length of encoder register K is equal to an amount of delay elements containing in 
encoder scheme. Length of encoder register often apply to memory definition by 
coding with rate nR 1code = , when encoder contains one register. The encoder 
represented on figure 9.1 has register length K = 3. If encoder contains some inputs 
(k > 1) so lengths of registers connected to each input, can be various. In this case it is 
defined a code constrained length. 

The code constrained length on each input is defined by the higher degree of 
corresponding generator polynomials  

νi = max [deg ( )
( )( )Dj
ig ]. 

The resultant code constrained length is defined by the sum: 

 ∑
=

ν=ν
k

i
i

1
. (9.4) 

For codes with one register (k = 1) the values ν  and K are connected by a 
simple relation  

 ν = K. (9.5) 

For comparison of a decoding algorithm complexity it is used complexity 
performance. As it was marked earlier, development of trellis diagram consists in a 
repetition of the same step (see figure 9.3). Diagram complexity is accepted to define 
an amount of branches on a step of trellis diagram. The number of states of a trellis is 
defined by number of variables K = ν on inputs of register elements. As a result 
complexity of one trellis step can be defined an amount of branches on this step 

 C = m(ν + k) (9.6) 



 

 

41 

The decoding noise immunity depends on distance properties of code 
sequences on encoder input. Thus for binary codes the distance between sequences is 
often estimated in Hamming metric. 

Free distance of a convolution code df – is the minimum distance between 
two arbitrary semi-infinite sequences on the encoder output which differing from the 
first branch. For short codes free distance can be defined under the state diagram. If 
the binary code diagram is set free distance is equally to minimum Hamming weight 
of a way under the diagram from a state 00 in the same state (excepting a loop at this 
state). On the diagram figure 9.2 it is visible, that free distance df  = 5. On the value 
of free distance judge about control properties of convolution codes. In particular, if 
two ways on encoder output, going out from one state on the trellis diagram, differ in 
Hamming metric on the value df, that by decoding on a minimum distance (with 
analogy to a case of block codes decoding (see Section 3.1)) the multiplicityof 
corrected errors is defined by expression 

 
2

1f
corr

−≤ d
q ,   (df is odd). (9.7) 

The free distance is used for an estimation of a noise immunity of convolution 
codes decoding with decoding algorithms by a maximum a posterior probability or 
close to them (Viterbi algorithm etc.). In a systematic code on k (from n possible) 
encoder outputs there are information sequences of transmitted symbols, and on 
remaining (n – k) exits – the sequences of the additional symbols formed as linear 
combination of information symbols. By rate Rcode =1/2 generator polynomials of a 
systematic code look like 

 g(1)(D) = 1  and  g(2)(D) = g0
(2) + g1

(2)D + g2
(2)D2 + ... + gν

(2)Dν. 

Systematic codes allow to receive on a receiving site an estimation of 
information symbols, without decoding or any other processing of received symbols. 
Nonsystematic codes do not possess such property. As well as in case of a block 
codes the using of convolution coding with rate nkR =code  leads to expansion of a 
signal frequency band in the channel. Thus the of band expansion factor is defined 
by expression: 

 
k

n
K F =∆ . (9.8) 

By small code rates the considerable band expansion becomes unacceptable, 
therefore try to apply encoding with a high code rate. Practically, a choice of code 
parameters is made on the basis of the compromise, proceeding from demanded level 
energy coding gain and admissible value of frequency band expansion factor.  

Exercise 9.1 The analysis of code parameters connections. 
Using consecutive modification of the structure of initial encoder (7, 5) and 

corresponding to it state diagram and a trellis (figures 9.1, 9.2 and 9.3) we will 
establish connections of the encoder parameters k, n, Rcode, S and generator 
polynomial with code free distance df. We will consider some variants of the codes: 
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1. Initial code (7, 5). Its scheme is resulted in figure 9.1. The diagram of states 
is constructed in figure 9.2.  

Parameters of the code (7, 5) : k = 1,  n = 2,  K = 2,  Rcode = 1/2,  since code is 
binary (m=2) then S = 2K = 4,  free distance df = 5,  code is nonsystematic.  

2. Forming of a systematic code (1, 5).  
Let modify the first polynomial of an initial code, having left one connection, 

as shown in figure 9.1. The state diagram will partially vary. The number of a states 
remains former as the structure of encoder register has not varied. Nonzero branches 
vary: according to a modification of the first generator polynomial on a place of the 
first branch numeral it is necessary to write down the first numeral of a state to which 
this branch is directed (figure 9.4). The code rate also has not varied. 
 
 
 
 
 
 
 
 
 
 
 

Parameters of the code (1, 5) : k = 1,  n = 2,  K = 2,  Rcode = 1/2,  since code is 
binary (m=2) then S = 2K = 4,  free distance has decreased df = 3, code is systematic.  

This example illustrates the general conclusion of a coding theory: on the free 
distance the systematic code appear worse of a nonsystematic codes from which they 
are organised. Therefore in practice it is preferred to use the nonsystematic codes. 

3. Forming of a nonredundancy code (1,0). 
This, apparently, the "exotic" example allows to reveal a role of the nonzero 

generator polynomials forming additional symbols (figure 9.5). 
 
 
 
 
 
 
 
 
 
 
 

Parameters of the code (1, 0) : k = 1,  n = 1,  K = 2,  Rcode = 1,  since code is 
binary (m=2) then S = 2K = 4,  free distance has considerably decreased df = 1.  

Encoder is systematic without a additional symbols. 

Figure 9.4 – Encoder of CC (1, 5) and its state diagram 
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Actually, nonredundancy coding is present (memory of the encoder is not 
used). Therefore the code free distance is equally df = 1, also corresponds to a rate of 
the nonredundancy code Rcode = 1. All increment of free distance in the a code is 
considered in variant 2 spoke presence of nonzero additional symbols.  

In Attachment А.3 performances of binary convolutional codes with maximum 
free Hamming distance for various code rates are given.  

Questions 
9.1 Name key parameters of convolutional codes. 
9.2 What are construction rules of the state diagram? 
9.3 What is the connection between the state diagram and the trellis diagram? 
9.4 How can we define a free distance under the state diagram?  

Tasks 
9.1 Generator polynomials (g(1), g(2)) = (1101, 1111) are set. Define parameters 

such code. What are the octal and polynomial representations (g(1)(D), g(2)(D)) this 
code? 

9.2 Form a functional scheme of code with such set of the generator 
polynomials. 

9.3 Construct the state diagram and the trellis diagram of such code. Show, 
how on them to define the free distance of a code. Find a line corresponding to this 
code in tables of convolutional codes from Attachment А.3. By analogy with 
Exercise 9.1 analyse a connection of this code parameters with value of free distance. 
Make generalising conclusions.  

9.4 Prepare the trellis diagram of a code (1, 5) from the Exercise 9.1, necessary 
for an analyse of the Viterbi algorithm.  

 
10 DECODING ALGORITHMS OF CONVOLUTIONAL CODES 

10.1 Classification of decoding algorithms 

By the receiving for purpose of optimum solution the received sequence of 
symbols accepted from the channel it is necessary to compare with all possible 
transmitted sequences. As the number of possible sequences length N for binary code 
is equally to 2N by the big sequence lengths the decoder becomes inadmissible 
complexity (exponential decoding complexity, see Section 6.3), and optimum 
decoding practically difficultly realizing. However by big N substantial increasing of 
transmission fidelity as the noise averages on a long sequence is possible. Therefore 
the problem of decoding algorithms complexity decreasing is important. Two 
groups of decoding methods for convolution codes are known: 

1. Algebraic decoding methods are based on the use of algebraic properties of 
code sequences. In some cases these methods lead to a simple realisations of codec. 
Such algorithms are not optimal, as used algebraic decoding procedures are intended 
for correction concrete (and not all) configurations of channel errors. Algebraic 
methods are identified with «element-by-element reception» of sequences which for 
codes with redundancy, as is known, yields the worst results, than «reception in a 
whole». Most simple of algebraic algorithms is the algebraic decoding methods. This 
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algorithm is so far from optimum and consequently is seldom used, first of all, in 
systems with a high information rate. More detailed description of threshold 
algorithm and its modification can be discovered in the manual [2, Section 3.6.3]. 

2. Probability decoding methods are considerably is nearer to optimal 
“reception in a whole” as in this case decoder operates with values which 
proportional to a posteriori probabilities, estimates and compares probabilities of 
various hypotheses and on this basis carries out decision about transmitted symbols. 

Algebraic algorithms operate with limited alphabet of input data for which 
deriving on an exit of continuous channel it is necessary to fulfil quantization of 
received signal with noise. Processes of elaborating of signals in an exit of the 
demodulator for antipodal signals are shown on figure 10.1 where are presented: 

a) – forms of antipodal signals in sampling time on input of decision device of 
demodulator; 

b) – binary quantization by hard decision; 
c) – octal quantization by soft decision. 
In the simple case it is made quantization of each channel symbol in sample 

time on two levels (named in the literature as «a hard decision»). Thus hard decision 
is presented by one binary symbol. It is shown on figure 10.1, b. By hard decision 
number of quantization levels is L = 2. By a soft decision number of quantization 
levels is L > 2 (figure 10.1, c). By soft decision the quantized output describes 
magnitude of decoded signal plus noise more precisely that raises a noise immunity. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Two basic probability algorithms for decoding of convolution codes, and also 
their various modifications are known . 

Sequential decoding algorithm ensures arbitrarily small error probability by 
nonzero messages transmission rate through the channel. By sequential decoding the 
search of way through code lattice, corresponding to the transmitted informational 
sequence is made. Sequential decoding is used for decoding of long convolutionаl 
codes. The detailed description of sequential decoding algorithm has presented in the 
book [4, Section 13.18]. Other variety of probability algorithms is the algorithm 
based on a principle of dynamic programming, and known as Viterbi algorithm.  

Dynamic programming principle has been formulated in 1940 by R. 
Bellman. It has wide application in control theory. In 1970 the dynamic programming 

Figure 10.1 – Work of decision device in demodulator 
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in form of decoding algorithm for convolutional codes has been applied by A. Viterbi 
to solving of telecommunication problems (Viterbi algorithm).Viterbi algorithm  
finds wide application and realizes search of maximum probable way through code 
trellis with rejection of a part of least probable variants of decoded paths. Viterbi 
algorithm is characterized by a constant of computing work, however complexity of 
decoder Viterbi grows, as by all full search algorithms under the exponential law 
from code length. Therefore Viterbi algorithm is used for decoding of short 
convolutional codes.  

10.2 Viterbi algorithm for decoding of convolutional codes 

Let's consider Viterbi algorithm on example of the code with rate Rcode = 1/n. 
Let, since a moment t = 0, on encoder input the information sequence of length L 
symbols aL = (a0, a1, …, aL–1) moves. On encoder output there will be a sequence of 
symbols bL = (b0, b1, ..., bL–1). Encoder states at the moment t define as a set of ν 
information symbols wt = (at, at–1, ..., at–L+1). Trellis diagram of code univalently 
connects the information sequence aL, sequence of the encoder states wL and the 
sequence of the output symbols bL. To each branch bt in channel there corresponds a 

signal, which can be presented a set of coordinates ( ) ( )( )N
tttt SSS ...,,, 21=S , where N 

– dimension of a signal space. In channel an additive noise operates. Then arriving on 
decoder input receiving signal sequence will be equal to XL = SL + nL, where  

SL = (S0, S1, ..., SL–1) and nL = (n0, n1, …, nL–1), 
( ) ( ) ( )( )N

tttt nnn ...,,, 21=n  is N-
dimensional vector of a noise.  

Decoding consists in tracing through a code trellis of a way with maximum a 
posteriori probability. It is possible to specify the decoded way to one of kinds: by set 
of estimations of code branches SL = (S0, S1, …, SL–1) which making a way, by the 
sequence of estimations of the encoder states wL = (w0, w1, …, wL–1), by the sequence 
of estimations of information symbols on the encoder input AL = (a0, …, aL–1) which 
coincide with the first symbols of state estimations S = (s1, …, st – ν +1). The sequence 
XL will be decoded with the minimum error probability if from all possible ways to 
choose estimation SL for which a posteriori probability P(SL/XL) is maximum. 
Transmission of all variants of sequences aL considers equiprobable. In this case 
decoding by criterion of a maximum a posteriori probability is equivalent to decoding 
by criterion of maximum of a probability when estimation SL ensuring performance 
of condition P(SL/XL)=max gets out. In the channel without memory conditional 
probability P(SL/XL) is proportional to product of conditional densities of sum of 
signal and noise: 

P(XL/SL) = ∏∏
−

=

−

=
=

1

0

)()2()1()()2()1(
1

0
),,,/,,,()/(

L

t

N
ttt

N
ttt

L

t
tt SSSXXXPP KKSX . 

In Gaussian channel by the white noise with an one-side power spectral density 
N0 each factor of this product looks like: 

∑
=

−−π=
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i
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For maximum search we will take the logarithm:  
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By decoding choose sequence of signals SL = (S1, …, SL–1) and sequence of 
branches univalently connected with it SL =(S0 S1 … SL-1) which ensures a sum 
minimum 

( ) min,)(MP 2
1

0 1

)( =−= ∑ ∑
−

= =

i
t

L

t

N

i

i
t SX  

which is called as the metric of the decoded path (MP). The path metric contains 
the metric of branches (MB) 

2)(

1

)( )(МB i
t

N

i

i
t SX −= ∑

=
 

In Gaussian channel the branch metric is proportional to quadrate Euclidean 
distances between a vector of received sum of a signal plus noise Xt and a vector of 
signal St corresponding to branch of a code At. In the discrete channel for an 
estimation of distances it is used Hamming metric. The periodic structure of trellis 
diagram essentially simplifies comparison and a choice of paths according to 
decoding rules. The number of states on a trellis is limited, and two by random 
chosen enough long paths have, as a rule, the common state. Segments of the paths 
entering into such states it is necessary to compare and choose a path with the least 
metric. Such path is called as survived. According to Viterbi algorithm such 
comparison and rejection of segments of path is made periodically, on each step of 
decoding.  

On fig. (10.2, a, b, c, d) the development of decoding process of convolutional 
code (5, 7) is shown. On a decoder input symbol pairs from channel arrive 
(…11,10,00,11,01...) (decoding with hard decision). Figures on branches designate 
branch metrics, figures about states designate metric of states (MS). In an initial time 
it is supposed, that the decoder is in state 00 and initial metric of this state is MS (00) 
= 0. If the channel symbols are 11 so metrics of branches 00 and 11 going out this 
states will be МВ (00) = 2 and МВ (11) = 0. It is noted on the decoding first pitch. 
The similar picture takes place and on a following decoding step. The state metrics on 
this step are defined now as the sums of metrics of entering branches with previous 
state metrics: MS (00) = 2 + 1 = 3; MS (10) = 2 + 1 = 3; MS (01) = 0 + 0 = 0 and 
MS (11) = 0 + 2 = 2.  

On it the development of trellis diagram for the given code comes to an end. 
The algorithm  consists in a recurring  of one basic step. On each of the subsequent 
diagrams figure 10.2, a, b, c, d this steps is represented explicitly. To the beginning of 
i-th step state metrics calculated at the previous stage are stored in memory of the 
decoder: МSi–1(00), МSi–1(10), МSi–1(01), МSi–1(11). 

On the accepted channel symbols the evaluation of above branch metrics and 
shaping of four new states metrics is made: МSi(00), МSi(10), МSi(01) and МSi(11) 
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by a following rule. To each new state lead two ways. For example, to state 00 
conduct ways from the previous states 00 and 01. On i-th decoding step the decoder 
calculates metrics of paths as the sums of previous states metrics and entering 
branches metrics: 
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According to Viterbi algorithm on each decoding step in each of trellis states 
the same type operations are made: 

1) Addition of metrics of the previous states with metrics of corresponding 
branches; 

2) Comparison of metrics of entering paths; 
3) Choice of paths with the least metrics which values are used as the metric 

of the states on the subsequent decoding step. If metrics of compared paths are 
identical, the choice of one of two path is made in a random way. 

Realisation complexity of Viterbi algorithm can be estimated by the amount of 
branches of the code trellis treated by the decoder at length of decoding L, taking into 
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Figure 10.2, a, b – Decoding process on algorithm Viterbi 
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account complexity of each step of a trellis (see formula (9.6)). Complexity of 
decoder Viterbi realisation can be estimated under the formula: 

 C = m(ν + k)⋅L. (10.1) 

On figure 10.3 the structure scheme of Viterbi decoder intended for work with 
the demodulator of signals QPSK is shown. 
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Figure 10.3 – Viterbi decoder structure scheme 
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Figure 10.2, d – Decoding process on algorithm Viterbi 
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Figure 10.2, c – Decoding process on algorithm Viterbi 
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The decoder consists from analog/discrete converters (A/D C) in channels X 
and Y, the calculator of branch metrics and processor in which operations of 
addition, comparison and a choice are made, memory device of a survived paths, 
and majority element in which the path with the least metric gets out. The best value 
of a quantization levels depends on the ratio a signal/noise on input A/D C. By eight 
quantization levels of losses minimum is ensured at the ratio of a signal magnitude to 
the quantization step is equal to (4,5...5,5). More detailed description of assigning and 
work algorithms of the decoder Viterbi block diagram elements of are reduced in the 
manual [2, Section 3.8.2]. 

Questions 
10.1 Does the realisation complexity of the Viterbi algorithm depend on length 

of free distance? 
10.2 How will increase complexity of Viterbi decoder increase by increasing a 

code constraint length twice? 
10.3 What is the reason of Viterbi decoder complexity raise at using of a soft 

decision on a demodulator exit? 
Tasks 

10.1 Prepare the trellis diagram of a code (1, 5) from Exercise 9.1 which 
necessary for an illustration of Viterbi algorithm. As free distance of this code df = 3 
(according to formula (9.7) the code corrects single errors) trace decoding process by 
Viterbi algorithm if in the channel is single error and establish the fact of its 
correction by the decoder. 

10.2 Prepare the trellis diagram of a nonredundancy code (1, 0) from the 
Exercise 9.1 which necessary for an illustration of the Viterbi algorithm. Try to 
explain by the form the trellis diagram impossibility of error-correction.  

 
11 NOISE IMMUNITY OF CONVOLUTIONAL CODE DECODING  

11.1 Decoding error probability of convolutional code 

The technique of a decoding noise immunity estimation by convolutional codes 
is not differed from a technique stated in Section 8.1 for a case of block codes. Here 
the code rate Rcode, code distance properties (in a case of the convolutional codes – 
the free distance df), and decoding algorithm is played the main role. By using of 
probability decoding algorithm (Viterbi algorithm) the approximately expression for 
bit error probability looks like: 

 ∑
∞

=
=

fdk
kkPwpd , (11.1) 

where Pk – error probability of the way choice on a code trellis;  
wk – spectrum of weights of erroneous ways;  
At transmission of code symbols through a channel with BPSK with white 

noise power spectral density N0/2 is defined so: 

 ( )bcode2 hkRQPk = . (11.2) 
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Evaluations under formulas (11.1) and (11.2) show, that in the sum (11.1) by a 
big ratio signal/noise the first member (by k = df) has the greatest value, and 
remaining members of the sum with growth k fast decrease. Therefore in practice 
they are limited to use of the simplified formula: 

 ( )bcodeffd 2 hRdQwp d ⋅= . (11.4) 

As well as by the block coding, comparison of a decoding noise immunity can 
be made with a noise immunity of coherent receiving of signals with binary phase 
modulation BPSK. Thus the calculation formula for bit error probability can be 
received from expression (11.2) having supposed k = 1, Rcode = 1: 

 ( )bBPSK 2hQp = , (11.5) 

where 0bb NEh =  – the ratio of the signal energy expended on transmission of bit 
Eb to a power spectral density of a noise N0 on an input of the demodulator. 

Exercise 11.1 The analysis of a decoding noise immunity 
Let's make a calculations of a bit error probability on exits of the demodulator 

of signals PМ-2 and Viterbi decoder included after it, using formulas (11.5) and 
(11.4) for next codes : 

1. Code (5, 7), Rcode = 1/2, df = 5, ν = 2; 
2. Code (133, 171), Rcode = 1/2, df = 10, ν = 6. 
The calculation results are given in table 11.1 and presented on figure 11.1. In 

the table given values of argument z are specified function Q(z), used in formulas. 

11.2 Energy coding gain 

As well as by an estimation of a decoding noise immunity of the block codes 
(see Section 8) in a case of convolution codes use concept of an energy coding gain. 

The energy coding gain g is equal to a difference between of values 2
bh  

necessary to get the given error probability p by the absence and by the coding use. 
Values of error probability level at which the gain is defined depends on the 

requirements to fidelity of the transmitted digital information. For digital telephony 
systems a acceptable level of a bit error probability usually makes pacc = (10–5... 10–6). 
In systems of digital TV transmission try to ensure pacc = (10–10... 10–11).  acceptable 

The value of coding gain at the given bit error probability p* can be defined by 
comparing the arguments of function Q(z) in a formulas for error probability (11.4) 
and (1.5) for identical probabilities pd = pBPSK = pacc. Calculations show, that gain 
depends from level of error probability pacc on which it is defined. It is well visible on 
the curves figure 11.1 representing calculation results from Exercise 11.1. Value of a 
gain with decreasing of a probability pacc aspires to the limit which in the coding 
theory name as asymptotic coding gain: 

 A-gain = lim g(pacc → 0). (11.6) 

Comparing arguments in the expressions (11.5) and (11.4) we come to wide 
used in energy calculations of transmission systems to expression for A-gain in 
logarithmic units: 
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 A-gain = 10lg(Rcodedf) (dB). (11.7) 

Table 11.1 – Calculation of decoding noise immunity  

Bit error probability on decoder output Bit error probability 
on demodulator 
BPSK output Code (5, 7) Code (133, 171) Eb/N0, dB 

z pBPSK z pd z pd 
1 1,59 5,8·10–2 2,51 6,1·10–3 3,55 6,9·10–3 
2 1,78 3,9·10–2 2,82 2,4·10–3 3,98 1,2·10–3 
3 2,00 2,4·10–2 3,16 7,8·10–4 4,47 1,5·10–4 
4 2,24 1,3·10–2 3,54 1,9·10–4 5,01 1,1·10–5 
5 2,52 6,1·10–3 3,98 3,5·10–5 5,62 4,1·10–7 
6 2,82 2,4·10–3 4,46 4,2·10–6   
7 3,55 7,9·10–4 5,62 1,1·10–8   
8 3,99 2,0·10–4     
10 4,47 4,2·10–6     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BPSK + CC(5, 7) 

Figure 8.1 – Decoding noise immunity of cyclic code  
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As A-gain is upper bound of a gain g for fast comparison and a choice of codes 
use A-gain. Values of this A-gain often include in the code tables (see tables of 
Attachment А.3). In table 11.1 for an example data about convolution codes with 
various lengths of a code length ν and rate Rcode are cited. Values of a A-gain are 
shown. More detailed data are given in tables А.3…А.6 from the Attachment А.3. 

Table 11.1 – Characteristics of a convolutional codes  
Code constraint length ν = 4 Code constraint length ν = 6 

Code rate Rcode Code A-gain, dB Code A-gain, dB 
1/3 25, 33, 37 6,02 133, 145, 175 6,99 
1/2 31, 33 5,44 133, 171 6,99 
2/3 31, 33, 31 5,23 133, 171, 133 6,02 
3/4 25, 37, 37, 37 4,78 135, 163, 163, 163 6,73 

 

Comparison of a gain values is ensured by the cyclic coding (see table 8.3 and 
figure 8.1) with similar parameters for convolutional codes (see table 11.1 and figure 
11.1) shows, that convolution codes in a combination to Viterbi decoding algorithm 
ensure considerably more gain in comparison with block codes. It explains wide 
using of convolution codes in transmission systems for a noise immunity increasing. 
Typical a using of the code (133, 171) ensuring A-gain = 6,99 dB by the rate Rcode = 
0,5 here is, i.e. at two-multiple expansion of a frequency band of the coded signal. 
The codecs of such code are developed in the form of the big chips are serially 
emitted. 

Questions 
11.1 How does the gain depend from code constraint length? 
11.2 How does gain depend from code rate? 

Tasks 
11.1 Using tables of a convolutional codes from the Attachment А.3 construct 

the dependence of a gain from a code rate by the fixed values a constraint code 
length. Explain tendencies of a progress of these dependences.  

11.2 Using tables of the Attachment А.3 choose a codes, ensuring A-gain> 6dB 
and specify parameters of these codes. 

 
12 INCREASING OF DIGITAL TRANSMISSION SYSTEMS EFFIC IENCY 

12.1 Information, energy and frequency efficiency 

Generally the result of work of a transmission systems is defined by an 
quantity and quality of the transmitted information. The quantity is estimated by an 
information transmitting rate through a channel Rch (bit per second), and quality – by 
the values of an error. According to Shannon theorems, the error with a 
corresponding choice of a transmission method (i.e. modulation/coding) can be made 
arbitrarily small (see explicitly the materials of the Module 2). At the same time, the 
transmission rate cannot be above some informational resource named a channel 
capacity Cch. A. Zuko has suggested to consider as one of indicators of a system 
efficiency the value of mean rate Rch at which the given fidelity of an information 
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transferring is ensured. Thus the information system efficiency as degree of use of a 
channel capacity of the channel is defined by relative value chchη CR= . In real 

conditions the indicator η always is less than unit. The more close η to unit, the more 
absolutely transmitting information system. Reaching necessary for a transmission 
rate and fidelity is accompanied by certain expenditures of other major resources: 
signal power Ps and a channel frequency band Fch. Such approach has allowed to 

introduce the indicators: power 
0

ch

/ NP

R

s
=β  and frequency efficiency 

ch

ch

F

R=γ , uses 

of the mentioned resources characterizing degree. Here Ps/N0 – the ratio of a signal 
power to a power spectral density of noise on a receiver input). Thus, efficiency 
indicators by A. Zuko look like: 

Information efficiency  of system which define the degree of channel capacity 
using  

 
ch

chη
C

R= ;  (12.1) 

Energy efficiency  

 
0

ch

/ NP

R

s
=β ; (12.2) 

Frequency efficiency  

 
ch

chγ
F

R= . (12.3) 

12.2 Limiting efficiency of transmission systems and Shannon bound 

Indicators β and γ make sense a specific rates, and inverse values β′ =1/β and 
γ′ =1/γ define specific expenses of corresponding resources on an information 
transferring with unity rate (1 bit per second). For the Gaussian channel with 
frequency band Fch, the ratio of signal to noise ρ =Ps/Pn and channel capacity 

)1ρlog(chch += FC it is possible to establish, that these efficiency indicators are 
connected by the relation: 

 
)βγ1log( +

γ=η   and  ρβ=γ  (12.4) 

For ideal system (η =1) limiting equation can be defined. According to 
Shannon theorem by the corresponding transmission methods (coding and 
modulation) and receiving (demodulation and decoding), the value η can be as much 
as close to unit. Thus the error can be made as much as small. In this case by a 
condition η = 1 it is received limiting equation between β and γ : 

 
12 −

γ=β γ . (12.5) 
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This formula defines of energy efficiency from the frequency efficiency for the 
ideal system ensuring equality of a information rate to a channel capacity. It is 
convenient to represent this equation in the form of a curve on a plane β = f(γ) (figure 
12.1, a curve «Shannon bound»). This curve is limiting and reflects the best 
interchanging between ββββ and γ γ γ γ in the continuous channel (СC).  

It is necessary to notice, that frequency efficiency γ varies in limits from 0 to 
∞, energy efficiency is bounded above by magnitude: 

 443,1
2ln

1

12
limlim

00
max ≈=

−
γ=β=β γ→γ→γ

. (12.6) 

Differently, energy efficiency of any information transmitting system in a 
Gaussian channel can not exceed the magnitude  

 443,1βmax = . (12.7) 

Similar limiting curves can be constructed and for any other channels if in 
formulas (12.2) and (12.3) instead of a rate Rchan to substitute expressions for a 
channel capacity of the corresponding channel. So, in particular, on fig. 12.1 the 
curve for limiting equation β =f (γ) the is discrete-continuous channel (D-CC) is 
shown.  

It "is enclosed" in a curve of the continuous channel (CC) that confirms know 
result of an information theory according to which DN channel capacity of D-CC 
always is less a than channel capacity of the continuous channel (CC) which is a basis 
for construction of corresponding D-CC. In real digital systems error probability p 
always has a final value and informational efficiency is less then a limiting value 
ηmax. In these cases for the fixed error probability p = const it is possible to define 
efficiency ratio β to γ and to construct curves β� = f (γ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.1 – Curves of communication systems limiting efficiency  
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In coordinates (β, γ) to each variant of a transmission system there will 
corresponds a point on a plane. All these points (curves) should place below a 
limiting curve of «Shannon bound». The place of these curves depends on an aspect 
of signals (modulations), a codes (coding methods) and a method of the elaborating 
of a signals (demodulation/decoding). About perfection of the digital 
telecommunication methods judge on a degree of placing of real efficiency of to the 
limiting values. 

Concrete data about the efficiency of various modulation/coding methods and 
also their combinations are given in following section. 

12.3 Perspective ways of further increasing efficiency 

Using the various methods of error-control coding considered in these Module 
the designer of transmission system owning art of optimisation can flexibly change 
of the efficiency indicators approaching them to the limiting, potentially possible 
values which are established in the previous section. Efficiency of the digital 
transmission systems of transmission can be essentially increased by the application 
of M-ary signals and error-control codes, and also their combinations. The choice of 
signals and codes in these cases is defining for construction highly effective codems 
(the codecs matching among themselves and modems). Comparison of efficiency of 
systems with M-ary signals and error-control codes is convenient for making with 
using of diagram β =f (γ), presented on figure 12.1. Thus degree of perfection of a 
modulation/coding methods and can be estimated, comparing efficiency with limiting 
values. Results of the efficiency analysis are presented on figure 12.2. At the same 
time, comparison various modulation/coding methods is convenient for making 
comparison taking for "reference point" the efficiency of transmission system with 
modulation QPSK (without error control coding). From among simple methods it is 
the most effective and widely used method of modulation/coding with indicators γ = 
2, β = −9,6 dB, η ≈ 0,47. Conveniently as well that the point representing on figure 
12.2 values of efficiency QPSK is arranged in a central part of the diagram. If an 
origin of coordinates to transfer to a point corresponding QPSK, in a new frame (∆β, 
∆γ) on a vertical axis the energy gain ∆β in comparison with QPSK, and on a 
horizontal axis a gain on a specific rate ∆γ will be counted. Let's notice, that all 
possible modulation/coding methods can be divided into four groups corresponding 
to four quadrants on the diagram β =f (γ):  

Quadrant III in which the low efficiency methods are arranged having rather 
QPSK loss on β and γ;  

Quadrant II  including methods with high energy efficiency, ensuring a gain 
on β in exchange for loss on γ (systems with error-control codes);  

Quadrant IV  including modulation methods ensuring a gain on γ in exchange 
for loss on β (systems with M-ary М-PSK and М-APSK signals); 

Quadrant I  including perspective modulation/coding methods ensuring a 
simultaneous gain both energy and frequency efficiency. 
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Outcomes of calculations show (figure 12.2, Quadrant I), that application such 
coded modulations allows to receive simultaneously a gain both in energy, and 
frequency efficiency and, anyway, to get a gain on one indicator, not worsening 
another. So, system 8PSK-CC by the using of a convolution code with Rcode = 2/3 
ensures a energy gain ∆β = 2,8 dB without a decreasing of a specific rate γ, and 
system 16APSK-CC by Rcode = 1/2 and ν = 3 a gain on a specific rate ∆γ = 2 dB 
without a drop of energy efficiency β. Information efficiency of these systems is 
η ≈ (0,6…0,7). The detailed analysis such coded modulations is reduced in manual 
[3, Section 9.2]. Microelectronic progress last decade initiated attempts to realise the 
potentially possible efficiency, despite of growth of decoding complexity. In 1993 
turbo-codes have been offered. Turbo-codes has been in details in manual 
[3, Section 11.1] described. Intensive development of mobile transmission systems 
has led to the invention of a time/space coding, in details described in the manual [3, 
Section 11.2]. 

 

Figure 12.2 – Efficiency of M-ary signals and error-correcting codes 
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Attachment А. Performances of error-correcting codes 

А.1 Performances and generator polynomials of cyclic codes  

In table А.1 the short table of performances and generator polynomials of 
binary cyclic codes is presented. Generator polynomials of codes are given in the 
octal form where: 

n – word length;  
Rcode – code rate;  
k– amount of information symbols in the word;  
qcorr – multiplicity of corrected errors.  
Example А.1. Octal representation of generator polynomials.  
The code with parameters n = 7, k = 4, qcorr = 1 has a polynomial (13) → 

(001.011) → (1011) → x3 + x + 1. 
Table А.1 – Performances and generator polynomials of cyclic codes 
n k qcorr Rcode Generator polynomials 
7 4 1 0,57 13 
15 11 

7 
1 
2 

0,73 
0,47 

23 
721 

31 26 
21 
16 
11 

1 
2 
3 
5 

0,84 
0,68 
0,52 
0,35 

45 
3551 
107657 
5423325 

63 57 
51 
45 
39 
36 

1 
2 
3 
4 
5 

0,9 
0,81 
0,71 
0,62 
0,57 

103 
12471 
1701317 
166623567 
1033500423 

127 120 
113 
106 
99 
92 

1 
2 
3 
4 
5 

0,95 
0,89 
0,84 
0,78 
0,97 

211 
41567 
11554743 
624730022327 
435 

255 239 
231 
223 

2 
3 
4 

0,94 
0,91 
0,87 

267543 
156720665 
75626641375 
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А.2 Energy coding gain by using of the cyclic codes 

In table А.2 the values of energy coding gain g (dB) are given for using of 
cyclic codes in channels with BPSK.  

TableА.2 – Energy coding gain g (dB) by using of the cyclic codes 
Code rate Rcode Block 

length, n 0,3 0,4 0,5 0,6 0,7 0,8 
31 1,2 1,6 1,9 2,0 1,9 1,6 
63 2,0 2,4 2,7 2,8 2,7 2,1 
127 2,6 3,1 3,4 3,5 3,3 2,8 
255 3,2 3,6 3,9 4,0 3,8 3,3 

А.3 Performances of binary convolution codes 

In tables (А.3…А.6) performances of binary convolution codes with maximum 
free Hamming distance and rates (1/8…1/2) are given. Generator polynomials are 
given in the octal form. Labels: ν – code constrained length; df – free Hamming 
distance; dfm – upper bound of free distance; wdf – quantity of erroneous ways with 
weight df; A-gain– asymptotic coding gain (dB) by using code in channels with 
BPSK.  

Table А.3 – Code rate Rcode = 1/8  
Code 

number 
ν 

Generator 
polynomials 

dfm df wdf A-gain, dB 

1 4 25,27,33,35, 
37,25,33,37 

32 32 8 6,02 

2 5 45,55,57,65, 
67,73,77,47 

36 36 3 6,53 

3 6 115,127,131,135, 
157,173,175,123 

40 40 1 6,99 

TableА.4 – Code rate Rcode = 1/4 
Code 

number 
ν 

Generator 
polynomials 

dfm df wdf A-gain,dB 

4 2 5,7,7,7 10 10 2 3,98 
5 3 13,15,15,17 13 13 4 5,12 
6 4 25,27,33,37 16 16 8 6,02 
7 5 51,55,73,77 18 18 5 6,53 
8 5 53,67,71,75 18 18 6 6,53 
9 6 135,135,147,163 20 20 37 6,99 
10 7 235,275,313,357 22 22 11 7,40 
11 8 463,535,733,745 27 27 4 8,29 
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Table А.5 – Code rate Rcode=1/3 

Code 
number 

ν 
Generator 

polynomials 
dfm df wdf A-gain,dB 

12 2 5,7,7 8 8 3 4,26 
13 2 5,6,7 8 7 1 3,68 
14 3 13,15,17 10 10 6 5,23 
15 3 11,15,17 10 9 1 4,77 
16 3 10,15,17 10 8 3 4,26 
17 4 25,33,37 12 12 12 6,02 
18 5 47,53,75 13 13 1 6,37 
19 5 47,55,75 13 13 4 6,37 
20 5 45,55,75 13 12 3 6,42 
21 6 133,145,175 15 15 11 6,99 
22 6 127,155,165 15 13 3 6,37 
23 7 255,331,367 16 16 1 7,27 
24 8 557,663,711 18 18 10 7,78 

Table А.6 – Code rate Rcode = 1/2 

Code 
number ν 

Generator 
polynomials 

dfm df wdf A-gain, dB 

25 2 5,7 5 5 1 3,98 
26 3 15,17 6 6 2 4,77 
27 3 13,15 6 6 4 4,77 
28 4 23,35 8 7 4 5,44 
29 4 31,33 8 7 4 5,44 
30 4 25,37 8 6 2 4,77 
31 5 53,75 8 8 2 6,02 
32 5 61,73 8 8 6 6,02 
33 5 43,75 8 8 6 6,02 
34 5 45,73 8 8 5 6,02 
35 5 71,73 8 8 10 6,02 
36 6 133,171 10 10 36 6,99 
37 6 135,163 10 10 46 6,99 
38 7 247,371 10 11 2 6,99 
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Attachment B. Methodical manual for the course work  
Topic of the course work «Optimisation methods of error-control coding for 

transmission system» 
Introduction. In Chapter 12 it is shown, that error-control coding is effective 

means for the optimisation of transmission systems. In practice engineer-designer 
should solve optimisation problems on the basis of numerical calculations and 
corresponding comparison of a coding methods and a choice of concrete coding 
methods and corresponding to them the codes. The solution of such problem was 
underlay in basis of the course work. 

Input data  are set in the table of variants (table B.2): 

1. The digital binary signal with rate R is subject to transfer.  
2. The transmission channel is the channel with constant parameters and 

additive white noise.  
3. Signal to noise ratio on a demodulator input is 2

bh .  
4. Methods of modulation are BPSK or QPSK.  
5. Mode of reception is coherent.  
6. Pass band of transmission channel is Fch.  
7. Probability of an error on an output of transmission system no more pacc.  
8. Permissible complexity of a code trellis – no more Cperm. 
It is necessary: 
1. To choose and justify a choice of a error-control code for projected system, 

ensuring demanded bit error probability level pacc under condition of a following 
restrictions: 

1.1. The bandwidth of the modulated signal ∆Fs should not exceeds of a Pass 
band of transmission channel Fch (∆Fs < Fch).  

1.2. By using of convolution codes the code trellis complexity should be no 
more magnitude Cperm.  

2. To develop and give detailed exposition structural and function schemes of 
the encoder and the decoder for the chosen code and to justify their parameters.  

3. To analyze of energy and frequency efficiency of a projected transmission 
system and to compare them to limiting values of efficiency.  

4. To make a conclusion on the done work. 
The content of the executed work 
1. The introduction and input data.  
2. Exposition of the block diagram of designed transmission system with 

indication of inclusion places of the error-control encoder, modulator, demodulator 
and the decoder with detailed explanations of functions fulfilled by them.  

3. An application substantiation in the work of convolution codes.  
4. A substantiation of a Viterbi algorithm choice for decoding of a 

convolutional code.  
5. Calculation of a bandwidth occupied with a modulated signal ∆Fs at code 

rates 1/8, 1/4, 1/3, 1/2, 1.  
6. Definition of an admissible code rate ∗

codeR  by a condition 1.1 (∆Fs < Fch).  
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7. Definition of the enumeration of codes with the rates that are not exceeding 
admissible rate ∗

codeR , which can be used for a task in view solution.  
8. Choice codes from this enumeration ensuring given bit error probability 

level by the Condition 1.1 and restriction satisfying to the requirement on decoder 
complexity (by Condition 1.2).  

9. Checking calculation of a bit error probability for the decoding of the chosen 
code.  

10. Elaborating and exposition of a structural and function schemes of the 
encoder and the decoder chosen code.  

11. A conclusion with summarising of the performed work.  
12. The list of the used literature.  

Methodical instructions 
Calculation of a signal BPSK (QPSK) bandwidth should be made under 

recommendations from the Module 1. Using of an error-control codes with code rate 
Rcode leads to increasing of a occupied frequency band of the signal K∆F = 1/Rcode 
times (see Chapter 9). On the other hand, a control ability of a code increases with a 
decreasing of a code rate. Therefore the problem of a code parameters optimisation 
consists in a choice of a code with a rate at which the frequency band of the coded 
signal does not exceed the given pass band of transmission channel Fch. If the 
demanded pass band for the transmission of a coded MPSK signal with rate R is 
equal to ∆FMPSK, and the code rate is chosen equal to Rcode the pass band of channel 
which is necessary for transmission a coded MPSK signal will be equal  

∗
∆=∆

code

MPSK
s

R

F
F . 

Then from a inequality ( chs FF <∆ ) it is received a simple condition for choice 
of code rate: 

 Rcode > ∗
codeR . (B.1) 

The told is illustrated by figure B.1. The expanding of a frequency band of a 
coded signal is proportional to factor of a band expansion. By the process of a 
decreasing of a code rate (increasing of K∆F) the frequency band extends and reaches 
values of a given channel frequency band Fch. On the same figure the line 
A-gain = f(Rcode) is shown. Intersection of a curve band with boundary given value 
Fch defines the admissible factor of a channel frequency band expansion K∆F = 1/Rcode 
and, accordingly, of code rate ∗codeR .  

The first stage of a choice of a error-control code is the choice of a class of 
codes (a class block or convolution codes). Using materials of Chapters 8 and 11 it is 
recommended to justify with deep arguments for a choice of convolution codes for 
using in project. Among decoding algorithms on a latitude of practical application the 
in the lead place occupies Viterbi algorithm. It is recommended to apply Viterbi 
algorithm in project. In section of the project with a substantiation of application of 
this algorithm it is necessary to give information about realisation complexity of an 
algorithm. Among the codes selected by criterion of a rate according to the formula 
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(B.1) there can be codes with various length of code constraint length (and, 
accordingly, with various decoder complexity). The noise immunity of decoding is 
characterised by A-gain. In code tables of a values A-gain are not reduced at certain 
level of error probability. At the same time, magnitude of A-gain is upper estimation 
of a real gain. Therefore at choice of a codes it is recommended to use A-gain which 
values are available from the Attachment A. Among the selected candidates of codes 
it is necessary to apply code ensuring maximum A-gain and meeting maximum 
requirements on code rate and minimum complexity of decoder.  

Definitive data about error probability on decoder output it is necessary to get 
by the calculations the decoding bit error probability for chosen code from the signal 
to noise ratio. In case of representation failure to meet requirements it is 
recommended to apply a code with more value of A-gain. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example of calculations and code optimisation procedure 
Input data: 
1 The rate of digital signal R = 64 kbit/s.  
2 S/N ratio 2

bh  = 4,5 dB.  
3 A modulation method is QPSK.  
4 Mode of reception is coherent.  
5 Pass band of transmission channel Fch = 100 kHz.  
6 Acceptable bit error probability pacc = 10–5.  
7 Admissible code trellis complexity no more Cperm = 150. 
Solution 
1 Calculation of a necessary channel pass band for transmission with the 

method QPSK is made under formula ∆FQPSK = [R(1 + α)]/2, where α is roll-off 
factor of spectrum . Being set by value α = 0,4, we receive  

Here are arranged 
«сodes-candidates for a choice» 

Figure B.1– Procedure of code optimization 

Rcode 1 0 

Bandwidth of the coded signal ∆Fs A-gain 

Given pass band of channel Fch 

∗
codeR  
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 ∆FQPSK =[R(1 + α)]/2 = [64 (1+0,4)]/2 = 44,8 kHz. 

2 According to the formula (B.1) it is defined limiting value of code rate 

 448,0
100

8,44

ch

s*
сode ==∆=

F

F
R . 

3 Under code tables we select the codes, satisfying to the requirement on a rate. 
Data about these codes are shown in table B.1. From the table it is visible, that for the 
solving given task can be used codes with the rate Rcode = 1/2 which ensure enough 
big A-gain. In the table data the code with generator polynomials (133, 171) which at 
rate Rcode = 0,5 ensures A-gain =6,99 dB is chosen for the project. Data of bit error 
probability calculation is given on figure 8 1 (signals BPSK and QPSK have the same 
noise immunity). It is visible, that the using of a such code ensures such performance: 
by the ratio signal/noise 2bh  = 4,5 dB the bit error probability is less than 10–5. 
Comparison with curves for uncoded QPSK shows that by p = 10–5 this code ensures 
coding gain 6 dB.  

Table B.1 – Performances for a code choice 

Code rate Rcode 
Generator  

polynomials 
Code 

length ν 
Trellis  

complexity C 
A-gain, dB 

1/8 25,27,33,35, 
37,25,33,37 

4 32 6,02 

1/8 115,127,131,135, 
157,173,175,123 

6 128 6,99 

1/4 25,27,33,37 4 32 6,02 
1/4 463,535,733,745 8 512 8,29 
1/3 47,53,75 5 64 6,42 
1/3 557,663,711 8 512 7,78 
1/2 53,75 5 64 6,02 
1/2 61,73 5 64 6,02 
1/2 71,73 5 64 6,02 
1/2 133,171 6 128 6,99 
1/2 247,371 7 256 6,99 
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Table B.2 – Input data for the course work  

Variant number for an elaborating of course work should correspond to the number 
of student surname in the academic group register  

Variant 
number 

S/N ratio 
2
bh , dB 

Modulation 
method 

Rate of signal  
R, kbit/s 

Bandwidth of 
channel Fch, 

kHz 

Bit error 
probability 

pacc 

Trellis 
complexity 

Cperm 
1 4,0 QPSK 64 80 10-6 150 
2 5,0 QPSK 16 25 10-4 160 
3 6,0 BPSK 256 800 10-5 170 
4 6,5 BPSK 64 200 10-6 180 
5 4,0 QPSK 16 25 10-4 250 
6 7,0 QPSK 128 200 10-5 350 
7 5,0 BPSK 2400 7000 10-8 560 
8 6,0 QPSK 32 50 10-6 200 
9 5,0 BPSK 24 70 10-4 300 
10 4,5 QPSK 256 400 10-5 250 
11 5,5 BPSK 300 1200 10-8 550 
12 4,0 QPSK 48 70 10-6 150 
13 4,0 QPSK 32 50 10-4 250 
14 5,0 BPSK 256 800 10-5 300 
15 4,0 QPSK 450 1300 10-9 550 
16 7,0 QPSK 56 90 10-6 150 
17 5,0 BPSK 24 70 10-4 160 
18 4,5 QPSK 256 400 10-5 200 
19 5,5 QPSK 500 1400 10-9 550 
20 6,0 BPSK 64 200 10-6 150 
21 7,5 QPSK 32 400 10-4 250 
23 6,5 QPSK 16 50 10-5 150 
24 6,0 QPSK 64 150 10-6 150 
25 4,5 BPSK 16 25 10-4 200 
26 5,0 BPSK 6000 16000 10-9 550 
27 6,0 QPSK 384 600 10-5 250 
28 4,5 QPSK 56 100 10-6 150 
29 5,0 BPSK 16 50 10-5 250 
30 5,5 BPSK 5500 32000 10-9 560 
31 4,5 QPSK 64 200 10-5 150 
32 5,0 QPSK 64 300 10-5 250 
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Attachment C. Education manual for laboratory works 

LW 4.1 Studying of block error-control Hamming code codecs structure 

1 Objectives  
1.1 Studying of Hamming systematic code (7, 4) codec structure. 
1.2 Research of the code (7, 4) control ability. 
2 Main principles 
The systematic code is error-control code, which code word contain k 

information bits and r = n – k checking symbols (checking symbols are linear 
combination of information bits). Systematic codes are denoted as (n, k) or (n, k, 
dmin). In this work code (7, 4) or (7, 4, 3) is studied. 
Error-control codes with code distance dmin = 3, allowing to correct first order errors 
at decoding, name as Hamming codes [5, p. 149]. We will determine connection 
between error-control code parameters n and k. It is known that for any natural 
number r the Hamming code of lengths n = 2r – 1 or k + r = 2r – 1 exists [5, p. 149]. 
These equalities can be used and as inequalities k ≤ 2r - r - 1. The last expression 
allows choosing n and r at given k. 

The matrix method of linear block codes coding and decoding processes 
description is most useful (see Sections 5, 6). So, coding by systematic code (n, k) 
consist in addition to code words checking symbols and can be described by matrix 
equality 

 A⋅⋅⋅⋅G = B, (1) 

where A = (b1 b2 … bk) is row matrix size k, correspond to information code word; 
B = (b1 b2 … bk bk+1 … bn) is row matrix size n, correspond to error-control 

code word. 
G – generator matrix k×n, the elements of which gij take on values 1 or 0.  
The G matrix rows must satisfy next conditions [6, p. 86…88]. 
1 Distance between any two rows must not be less dmin. 
2 Every row must contain no less then dmin units. 
3 All rows must be linearly independent, i.e. none of rows can be got by adding 

(XOR) of some other rows. 
For example, for a code (7, 4) generator matrix looks like formulas (4.4), (4.7).  
The coder operation algorithm: 
1 k information bits in a parallel code or in a series code (in last case a shift 

register is needed) on the coder input. 
2 The checking symbols r = n – k by adders with r calculates. 
3 k information bits and r checking symbols in a parallel or series code (in last 

case the converter of parallel in series code is needed) on the coder output. 
On the figure 5.1 the code (7, 4) with generator matrix (4.4) encoder functional 

diagram is resulted. Input and output code words are represented in a parallel code. 
The process of decoding includes the syndrome calculation. In matrix form is 

written down as :  

 S= H⋅⋅⋅⋅ B̂ ,  (2) 
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where H is check matrix r×n. 
B̂  is matrix-column, size n, correspond to the code word on the decoder input; 
S is syndrome, matrix-column, size r. 
The decoder algorithm is following: 
1 n symbols of the code word come on the decoder input. 
2 Using (6) a syndrome calculates. 
3 Syndromes analyzer, built on the syndromes table basis, forms signals for 

error symbols correction. 
4 Error symbols correction consist in their inverting: XOR for error symbol and 

unit (lets ib̂  is some symbol, then iâ = ib̂  ⊕ 1 ). 
5 After correction of error the information code word of k symbols come on the 

decoder output. 
On the figure 5.2 the code (7, 4) decoder functional diagram is resulted. Input 

and output code words are represented in a parallel code.  
A code, encoder and decoder of which, is built on multiinput adders (with 

XOR operation), name as Hamming code or even parity check code. Using the 
indicated principles it is possible to build encoder and decoder for different values of 
n and k. 

3 Questions 
3.1 Give the definition of error-control codes. 
3.2 What is code distance? 
3.3 Write down expressions for determining of code control ability with given 

code distance. 
3.4 Give the definition of systematic error-control codes. 
3.5 How to define the checking symbol number at set number of k, if dmin = 3? 
3.6 What is generator matrix? 
3.7 How to build a generator matrix for a systematic code? 
3.8 What is check matrix? 
3.9 What is syndrome? 
3.10 Explain principle of Hamming code decoder construction. 
4 Home task 
4.1 Study main principles. 
4.2 A code (7, 4) is set by a generator matrix 

G = 



















1111000

0110100

1010010

1100001

. 

Write down the number of brigade N in the binary number. Considering these 
four digits as information word on the encoder input, calculate code word on the 
coder output. Form the given code check matrix and code syndromes table. Put first 
order error into symbol bN of formed code word; calculate a syndrome for the code 
word on the decoder input. Make sure, that a syndrome corresponds to error symbol 

Nb̂ . 
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4.3 Prepare for discussion on key questions. 
5 Laboratory task 
5.1 Start the program on a computer and using mouse cursor study the method 

of input data setting. 
5.2 Enter the information bits got in the home task, after coding 

implementation, make sure in correct results of home work. 
5.3 Put an error into b1, b2, b3, b4, b5, b6, b7 symbols by turns, make sure in 

correctness of decoding and syndromes table which were calculated in the home task. 
5.4 Put a double error into arbitrary two symbols, make sure, that a decoder 

tries to correct errors in accordance with a syndrome and puts the third error. Repeat 
the experiment for two-three other double errors. 

5.5 Put a triple error into symbols b1, b2, b3. Make sure, that a syndrome is 
equal to the zero – it shows that dmin = 3. Repeat the experiment putting a triple error 
into symbols b1, b4, b5. On the basis of check matrix you will define, what another 
triple errors result in the permitted words. 

6 Description of laboratory model 
A laboratory model is executes on the personal computer. A code (7, 4) is 

described by generator matrix  

G = 



















1111000

0110100

1010010

1100001

. 

The control by model is produced by the left mouse button. The putting of 
errors produces by setting in «1» digit position (positions) of errors block e1, e2, e3, e4, 
e5, e6, e7 (which must contain an error). A model produces conversion of code word 
on the encoder output to code word on the decoder input by the rule iâ  = ib̂  ⊕ ei, for 
i = 1, 2, …, 7. 

7 Requirements to the report 
7.1 Title and objectives of laboratory work. 
7.2 Block diagrams of coder and decoder of the used code (7, 4). 
7.3 Results of homework performing. 
7.4 Results of implementation of laboratory task (tables and graphs). 
7.5 Conclusions on every item of laboratory task, with analysis of the got 

results. 
 

LW 4.2 Cyclic codes coding and decoding studying 

1 Objectives  
1.1 Error-control code coding principles studying.  
1.2 Experimental research of cyclic code encoder and decoder operation 

principles. 
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2 Main principles 
2.1 One of methods of digital signal transmission by communication channel 

with errors quality increasing is error-control codes using. Error-control codes allow 
to detect or to correct errors which appear in a communication channel. In this work 
binary block error-control codes study. 

2.2 General principle of error-control codes construction easy enough. From 
the possible code words of length n number M = 2n not all are used for the 
transmission, only M0 = 2k (M0 < M). The used code words are named permitted. 
Other M – M0 code words is considered forbidden, they can not appear at the 
communication channel input, their appearance on the channel output indicates about 
errors. Thus, due to the forbidden code words presence the possibility of error 
detection appears. So, any error-control code is a code with redundancy (r = n – k 
redundant (checking) symbols in every code word transmits by communication 
channel).  

2.3 For error-control codes description next parameters are used. 
Hamming distance dij shows the order of difference between i-th and j-th code 

words. For any two binary code words distance equals the noncoincident symbols 
number in them. 

Code distance dmin is the minimum Hamming distance for the given code. 
Enumerating all possible pair of the permitted code words and calculating distances 
dij for them, it is necessary to find minimal among them, dmin = min dij. 

Code rate R shows the relative number of information symbols k in code words 
of length n and R is calculated as R = k/n. 

Code control ability is determined by order of detected errors qdet, and order of 
corrected errors qcorr.  

The order of detected errors qdet is number of errors in code word, which are 
assured detected at decoding, – it is determined as: qdet < dmin. 

The order of corrected errors qcorr is the number of errors in code word, which 
are corrected at decoding, – it is determined: qcorr <  dmin /2.  

2.4 At the error-control coding use in the communication channel structure 
error-control code encoder and decoder is included, it is resulted on the figure 1.  
 
 
 
 
 
 
 
 
 

Encoder and decoder destination consists in the following. Code word Аi, 
length k on the encoder input, encoder will transform it in error-control code word Вi, 
length n in accordance with the coding rule, and n > k. Code word, length n from a 
communication channel on the decoder input: 

jÂ  
jB̂  Error-control  

code encoder 

Telecommunication 
channel  

with errors  

Error-control 
code decoder 

Аi Вi 

Figure 1 – Error-control code encoder and decoder including  
in the digital communication channel structure  

Error 
signal 
output 
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 jB̂  = Вi ⊕ Е, (1) 

where Е is error word. For example, Вi = 101000; let an error appear in the second 
and third symbols, then Е = 011000, and jB̂  = 110000. 

Depending on code control ability and purpose of its application the error-
control code decoder can work in the detection mode or in the error correction mode. 
In the error detection mode a decoder analyses: is word jB̂  permitted or forbidden? If 

word is permitted, a decoder in accordance with the decoding rule forms on the 
output information code word Аj, length k. If word jB̂  is forbidden, a decoder does 

not decode it, on the decoder output no any code word, and a certain signal appears 
on the error signal output (figure 1) (for example, "1"). In the error correction mode a 
decoder instead of the forbidden code word decodes the permitted code word the 
nearest to it in accordance with the decoding rule and gives out information code 
word length k. 

2.5 In transmission systems systematic codes the most distributed, code word 
of systematic code contain k information symbols (symbols on the encoder input) and 
r = n – k checking symbols formed by encoder from information code word. In the 
case of linear codes checking symbols are linear combinations of information code 
word. 

Among systematic block codes wide distribution was got by cyclic codes, due 
to easy encoder and decoder construction. For cyclic codes description by 
polynomials is most useful - for example, the code word A i =10111 corresponds to 
polynomial ai(х) = х4 + х2 + х + 1 (code word symbols are coefficients at the proper 
dummy variable x order of, thus to symbol 1, which is written down first, the most 
high order х in a polynomial corresponds). 

Any cyclic code is set by not only the numbers of n and k but also generate 
polynomial g(x) order r. A cyclic (n, k) code names a code, all code words of which 
appear by the polynomials order of n - 1 and less, which are divided without 
remainder on generate polynomial. In table 1 generate polynomials are resulted for 
r = 3, 4 and 5. 

Cyclic code (n, k) encoder operation method consists 
in the following. Lets a(x) is polynomial which 
corresponds to information code word on the encoder 
input. Polynomial a(x)⋅xr corresponds to addition r zeros to 
information code word on the right. The polynomial a(x)⋅xr 
on the generate polynomial g(x) dividing with the purpose 
of determination of remainder from the dividing r(x) is 
executed. Remainder from the dividing r(x)  is the checking 
symbols. Polynomial, corresponding to code word on 
encoder output, it is determined: 

 b(x) = a(x)⋅xr + r(x), (2) 

the r zeros, is change by combination proper to the remainder from the dividing. 

Table 1 – Generate 
polynomials 

r g(x) 

x3 + x2 + 1 
3 

x3 + x + 1 

x4 + x3 + 1 
4 

x4 + x + 1 

5 x5 + x4 + x2 + 1 
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It is easy to show that the polynomial b(x) is divided without a remainder on 
the polynomial of g(x):  

( )
)(

)(

)()(
)(

)(

)(

)()(

)(
xp

xg

xrxr
xp

xg

xr

xg

xxa

xg

xb r

=⊕+=+= , 

where p(x) is integer part from the division a(x)⋅xr/g(x).  
You should remember that addition of polynomials is executed as XOR 

operation of coefficients at the equal orders of х. 
We will consider the example 

of code (10, 5) code word forming 
with the generate polynomial g(x) = 
x5 + x4 + x2 + 1 Lets Аi = 10110, then 
ai(x) = x4 + x2 + x, and ai(x)⋅x5 = x9 + x7 
+ x6. We will execute the division 
with the purpose of remainder 
determination. 

Acording to (2) bi(x) = x9 + x7 + x6 + x3 + x2 + 1 or Bi = 1011001101.  
In the cyclic code decoder the code word on decoder input division on generate 

polynomial is produced. Polynomials of the code word on encoder output b(x), code 
word on decoder input )(ˆ xb  and errors e(x) connected  by expression like (1): 

)(ˆ xb = b(x) ⊕ e(x).The result of division on generate polynomial can be represented 

( )
)(

)(
)()(

)(

)(
)(

)(

)(

)()(

)(

xg

xs
xvxp

xg

xe
xp

xg

xe

xg

xb

xg

xb ⊕⊕=⊕=⊕=
)

, 

From these expression follows that remainder s(x) depends only on the error 
polynomial and does not depend on the code word on encoder output (v(x) is integer 
part from the division e(x) on b(x)). Remainder from the division s(x) on g(x) is a 
syndrome. A nonzero remainder indicates that the accepted code word is forbidden 
(with errors). If a decoder works in the error correction mode, the error symbol 
number (or numbers of error symbols) is determined on the syndrome analysis base. 
For code (10, 5) with the generate polynomial g(x) = x5 +  x4 + x2 + 1 we will make 
the syndromes table for all single errors, executing the divisions e(x) on g(x) and 
writing down remainders from the division in table 2. 

From table 2 follows that in the case of 
single errors (first order errors) all 
syndromes are different, therefore every 
syndrome simply specifies the error 
symbol number. Error correction by a 
decoder is executes by decipherer built 
according to table 2, and inverting 
element which executes the error symbol 
inversion. 

The researched code (10, 5) has 
code distance dmin = 4 and allows to 
correct first order errors. 

x9 + x7 + x6          | x5 + x4 + x2 + 1 
x9 + x8 + x6 + x4     x4 + x3 + 1 

x8 + x7 + x4 
x8 + x7 + x5+ x3 

x5 + x4 + x3 
x5 + x4 + x2 + 1 

x3 + x2 + 1 = r(x) 

⊕

⊕

⊕

Table 2 – Syndromes for first order errors 
Error 

polynomial e(x) 
Syndrome s(x) 

x9 x4  + x3               + 1 
x8 x4          + x2 + x  
x7         x3         + x + 1 
x6 x4  + x3  + x2 + x + 1 
х

5 x4           + x2       + 1 
x4 x4  
x3         x3 
x2                 x2  
x                         x  
1                               1 
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 Questions 
3.1 What codes are named as error-control codes? 
3.2 Explain error-control code encoder and decoder destination. 
3.3 What is redundancy and code rate? 
3.4 What is the Hamming distance between code words, code distance, and 

error order? 
3.5 How to explain detecting and control code ability? 
3.6 Explain error detecting and error correction general principles. 
3.7 What codes are named cyclic?  
3.8 How to write code word as polynomials? 
3.9 Explain cyclic codes encoding and decoding principles. 
4 Home task 
4.1 Study "Error-control codes" from the compendium of lectures and literature 

[5, p. 137...150; 2, p. 287...297]. 
4.2 Write down the number of brigade N + 8 in the binary number. Considering 

these number as information word, length k = 5 on the encoder input, form cyclic 
code (10, 5) code word, using generate polynomial g(x) = x5 + x4 + x2 + 1. 

4.3 For three errors words е1(х), е2(х) and е3(х), given in table 3, calculate 
syndromes, and then, using table 2, define decoder work result. If the calculated 
syndrome is wrote in table 2, a decoder inverts code word symbol which is 
considered as error. If the calculated syndrome is absent in table 2, a decoder does not 
change code word symbols which are decoded. Code word on the output of decoder 
is code word on decoder input first k symbols. 

Table 3 – Polynomials of errors for the home task 
Number of 

work place N 
e1(x) – 

single error 
e2(x) – 

doubled error 
e3(x) – 

triple error 
1, 11 x9 x9 + 1 x7 +x6 + 1 
2, 12 x8 x6 + x8 x9 + x8 + x4 

3 x7 x6 + x x9 + x8 + x2 
4 x6 x9 + x x7 + x6 + x 
5 x5 x7 + x6 x8 + x7 + x2 
6 x4 x7 + x4 x8 + x7 + x3 
7 x3 x9 + x2 x8 + x7 + x 
8 x2 x6 + x3 x8 + x6 + x 
9 x x7 + x2 x9 + x6 + x4 
10 1 x8 + x x8 + x6 + x4 

 

4.4 Draw a shame error-control code encoder and decoder including in the 
digital communication channel structure.  

4.5 Be ready to discuss key questions. 
5 Laboratory task 
5.1 Acquaintance with a virtual model. Start the program 4.2, using the icon 

TT (English) on a desktop. It is necessary to study the structure of a virtual model 
using its description in part 6 of this LW. Coordinate the plan of performance of the 
laboratory task the teacher.  
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5.2 Encoding process research. The cyclic code (10, 5) from home task is 
researched. For this purpose: 

- choose in a menu "That do we research?" point "Encoding"; 
- choose a code (10, 5) and set a proper generate polynomial; 
- enter information code word determined in home task. 
Run the program and compare the code word on the encoder output with 

calculated in the home task. 
5.3 Transmission by a communication channel process research. For this 

purpose: 
- choose in a menu "That do we research?" point "Transmission by a channel"; 
- enter zero error word, length п. 
Run the program at the same settings (from item 5.2). Make sure, that in the 

case of zero error code word on the output "Telecommunication channel" coincides 
with code word on the input. 

Set error word, which corresponds to the single error е1(х) from Table 2 for 
your variant. Run the program, compare code words on the telecommunication 
channel input and output and make sure in the telecommunication channel with errors 
correct work. 

5.4 Research of process of decoding. For this purpose: 
- choose in a menu "That do we research?" point "Decoding"; 
- enter zero error word. 
Run the program at the same settings. Make sure, that a syndrome is zeroes, 

and code word on the decoder output coincides with code word on the encoder input. 
Set errors word which corresponds to the single error е1(х)  from the home 

task. Run the program at the same settings in encoder. Make a table with the 
decoding results according to the sample Tabl. 4. 

Table 4 – Cyclic code (10, 5) for the code word N + 8 = 22 (encoder input – 
10110, encoder output - 1011001101) researches results  
Errors word 

е(х) 
Encoder input 

( )xb̂  
Encoder output 

( )xâ  
Syndrome 

s(x) 
Error symbol number, which 

decoder define 

x9 0011001101 10110 х
4 + х3 + 1 x9  

… … … … … 
 

Repeat research of decoding at double е2(х) and triple е3(х) errors from the 
home task. Compare got results with calculations in the home task results.  

Repeat research of decoding at the arbitrary fourfold error е4(х). For certain 
error words, for example, е4(х) = х6 + х5 + х3 + х syndrome is zeroes, that confirms 
that a code (10, 5) has code distance dmin = 4.  

5.5 Other cyclic code (n, k) research.  
Teacher gives a cyclic code (n, k). Repeat research item 5.4. 
6 Description of laboratory model 
Laboratory work is executed on a computer in the HP VEE environment with 

using a virtual model, the block diagram of which is resulted on the figure 2. A model 
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is intended for cyclic codes: (7, 4), (10, 5), (10, 6), (11, 7), (12, 8), (13, 9), (14, 10), 
(15, 11), encoding and decoding processes research.  

A model allows research consistently encoding, transmission by a 
telecommunication channel and decoding. It contains the marked by a red color 
options which a student must set. The blue color windows are used for the model 
work results indication. 

Coder forms the permitted code word by the r = n – k checking symbols 
calculation and add to them information symbols. The got code word is indicated on 
the encoder output. 

For the transmission by a telecommunication channel implementation it is 
necessary to enter errors word, length п, consisting of 1 and 0. The symbol 1 is set in 
those positions, which an error at the transmission by a telecommunication channel 
must be in. In a telecommunication channel code word from encoder is added with 
combination of errors by XOR. The got code word is indicated on the 
telecommunication channel output. 
 
 
 
 
 
 
 
 
 
 
 
 

A decoder divides code word on his input, on a generate polynomial. A 
window under a decoder shows the code word syndrome (in binary presentation); a 
window left shows the decoder decision about the error symbol number (all codes 
researched in a model allow to correct single errors). 

If a syndrome is zero, a decoder gives message "No errors". If a syndrome is 
not zero, on the syndromes table a decoder determines the error symbol number and 
"Error in хр " message, where р is error symbol number. 

The syndromes table contains only п syndromes which correspond to п 
symbols of the decoded code word. The possible syndromes number is equal 2n – k. If 
n < 2n – k – 1, a syndrome which is absent in the syndromes table can appear in a 
decoder. In this case a decoder gives out the message "Unknown error". 

If a decoder defined the error symbol number it gives out the message "Error in 
х
р", it corrects this symbol and takes away n – k last symbols. If syndrome is zero or 

it is absent in the syndromes table, a decoder only takes away n – k last symbols. The 
information code word appear on the decoder output. 

7 Requirements to the report 
7.1 Title and objectives of laboratory work. 
7.2 Results of the homework execution  

( )xb̂  b(x) Setting of a(x) Encoder Transmission 
channel  

Decoder 

Indicator of ( )xb̂  Indicator of ( )xâ  

Setting of e(x) 

Indicator of b(x) 

Indicator of 
s(x) 

Indicator of error 
symbol number 

Figure 2 – Virtual model block diagram 

( )xâ  
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7.3 Results of execution of items 5.2...5.5 of laboratory task. 
7.4 Conclusions on every item of the laboratory task, with analysis of the got 

results (coincidence of experimental and theoretical information). 
7.5 Signature of student about the laboratory work execution, teacher’s 

signature for the laboratory work defend with estimation and date. 
 

LW 4.3 Noise immunity of block error-control codes researching 

1 Objectives 
1.1 Study of block diagram of (n, k) block error-control codes decoder with the 

errors correction. 
1.2 Experimental researches of noise immunity of (n, k) block error-control 

codes with the errors correction. 
1.3 Calculations of coding gain (CG) from data of experimental researches of 

noise immunity of (n, k) block error-control codes. 
2 Main positions 
2.1 Correcting ability of error-control codes. Correcting ability of error-

control code is expressed by the guaranteed correctable errors value qcor ≤ (dmin – 1)/2 
and by the guaranteed detectable errors value qdet ≤ dmin – 1, where dmin – code 
distance. 

Noise immunity of transmission system with a error-control code is described 
by the рd = f (Eb/N0), where рd is bit error probability at the output of the decoder, 
Eb/N0 is the ratio of signal energy expended on the transfer of one bit to the power 
density of noise (SNR) at the input of the demodulator.  

Frequently the noise immunity of the transmission system with a error-control 
code it is convenient to describe by the gain coding (CG) value (see below).  

2.2 Syndromes decoding. For (n, k) block error-control codes today the 
syndromes decoding is basic for a discovery and errors correction. 

Syndromes method of errors correction is based on a simple rule: on the 
syndrome of code word the errors location is determined. Therefore under the 
syndrome of code word understand the result of decoder calculation on the set rules 
of number s = (s1, s2, …, sr), r = n – k, which testifies to the errors detected and 
determines their placing (configuration) in code word. In binary codes a syndrome is 
written down in the binary number system, that its digits s1, s2, …, sr take on a value 
0 and 1. 

A zero syndrome specifies on that the received code word is permitted, that the 
detected errors are not present. Nonzero syndrome is corresponding to some errors 
configurations. Thus possible such situations: 

− the syndrome received by calculation corresponds to some configuration of 
errors which meets at q ≤ qcor, in this situation the decoder "corrects" errors, but 
correction not true, and, most likely, the quantity of erroneous symbols in a code 
word grows; 

− the syndrome received by calculation does not correspond to any of 
configurations of errors which can be at q ≤ qcor, in this situation the decoder 
"refuses" decoding and passes such code word on an output with errors.  
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Thus, the syndromes decoding of binary codes is taken to the calculation of 
syndrome and search that or by other method errors configurations which errors are 
corrected on. Correction of an error in some binary symbol is reduced to its inversion 
and carried out by addition of an erroneous symbol with 1 on the module 2.The 
generalized block diagram of syndromes decoder is resulted in figure 1. 

In the scheme of figure 1 “Syndrome analyzer” is the most complex device. In 
it on the calculated syndrome errors configuration, on which then the errors corrected 
with corrector, is set. As a syndrome can be calculated only after reception of all code 
word (block), for the errors correction in a code word needed to delay on n symbols, 
which is carried out n-digit shift register. After establishment of errors configuration 
an analyzer symbols of the decoding word are consistently "pushed" from a shift 
register, and from an analyzer symbols "1" act in those moments of time, when it is 
necessary to invert erroneous symbols.  
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3 Coding gain 
Coding gain (CG) shows how many decibels lower required SNR at the input 

of the demodulator in a transmission system with a error-control code, rather than in a 
transmission system without error-control code for a given value рd.  

Let SNR (dB) at the input of the demodulator in a transmission system without 
error-control code 2

b1h , and in a transmission system with error-control code 2
b2h  with 

the same symbol error probability. Then, if the signal to noise ratio expressed in 
decibels,  

 CG = 2
b1h  –  2

b2h . (1) 

We remind that a ratio 2b2h  is determined as  

 2
b2h  = 

0

b

N

E
 = 

0

bs

N

TP
, (2) 

where Ps/N0 is ratio of average power of signal to noise power density at the 
demodulator input; Tb is duration of information binary symbol (bit) at the 
transmission system input. 

Figure 1 – (n, k) block code syndromes decoder generalized block-diagram  
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CG can be calculated in theory or measured experimentally. For example 
(figure 2), in a transmission system is required to ensure the symbol error probability 
p = 10–5. In a transmission system without error-control code SNR 2

b1h  = 9,6 dB is 

required, and in a transmission system with error-control code SNR 2
b2h  = 6,3 dB is 

required, then CG = 9,6 – 6,3 = 3,3 dB.  
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Figure 2 – Graphs of noise immunity: р – transmission system without error-
control code; рd – transmission system with error-control code 



 

 

77 

If CG > 0 dB (on figure 2 at рd < 10–2), such error-control code allows to 
decrease the signal/noise ratio at the demodulator input, if CG ≤ 0 dB, such error-
control code does not allow to decrease the signal/noise ratio at the demodulator 
input, its application is worsened by quality of reception. 

Dependencies р = f ( 2
bh ) and рd = f ( 2

bh ) can be obtained experimentally by the 
method described in the laboratory work 3.3. In this laboratory we study noise 
immunity of transmission system with error-control code using a model of digital 
communication channel with errors (figure 3). 
 
 
 
 
 
 
 

The order of experimental determination of the CG when using the model of 
digital communication channel with errors. 

1. A series of values of error probability at the channel output р in a certain 
range of values, such as, р = 10–1–10–3 is setting (model of the digital communication 
channel with errors should allow such settings). For each value of p the error 
probability at the output of the decoder is determined рd.  

2. Must be specified modulation type which is used in digital communication 
channel. For transmission system without error-control code and with this type of 
modulation р = f ( 2

bh ) is plotted. Figure 2 this dependence is built for BPSK and 
QPSK signals.  

3. Graphing рd = f (
2
bh ) is produced in the following order. For one of the 

values of p on plot р = f (
2
bh ) determine the 2

bh  value, which for the transmission 
system with a error-control code will be equal to the ratio signal/noise  

 2h  = 
0

s

N

E
 = 

0

ss

N

TP
, (3) 

where Ts is duration of the binary symbols at the modulator input in a transmission 
system with error-control codes (the output of the error-control code encoder). As 

nkTT /bs = , so in a transmission system with an error-control code knhh /22
b = . In 

the presentation in decibels )/( lg 1022
b knhh += . This conversion takes into account 

the fact that at the error-control code encoding in nonredundant code word n – k 
checking symbols are introduced which lead to a decrease in a duration of all 
symbols in the code word and a corresponding decrease in signal energy. 

In the resulting value 2bh  and the corresponding value рd point depending is set 

рd = f (
2
bh ). The same procedure is repeated for all other values of p. Points are 

connected by a smooth curve and get dependence рd = f (
2
bh ).  

Figure 3 – Experimental studies of noise immunity transmission system  
with error-control code 
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4. At a given level of error probability determine the values 2
b1h  and 2

b2h . CG is 
calculated by the formula (1).  

Example calculation of points on the graph рd = f (
2
bh ). (31, 26) code is used; 

BPSK modulation; error probability р = 5⋅10–3 and рd = 10–5. On the value of p and 
the graph in figure 2 h2 = 5,5 dB is defined. Calculate  

2
bh  = 5,5 + 10lg(31/26) = 6,3 dB. 

Lay off the point schedule рd = f (
2
bh ), whose coordinates is (6,3; 10–5).  

3 Questions 
3.1 Specify the methods of error-control codes decoding which are known by 

you. 
3.2 What is syndrome of code word and what purpose is it used for? 
3.3 What (n, k) block error-control codes the syndrome decoding is mainly 

used for? 
3.4 What function is executed by the analyzer of syndrome in the decoder of 

error-control code? 
3.5 How errors are corrected in code words of error-control code? 
3.6 How is the syndrome of code words calculated for cyclic codes? 
3.7 That does determine CG of error-control code? 
3.8 What parameters of error-control code does CG depend on? 
4 Home task 
4.1 In the workbook, prepare a graph р = f (

2
bh ) for BPSK and QPSK signals 

(redraw from figure 2 or calculate). 
4.2 Use the graph to calculate the CG, provided by error-control block (n, k) 

code, at a given probability pd according to table 1.  
4.3 Prepare to the discussion of questions. 
Table 1 – Error-control code parameters for home task calculations 

Brigade 
number 

Error probability at 
the decoder output 

pout  

Error probability at 
the decoder input pin 

Code rate 
Rcode = k/n 

1 10–4 5·10–2 0,5 
2 10–5 2·10–2 0,6 
3 10–4 10–2 0,7 
4 10–5 5·10–3 0,8 
5 10–4 2·10–3 0,9 

 

5 Laboratory task 
5.1 Acquaintance with the computer model of decoder. For this purpose to start 

the program, using an icon “Laboratory works” on a desktop, and then folder of 
TT-2. To master a conducting method research of correcting ability of (n, k) block 
code, that by introduction of basic data, start of the program, reading of results. To 
bring the chart of researches to the LR report. 
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Table 2 – Parameters entered in the study 

Denotation Comments 
n Code word length (bit) 
k Number of information bits 

dmin Code distance 
g(x) Generate polynomial 

prob_err p – decoder input error probability 
num_rand N – number of code words 

 

At each new dimension prob_err and num_rand must be changed. 
5.2 Experimental research of correcting ability of decoder. The experimentally 

determined values р and рd and recorded in the table 4. Research is conducted for 
codes (n, k): 

- brigade №1: (31, 26), (23, 12) codes; 
- brigade №2: (30, 25), (22, 11) codes; 
- brigade №3: (29, 24), (21, 10) codes; 
- brigade №4: (28, 23), (20, 9) codes; 
- brigade №5: (27, 22), (19, 8) codes. 
On the teacher task can be researched other (n, k) codes for n ≤ 32. 
Generator polynomials for researches get out from table 3. 

Table 3 – Generator polynomials of cyclic codes (n, k) 
Order n – k Generator polynomials 

4 x4 + x3 + 1;   x4 + x + 1 
5 x5 + x2 + 1;   x5 + x3 + 1; 
11 x11 + x10 + x6 + x5 + x4 + x2 + 1;   x11 + x9 + x7 + x6 + x5 + x + 1 

Example of polynomial input:  х^4+х^3+1  
 

During research to set error probability at the decoder input р < 0,01 on 
diminishing (5–6 points) until error probability at the decoder output рd will not attain 
a value, near by 10–5. 

Table 4 – The results of measurements (specify code) 
Decoder input Decoder output Measu-

ring 
number 

Code 
words 

number N Ner. in p Ner. out pd 
Fault in  

decoding 
1       
2       
3       
4       
5       

Symbol error probability at the decoder input and output are calculated on 
formulas:  

 p = 
nN

N

⋅
iner     and    pd = 

kN

N

⋅
outer , (4) 
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where Ner in and Ner out – number of word errors at the decoder input and output in 
times of supervision. 

According to Table. 4 shall be calculated dependence р = f (
2
bh ), then the CG is 

determined at levels pd = 10–4 and pd = 10–5.  
6 Description of the computer program of (n, k) code correcting ability 

research 
6.1 Decoder. For researches the realized programmatic model of Meggitt 

decoder of cyclic (n, k) code is for n ≤ 32, the block diagram of which is resulted in a 
figure 3. A Meggitt decoder is a tabular decoder in which entered the following of 
decoding [8]:  

1. Syndrome analyzer includes pre-computing “Table of syndromes” that 
contains all errors configuration that can be corrected by this (n, k) code and their 
corresponding syndromes.  

2. For the accepted code word a concrete syndrome is calculated by ordinary 
rule is dividing of the accepted code word on generator polynomial. Calculator 
syndrome is based on an (n – k)-bit shift register. Syndrome is the remainder of the 
division.  

3. The "Syndrome analyzer" is performed by a search in the tables of the 
calculated concrete syndrome, reading of errors configuration and presentation of the 
proper sequence of "1" to "Errors corrector" for the errors correction in the accepted 
code word. 

6.2 Research of correcting ability of (n, k) code. Conducted on a block 
diagram, resulted in a figure 4. 

As a generator of errors symbols is used generator of pseudo noises numbers 0 
and 1, in which probability 1 equals probability of error of input symbols р. 

Meters fix: 
- number of code words which are analyzed in times of supervision – 

decod_suc, let's designate N;  
- number of code word errors at the decoder input – input_err, let's designate 

Ner. in; 
- number of code word errors at the decoder output – output_err, let's designate 

Ner. out; 
- number of decoding fault (the calculated syndrome is not found in tables) – 

decod_err. 

6.3 Order of work with computer program.   
1. Measuring of noise immunity is conducted the start of file of meg32n.exe 

(it is in a folder “Laboratory works of TT-2, laboratory work 4.3). 
2. On the requirements of the computer program necessary for work basic 

data are entered. 
3. In the program foreseen also step-by-step mode of operation - parameter  /t 

in a command line and conclusion (seal) of table of syndromes is a parameter  /s in a 
command line. 

4. Probability of error can be set, both in an ordinary and in scientific format, 
for example, 0,025 or 2.5e-2. 
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Intermediate results indicate on a display each 3 seconds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7 Requirements to the report 
7.1 Name of laboratory work. 
7.2 Objectives of laboratory work. 
7.3 Results of the home work. 
7.4 Block diagram of researches, list of devices (indicators) which are used in 

LR. 
7.5 Results of implementation of items 5.2, 5.3 laboratory task (measured and 

calculation numerical values etc.). 
7.6 Conclusions on every point of laboratory task, in which to give the 

analysis of the got results is a coincidence of theoretical and experimental 
information etc. 

7.7 Date, signature of student, visa of teacher with an estimation on the 100-
mark scale of evaluation. 
 

LW 4.4 Studying of coding and decoding by error-control convolution 
codes 

1 Objectives  
1.1. Studying of convolution codes codecs structure. 
1.2. Researching of convolution code control ability. 
2 Main principles 
2.1. Definition and description of convolution codes. As is known, in the 

case of block codes the sequence of information symbols (in future bits) is divided on 
separate blocks which in future are encoded independent of each other. Thus, the 
coded sequence is the sequence of independent code words of equal length.  

Figure 4 – Block-diagram of (n, k) code correction ability researching 
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For convolution codes a principle is other. The coding process is continuous 
and symbols on the encoder output (so-called code symbols) are one semi-infinite 
code word. 

Convolution codes (CC) are the special case of continuous codes. They got the 
name through its property. The sequence of code symbols on the encoder output is 
calculated as mathematical operation of digital convolution of information bits on the 
input with encoder pulse response. 

The structure of convolution code encoder and process of coding (decoding) 
are set by the generator polynomials g (i), where i = 1, 2, …, n; D is delay. As a rule, 
polynomials are written down briefly, three binary coefficients of polynomial 
designated as one octal number. For example:  

g(1) = 7 means g(1) = 111, i.e. g(1) = D2 + D + 1 or 1 + D + D2;  

g(2) = 21 means g(2) = 010101, i.e. g(2) = D4 + D2 + 1 or 1 + D2 + D4. 
2.2 Main parameters of convolution codes. Code rate is determined as 

Rcode = k/n, where k is the number of encoder inputs, n is number of encoder outputs. 
Code rate shows that on k input information bits encoder gives out n code symbols. 

Constraint length ν characterizes encoder memory and equals the number of 
memory cells which encoder contains. 

Encoder pulse response is the response of CC encoder on one information bit 
as “1”, which passes through encoder from the i-th input to the j-th output, encoder 
has kn pulse responses. 

Free distance of code df is the minimum Hamming distance between the 
sequence of zero code symbols and all other sequences of code symbols. Free 
distance df characterizes the correcting ability of CC, i.e. number of errors qcorr, which 
are corrected by CC on length of the accepted code symbols sequence N = (5–6)⋅ν. 
Connection between df and qcorr is the same, as for code distance of block error-
control code: 

 df  ≥ 2 qcorr + 1.  (1) 

2.3. Convolution codes encoder. Convolution code encoder contains the 
clocked memory register for saving of certain number of information symbols and 
transformer of input information sequence to output code sequence. Block diagram of 
CC (7, 5) encoder (code rate Rcode = 1/2) is shown on the figure 1. Encoder contains a 
shift register with the three memory cells D, modulo-two adder ⊕ and multiplexer 
MX. Inputs of modulo-two adders connected with those cells of register, in which the 
coefficients of generator polynomials equal to unit. 

Information bits а on the input of register. In every clock interval on the adders 
outputs code symbols b(1) and b(2) appear, i.e. on one information bit there will be two 
code symbols on output. 

For mathematical description of convolution encoding, calculation of digital 
convolution, a few methods is used: state diagram, tree graph and trellis diagram. The 
trellis diagram which is considered below is most evident. 
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2.4. Trellis diagram of CC. The trellis diagram of CC called the directed 
graph with structure of "cells" which repeat periodically. Every cell consists of 
columns with the identical number of nodes connected by graph branches (figure 2, 
a). Between procedure of the СС encoding and trellis diagram there is univocal 
correspondence which is prescribed by such rules: 

- every node corresponds to the encoder internal state, as a rule, it is content of 
two last memory cells in shift register; 

- every branch represents encoder transition from one state to other after new 
information symbol reception in encoder: upper branch correspond to 0, and lower to 1; 

- when encoder passes from one state to other, on every branch links this states 
initial code symbols which appear on encoder output are written down; 

- the sequence of branches which is determined by the sequence of information 
bits and identically gives the code symbols sequence proper to it is called a path on a 
trellis; 

So, for CC (7, 5) encoder represented on a figure 1, a trellis will have four 
states (00, 10, 01 and 11) and it is shown on the figure 2. The evident rule of 
calculation of initial code symbols on branches showed on figure 3 for the encoder 
initial state 00 and information bits 0 and 1 on the input. The calculation of initial 
code symbols of other branches is similar as for other encoder states.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Block diagram of convolution code (7, 5) encoder 
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Figure 2 – Trellis diagram of convolution code (7, 5):  
а – trellis diagram cell; b – trellis diagram evolution on time  
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Using trellis diagram code free distance df is calculated as weight (quantity of 
units) of shortest nonzero path which begins and ends in zero state (on a figure 2 for 
CC (7, 5) it is the dotted path). 

Example 1. For CC (7, 5) encoder represented on a figure 1, find the sequence 
of code symbols, if sequence of information bits a = 01101000. Accept that in the 
initial state a register contains zeros.  

Solution. Coding sequence is given in table 1, on its base on figure 4 
represented trellis diagram with coding path, under coding path understand the 
sequence of branches which passes during coding process. 

Table 1 – Coding process of information bits sequence 01101000, CC (7, 5) 
Output code symbols in 

moment tk k 
Information 

bit ak 
Encoder 
contains 

Encoder state 
in moment  

tk – 1 

Encoder state 
in moment 

tk ( )1
kb  ( )2

kb  

1 0 000 00 00 0 0 
2 1 100 00 10 1 1 
3 1 110 10 11 0 1 
4 0 011 11 01 0 1 
5 1 101 01 10 0 0 
6 0 010 10 01 1 0 
7 0 001 01 00 1 1 
8 0 000 00 00 0 0 

 
 
 

Figure 3 – Convolution coding process for code (7, 5)  
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2.5. Decoding of convolution codes. Typical decoding algorithm, based on the 
probabilistic characteristic of the received signals, is the Viterbi algorithm [9–12], 
that uses the structure of certain trellis diagram of CC.  

On any k time interval the Viterbi algorithm provides decoding stages given 
below.  

1) Calculation of distance between received symbols and possible symbols, 
which correspond to all branches of trellis, trellis branches are included in every state 
in the moment tk. This distance is called the metric of branch. 

2) Construction of decoder trellis diagram, which similar to encoder trellis 
diagram, on which represent all possible branches with their metrics. The number of 
branches and correspond path on a trellis increases at the increase of trellis cells 
number, which are in point (the decoding depth, which depends on the capacity of 
decoder memory and takes value less then 10 constraint lengths).  

3) Collapsing of trellis diagram on every step of its construction. Collapsing of 
trellis diagram it is procedure of exclusion of one from two paths which are included 
in every decoder state, according to the rule: a path with a greater metrics is 
excluding, a path with a less metrics stays (if metrics are identical, any path is 
excluding). Metric of path (or metric of state of trellis Мij, where ij  is number of 
decoder state) represents total metric of branches which a concrete path in the 
moment tk passes to the concrete state. Collapsing of trellis diagram is necessary for 
decreasing of decoder paths number and decreasing of memory capacity. 

4) Finding of optimum path on trellis after ending of decoding and making 
decision about transmitted information bits. A path with the less metric is optimum is 
called as surviving path. Decoding is carrying out on a surviving path: if it passes on 
the upper trellis branch, information bit is "0", lower – "1".  

On the Viterbi algorithm we will consider procedure of decoding on a concrete 
example for a binary symmetric channel, demodulator gives out the "hard" decision 
as the sequence of code symbols with errors b̂ . 

Example 2. Decode using Viterbi algorithm, sequence of the received code 
symbols: b̂  = 00 11 00 01 00 10. Convolution code (7, 5). Take, that at the beginning 
of decoding the decoder register is in the zero state.  
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Figure 4 – Encoder trellis diagram for CC (7, 5) and coding path  
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Note. The received sequence b̂  is the fragment of sequence of encoder code 
symbols from example 1.  

Solution. Procedures of decoding 1) and 2) on the Viterbi algorithm, combine 
into one during construction of decoder trellis diagram, resulted on figure 5 for the 
time moments t0 – t4. The metric of branches on any moment k is calculated as 
Hemming distance between a pair of received code symbols ( ) ( )21 ˆˆ

kk bb  and code 
symbols of trellis branches. The calculated distance (0, 1 or 2) is shown near every 
branch on the figure 5. From figure 5 it is visible that from the moment t2 the number 
of branches is equal to eight in every trellis cell, and the number of possible paths 
increases exponentially with the increase of decoding depth. 
 
 
 
 
 
 
 
 
 
 
 
 

Procedure 3) collapsing of trellis diagram resulted on a figure 6 for the time 
moments t3 and t4. 

Notes. 1. For moments t1 and t2 there no collapsing of trellis diagram, because 
in any node which are taken up, one branch enters only. 

2. It is obvious, that in errors absence the metric of one path will be 
zero, because this path repeats the path of encoding. 

On a figure 6, a for the moments t2 and t3 shown all branches and paths, and on 
a figure 6, b only with a less metric. As none from the metrics of paths (states) equals 
to zero, it means that in the received sequence of code symbols error is present. 
Making decision about a surviving path is impossible, as two paths (states) have 
identical metrics.  

The process of decoding in a trellis must be continued. For moments t3 and t4 
collapsing of trellis diagram is shown on a figure 6, d. Again in nodes in the moment 
t4 paths with less metric are chosen. For the node 11 there are two paths with the 
metric М11 = 3, one is chosen arbitrarily. 

If to complete decoding on trellis, a path with the metric М01 = 1 is optimum, 
shown on a figure 6, d by bold dotted line, and the decoded sequence will be 
â = 011010, which coincides with the sequence of information bits in example 1. 
Conclusion: the error is corrected.  

 
 
 

Figure 5 – Fragment of decoder trellis diagram, CC (7,5)  
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2.6 Soft decoding. It is simple modification of the just expounded procedure. 
At the soft decoding samples from the output of the demodulator matched filter act 
on the input of decoder. On the first stage of decoding it is needed to replace the 
Hamming metric on the Euclid metric. All other stages of decoding do not change. So 
complication of decoder realization with the soft decision not strongly differs from 
complication of decoder realization with the hard decision. It is one of important 
advantages of Viterbi decoding algorithm. 

3 Questions 
3.1 Give definition of the error-control codes in general and convolution in 

particular. 
3.2 What is free distance of convolution code and what does it characterize? 
3.3 Give definition to CC encoder pulse response? 
3.4 What is CC constraint length? 
3.5 Give definition for metrics of: branch, path and state.  
3.6 How is it possible to describe work of convolution code encoder? 
3.7 How to build the CC encoder trellis diagram? 
3.8 Explain the principle of Viterbi decoder work for the CC decoding. 
3.9 What surviving path on a trellis determines and how to find it? 
3.10 What is decoding depth and how it is determined? 
 
 

Figure 6 – Surviving path choice: а – metrics comparison in moment t3; b – surviving paths in 
moment t3; c – metrics comparison in moment t4; d – surviving paths in moment t4 
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4 Home task 
4.1 Study item 2 this LW. 
4.2 CC with generator polynomial g(i) = (7, 5) is given. Write down number 

(12 N + 900) in binary number system, where N is number of your work place.  
Code the got binary sequence by CC (7, 5), build the trellis diagram of this CC 

encoder and mark the encoding path on it.  
On trellis diagram (figure 2, b) define free distance of code (7, 5) and 

multiplicity of corrected errors of this code. 
4.3 Be ready to answer questions. 
5 Laboratory task 
5.1 Acquaintance with a virtual model. Start the program 4.4, using the icon 

"TT (English)" on the desktop. In researches the sequence of information bits 
(symbols) from home task uses.  

5.2 Research of coding process. It is necessary to enter information bits a got 
in the home task on the CC encoder panel. Using button “Step by Step” to carry out 
the coding process (while the button will be active). Write into report the sequence of 
information bits, content of encoder register and initial sequence of code symbols on 
every step. Make sure in the rightness of the home task result. 

5.3 Research of decoding process at errors absence. It is checking of decoder 
work ability if on the decoder input the sequence of code symbols, which got during 
encoding (item 5.2). For this purpose it is necessary to press the button “Step by 
Step” on decoder panel while it will be active. After that push the button “Decision” 
and surviving path will appear. Compare it with encoding path and make a 
conclusion about decoder work ability. 

5.4 Research of decoding process at presence of errors. At first it is necessary 
to clean the memory register using the button “Clear” on the panel of CC decoder. 
Put a single error into one of the first six received code symbols by pressure of mouse 
left button on code symbol in received sequence, in which you want to put an error. 
Repeat the procedure described in item 5.3. Put into report the fragment of got trellis 
diagram for the first four steps of decoding (t0 – t4). Draw all possible collapsed paths 
with their metrics, surviving path and recovered sequence of information bits. Make 
conclusions about error correction. 

5.5 Research of decoder control ability. For this purpose put two errors in a 
row and separately into any received code symbols and repeat item 5.4, i.e. decode. 
Put three errors in a row and separately and decode received code symbols. Make 
conclusions about order of corrected errors. 

Record research results as it is shown below. Error code symbols and initial 
information bits are underlined. 

 

Received code symbols 11 01 00 01 01 00 10 00 10 11 00 11 00 
Decoded information bits 1 0 1 0 0 1 1 1 0 0 1 1 0 

 

6 Description of laboratory model 
A laboratory model is performed on a computer program. Convolution code is 

set by the generator polynomials g(i) = (7, 5). 
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The work of virtual model manages by the left mouse button. Putting of errors 
is makes by the inversion of symbols from "Received". For the repeating of encoding 
process it is recommended to clear of encoder memory by using button “Clear” on 
the CC encoder panel. Similar for a decoder to push button “Clear” on the panel CC 
decoder. There is also the global clearing which is recommended to use before new 
research. For this purpose it is necessary to push the button “Clear All” on a panel 
Code Parameters. 

7 Requirements to the report 
7.1 Title of laboratory work. 
7.2 Objectives of laboratory work. 
7.3 Results of the home work performing. 
7.4 Encoder block diagram that is used in LW. 
7.5 Results of performing of laboratory work items (trellis diagrams, numerical 

values of code sequences, etc.). 
7.6 Conclusions on every item of laboratory task, in which to make the analysis 

of the got results (coincidence of theoretical and experimental information, control 
ability of CC (7, 5), etc.) 

7.7 The date, signature of student, visa of the teacher with mark. 
 

ATTACHMENT D. DICTIONARIES  

D.1 English-Russian dictionary 

additional symbol дополнительный символ 

algebraic description алгебраическое описание 

algebraic ring алгебраическое кольцо 

allowed code word разрешенная кодовая комбинация 

antipodal signals противоположные сигналы 

a posteriori probability апостериорная вероятность 

band expansion factor коэффициент расширения полосы 

binary code двоичный код 

block code блоковый код 

Bose-Chaudhuri-Hochquenghem code код Боуз-Чоудхури-Хоквенгема (БЧХ) 

bound граница 

branch metric метрика ветви 

channel capacity пропускная способность канала 

checking relation проверочное соотношение 

code constrained length длина кодового ограничения 

coded modulation сигнально-кодовая конструкция 

code rate  скорость кода 

code with even number of units код с четным числом единиц 



 

 

90 

code word кодовое слово (кодовая комбинация) 

code word weight вес кодового слова 

coding algorithm алгоритм кодирования 

complexity сложность 

compound estimation составная оценка 

continuous code непрерывный код 

convolutional code сверточный код 

cyclic code циклический код 

cyclic property циклическое свойство 

detect  обнаружить  

directed graph направленный граф 

double error двукратная ошибка 

dynamic programming динамическое программирование 

element-by-element reception поэлементный прием 

encoder state состояние кодера 

(energy) coding gain 
энергетический выигрыш (от 
применения) кодирования 

error ошибка 

error-control code корректирующий код 

error correction capability способность исправлять ошибки 

error detection capability способность обнаруживать ошибки 

error vector вектор ошибки 

errors configuration конфигурация ошибок 

even number of unit symbols четное число единиц 

exhaustive search исчерпывающий поиск 

fidelity точность, верность 

finite state machine автомат с конечным числом состояний 

forbidden code word запрещенное кодовое слово 

free distance свободное расстояние 

full search algorithm алгоритм полного перебора 

Galois field поле Галуа 

generator matrix порождающая матрица 

generator polynomial порождающий многочлен 

Goley code код Голея 

Hamming code код Хэмминга 

Hamming distance расстояние по Хэммингу 
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Hamming upper bound верхняя граница Хэмминга 

hard decision жесткое решение 

hardware аппаратное обеспечение 

identity matrix единичная матрица 

information block of symbols блок информационных символов 

length of encoder shift-register длина регистра кодера 

linear code линейный код 

linear combination линейная комбинация 

majority decoding мажоритарное декодирование 

majority element мажоритарный элемент 

minimum distance of the code  кодовое расстояние 

module-2 addition сложение по модулю 2 

multiplicity of errors  кратность ошибки 

noise immunity помехоустойчивость 

nonlinear code нелинейный код 

nonsystematic code несистематический код 

odd number of units нечетное число единиц 

orthogonal ортогональный 

parity check matrix проверочная матрица 

path metric метрика пути 

primary code первичный код 

prime number простое число 

probability decoding methods вероятностные методы декодирования 

protective interval защитный интервал 

Reed-Solomon code код Рида-Соломона 

reception in a whole прием в целом 

redundancy избыточность 

row строка 

quantization квантование 

sequential decoding последовательное декодирование 

single error однократная ошибка 

soft decision мягкое решение 

software программное обеспечение 

state diagram диаграмма состояний 

state metric метрика состояния 
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survived path выживший путь 

syndrome decoding синдромное декодирование 

systematic code  систематический код 

threshold decoding пороговое декодирование 

time-space coding 
пространственно-временное 
кодирование 

transposed matrix транспонированная матрица 

trivial estimation тривиальная оценка 

trellis diagram решетчатая диаграмма 

turbo code турбо код 

Viterbi algorithm алгоритм Витерби 

D.2 Russian-English dictionary 

автомат с конечным числом состояний finite state machine 

алгебраическое кольцо algebraic ring 

алгебраическое описание algebraic description 

алгоритм Витерби Viterbi algorithm 

алгоритм кодирования coding algorithm 

алгоритм полного перебора full-search algorithm 

апостериорная вероятность a posteriori probability 

аппаратное обеспечение hardware 

блоковый код block code 

Боуз-Чоудхури-Хоквенгема (БЧХ) код 
Bose-Chaudhuri-Hochquenghem(BCH) 
code 

вероятностные методы декодирования probability decoding methods 

верхняя граница Хэмминга Hamming upper bound 

вес кодового слова (комбинации) code word weight 

выживший путь survived path 

граница bound 

двоичный код binary code 

двукратная ошибка double error 

диаграмма состояний state diagram 

динамическое программирование dynamic programming 

длина кодового ограничения code constrained length 

длина регистра кодера length of encoder shift-register 

дополнительный символ additional symbol 

единичная матрица identity matrix 
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жесткое решение hard decision 

запрещенная кодовая комбинация forbidden code word 

защитный интервал protective interval 

избыточность redundancy 

информационный блок information block 

исчерпывающий поиск exhaustive search 

квантование quantization 

код Голея Goley code 

код Рида-Соломона Reed-Solomon code 

код с четным числом единиц code with even number of units 

код Хэмминга Hamming code 

кодовая комбинация (слово) code word 

кодовое расстояние minimum distance of the code  

конфигурация ошибок errors configuration 

корректирующая способность adjusting ability 

корректирующий код error-control code 

коэффициент расширения полосы band expansion factor 

кратность ошибки error multiplicity 

линейная комбинация linear combination 

линейный код linear code 

мажоритарное декодирование majority decoding 

мажоритарный элемент majority element 

метрика ветви branch metric 

метрика пути path metric 

метрика состояния state metric 

мягкое решение soft decision 

направленный граф directed graph 

нелинейный код nonlinear code 

непрерывный код continuous code 

несистематический код nonsystematic code 

нечетное число единиц odd number of units 

обнаруживать detect 

однократная ошибка single error 

ортогональный orthogonal 

основание кода  size of a code alphabet  
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поле Галуа Galois field 

первичный код primary code 

помехоустойчивость noise immunity 

пороговое декодирование threshold decoding 

порождающая матрица generator matrix 

порождающий многочлен generator polynomial 

последовательное декодирование sequential decoding 

поэлементный прием  element-by-element reception 

прием в целом reception in a whole 

проверочная матрица parity check matrix 

проверочное соотношение check relation 

программное обеспечение software 

пропускная способность канала channel capacity 

простое число prime number 
пространственно-временное 
кодирование 

time-space coding 

противоположные сигналы antipodal signals 

разрешенное кодовое слово allowed code word 

расстояние по Хэммингу Hamming distance 

решетчатая диаграмма trellis diagram 

сверточный код convolutional code 

свободное расстояние free distance 

сигнально-кодовая конструкция coded modulation 

синдромное декодирование syndrome decoding 

систематический код systematic code 

скорость кода code rate 

сложение по модулю 2 module-2 addition 

сложность complexity 

способность исправлять ошибки error correction capability 

способность обнаруживать ошибки error detection capability 
составная оценка compound estimation 
состояние кодера encoder state 

строка row 

транспонированная матрица transposed matrix 

тривиальная оценка trivial estimation 

турбо код turbo code 
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циклический код cyclic code 

циклическое свойство cyclic property 

четное число единиц even number of unit symbols 
энергетический выигрыш (от 
применения) кодирования 

(energy) coding gain 
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