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1 PURPOSE, STRUCTURE AND CLASSIFICATION
OF ERROR-CONTROL CODES

1.1 Error-control codes in transmission systems

In theory of modern transmission systems the cemalie attention to coding
methods of information is given.

Coding — the operation of an identification of the symbols groups of
symbols from one code by symbols or groups of sysitwoother code. Necessity of
coding arises, first of all, from requirement toaptla message form to the given
communication channel or to any other device intenir transformation or storage
of the information. The typical block diagram ofdal telecommunication system is
resulted on figure 1.1. The source produces messalgieh it is necessary to transfer
through the channel of a telecommunication systdinean be discrete messages
(data, cable messages etc.) or continuous mesgqagesch, audio, TV, etc.),
transformed to the digital signals. The real messagpntainredundancy and for
matching of the information source with a transimiftchannel usually the source
encoder is used. Together with decoder they forarcgocodec. The source coding
methods were studied in ModuMe2. The primary goal of any telecommunication
system is the information transmitting with givemndelity and rate These
requirements are in contradict and increasing fofrmation rate leads to decreasing
of the noise immunity and transmitting fidelity. &gree with well known Shannon
theorems, as is wished considerable increase elitfidbf information transfer if a
transmitting rate through channB,, does not exceed the channel capa€ity
basically is possible. It is reached by using eféhough long error-correcting codes.
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Figure 1.1 —Typical block diagram of a digital telecommunicatisystem

Error-control code is the code which allow taletect and correct errors
arising from messages transition in the commuroecathannelsWith this purpose
the redundancy is entered into structure of anr@waecting codesCodecof error-
control code (channeincoderanddecode)) is shown on figure 1.1.

In real conditions the length of a code is limitagdadmissible complexity of
coding/decoding devices. Therefore the result frasimg of error-control codes
depends on the code parameters and restrictiorsatimation of the channel codec.



The modern theory offers a wide set of error-cdnttodes, various on
structure, construction principles aador detection and correction capability. In
the subsequent chapters the important classes of cthdes with effective
coding/decoding algorithms are considered.

1.2 Classification of error-control codes

The error-control codes can be classified to varisigns. The structure of
codes classification is resulted on figure. D& a way of formation the error-control
codes are subdivided on block and continuous cdémsnation of theéblock codes
provides splittingof transferred digital sequenceso separate blocks which move to
encoder inputTo each such block on an encoder output theregponds the block
of code symbols which work is defined by a rule ednas thecoding algorithm.
Formation of thecontinuous codesis carried out continuously in time, without
division into blocks as defines the name of thidecolass.

Block codes historically have been discovered d@ndied earlier, at beginning
of coding theory development. In a class of cordusicodes it is necessary to note
the convolutional codeswhich exceean characteristics of the block codes, and, for
this reason, find wide application in a transmissgstems.

Many codes carry names of scientists which haveodered and investigated
them. Such example is the continuous Fink-Hagelbargevdecoffered by Soviet
scientist L. Fink and German expert R. Hagelbargeng time this code was in the
literature as indicative example of a continuoudecwith simple encoding/decoding
algorithms, but after elaborating the convolutiooatle has given way to them. For
the description of procedures of coding/decodint lixbock and convolutional codes
usually use an adequate mathematical apparfatushe description dinear codes
the well developedinear algebra is used Formation ofnonlinear codesis made
with application of nonlinear procedures. Such apph allows to construct in some
cases nonlinear codes with a number of specialgptieg. In the error-control coding
theory the problem afalisation complexity of encoding/decoding procedure and in
particular decoding procedure is important. Thaefeome classes of codes
(Hamming codesose-Chaudhuri-Hochquenghem codes, Reed-Solomass azid.)
have been developed together with the decodingitilgts connected with structural
properties of these codeénd on contrary the elaborating of a new decoding
algorithms for convolutional codes (Viterbi algbm, sequential decoding, threshold
decoding) initiated searches of corresponding codesinctive advantages of error-
control codes induced searches of new approachesliaation of ways to increase
of noise immunity and efficiency of transmissionstggms. On figure 1.Zew
methods of encoding/decodingcoded modulation, turbo-codes, time-space coding)
are noted accordingly.

Questions

1.1 What is a purpose of the error-control codiggiriansmitting of a digital
signal?

1.2 What elements does the codec of error-contidé¢ consists?

1.3 What is difference of coding procedures betwbBkitk and continuous
codes?
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Figure 1.2—Structure of the code classification

Tasks

1.1 Represent the block diagram of telecommuninagistem and describe a
purpose of its separate blocks.

1.2 Give classification of error-control codes byays of formation and
structural properties.

1.3 Give the scheme of inclusion of the encoderdewbder of a error-control
code in the digital transmission system. Explapugrose of scheme elements.

2 PARAMETERS OF BLOCK ERROR-CONTROL CODES

There are the following parameters of the blockesodlhesize of a code
alphabet mis the number of the various symbols used by angodn practice the
codes withm = 2 are used. These dmary codes For construction of binary code
word binary alphabet with symbols {0, 1} is used. Wide practical usinfjlmnary
codes is defined for a reason of simplicity of lpjnbbgic elements construction in
codec memory devices. The block code consiststaffdexed length vectors named
code word. Thecode word lengthis the number of elements in the vector and is
denoted witm.



Redundancyin the block code words can be entered as follbwson a block
encoder input the block afformation symbols a = {a;, a,, as, ..., &} arrives. By
the block codingode wordon the encoder output can look like:

b ={a;, a, as, ..., a, C1, C2 C3, ...,Cn i,

where €, G, C3, ..., Ch) — additional symbols Values of additional symbols are
defined bycoding rules Such code is called aystematic codeEach codavord of
lengthn symbols contains in systematic codesk information symbols. Thus to an
information symbols are added= n — k additional symbols which are depend on
information symbols and used by the decodiogdetection and correction of an
errors.By nonsystematic codesnformation symbols in an explicit form in a code
word do not contain.

The total quantity of thpossible code word®f the block error-control code is
defined by the formula:

M=m'=2" (2.1)

For a possibility of detection and correction of emnors thesé/l code words
not completely use for an information transférom these 2code words we may
selectM, = 2 code wordsK < n) to the forming a code. Thus block lofnformation
bits is mapped into a code word of lengtfselected from the set &, = 2 code
words. These words named alBowed code word as they are allowed for an
information transfer. We refer the resultiblpck code as an(n, k) code and the
ratio

Kk
IR’codezﬁ (2.2)

Is defined to be theode rate
The rate of a error-control code is defined alsohyratio

Reode = (I0:Mo)/(logoM). (2.3)
In nonredundancy codeM, =M (or k =n) and the rate is
Reode= 1. (2.4)

Quantity of the allowed code words is eqhil= 2

In the error-control code possible words are usgccompletely i.eMy < M. It
illustrates redundancy of a cod®edundancyof a systematic codk,q is arelative
share of the number of additional symbals- k in a code word on its length
symbols:

Kred = 1 _&odez (n—lQ/n. (2.5)
For simple (nonredundancy) code k, andKeq = 0.
Exercise 2.1As it is known, in a binary channels under the esiand
distortions there are an errors in form of trapsisi of a transferred symbols to an
opposite symbols. For example, by transfer of amyrh transition (30) is possible

and accordingly transitions {01) are possible also. Consider the possibilitiethef
binary error-control code construction intendedtfansfer of messages with symbols
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from alphabet with volume d¥l,, and allowing by the receiving to detect the clghnn
errors. Specify the encoding and decoding methdédsich code. For the developed
algorithm of a coding define rate and redundancsuch codes.

Instructions. The providing of an errors detection in the traitted code
words will be possible if for the allowed code wertb give a forms which are
changed by errors in symbols of this words. Theteat®n of errors (i.e. decoding)
can be made by check of conformity of received waal this in advance known
forms. At the first development times of the erdetecting codes the maintenance in
the transmitted allowed words of «even number af symbols» was considered as
simple way. So theCode with even number of units shas been invented.

Decision. Consider a construction variant of the binary eygttic code
intended for transferring letters, chosen from dlghabet of volumé. According
to above considered rule the information black {a;, a,, as, a4, ..., a} of each
word should contairk binary symbolsg,. The total quantity of information blocks
should be precisely equal to volume of the soutpbabetM,. That isthe equality
Ma = 2 guarantees transfer of each source symbol andattiesponding to it code
words of systematic code. The quantity of unitaminformation blocks depends
from a primary simple code and can be both even aidl It appears that for
realization of encoding and decoding of such codedw it is convenient to use the
procedure module-2 additiorn» [3]. This procedure definéisesimple way to find of
the parity of units number in a code word. To ewveg information block we will
attribute one additional symbal € 1) so that the quantity of units in again formed
word waseven Encoding it is made in such sequence:

1 Let information blocla is represented by a primary code—~101010;

2 By consecutive module-2 addition of the primaogle symbols defines an
additional symbot = 1;

3 We form allowed code words, finishing an additibsymbol to the block of
information symbold = 1010101. It is visible, that the coding rulecerried out,
since the number of units remains even,;

4 By the other form of a primary code it is receiva,—~101011,c = 0 and
b, =1010110;

5 It is obvious, that any transition (¢0) or (0—1)) changes number of units
in the received words. If by decoding to use proceaf calculation of units number
it is possible to detect errors.

Remark. It appears, such code allows to detect noteanyrs configurations.
The simple analysis shows, that two-multiple chaofiesymbols cannot change
parity and such errors in this code are impossibleletect. It is recommended to
make such analysis for other variants of error doatibns independently.

The rateand redundancy of a code with even units numberbgnglarameters
(k,r =1,n=k+r =k + 1) are defined by formulas:

Kk ~n-k_ 1

k
Reode=—=—— andK,gg=——=—.
ode n k+1 red n k+1
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It is visible, that for the big lengths of the infieation blockk>>1 rate of such
code is close t&R..qe = 1, and redundancy by transfer for example lettesm the
Russian text with alphabet voluriv, = 32 k = 5)will be small K, =1/6.

Questions

2.1 What is the reason of wide application of bjnaodes in transmission
systems?

2.2 Is the placing of additional symbols in frorittbe block of information
symbols in a systematic code possible? Will it ggaredundancy of a code?

3 ERROR DETECTION AND CORRECTION CAPABILITY OF BLOC K
CODES

Let's establish dependence of detecting and cargectapability of the block
codes from a code parameters. It is useful to dens binary code with parameters
n= 3,k = 2. All words of this codeM = 8) it is possible to divide by sign «parity of
units number in a code words» on two groups:

— words with even number of units,

— words with odd number of units.

The code constructed by this principle named “Cuodiln even number of
units” is considered in thiéxercise 2.1.

Example 3.1A binary code ifn = 2,n = 3) with even number of units.

In table 3.1 the full set of binary words & 2,n = 3,M = 8) is divided into a
set of the allowedode words NIy = 4) containing words with even number of units
(including the word 000 (number 0 — even)), andgéeof the forbidden words with
odd number of unitsTheir total quantity is equal to differenbgopig =M — Mg = 4.

Table 3.1 —Code with even number of units

Full set of a wordsM = 8):
{000, 001, 010, 011, 100, 101, 110, 111}

Theallowedcode words The forbidderwords
(with even number of units), (with odd number of units),
Mo=4. Mrorbia = M — Mg = 4.
{000, 011, 101, 110} {001, 010, 100, 111}

Code parameters: code rédgq.=1/2,
code distancd;, = 2,
code can detecjye; = 1 error

Allowed code wordsare used for an information transfer through chh(are
allowed for transfer).

Forbidden code words are not used for an information transfer through
channel (are forbiddefor transfer).

In the coding theory the concept «distance betwsmie words» plays the
important role. Everyone binary block error-contaide are characterized by a
parameter code distance. The code distahgeis one of the major parameters of
error-control codes.



11

The code distanceof the binary error-control codé, is the minimal
Hamming distance [3] between the allowed code wolat consider a pairs of
allowed code words from table 3.1. It is possildeestablish that for this code a
minimal distance igl,, = 2. Such distance allows to detecsiagle errorsin the
channel. If the transmitted code wordis (1 1 0), and channel error is characterized

by a word érror vector) e = (0 1 0) the received word with error on the channel
exit is defined by module-2 addition:
b=110,
e=010,
b=(@0e=100.

From this it is visible, that the symbol «1» in agrrvector e changesa
corresponding symbol in transmitted wdrdo an opposite symbol.

For the characteristic of quantity of channel esragnter concept the
multiplicity of an errorsMultiplicity of an errorg is a quantity of the channel errors
within a codeword. For example, for words from &Bl1 the error vector variants
with multiplicity g = 1 are:e = 100, 010, 001. And the double errors are: 11Q, 01
101.

The code capability to detect and to correct obrmsrrdepends from code
distanced .

Error detection is the fixing by decoding o&n error presence of certain
multiplicity in received wordb .

Error correction is the detectiomy decoding of an errors in certain symbols
of received words and their subsequent correction.

According to these definitions error-control codese subdivided into
following classes:

1 Error-detecting codeswhich detect a channel errors.

2 Error-control codes which correct a channel errors amaimed in literature
as codes with direct correction of errqlise. with errors correction by a code
methods).

The relation between code distartig, and error control ability of a code we
will establish on an example of code with even namiif units (see table 3.1). It is
convenient to use a geometrical representationod€ avords on figure 3.1. Let's
represent a code words by set from three symbgly, (z) and values of these
symbols will choose from the binary alphabet {0, It}is possible to represent all
possible code words by the points in the Cartesymtem with coordinates,(y, 2).
Thus words will form tops of a three-dimensionabeuOn figure 3.1 these tops are
marked as follows:

— By the sign "*" notes the allowed code words,

— By the sign %" notes the forbidden code words.

It is visible, that code structure is tha¢tween the allowed code words are
forbidden words. They form theprotective interval». Therefore the action of any
single error translates any allowed word to theesdorbidden words. This property
leads to sucllecoding ruleof a code with even units number and detectionngf a
single errors: reception from the channel outputhef forbidden code words allows
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to assert that in the channel there wassangle error. It is easy to be convinced that
this code does not allow to detect double erroecgbse«protective interval» is
nonsufficien}. By induction it is possible to prove, thamy binary code with even
number of units allows$o detect any errors if their multiplicity is odatichdoes not
detectany errorsf their multiplicity is even. The concept of «appective interval» is
easily applicable for a study of the relation beaweode distance and code ability to
correct of an errordf the minimum distance between allowed code wdasle
distance) isdmi,, that as is shown from figure 3.2 the protectinteival contains
(dmin - 1) forbidden wordsind for "transfer" of each allowed word to neaadstwed
word it is necessary by errors to makig{— 1) "steps". Clearly, that all errors with
multiplicity g=1, 2, 3, ..., dmnin — 1) can be detected.

Error1 00 Error010

yi
001 101
011 111
Error00 1
000 100

@ >

o X
Y./ 010 110

Figure 3.1 —lllustration of a code correction ability

From here follows, that if code distance of a bjnawde isd,,i, code ability to
detect of errorswith multiplicity gqe¢is defined as:

Uget = (dmin _1) (31)

Let's take advantage of similar representation dstimationsof ability to
correct of errors. On figure 3.3 layout of the aléml code word®,ow.1 andbgew.o IS
shown.Between them are allocated},(, — 1) the forbidden words. Let's divide all set
of the words on two allowed subset as is shown figwe 3.3. If for example the

received wordb is allocated into «allowed decoding subset of adwmen.» that
during the decoding becomes decision about tratisgnibf the wordbgow.1, i.€.
thereby the error transitions of wota,,.1 to the nearesforbidden words are
corrected. It is similarly possible to explain eroontrol process by the transmission
of the word b,owo. It is visible, that distance of each allowed silis @i, — 1)/2
(by dnin is 0dd). It defines code error control ability.rleven valuesl.,i, the distance
of each allowed subset isdf(./2) — 1], that also defines error-control ability/ @
code.
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Protective interval — error detection zone

N dmm

Figure 3.2 —To illustration of an error detecting ability

Thus, if code distance of a binary error controfleas d., code ability to
correct of errors is defined by expressions:

Amin _1, if (Cin — 0dd) andoggyr < df;i

Qcorr < N —1, if (dnin — €ven). (3.2)

bmmw1 dmm

NMWz

-W [/% = \\%-

Figure 3.3 - lllustration of an error-correcting ability

4 ALGEBRAIC DESCRIPTION OF BLOCK CODES

For description of the linear block codes use aherattical apparatus of the
general algebra [3]. By the block coding form cedwdsb = (b, b,, ...,b,). Choose
symbols ofbinary codes from th&alois field GF(2). The set of words forms-
dimensional vector space over figB(2). For elements of this space (vectors) the
addition and multiplication operations and operatd multiplication of a vector and
also scalar product of a vectors are defined. Seewtors subset of the spaBg
which satisfy to the vector space axioms orgarszespacé\y.

The binary block code with block lengthand Z allowed code words is called
asthelinear (n, k) codeif its code words fornk-dimensional vector subspaég of
n-dimensional spac®,. SubspaceA, is generated by theasis from k linearly
independent vectors, which organize the lines generator matrix of the f, k)
code:

do Jdoo do1 do2 = don

G = 9:1 _ 9?0 9:11 9?2 gj;n. 4.1)

Ok [9x,0 9k1 9k,2 - Gk,n
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It is possible to present code words in slggtematic form forming separately
informational part from k numerals ana&heck part from r = (n — k) additional
numerals.

The generator matrix of a systematic code lookes lik

1 0 0 0 9in-r J1.n
0 1 0 0 gon-r Jd2.n
Gsyst:“ kP‘ =0 0 1 o : : (4.2)
0 0 YO 1 Gkn-r o 9k,n
[ P

Matrix Ggys: containsidentity matrix I, which defines the information part of
code words and matriP defines theadditional symbols Transition to the
systematic form is made by a linear combinationoafs from the matrix (4.1). Such
transition is illustrated by a following example.

Example 4.1 Matrix transformation of the nonsystematic code.eTh
nonsystematic block code (7,4) is set by the géoenaatrix:

gld 1 0 1 1 0 1 O
g2y O 2 0 0O 1 0 1
G = . 4.3
nonsyst 9B3< 0 0 1 0 0 1 1 (4.3)
94 0 O 0 1 1 1 1

Using a method of the linear combination of rowsirmatrix (4.3) we will

transform it to the systematic form (4.2). For fargh of a systematic generator
matrix the rows of an initial matrix (4.3) it is weenient to present in the form of a
table 4.1, in which rowgl,s 92, 93.,s andg4,s are shown.

Table 4.1 —Rows of the nonsystematic generator matrix

0lns 1 0 1 1 0 1 0
02 0 1 0 0 1 0 1
03 0 0 1 0 0 1 1
O4hs 0 0 0 1 1 1 1

Using modulo-2 addition rules the elements of theses by exhaustive search

of rows in various combinations it is establishieat by the most suitable variants for
forming of matrixes rows for the systematic code fatlowing:

9lsyst= (O1ns U 93hs U 94ng), 92yst= (02ns U 93n9, 93syst=03hs Fdsyst= G%hns
The outcome of an evaluation of the matrixes roWthe systematic code is

reduced in table 4.2.



Table 4.2 —The matrixes rows of the systematic code

15

Olsyst 1 0 0 0 1 1 0
02yst 0 1 0 0 1 0 1
03yt 0 0 1 0 0 1 1
g4syst 0 0 0 1 1 1 1
The matrix of the systematic code in the standanchflow given:
1 0 0 O 1 1 O
G 01 0 0 1 0 1 (4.4)
¥t 0 01 0 0 1 1 '
O 0 0 1 1 1 1
The concept weight of a code word plays the impdntale in the block codes

theory.

Hamming weight wy of the binary code word is equal to an amountrfsun
a code word.

Example 4.2An evaluation of Hamming weights of a code words.

We will define values of Hamming weights for thedeavords by table 4.3:

Table 4.3 —The Hamming weights of code words

Binary code words Weighv(b;)
b, 1 0 1 1 0 1 4
b, 0 1 0 0 0 1 2

Structure of a generator matrix allows to define thinimum distance of the
block codesThis position is illustrated by following exercsse

Exercise 4.1Definition of the code distance by its generatotrma

Generator matrixes of the error-control codes h@)(4r (4.4) are set. Show
how to define code distance of a codes by knowmigdor matrix.

Instruction. By elaborating of the method for definition of eodistance it is
necessary to consider that zero combinatipn (0000000) is also allowed.

Decision. It is above noticed, that allowed code words aBneéd by linear
combinations of a generator matrix rows. As zeradmg, = (0000000) also is
allowed, and rows of a generator matgk g2, g3, g4 also are the allowed words
then Hamming distances from these words to a zesal v, it is defined their
weightsdy (gi, bo) =wx(gi), i = (1,..K). Further it is necessary to find the minimum
weight, i.e. the minimum distance. Such conclusiom here follows.

Code distanceas the value of minimum distance between allowete coords
is defined by théeast weight of rowsof generator matrix.

Example 4.3Definition of Hamming weights of the generator matows of a
systematic code.

Define values of row weights of a generator mafroon the Example 4.1
(table 4.2). Outcomes of evaluations are reducedhle 4.4.
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Table 4.4 —The Hamming weights of generator matrix rows f@tamatic code

The generating matrix rows Weightg(gi)
01syst 1 0 0 0 1 1 0 3
02yt 0 1 0 0 1 0 1 3
93yst 0 0 1 0 0 1 1 3
94syst 0 0 0 1 1 1 1 4

The analysis of data makes definition of the mimmdistance of systematic
code from table 4.4y, syst= min{wy (gi)} = 3.

Exercise 4.2Define by the same way the code distance of noasyaic code
from an Example 4.1 (table 4.1).

Instruction. The statement about code distance of block coolm fExercise
4.1 is fair both for systematic nonsystematic codes

Decison. We will apply a technique from the Example 4.3. cdmes of
evaluations the weights of rows are reduced iretdls.

Table 4.5 — The Hamming weights of the generator matrix roves f
nonsystematic code

Generator matrix rows Weightswy(gi)
9lns 1 0 1 1 0 1 0 4
92ns 0 1 0 0 1 0 1 4
93hs 0 0 1 0 0 1 1 3
94hs 0 0 0 1 1 1 1 4

The analysis of these data makes definition of tiaimum distance of
nonsystematic code from table 4y, .s= min {wy (gi)} = 3. The received outcomes
allow to state that systematic and nonsystematesdrom the Example 4.1 on the
value of code distance are equivalent.

Thus, thecode distanceof a block code is &east weight of nonzero rows
from the codegenerator matrixThe above noted dependence between the minimum
distance of block codes and weights of nonzero roavs be used for forming of a
generator matrix of block code with the beforeha®d code distance. This is
illustrated by outcomes of Examples 4.4 and 4.5.

Example 4.4A generator matrix of a code with even number afsun

Let's form the generator matrix of the systematickf code which detect a
single errors dyec = 1). Such code should have code distatige= Quet + 1 = 2.
Hence the nonzero rows of generator matrix of ttude should have minimum
weightwy = 2. According to the standard form (4.4) each wiwsystematic code
matrix already contains a numeral 1 (defined bystinematrixl,), the weight should
be increased the weight of every rows to 2 havohded in last numerals every rows
(as a part of submatri®) a numeral 1.

For example the generator matrix such (7,4) codtéskn= 4 will look like
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0 0
1 0

, 4.5
0 1 (4.5)

o O O

1
1
1

o O o
o O O

O 0 1 1 O

and unit in submatrif can be in any place of a line.

Exercise 4.5Generator matrixes of codes which can detect daerbes.

Form generator matrix of the systematic code whanh detect double errors.

Instruction. From the theory it does not follow that such coderé can be
only one. It is recommended to consider at firgtiaciple construction of a matrix at
least one code and then on this basis to give gkretion and to find matrixes of
several more codes.

Decision. The code can detect errors with multiplicify: = 2 should have the
minimum distanceal,, = et = 2 + 1 = 3. Hence rows of generator matrix ofhsuc
code should have minimum weigh; = 3. From general view of generator matrix of
a systematic code (4.2) follows what to get suclglteit is possible by choice of
rows of the additional symbols submatixand one of row from this submatrix
should have the weight equal 2. Following variarftsubmatrixP are possible:

0 1 1 1 1 0 1 1 1
1 1 0 0 1 1 1 0 1
P1= . P2= , P3= , (4.6)
1 0 1 1 1 1 1 1 0
1 1 1 1 0 1 0 1 1

which differ by rows permutations. As the minimurh each weight rows of these
matrixes is equal to 2, they can be used for fagnaihsystematic codes with minimum
distanced,,, = 3. In particular, the generator matrix of onswth codes looks like:

1 0 0 0 0 1 1
O 1 0 0 1 1 O
G= : 4.7)
O 0 1 0 1 0 1
O 0 0 1 1 1 1
Questions

4.1 Codes with generator matrixes (4.3) and (4a4ehthe identical minimum
distance. What is it explained by?

4.2 Are error-control properties of a block codeie@ by permutation of
columns of a generator matrix?

4.3 Is it the only one method of transformationmfrmonsystematic generator
matrix to the systematic code matrix for formingaeths considered in the Example 4.17?

Task

4.1 Follow method stated in Exercise 4.3 form gatwer matrix of the
systematic code which correct triple errors. Is ttode the only one?
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5 CODING AND DECODING OF BLOCK CODES
5.1 Coding and decoding of block code

In the center of the block coding theory is theaapt of a generator matrix
(4.1) and (4.2)if a= |ag, &, ...,a — row-matrix of a primary code tlveding rule of
a block codes defined by the@roduct

b =aG, (5.1)

wherea = |ay, ay, ...,a& — row-matrix of primary code at encoder input,

b = |by, by, ...,b,| — row-matrix of block code word at encoder output

G — generator matrix of linean,(k) code.

Example 5.1The encoder of code (7,4).

The encoder structure of a systematic code (7 d¢fimed by generator matrix
(4.4) and coding rule (5.1). If on encoder inputhis symbols row of a primary code
a = (ay, a, ag, a4) then symbols of allowed code word on its output

b = (b, by, bs, by, bs, be, b;) are defined by following equalities:

by =ay, b, =ay, by =as, by = ay,
b5=a1|]a2|]a3Da4, b6=31Da2Da4, b7=a1|]a3Da4. (52)

On figure 5.1 the structure of encoder of systernadde (7,4) with equalities
(5.2) is shown.

g d > b]_ 7))
Q_ L
c @ b, =
— o
5 % bs <
S & >h, ©
LIJ S
D —> b5 g
o
H > bs ©
y A A m

O by

Figure 5.1- Encoder structure of systematic code

By the decoding of block codes thbkeck relations establish with use of the
parity check matrixH which space of rows isrthogonal to space of rows of
generator matrix, that is:

G-H'=0. (5.3)

Here T— an index a transposition.

If generator matrix is set in the form (4.2) forfoemance of a orthogonality
condition theparity check matrix should look like:

H= (P, (5.4)

whereP'— transposed submatriXof generator matriG,
I .x — identity matrix a sizen(— k) x (n —K).
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Exercise 5.1The parity check matrix of a systematic code (7,4).
The generator matrix of systematic code (4.7)1s se
1 0 0 0 O

1
Geysi= O 1 0 0 1 1

O 0 1 0 1 O
O 0 0 1 1 1

According to rule (5.4) form parity check matrixtbfs code.
Solution. Sequentially we discover the submatrixes entenrtg the formula
(5.4). The transposed submatrix by size-K) x k:
0O 1 1

PT=1 1 o0 1,
1 0 1
The identity submatrix by size ¢ K) x (n —Kk):
1 0
| n-k = 0 1
0O 0 1
We unite submatrixes in the uniform parity checknwaof code:
O 1 1 1 1 o0
Heyst=1 1 0 1 0 1 : (5.5)
1 0 1 1 0 0 1

e = N =

From orthogonality condition of generator and paciheck matrixes of linear
code (5.3) follows that each allowed word of lineade generated by ruke= alG
also satisfieso the orthogonality condition:

b-H'=a-G-H' =0. (5.6)
By transmission througthe channel code symbols are distorted. The redeive
words look like b= b O e whereb = (bo, by, ..., by), and an error vector
e = (eo, €1, -..,en). By decoding calculatesyndrome vector
S=b-H" = (S0, Si, ..., Sria)- (5.7)

The syndrome depends only on an error vector:
S=b-H'=pOeH =b-H Oe-H".
As the condition of orthogonality -HT=0 is satisfied, theyndromeis equal:
S=e-H' (5.8)

From here the simple rule of the error detectidloves:
1 If the syndrome S= 0 then an error vectar = 0, i.e. in the channel there
wereno errors and the received word belongs to set of the allosget words.
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2 If S# 0 word b contains errors. It is possible by the syndrome symbols to
define a configuration of the error vector.
This principle underlies syndrome decoding.

5.2 Syndrome decoding of the block codes

The pprinciple of syndrome decoding we will conside an example of
simple block code.

Example 5.3.The syndrome decoder of systematic code (7, 4).

According to a rule (5.8) for realization of thengyome decoder it is necessary
to form thetransposed parity check matrix of a code (7, 4). The parity check
matrix of this code looks like (5.5). Applying td a rule of a transposition of
matrixes it is received:

0 1 1

1 1 0

0 1 1 1 1 0 1 0 1
Heyst=1 1 0 1 0 1 0; Higl 1 1. (5.9)

1 01 1 0 0 1 1 0 0

0 1 0

0 0 1

It is convenient to note the single errors in traission channel so:
e; = (100...0),e; = (010...0),e3 = (001..0), ...£, = (000..2). (5.10)

In such form the error vecta represents a symbol set framelements in
which on a place with numbethe symbol of an error 1 (at the left) is arranged
on remaining places zero symbols are arrangedr Eeaiors can be presented in the
form of an identity matrix:

e 1 0 0 0 0 O
e, 0O 1 0 0 0 O
0 0O 01 0 0 O
E=|0=1,=0 0 0 1 0 0 O, (5.11)
e 0O 00 0 1 O
0 O 0 0 0 0 1
ey 0O 000 0 0 1

which each row is the single error vector. Usingpearties of identity matrixes, it is
easy to show, that the matrix of syndromes coirscugliéh the transposed parity check
matrix of this code (5.9) is:

S=E-H"=1,-H"=H". (5.12)

By the syndrome decoding of a block code thatrix of syndromes S
coincides withthe transposed parity check matrix of a cétle It is the foundation
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for tabling of syndromesThe more low reduced table 5.1 of syndromes foode
(7,4) is made according to rows of the transpossttypcheck matrix (5.9). In the
table to each vector of an error there correspahésvector of the syndrome
specifying a location of an error symbol in theeiged code word.

Table 5.1 —Syndromes for decoding of the code (7,4)
Syndromes 011 110 101 111 100 010 001
Errors e € €3 €4 3 € €

It allows to formulate ofyndrome decoding algorithm

1 Forming of the transposed parity check matrig obdeH".

2 Tabling of syndromes for decoding af K) code.

3 An evaluation of syndromes (as table 5.1) orcsira of code transposed parity
check matrixH" and error symbols vector of a decoded codewordilby(5.12).

4 Forming of a vector of an errgron the basis of the syndromes table.

5 Error correction in the received code word bylaera=b O e;.

The structure of syndrome decoder of code (7,4)zieg this algorithm is
reduced on figure 5.2. According to rule (5.12)efeed channel symbols move to
modulo-2 adders. The connections with lines of deaisymbols are available there
where in rows of transposed parity check matrix sgmbol 1 is arranged. In the
scheme of syndrome analyzer with according to giwable 5.1 there is
transformation of syndrome vectds= (S, Sy, ..., Svk1) In the corresponding error
vectorse which then move to the error corrector

________________________________

' 1 (%]
a Syndrome analyzer Error corrector ~ 5
] T o = —> a‘l Q.
e R =
£ _ .| = a=b0e > 8, ©
= o T
9 — s Se O
o) L — O —> 33 -8
g - -3 .-
! — © —> a,
) i 18 4 QA
Error vector

il

O 1T —( = Error vectors
: former
(Table 5.1)

Syndrom:

Figure 5.2 —The structure of the syndrome decoder of the ¢6dg

5.3 Majority decoding of block codes

Some block codes suppose realization of simmpdgority algorithm which is
based on a possibility to express each informatade symbol of a word by several
ways through other received symbols. Let's consedgystematic code (7,3):
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1 0 0 1 1 1

G=0 1 0 0 1 1 1. (5.13)
O 0 1 1 1 0 1
To this matrix corresponds transposed parity cimealix:

1 1 1 0

O 1 1 1

1 1 0 1
H'=1 o 0 oO. (5.14)

O 1 0 O

0O 0 1 O

O 0 0 1

Let's designate the received from the channel wautd as
b = (b]_, b21 b35 b4s b55 b6! b7)

As considered code — systematic, first three symitm) b,, bs) are information
symbols Using structural properties of this code, it issgible to form during
decoding both trivial and compound estimatiafignformation symbols which are
presented to table 5.2. On the basis of colummmoty check matrix (5.15) we will
write downverifying parities:

b1|:| b3D b4:O,b1D b2D b3D b5:O,b1D sz b6=0,b2|:| b3|:| b7=0, (515)
which allow to form compound estimatiorfsor example, on the basis of the first
equality from (5.15) followsthe compound estimation of the first information
symbolb; = bs 0O bs. Thetrivial estimation of this symbol also is, actually, this

symbolb; = b;, as a code is systematic. Expressions for otHernmation symbols
are made similarly. They are presented in the fable

Table 5.2 —Majority decoding of block code

Estimations of information symbols

Symbolb, | Symbolb, |  Symbolb;
Trivial
b, =b, "| b, = b, H‘ bs =bs
Compound

b1:b3Db4 b2:b4Db5 b3:b5Db6
b1=b5Db7 b2=b6Db1 b3=b7Db2
b]_:szbe b2:b3Db7 b3:b4Db1

After formation of estimations they move omajority element in which the
decision on each information symbol is taken outthremajority of voices».
For example, if estimations of information symballook like:

b]_:b]_:l, b1:b3Db4:1, b1:b5Db7:1, b]_:szbe:O,
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in which the quantity of estimations «1» exceedangity of estimations «0» the
majority element passes the decision «on the nigjorb, = 1. The compound
estimations enumerated in table 5.2 are calledorisogonal estimations as
incoincident numerals enter into thefihe number of orthogonal estimatidd&nd a
multiplicity of errorsgcor, corrected by majority decoding are in the ratio:

Qeorr. = (N - 1)/2 (516)

The code with generator matrix (5.13) allows tenfoN = 3 orthogonal
estimations and, accordingly, to correct unitarsoes in information symbols by
considerable simplification of decoding algorithith.is necessary to notice that
formation rules of estimations can have cyclic grtips that simplifies decoding
procedure.

Example 5.4Structure of the majority decoder for the code3(7,

Let's generate structure of majority decoder ofec¢d, 3) on the basis of
estimations system from table 5.2. It is easy & 8®&t checks have cyclic properties.

For example, indexes in compound estimations bz [ by, b, = b, O bs and
b; =bs 0 bs change on 1 towards increase. Taking it into actdbe decoder
structure of code (7, 3) realizing majority decadalgorithm looks like shown on
figure 5.3. The decoder consists of the shift tegighe switchboard on the input,
operated from system for block synchronization,esabs of estimations formation
and the majority element. The decoder works aoual At the beginning the
switchboard on an input is established in positd» and decoded code wadod=
(by, by, bs, by, bs, bg, by) is entered in shift register cells. Thus on iispot majority
element the compound estimations defined by talite dperate both trivial and
compound estimations. The decision about transtittirmation symbob; is read
out from an exit of majority element. Then the shiioard is established in position
«2» and there is on one symbol shift of word. Qs $tep, owing to cyclic properties
of estimations the second information symbol anenéxl and the decision on an
information symbolb, is read out from exit of majority element. Furth@ocess
repeats up to reception on a output syntiy@tc.

Block synchronization

lz . .
Cyclic shift of a word
InLl\—o —> » > > > e
1 ,
Record of a word J l—'D<J J
> []
" [
'

Majority element
| Output

Figure 5.3 —Structure of the majority decoder of a code (7, 3)
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Questions

5.1 What kind will a matrix of double errors havel®w will it change in
comparison with a matrix of single errors (5.11)7?

5.2 How are parameters of binary syndrome repragent (see table 5.1)
connected with general number of possible configuma variants which detected
and corrected errors by syndrome decoding?

5.3 How will the syndrome format change if to applynethod of syndrome
decoding to decoding double errors?

5.4 Give the generalized block diagram of syndraleeoder of a blockn( k)
code. What is the function of syndrome analyzer?

Tasks

5.1 By the principles stated in the Example 5.Xes@nt structure a systematic
block code intended for detection of double erwmaith the generating matrix (4.6).
5.2 The generator matrix of a code (7,4) is set:
1 000110

011
L :

o O B

Define allowed code word of this codbeif the word of a primary code on a coder
inputa = (1110) is set.
5.3 Define code distance of a code (7, 4) withreegggor matrix from the Task 5.2.
5.4 Represent a encoder structure of a code (ifljhe same generator matrix.

6 BOUNDARIES OF BLOCK CODES PARAMETERS

The problem of the coding theory is the searchoafes which at given block
lengthn and rateR.,q4e provides a maximum of code distand,g,. Limits of these
parameters are defined by the code boundaries.

6.1 Hamming upper bound

The conclusion of the upper bound is based on nsasb spherical packing
(bound ofspherical packing. At given minimum distance between the allowed code
words dn,i,. The greatest rate can be reached, if the splsaresunding each word

dmin—1 .
will be most densely packedVolume of each sphere is equa}, Cpand the
i=0

number of spheres (number of code words) is eqliaF@ best codehe total
quantity of spheres and number of all possible wd'dshould coincideEquality is
reached fordensely packed (perfect) codesArea of each code word represents
sphere with radiusdf, — 1)/2, and these areas of such codes not bemgseaul
densely fill with themselves aftl-dimensional space of code words. The inequality
from here follows:
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dmin=1 .
KNl <o
=0
After simple transformations it is possible to ngeeobvious expression for
rate of theperfect code

1 dmin_li
1- Rcodezﬁlogz 2 Cn. (6.1)
i=0

The dependence of Hamming upper bound is showniguref 6.1 (curve
«Hamming upper bound»). Hamming bound is fair bimth linear and nonlinear
codes.

6.2 Varshamov-Gilbert lower bound

For block codes it is possible to get tiiarshamov-Gilbert lower bound
which defines the possibility of codes existencéhviioth parameterR;,qe and dpip.
The asymptotic form (for long codes) of this bolouks like:

I:‘>code2 l _H(dmin/n)a (62)

whereH (x) — binary entropy.

Dependence oYarshamov-Gilbert lower bound for binary codes is shown
on figure 6.1 (curve «Varshamov-Gilbert lower bound»). Theurmb guarantees
existence of the codes which performances corresfmpoints arranged at least on a
curve (or above it)Search of the code®nsuring the given minimum distandg,
and high enough rat®.q at n—oo, ensuring at the same time a possibility of
algorithms decoding realization with low complexigyone ofimportant problem of
the theory of coding.

1,C
§ \ \
0,6 ;
\ \\/Hammmg pper boun
0,4 .

\ >é/arshamov-G|Ibert lower bound

0,2 RN
NC | T

0 0,1 0,2 0,3 04 0,9i/2n
Figure 6.1 —Code boundaries of block codes
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6.3 Complexity of coding and decoding algorithms

The using of code control ability depends on dewgdalgorithm. Byfull
decoding use all possibilities to correct errors followifrgm properties of a code.
According to Shannon fundamental theorem the amwotrol codes used for
correction of channel errors should get out longugih. However with growth of a
code word lengtm increases complexity of realization procedures lmdtencoding
and decoding that causes difficulty of practicallimmtion of codecdn the coding
theory of along with estimations of code error-cohtability of can estimate
complexity of realization of encoding/decoding prdareswhich can be realized by
software or hardwareThus as argument of complexity function the lengtha
codewordn should act

Coding complexity of a block code£..q with use of generator matrix,(Kk)
code with a sizek = n2(1 —R.0de Usually estimate in the value which is proporélon
to number of elements of the generator matrix

Ceoa = Nk = N*(1 —Reoud. (6.3)

The decoding algorithms appear more difficult. Amadnem it is considered to
be the most difficulfull-search algorithm according to which the decoder by the
full searchingcompares the received code word with the set qgdaatible words and
the decision on that transmitted from the allowedrdvwhich appears on the
minimum distance from the received worde¢oding by a minimum distanceg
passes It is considered to be complexity of full-searclecdding algorithm
proportional to quantity of all possible code wotdsolume of full search

Cdecod= m'=2" (64)

It is sUSBCar 0o U0pd0oooooooooodordrasa decoding
Increases «as an exponent» with growth of codether@learly, thatfull-search
decoding algorithms are practically difficult for r ealising for long codes

Questions

6.1What is practical significance of use bflamming upper boundnd
Varshamov-Gilbert lower boundor an estimation of block error-control codes
performances?

6.2 To what bound (upper or lower) is it necessargspire by elaborating of
new block codes?

7 IMPORTANT CLASSES OF BLOCK CODES

The big number of codes, various on structure, tcocison principles and
control ability is known. In this Chapter the classof effective block codes with
simple decoding algorithms are considered.

7.1 Hamming codes

Hamming codes(by R. Hamminp— systematic block codes with parameters:
— Code wordengthn=2 - 1;

— Quantity of information symbols=2 —r — 1; (7.1)
— Number of additional symbots=n —k;
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— Minimum distanceél,, =3, r = 2, 3, 4.

Hamming codes perfect codes whicborrect single errors

By parameters choiae= 2, 3, 4 according to formulas (7.1) it is poksiio set
all known binary Hamming codes. For exampler at 3 the parameters of a code
(7, 4) will be the following:

— Length of the code woml= 3;

— Quantity of information symbols= 4;

— Minimum distancél,, = 3;

— Code ratéRyoge= (2 —r — 1)/(2 — 1) = 4/7.

Generator and check matrixes of this code have lbeasidered earlier, in
Section 4.1 (formulas (4.4) and (4.7)). As it hastbnoted earlier, this code allows to
detect double errorsalso. Structures of encoder and syndrome decddd¢amming
code have been considered earlier in Section garés 5.1, 5.2). According to the
formula 3.5 transposed parity check matrix of this code lodées

1 1 0
1 0 1
0o 1 1
H'=1 1 1. (7.2)
1 0 0
0 1 0
0 0 1

7.2 Cyclic codes

The considerable part of block codes belongs toctass of cyclic codes. It
defines a simplification of both encoding and deegdorocedures on the basis of a
cyclical properties of code words. Ib = (b, by, ..., b, — the allowed code word of
the cyclic code so itgyclical shift on arbitrary number of symbols also is the
allowed code word. For example, a wdodl = (b, by, by, ..., b,_1) corresponds to
cyclical shift of a wordb = (b, by, ..., b1, by) On one symbol to the right. Thus
according to a rule afyclical permutation combination symbolb are displaced on
one numeral to the right, and the right numéralakes a place of a left numetal
Properties of the cyclic code are convenient foding, representing code words in
the form of polynomials on degrees of a formal &fale x which factors are symbol
numerals in a code wol(x) =b, + byX + b,X + ... +b,X". Mathematical operations
(addition, multiplication and division of polynonfsa make by rules of polynomials
algebra which stated in Section 5 of manual [3]adfdition and multiplication of
polynomials is made by thenodulo of polynomial (k" — 1) so all possible
polynomials of degreen(— 1) and less organize atgebraic ring of polynomialsR,
with the properties stated in the manual [3]. Fanrstruction of a cyclic code in a ring
R, choose a subset of polynomialsideal |. The polynomial of the minimum degree
g(x) in this subset is called as thenerator polynomial of cyclic code. As generator
polynomials of the cyclic code choose tipeime polynomial. In algebra of



28

polynomials of the whole degree prime polynomiaypthe same role whatrime
number play in the algebra of integers. The detailedgaiflgenerating polynomials
of cyclical codes is reduced in Attachmeénf. Generator polynomials of short cyclic
codes are given in table. 7.1.

Table 7.1 —Generator polynomials of short cyclic codes

I\gA:r)l((laTalljtg (;?)?;r?c?rr?ifal Generator polynomiai(x)
3 XC+x+1 X +x+1
4 X +x+1 X+ +1
5 X+ X+ 1 X+ + 1 X+ + ¥+ 1
6 XX +x+1 X+ +1 XC+HX+xXC+x+1

All polynomials of the ideal corresponding to the allowed code words of
cyclic codes are divided on generator polynorg{@ without remainder that allows
to formulate a following coding rule:

Coding rule of nonsystematic cyclic code looks:like

b(x) = a(x)[d(x). (7.3)
Systematicyclic codes are used often in practice
Coding rule of systematic cyclic cof® k) looks like:

b(x) = a(x)E"™*+ r(x), (7.4)

wherer(x) — remainder of divisiora(x)X"™* on g(x). The coding rule (7.4) can be
realized by suclkoding algorithm for systematic cyclic code:

1 To the word of a primary codeon the right § — k) zeros are added. It is
equivalent to polynomial multiplicatioa(x) onx™™*

2 Producta(x)X"™ divides on thegenerator polynomiagi(x). As a result of
division remainder(Xx) is defined.

3 The calculated remainder is summarized with tlsplaced combination
a(x)@"™* Therefore thallowed code wordis formed ag7.4).

Example 7.2Forming of code word of cyclic code (10, 5).

For the given primary code woed= (10110) we will generate a code word of
a cyclic code (10, 5). Polynomial representatiorth& primary code word will be
a(x) =x* + x* + x. Given cyclic code has parameterss 10,k = 5,r = (n —k) =5.
From the table 7.1 for example the generator patiabg(x) = x° + x* + X* + 1 is
chosen. Next we will fulfill mathematical operatgaccording to algorithm (7.5):

1) a@)@ ™™ = (¢ +3¢ + ) =7 + X’ +xC;
2) Divisiona(x) x™™ g(x) X+ X+ DC+xX +x2+1
O +x+x°+x" X' +x+1
X+ x +x
Uy + X7 + x5+ x°
X+ X+ X
U4t +x%+ 1
X+ X+ 1 =r(X)

3) Polynomial of allowed code word is
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b(x) =a@)E" O r(x) =x° + X +xX* + X +x* + 1.

To polynomialb(x) = x° + x" + x° + X* + x* + 1 there corresponds a word of
binary symbold = (1011001101) in which first four symbols areoimhational and
remaining — additionalProperty of divisibility of allowed code words on the
generator polynomial is widely used for detectibemors in transmission systems.

If b(x) =b(x) +e(X) — the received code word containing the errorsrpmiyial
e(X) =g + ex + ... +&,X" as a result of division it is received:

b (x)/g(x) = a(x) + s(x). (7.5)
Hereq(x) — an arbitrary polynomial ("whole"¥Xx) — the polynomial of a syndrome
equal toremainder of divisiorb (x) ong(x). It has degree not above{k — 1).

By absence of errors a syndros{g) = 0. On syndrome form it is possille
establishalocation of errors in the received code word and to use this infolonat
for decoding with error-correction.

Example 7.3Syndrome decoding of a cyclic code (7, 4).

The word of binary primary code = (1010) as subject to transmission via the
channel with single errors is set. Let's choose djgic code ensuring errorless
transmission this word in these conditions. Frobteta.1l we define, that the task can
be solved by using of the cyclic code with a geteerolynomialg(x) = x° +x* + 1 and
parametersr = 7,k = 4, geor = 1. We will show, how thenethod of syndrome
decoding for correction of single errors is realized. Usialgorithm of encoding
(7.4), we will generate allowed wolgx) = (° + x* + 1). Suppose, that in the channel
the single erroe(x) = x° operates. In this case the received word lookes Bikx) =
b(x)+ ex) =x6 + X' + 1 +x6 = x* + 1. We use a rule (7.5) for determination of a
syndrome. By syndrome decoding on the syndrome forsrpossible to establish an
error location (i.e. to fulfillsyndrome decoding. For this purpose it is hecessary to
makethe table of syndromesand of errors polynomials corresponding to theor. F
compiling of such table it is necessary to takeaatizge of the equality implying
from (7.5) byq(x) = O:

sS(x) = e(x)/9(x). (7.6)
Outcomes of evaluations are presented to tableurder this formula of

syndrome polynomials(x) for various polynomials of an errors. With a vie#
presentation a value of syndromes are presentibe iform of binary words.

Table 7.2 —Correspondence between syndromes and error poigtsom

Error polynomialke(x) | x° X x* X3 X X 1
Syndromes(x) X+x | x+1 p+x+1 ¥+1| X X 1
Binary syndrome |1y | 11 | 111 | 101] 100 010 00!
representation

Let the polynomial of the received from tt A+ 1 C+X+1
channel word look likeb(x) = x* + 1. We will X+x2+x  x+1
fulfill operation of divisionb (x)/g(x): X >):2+ 11

X+ X+

X + X = §(X)
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From table 7.2 it is discovered, that to such syl there error polynomial
e(x) = x° corresponds. Error correction consists of additibthe received code word
with an error polynomial

b()+e(X)=x*+1+xX*=x+x"+1
that coincides with the transmitted allowed waa) = x° + x* + 1. To it there a
binary wordb = (1010101) corresponds, in which first four symsbare errorless
transmitted symbols of primary code= (1010) (as the used code is systematic).

Such codes with cyclic properties find applicatiompractice:

1 Goley code (23, 12) — perfect cyclic code with a generatotypomial
g(x) = + x2+x% +x° +x* +x* + 1 and minimal distanagy,, = 7.

2 Expanded Goley code(24, 12) with minimal distancd,,, = 8 which is
received by addition of the general parity checking

3 Bose-Chaudhuri-Hochuenghem code@BCH codes) which form extensive
class of a cyclic codes. Bynary BCH codes havermpatersn = 2" - 1, fi —k) = mt,
Omin = 2 + 1, wheran (m = 3) andt — any positive integers. Theoretical data on BCH
codes is given in Section 10.4 of the textbook [1].

4 Reed-Solomon codefRS codes) — a subclass of nonbinary BCH codes with
parameters: code symbols are got out of f@k(q), g = 2", m — integer; length of
word n = (g — 1), quantity of information symbols = (n — Aey), the minimum
distancedmnin = (20cr + 1). The extension of a codenc=qor ton = (g + 1) is also
possible.

The effective using of cyclic properties of allowedrds cyclic codes allows
to realize enough simple decoding algorithms. Itcansidered, that realization
complexity of cyclic codes decoding algorithms isscribed by power function
Caecoq= N, Where thek — small number which size depends on concreteridigo
realization. Examples of encoding/decoding algarghare more low resulted. Thus
the mathematical apparatus of sedate polynomigisbeh and the description the
discrete linear filters, is presented in Sectionan8l 6 of the manual [3] is widely
used.

Example 7.4Encoder structure of the systematic cyclic code.

Using algorithm (7.5) we will form the block diagnaof a cyclic encoder
(15, 11), with a generator polynomig(x) = x* + x + 1 which is chosen from table
7.1. The scheme of encoder is resulted on figute 7.

2l =
1

a(x)

I Y b(x)

1
rD—vD—»D—»DAr

Figure 7.1 —Encoder of systematic cyclic code(15,11)
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According to an algorithm (7.4) encoder works dfes. Originally switches
Sl andX2 are in position 1. Eleven information symbolsaatoded prime woréd(x)
are entered at the left into chain of division imgolynomialg(x) = xX* + x + 1.
Simultaneously they through consistently connedaiethy elements arrive on a
encoder exit, forming an information part of thivaked code word(x)X"™ On first
four steps in register cells the divider scheme aorgenerator polynomial the
remainder of a divisiom(x) is formed. Then switcheSL andSX2 are established in
position 2, division process stops, and remainsleead out from an exit of divider
and finished in a checking part of final code wbéd) = a(x)E" ™+ r(x).

Example 7.5Encoder structure of the nonsystenatic cyclic code

Using a coding rule (7.3) for nonsystematic cyclde we will form the coder
block diagram for generator polynomig{x) = x* + x + 1. The coding rule (7.3)
provides multiplication of polynomiala(x) andg(x). Using structure of a multiplier
for polynomials from section 6.1 of manual [3] thecoder scheme we will present
on figure 7.2. The important element of coders sw® for cyclic codes is the
scheme of division polynomial on a polynomial far avaluation of a division
remainder by coding of systematic code by algoriifiid) and also for syndrome
evaluation by syndrome decoding on algorithm (7T%)e structure of such divider
schemes is considered in Section 6.1 from the mgBla

o D= D D ,D_|
" " b()

| ——»

a(x)

Figure 7.2— Encoder of the nonsystematic cyclic code

Questions
7.1 What are the key parameters of Hamming codes?
7.2 What are the advantages of cyclic codes?
7.3 Is it possible to use Hamming codes and cyctiodes for correction of
single errors? What will parameters of these cha&s

Tasks

7.1 The generator matrix of a code (7, 4) is set:
1 0 0 0110

G= O 1 0 0 011
O 0 1 0111
0O 0 0 1101
Define the allowed code word of this cdalé word of simple code on encoder

inputa = (1110) is set.
7.2 The parity check matrix of a code (7, 4) is set
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1011100
H={1110010|.

0111001

Give a functional chart of the decoder of this code

7.4 Consider an example of formation of a allowedecword if a word of a
simple code ig = (10010).

7.5 By analogy to an example of Section 7.1 makeddble of Hamming codes
parameters for values= 2, 3, 4. As these codes have identical minimistadce,
compare them on suitability for realization in greal systems. Formulate the
recommendation and a substantiation of applicaifdhe best (in your opinion) code
from this list.

7.6 For Hamming code recommended in the previouside form generator
and parity check matrixes.

7.7 By the rules stated in Exercise 4.1 define @iminimum distance by a
generator matrix of code from the Task 7.5.

8 DECODING NOISE IMMUNITY OF BLOCK CODES
8.1 Decoding noise immunity of block codes

Let's define of an error probability by decodinghdéck codes in the binary
symmetric channel. We will consider codg K) with minimal distancel,. In such
channel errors in sequentially transmitted codetsim(signals) occur independently
with probability p (decoding in discrete channel without memory). Ahibe
probability of that on length of the blockwill occur a error multiplicityq, will be
equal

P(a)=Cpd(-p)"" 9.

Here CJ — number of combinations fromelements omy. If the code corrects

all errors of multiplicityQcorr = (Amin — 1)/2 fimin — 0dd) and less then the probability of
reception on decoder output the word with not ctie@ errors will be equal

n
Perrword = 2. P(Q)-
0=0corrt1
Hence, the probability of erroneous decoding ofcbklavill satisfy to an
inequality:

n
Perrword < Zcr? pia-p" 9. (8.1)
a=0corr+1

In this expression equality takes place, if thefgmtrcode is usedParities
between parametensk andqg.., are defined by the concrete chosen code.

Expression (8.1) allows to define theper estimation of error probability
of a code words by decoding of block codes in yirymmetric channel without
memory. For calculation of probability of an error concrete information (or
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additional) symbols it is necessary to know usetbdimg algorithm and structure of
an error-control code(in particular, a set of dists from a transmitted code word to
all allowed words). Such data for block codes aepublished in a code tables and
for calculations of error probability decoding obde symbols (information or
additional) use thapproximated formula [1]:

X n
Pd = dmin Yclpda-pa. (8.2)
g=0corr+1

For channels with coherent receiving of signals BRBe probability of an
signal error reception is defined by the formula:

p=Q(V2n,), (8.3)

whereh? = E,/N, — the ratio of the energy spent on transfer offtinary symbok;
to power spectral density of noillg on a demodulator input;

0 2

Q(z):ijexp(—t—)dt— gaussianQ-function (probability integral) which
V2T 2

tables contain the handbooks on probability thesmrgl statistical calculations. For

practical calculations it is convenient to use gyioexact approximatiorn

Q(2) = 0,65 exp[-0,44+ 0,757]. (8.4)

The introduction of redundancy by using of errontrol coding leads to
expansion of a frequency band that occupied wittedasignal. If the frequency band

in system without coding iAFs (Hz), the using of the code with a rdRggek/n
demand£xpansions of a frequency band

AFcode = AFs/Reode (HZ)- (8.5)

l.e. there is an expansion of a frequency ban& jg =n/k time. For codes
with low code rate 1f/k >1) such expansion can appear appreciable. Theréfere

problem of a code choicéy designing of transmission system consists afcseof
acompromise between desirable degree of a noise immty and expansion of a
frequency band of the coded signalUnder formulas (8.2) and (8.3) taking into
account expansion of a frequency band of codedbkaptording to the formula (8.5)
following conclusions allow to draw oefficiency of application error-control
coding:

1 With growth of a code word lengththe error probability of an decodimg
goes down.

2 Codes with the big redundancy (small code Ratg) provide considerable
decreasing of a decoding probability error.

3 By using of error-control codes in transmissigstemsas a payment for
noise immunity increasing is expansion of frequenchand of transmitted signal,
caused by the redundancy entered by coding on size:
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n
Kar =1 (8.6)

8.2 Energy coding gain

For practice the question about expediency of appin of error-control
codesin telecommunications is important. This questisrdecided with the taking
into account the following. Introduction of redumds by encoding changes not only
expenses of a frequency band for transmitting dedosignals, but also demands the
account of a redundancy by energy calculationsIRezccording to the formula
(8.3) for probability of error registration of chaal signals (code symbols) is defined
by their energyEs which with taking into account redundancy of a €@ppears a
little bit less energyE, spent for transfer of one information symbol (bif) is
followed from equalitkE, = nE;, i.e.Es = ExR.cqe Therefore in all power calculations
of systems with coding using as a rule the valuinefratio of signal energy spent for
transmitting of one information binary symbol (bit) noise power spectral density
Ey/No. The probability of erroneous decoding of the blaskdefined by formulas
(8.1) and (8.3) which in argument of functi@(z) include valueEs — the energy of a
signal spent for transmitting through the channkloone binary signal (a code
symbol). Really, according to formula (8.3) probigpiof an error registration of
channel signals (code symbols) is defined by tlesiergy Es which taking into
account redundancy of a code, appears a littlkesst energye, spent for transmitting
of one information symbol (bit). Then used in poveaiculations of systems with
coding the relation of enerdy, to noise power spectral denshly can be designated

as hg = E,/Ng .Taking into account relation of signal enefgyand bit energy,

(8.3) the value entering into settlement formuld e hg = Rcodé‘sz- Then taking

into account expenses of energy for transmitting adfditional symbols of a
redundancy code (8.3) it is possible to presentdiraula as follows:

pP= Q(\/ 2R:odehb) , (87)

and bit error probability by expression (8.2). Hoessary to define probability of an
error in channel without coding it is enough togadvantage of the formula (8.3),

having putR.ge= 1:
p=Q(/2h,). (8.8)

Exercise 8.1Decoding noise immunity of block code.

Let's take advantage of the formula (8.8) for dalitons of an error probability
with optimum receiving of signals BPSK in channetheut coding. Results of
calculations are resulted in table 8.1. Initialgmaeter for calculations is the relation a

signal/noise on demodulator inpl]g. The used in practice valtht% (dB) is defined

by formula hg (dB) =10Ig hg. In table 8.1 settlement data by definition of erro

probability by optimum receiving of signals BPSKorfhula (8.8)) including
argumentz of the functionQ(2).
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The dependence cunye=f (hg, dB) constructed on these data (BPSK) is

resulted on figure 8.1.

Under formulas (8.2), (8.7) we will define of ant l@rror probability by
decoding in the channel with BPSK words of cyclhcle average length (31, 26) with
parameterf.yqe =0,84,dmin = 3,0c0or = 1. The code is chosen from taBlel.

Results of calculations are presented on figurd@ifve «Code (31,26)»).

Table 8.1 —Calculation of signals BPSK noise immunity

h, dB ho Reode z p
1 1,12 1 1,59 5.80°°
2 1,26 1 1,18 390
3 1,41 1 2,00 2.40°
4 1,59 1 2,24 1:30°
5 1,78 1 2,52 6;10°
6 2,00 1 2,82 2:40°
7 2,51 1 3,17 7.90™
8 2,82 1 3,99 2.00™
10 3,16 1 4,47 4:20°°

Table 8.2 —Calculation of a decoding noise immunity of thel@ycode

Modulation method BPSK, cyclic code (31, 26)
hg, dB hy Reode Z C%l Pd
1 1,122 0,84 1,454 465 0,26
2 1,259 0,84 1,632 465 0,13
3 1,413 0,84 1,831 465 5140
4 1,585 0,84 2,054 465 N>
5 1,778 0,84 3,305 465 5107
6 1,995 0,84 2,586 465 1No3
7 2,239 0,84 2,902 465 ne™
8 2,512 0,84 3,562 465 N>
9 2,818 0,84 3,653 465 712’
10 3,162 0,84 4,099 465 119°

In all energy calculations of systems with codihgsiused as a rule value of
the relation of energy of the signal spent for $raitting of one information binary

symbol (bit) to power spectral density of noh.% which is considered asuniform
criterion of power expensedor an information transfer through channel witltliog
and without it. Size changhg showsefficiency of application of error-control

code The effect of errors decrease on decoder exibeamsed on a miscellaneous.
Error-control coding provideseduction of the error probability in the

received messages. It is well visible from compmarisf curved = f (E,/Np) on figure

8.1 for cases of an information transfer by metndoded BPSK and with using of a
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cyclic code (31, 26). It is visible, that by using an error-correcting code it is
possible to admit certain decreasea channel signal/noise ratio and to receive
accordingly a energy coding gaindB). Theenergy coding gainfrom error-control
codingg is equal to aifference of valuesky/N, necessary for maintenance of bit
error probability in transmitted data by both aleseand using encoding. The value
of gain can be defined at various levels of bibeprobabilityp on demodulator and
decoder outputs. Told it is illustrated by the @swf a noise immunity presented on

figure 8.1.
IQ particular, for the data resulted on figure 8dlue gain isg = 1,55 dB at
p=10".

Gain valuesg is widely used for achoice of codes by designingof
transmission systems. Valugsreceived at use of cyclic codes in channels with
BPSK are resulted in tabke 2 of Attachmeni. 1.

1 2 3 4 5 67 8| 9 AN, dB

BPSK + cod (31,2¢

0,1 ~—

.

N
o~ g

N\
0,01 N\ .

10°3 N

10

10°

/!
A

10° \

107 \

10°®

Figure 8.1 —Decoding noise immunity of cyclic code

Example 8.10ptimisation of a cyclic code parameters.

Let's consider the optimisation procedure of cyclicles parameters used in
the binary symmetric channel with signals BPSKgarpose of a maximum energy
coding gain from error-control coding provided kactor of signal spectrum band
expanding will not exceel,r = 2 (double expansion of a signal frequency band |
the channel). Preliminary, under tale? of AttachmentfA.1 we will make selection



37

of cyclic codes which can meet requirements on bexghnsion factorkr < 2,
R.ode> 0,5). Results of such selection are shown itet8I8. In table columns values
of code rate are specified. In cells in the lines gain values (in dB) for various
lengths of code word are presented. Under taldel of AttachmentA.1l we select
the cyclic codes with block length= 255 with rate which is closed to optimum rate
Re.ode = 0,8. It is visible, that the greatest value afingy = 4,0 dB is reached at using
enough long cyclic codes with word lengih= 255. In table 8.4 parameters of the
optimum cyclic code are shown.

Table 8.3 —Parameters of a cyclic codes meeting requirenmngscode rate

Code ratdR.oqe

Word lengthn 05 06 07 08
63 2,7 2,8 2,7 2,1
127 3,4 3,5 3,3 2,8
255 3,9 4,0 3,8 3,3
Table 8.4 —Characteristics of an optimum cyclic code
n k Ocorr Code ratdR.qge Gaing, dB

255 207 6 0,811 4,0

The selected code (255, 207) provides a power ghih dB at rate
R.ode= 0,811. Factor band expansidfy = 1,23 not exceeding preset value
maXKAF:Z.

Questions

8.1 What parameters of block error-control codethés error probability by
decoding in binary symmetric channel defined?

8.2 How is the energy coding gain defined?

8.3 What are the reasons of signal frequency bapdnsion with coding?

Tasks

8.1 By a technique stated in the Example 8.1 dgfar@ameters and generator
polynomial of the cyclic code providing the minimuexpansion of a signal
frequency band by energy coding ggir 3,0 dB.

8.2 By data from tabla.2 AttachmentA.2 construct the dependence family of
a energy coding gaig from code rate for various lengths of the code wordthe
cyclic code. Draw conclusions on influence of léngt the block on the gain value.

8.3 By data table\.2 of AttachmenfA.2 construct dependences of a necessary
code rate from a demanded energy coding g&an various lengths of the code word
for the cyclic code. Draw conclusions on influeméea word length on the exchange
parities between gain and factor of signal bancegon.

9 STRUCTURE AND CHARACTERISTICS OF CONVOLUTIONAL CO DES
9.1 Description methods of convolutional codes

Convolutional codes (CC) form a subclasscohtinuous codes The name
«convolutional code» occurs that the result of mgddn encoder exit is formed as
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convolution of coded information sequence with puissponse of encoder. Encoder
of CC contains one or several registers from dedgments and converter of

information sequences into code sequences. Codigegs is made continuously.

The scheme of simple encoder is shown on figure 9.1

b Information binary symbola arrive on input

0 ————— of the register witlKK delay element®. On exits of

¢ ; Module-2 adders code symboB? and b® are

formed. Inputs of adders are connected to certain

arny
DD inputs of encoder register elements. The swian
S2 2 a encoder exit establishes send sequence of code
B b symbols to channel. During one input information
symbol it is formed two output code symbols.
Figure 9.1 —Encoder of CC Code rate i$R.qe = k/Nn, wherek — number of

the information symbols simultaneously arriving on
inputs of encoder, and— number of code symbols corresponding to therarmoder
exits. Code rate in this example is eqBalse = 1/2. Coding with other speeds is
possible. Convolutional encoder as a finite stadehme with final number of states
can be described by state diagrdims considered to be state as symbol set on the
inputs of register delay elements. For example,®jm,, s;) designateencoder
state on figure 9.1. Thetate diagramrepresents thdirected graph who describes
all possible transitions of encoder from one siate another and also contains
encoder output symbols of the which accompany ttrassitions.
(00) Example of the encoder state diagram is
shown on figure 9.2. It contains four possible
(11) encoder statess;§;) = 00, 10, 11 and 01 and

-~ possible transitions.
(10)6——-- e 01
(10)

Symbols about arrows designate symbols

~ on a encoder outpubPh®) corresponding to the
(01) (01) given transition. Continuous lines note the
(_ (10) transitions made at receipt on encoder input of the

information symbol O and dotted — by the receipt
of a symbol 1. Originally the encoder is in state
00, and receipt on its input of information symbat O translates it also in state 00.
Thus on an encoder output there will be symbbfS8hf?) = 00. On diagram this
transition is designated by loop "00" leaving aestz0 and again coming back in this
state. Further, at symbol recegpt= 1 the encoder passes in state 10 thus on output
there will be symbol®™b® = 11. This transition is designated by dashedfliom a
state 00 into state 10. Further, receipt on antiopthe coder of information symbols
0 or 1 is possible. Thus the coder passes inte Sthtor 11, and symbols on output
will be 10 or 01 accordingly. Process of the diagfarming comes to an end, when
all possible transitions from each state in allkeoghwill be seen. Theellis diagram
(trellis) is development of the state diagram itnze. On trellis the states are shown
by knots. Thestatesare connecting by lines. After each transition frone state into
another there is a displacement on one step taghe Example of trellis diagram is
shown on figure 9.3. Trellis diagram gives evidemresentation of all allowed ways

Figure 9.2 —State diagram
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which are analogues of allowed code words of akbtmrles. On them the encoder
can move ahead by encoding.uAique way through a trellis corresponds to each
information sequence on a encoder input.

In particular by a dotted line the way on a trellist1100001... is shown
corresponding to input information sequence ...101Eor. description of encoder
work the sequence of input and output symbols @oisvenient to representing with
use of delay operat@ in the form of infinite series

a;)(D) = a(i)oDo + a(i)lDl + a(i)2D2 .,
b?(D) = bV D° + b,YD* + b,VD? + ...

Here indexes in brackets designate:

I —number of encoder input<li < k;

] — number of encoder outputs] < n.

Indexes without brackets (0, 1, 2, ...) design&erdte time moments.

01

States of the coder

[EY
=

Figure 9.3 —Trellis diagram

For exposition of convolution coding it is used cept of the generator
polynomial.

The convolution code will be completely set, if eder scheme is known:

— An amount of encoder inputs

— An amount of encoder outputs

— Lengths of each registefs

— Connections of adders with register cells areifipd.

For codes with rat® = 1h connection of-th adder (1< j < n) with cells of
shift register is described by the representatiagenerator polynomial:

g"’(D) = go” + "D + g:D? + ... +9,7D". (9.1)
Here g = 1 if connection of-th adder withk-th register cell exists, and

gl = 0 if such connection is absent.
Coding processcan be presented as multiplication of a genefadtynomial

géig)(D) on an input information sequenag(D):

b)(D)=ag)(D)gf} (D). 1=i<k, 1<js<n. 9.2)
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For example, the encoder on figure 9.1 is charse@r by generator
polynomialsg®”(D) = 1 +D + D? andg®?(D) = 1 + D? or, noting sequence of a
factorsgyin the form of binary words, we receig®”’ = (111) andg® = (101). For
long codes it is used often tbetal form. In this case generator polynomials will be
presented so:

g = (7) andg® = (5), orG = @, ¢*) = (7, 5).

Coding process can be described also with usingyeferator matrixes
(accordingly, check matrixed} is possible to familiarise with this materialder the
manual [2, Section 3.4, p. 114] more in detail.

9.2 Key parameters and classification of convolutimal codes
Code rateis defined as

Reode =K/N, (9.3)

wherek — an amount of information symbols simultaneowsiyving onk encoder
inputs,n — an amount of code symbols corresponding to thhemencoder outputs.

It is used several parameters for definition of mgmength by coding. The
length of encoder registerK is equal to an amount of delay elements contaimng
encoder scheme. Length of encoder regisfegn apply to memory definition by
coding with rate R.,qc =1/n, when encoder contains one register. The encoder
represented on figure 9.1 has register legth 3. If encoder contains some inputs
(k> 1) so lengths of registers connected to eadhtjman be various. In this case it is
defined a code constrained length.

The code constrained lengthon each input is defined by the higher degree of
corresponding generator polynomials

Vi = max [deggéig)(D)].
The resultant code constrained length is definethbysum:

V= ivi : (9.4)
i=1

For codes with one registek € 1) the valuey andK are connected by a
simple relation

v =K. (9.5)
For comparison of a decoding algorithm complexityisi used complexity
performance. As it was marked earlier, developnadritellis diagram consists in a

repetition of the same step (see figure 9.3). Rimgcomplexity is accepted to define
an amount of branches on a step of trellis diagiidme. number of states of a trellis is

defined by number of variablds = v on inputs of register elements. As a result
complexity of onetrellis step can be defined an amount of branches on this step

C=m"*¥ (9.6)
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The decoding noise immunity depends on distancepepties of code
sequences on encoder input. Thus for binary cduedistance between sequences is
often estimated in Hamming metric.

Free distance of a convolution codé: — is the minimum distance between
two arbitrary semi-infinite sequences on the encadéput which differing from the
first branch.For short codes free distance can be defined uhdestate diagram. If
the binary code diagram is set free distance iglggto minimum Hamming weight
of a way under the diagram from a state 00 in #messtate (excepting a loop at this
state). On the diagram figure 9.2 it is visiblegttfree distanceéi = 5. On the value
of free distance judge about control propertiesafvolution codes. In particular, if
two ways on encoder output, going out from oneestat the trellis diagram, differ in
Hamming metric on the valud;, that by decoding on a minimum distance (with
analogy to a case of block codes decoding (seeoBe8tl)) themultiplicityof
corrected errorsis defined by expression

d -1 . .
Qoorr < —— (@ is odd) (9.7)

The free distance is used for an estimation ofisenionmunity of convolution
codes decoding with decoding algorithms by a maxinauposterior probability or
close to them (Viterbi algorithm etc.). In a sys&tim code ork (from n possible)
encoder outputs there are information sequencesaotmitted symbols, and on
remaining ( — K) exits — the sequences of the additional symbmiséd as linear
combination of information symbols. By raRg,qe =1/2 generator polynomialsof a
systematic coddook like

g”(D) =1 andg?(D) = g + D + gD + ... +¢,*D".

Systematic codes allow to receive on a receivirtg sin estimation of
information symbols, without decoding or any otpescessing of received symbols.
Nonsystematic codes do not possess such propestyvel as in case of a block
codes the using of convolution coding with r&g4 =k/n leads to expansion of a

signal frequency band in the channel. Thus theapid expansion factoris defined
by expression:
Kar =E- (9.8)

By small code rates the considerable band exparisoomes unacceptable,
therefore try to apply encoding with a high coderdractically, a choice of code
parameters is made on the basis oftihapromise proceeding from demanded level
energy coding gain and admissible value of frequérand expansion factor.

Exercise 9.1The analysis of code parameters connections.

Using consecutive modification of the structureirgfial encoder (7, 5) and
corresponding to it state diagram and a trelligufles 9.1, 9.2 and 9.3) we will
establish connections of the encoder paramekers, R.,5e S and generator
polynomial with code free distande We will consider some variants of the codes:
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1. Initial code (7, 5). Its scheme is resultedigufe 9.1. The diagram of states
Is constructed in figure 9.2.

Parameters of the code (7, R=1, n=2, K=2, Roge= 1/2, since code is
binary (n=2) thenS= 2= 4, free distance: = 5, code is nonsystematic.

2. Forming of a systematic code (1, 5).

Let modify the first polynomial of an initial codBaving left one connection,
as shown in figure 9.1. The state diagram will iplyt vary. The number of a states
remains former as the structure of encoder regigismot varied. Nonzero branches
vary: according to a modification of the first gester polynomial on a place of the
first branch numeral it is necessary to write ddianfirst numeral of a state to which
this branch is directed (figure 9.4). The code ed$¢e has not varied.

am JD

~C ")

Figure 9.4 —Encoder of CC (1, 5) and its state diagram

Parameters of the code (1, ¥= 1, n=2, K=2, Roge= 1/2, since code is
binary (n=2) thenS= 2 = 4, free distance has decreaded 3, code is systematic.

This example illustrates the general conclusioa abding theory: on the free
distance the systematic code appear worse of gysiensatic codeBom which they
are organised. Therefore practice it is preferred to use the nonsystematicodes

3. Forming of a nonredundancy code (1,0).

This, apparently, the "exotic" example allows twe@ a role of the nonzero
generator polynomials forming additional symboiguyfe 9.5).

(0C)

(10)- (00)

@é___. (10) __Z 01

CEN Dp{D} ~._ (00)
o, (10) “Cz/ag
(

— (10)

Figure 9.5 —Encoder of code (1, 0) and its state diagram

Parameters of the code (1, ®=1, n=1, K=2, Roe=1, since code is
binary (n=2) thenS= 2= 4, free distance has considerably decredsed.
Encoder is systematic without a additional symbols.
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Actually, nonredundancy coding is present (memaoirythe encoder is not
used). Therefore the code free distance is eqda#yl, also corresponds to a rate of
the nonredundancy code.q. = 1. All increment of free distance in the a casle
considered in variant 2 spoke presence of nonzditi@nal symbols.

In AttachmentA.3 performances of binary convolutional codes wiximum
free Hamming distance for various code rates arengi

Questions

9.1 Name key parameters of convolutional codes.

9.2 What are construction rules of the state dra@ra

9.3 What is the connection between the state chagrad the trellis diagram?
9.4 How can we define a free distance under ttie diagram?

Tasks

9.1 Generator polynomialg®, g¥) = (1101, 1111) are set. Define parameters
such code. What are the octal and polynomial reptesions ¢(D), g”(D)) this
code?

9.2 Form a functional scheme of code with such afetthe generator
polynomials.

9.3 Construct the state diagram and the trelligrdim of such code. Show,
how on them to define the free distance of a cét®d a line corresponding to this
code in tables of convolutional codes from Attachtna.3. By analogy with
Exercise 9.1 analyse a connection of this codenpatexrs with value of free distance.
Make generalising conclusions.

9.4 Prepare the trellis diagram of a code (1, &nfthe Exercise 9.1, necessary
for an analyse of the Viterbi algorithm.

10 DECODING ALGORITHMS OF CONVOLUTIONAL CODES
10.1 Classification of decoding algorithms

By the receiving for purpose of optimum solutiore treceived sequence of
symbols accepted from the channel it is necessargompare with all possible
transmitted sequences. As the number of possibjlgesees lengthl for binary code
is equally to 2 by the big sequence lengths the decoder beconsehmissible
complexity (exponential decoding complexity, seect®a 6.3), and optimum
decoding practically difficultly realizing. Howevéry big N substantial increasing of
transmission fidelity as the noise averages omg kequence is possible. Therefore
the problem of decoding algorithms complexity decreasingis important. Two
groups of decoding methods for convolution codeskaown:

1. Algebraic decoding methodsare based on the use of algebraic properties of
code sequences. In some cases these methods laaintple realisations of codec.
Such algorithms are not optimals used algebraic decoding procedures are intended
for correction concrete (and not all) configurasoaf channel errors. Algebraic
methods are identified witkelement-by-element reception»f sequences which for
codes with redundancy, as is known, yields the wwasults, than reception in a
whole». Most simple of algebraic algorithms is #igebraic decoding methods. This
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algorithm is so far from optimum and consequenglyseldom used, first of all, in
systems with a high information rate. More detailddscription of threshold
algorithm and its modification can be discoverethm manual [2, Section 3.6.3].

2. Probability decoding methods are considerably is nearer to optimal
“reception in a whole” as in this case decoder atgsr with values which
proportional to a posteriori probabilities, estismtand compares probabilities of
various hypotheses and on this basis carries aigide about transmitted symbols.

Algebraic algorithms operate with limited alphaledétinput data for which
deriving on an exit of continuous channel it is essary to fulfilquantization of
received signal with noiséProcesses of elaborating of signals in an exithef
demodulator for antipodal signals are shown onrédi0.1 where are presented:

a) — forms of antipodal signals in sampling timeimgout of decision device of
demodulator;

b) — binary quantization by hard decision;

c) — octal quantization by soft decision.

In the simple case it is made quantization of edwnnel symbol in sample
time on two levels (named in the literature<ashard decisior). Thus hard decision
Is presented by one binary symbol. It is shownigaré 10.1,b. By hard decision
number of quantization levels is= 2. By asoft decisionnumber of quantization
levels isL > 2 (figure 10.1,c). By soft decision the quantized output describes
magnitude of decoded signal plus noise more prgdisat raises a noise immunity.

A

S+N | S+N |
Transmitting § S Sampling © ° X,

levels moment 8 50 ® S0
8 —0 X]_ 8 X2
< c X3

= o
T Og—— c 0- X4
N N °o X
5 g X
> 0 X2 g X6
S o X O s5e X7
1 l >-—’° X8
a) b) C)

Figure 10.1- Work of decision devic in demodulatc

Two basic probability algorithms for decoding ofmgolution codes, and also
their various modifications are known

Sequential decoding algorithmensures arbitrarily small error probability by
nonzero messages transmission rate through thexehddy sequential decoding the
search of way through code lattice, correspondmghe transmitted informational
sequence is made. Sequential decoding is usedefarddhg of long convolutiaih
codes. The detailed description of sequential dagoalgorithm has presented in the
book [4, Section 13.18]. Other variety of probabpilalgorithms is the algorithm
based on a principle of dynamic programming, analAkmas Viterbi algorithm.

Dynamic programming principle has been formulatedn 1940 by R.
Bellman. It has wide application in control theadry.1970 the dynamic programming
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in form of decoding algorithm for convolutional aslhas been applied by A. Viterbi
to solving of telecommunication problems (Viterdgaithm)Viterbi algorithm
finds wide application and realizes search of maximprobable way through code
trellis with rejection of a part of least probablariants of decoded path¥iterbi
algorithm is characterized by a constant of conmgutvork, however complexity of
decoder Viterbi grows, as by all full search alonis under the exponential law
from code length Therefore Viterbi algorithm is used for decoding of short
convolutional codes.

10.2 Viterbi algorithm for decoding of convolutiond codes

Let's consider Viterbi algorithm on example of ttwe with rateR.oqe = 1.
Let, since a momerit= 0, on encoder input the information sequencé&ofthL
symbolsa, = (ay, ai, ..., &1) moves. On encoder output there will be a sequehce
symbolsb, = (b, by, ..., b _1). Encoder states at the momérdefine as a set of
information symbolswv, = (&, acy, ..., &1+1). Trellis diagram of code univalently
connects the information sequer@e sequence of the encoder statgsand the
sequence of the output symbbls To each branch, in channel there corresponds a

signal, which can be presented a set of coordinﬁg%(s((l), S(2 ,...,S((N)), whereN

— dimension of a signal space. In channel an agditoise operates. Then arriving on
decoder input receiving signal sequence will beaédqa X, = § + n_, where

S =& S ...S.0) andn. = (o, Ny, ..., N_g), N :(nt(l),nt(z),...,nt('\')) is N-
dimensional vector of a noise.

Decoding consists in tracing through a code trelfis way with maximum a
posteriori probability. It is possible to specihetdecoded way to one of kinds: by set
of estimations of code branch8s= (&, S, ..., §-1) which making a way, by the
sequence of estimations of the encoder states (Wo, Wi, ..., W__1), by the sequence
of estimations of information symbols on the encadputA_ = (ay, ..., & 1) which
coincide with the first symbols of state estimas&@~= (s;, ..., S _,+1). The sequence
X, will be decoded with the minimum error probabilityfrom all possible ways to
choose estimatiors, for which a posteriori probabilityp?(S /X,) is maximum.
Transmission of all variants of sequen@gsconsiders equiprobable. In this case
decoding by criterion of a maximum a posteriorigability is equivalent to decoding
by criterion of maximum of a probability when eséition S ensuring performance
of condition P(S/X.)=max gets outln the channel without memory conditional
probability P(S./X,) is proportional to product of conditional denstief sum of
signal and noise:

L1 L-1
P(XU/S) = [TP(X¢/S) = [TPXEP, xP, ., x(N 150, 62 sy,
t=0 t=0

In Gaussian channel by the white noise with ansidepower spectral density
No each factor of this product looks like:

N N o) alin2
P(XL/SL)=0/TNg) " exp{-{>_(X¢’ = "7)“]/(2Ng)}
=1

For maximum search we will take the logarithm:
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L-1
INP(X, /SL)=In ] @ JiNg)™
t=0

&y () _ ali)y2 SRy () i)y
xexp{-{ > (X¢’ =§")71/(2Np)} = NLIn(l/ yT{Ng) = > 2 (X7 = &) /(2Np).
i=1 t=0i=1
By decoding choose sequence of sigrials= (S, ..., S_.1) and sequence of

branches univalently connected withSt =(&% S, ... §.1) which ensures a sum
minimum
L-1 N : :
MP=3 3 (x{ - sl)2 =min,
t=0i=1
which is called as thenetric of the decoded path(MP). The path metric contains
themetric of branches(MB)

N :
MB=3 (X" -g)?
i=1

In Gaussian channel the branch metric is propaatidon quadrate Euclidean
distances between a vector of received sum ofraabkjgus noiseX; and a vector of
signal S corresponding to branch of a code In the discrete channel for an
estimation of distances it is used Hamming mefflee periodic structure of trellis
diagram essentially simplifies comparison and aiashoof pathsaccording to
decoding rules. The number of states on a tredlignmited, and two by random
chosen enough long paths have, as a rule, the camstate. Segments of the paths
entering into such states it is necessargampare andchoosea path with thdeast
metric. Such path is called assurvived. According to Viterbi algorithm such
comparison andrejection of segments of path is mageriodically, on each step of
decoding.

On fig. (10.2,a, b, c, d) the development of decoding process of convahatio
code (5, 7) is shown. On a decoder input symboflspfiom channel arrive
(...11,10,00,11,01...) (decoding with hard decisidfigures on branches designate
branch metrics, figures about states desigmetiic of states(MS). In an initial time
it is supposed, that the decoder is in state OGrahal metric of this state is MS (00)
= 0. If the channel symbols are 11 so metrics ahbhes 00 and 11 going out this
states will beMB (00) = 2 andMB (11) = 0. It is noted on the decoding first pitch.
The similar picture takes place and on a followdilegoding step. The state metrics on
this step are defined now as the sums of metrientdring branches with previous
state metrics: MS (00) =2+1=3; MS(10)=2« 38, MS(01)=0+0=0 and
MS (11)=0+2=2.

On it the development of trellis diagram for theegi code comes to an end.
Thealgorithm consists in aecurring of onebasic step.On each of the subsequent
diagrams figure 10.3, b, c, d this steps is represented explicitly. To the beigig of
i-th step state metrics calculated at the previtagesare stored in memory of the
decoderMS™(00), MS™(10), MS™(01), MS(11).

On the accepted channel symbols the evaluatiob@feabranch metrics and
shaping of four new states metrics is mad&(00), MS(10), MS(01) andMS(11)
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by a following rule. To each new state lead two svalyor example, to state 00
conduct ways from the previous states 00 and 0li-tBrdecoding step the decoder
calculates metrics of paths as the sums of preveiates metrics and entering

branches metrics:
MP' (00) =MS' 1 (00) + MB' (00),

MP' (00)=MS' 101 + MB' (L1);
MP' (00 =MS 1 @0) + MB' (10),
MP' (00 =MS' 11 + MB' (0);
MP' (L0) = MS' 1 (00) + MB' (L),
MP' (10) = MS' 1 (01 + MB' (00);
MP' 1) =MS ~t@0) + MB' (02,
MP' @) =MS' 11 + MB' (L0).

MS' (00)
MS' (02)
MS' (L0)

MS' (1)

Input symbols

ood< ail—«?’

P »
o] (@]
o =
o +—
e £
Y—

o \./ 0 (O]
m E
® S
. "
(7))

11

a)

Figure 10.2,a, b — Decoding process on algorithm Viterbi

According to Viterbi algorithm on each decodingpste each of trellis states
the same type operations are made

1) Addition of metrics of the previous states with metrics of correspogdi
branches;

2) Comparison of metricsof entering paths;

3) Choice of pathswith the least metrics which values are used agihtric
of the states on the subsequent decoding step.etfias of compared paths are
identical, the choice of one of two path is mada nandom way.

Realisation complexity of Viterbi algorithm can estimated by the amount of
branches of the code trellis treated by the decatllength of decoding, taking into
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account complexity of each step of a trellis (seemtila (9.6)).Complexity of
decoder Viterbi realisation can be estimated under the formula:

C=m""9m. (10.1)

On figure 10.3 the structure scheme of Viterbi dierantended for work with
the demodulator of signals QPSK is shown.
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Figure 10.3 —Viterbi decoder structure scheme
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The decoder consists from analog/discrete conge(fiD C) in channelxX
and Y, the calculator of branch metrics and processomwinich operations of
addition, comparison and achoice are madememory deviceof a survived paths,
and majority element in which the path with thestemetric gets out. The best value
of a quantization levels depends on the ratio matigoise on input A/D C. By eight
guantization levels of losses minimum is ensurdth@tatio of a signal magnitude to
the quantization step is equal to (4,5...5,5). Mtwtailed description of assigning and
work algorithms of the decoder Viterbi block diagralements of are reduced in the
manual [2, Section 3.8.2].

Questions

10.1 Does the realisation complexity of the Vitealgjorithm depend on length
of free distance?

10.2 How will increase complexity of Viterbi decodecrease by increasing a
code constraint length twice?

10.3 What is the reason of Viterbi decoder compyeraise at using of a soft
decision on a demodulator exit?

Tasks

10.1 Prepare the trellis diagram of a code (1,réinfExercise 9.1 which
necessary for an illustration of Viterbi algorithAs free distance of this codig= 3
(according to formula (9.7) the code corrects srggrors) trace decoding process by
Viterbi algorithm if in the channel is single errand establish the fact of its
correction by the decoder.

10.2 Prepare the trellis diagram of a nonredundasage (1, 0) from the
Exercise 9.1 which necessary for an illustrationttod Viterbi algorithm. Try to
explain by the form the trellis diagram imposstyilbf error-correction.

11 NOISE IMMUNITY OF CONVOLUTIONAL CODE DECODING
11.1 Decoding error probability of convolutional cale

The technique of a decoding noise immunity estiomaliy convolutional codes
is not differed from a technique stated in SecBdhfor a case of block codes. Here
the code ratd. 4o COde distance properties (in a case of the caotwvolal codes —
the free distance;), and decoding algorithm is played the main r@g.using of
probability decoding algorithm (Viterbi algorithnthie approximately expression for
bit error probability looks like:

pa= S WR, (11.1)
k=d s

whereP, — error probability of the way choice on a codlis;

Wi — spectrum of weights of erroneous ways;

At transmission of code symbols through a channéh BPSK with white
noise power spectral denshly/2 is defined so:

R = QlY2KReogds ). (11.2)
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Evaluations under formulas (11.1) and (11.2) shbat in the sum (11.1) by a
big ratio signal/noise the first member (lBy= d) has the greatest value, and
remaining members of the sum with growtHast decrease. Therefore in practice
they are limited to use of the simplified formula:

Pd = We EQ(\/ 2d¢ Reodels ) (11.4)

As well as by the block coding, comparison of aaditg noise immunity can
be made with a noise immunity of coherent receiafigsignals with binary phase
modulation BPSK. Thus the calculation formula faot érror probability can be
received from expression (11.2) having suppdsed., R.qge = 1:

Pepsk = Q(\/Ehb), (11.5)

where h, = E,, /Ny — the ratio of the signal energy expended on tnésson of bit

E, to a power spectral density of a noigeon an input of the demodulator.

Exercise 11.1The analysis of a decoding noise immunity

Let's make a calculations of a bit error probapitih exits of the demodulator
of signals B1-2 and Viterbi decoder included after it, usingnioifas (11.5) and
(11.4) for next codes :

1. Code (5, 7)Rcoge= 1/2,d = 5,v = 2;

2. Code (133, 171Rc0ge= 1/2,d; = 10,v = 6.

The calculation results are given in table 11.1 presented on figure 11.1. In
the table given values of argumerdre specified functio®(z), used in formulas.

11.2 Energy coding gain

As well as by an estimation of a decoding noise umity of the block codes
(see Section 8) in a case of convolution codexaseept of an energy coding gain.

The energy coding gaing is equal to a difference between of valdaé

necessary to get the given error probabpityy the absence and by the coding use.
Values of error probability level at which the gasndefined depends on the
requirements to fidelity of the transmitted digitaformation. For digital telephony
systems a acceptable level of a bit error probghikually makepac. = (10°... 109).
In systems of digital TV transmission try to enspgg= (10"°.. 10Y. acceptable
The value of coding gain at the given bit errorlgaioility p* can be defined by
comparing the arguments of functiQ{z) in a formulas for error probability (11.4)
and (1.5) for identical probabilitiegy = pgpsk = Pace Calculations show, that gain
depends from level of error probabiliy.. on which it is defined. It is well visible on
the curves figure 11.1 representing calculatiomltegrom Exercise 11.1. Value of a
gain with decreasing of a probabilips.. aspires to the limit which in the coding
theory name agsymptotic coding gain

A-gain = limg(pacc— 0). (11.6)

Comparing arguments in the expressions (11.5) aadt we come to wide
used in energy calculations of transmission systé&mngxpression for A-gain in
logarithmic units:



A-gain = 10IgR:oadk) (dB).
Table 11.1 —Calculation of decoding noise immunity
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(11.7)

Bit error probability Bit error probability on decoder output
E/N. dB on demodulator
o/No, BPSK output Code (5, 7) Code (133, 171)
z Ppsk z Ry Z R
1 1,59 5,807 251 6,110° 3,55 6,910°
2 1,78 3,910 2.82 2.410° 3,98 1,210°3
3 2.00 2.40° 3,16 7,810 4,47 1,510
4 2.24 1,310 3,54 1,910 5,01 1,110°
5 2,52 6,110° 3,98 3,510° 5,62 4,110
6 2.82 2.40° 4,46 4,210°
7 3,55 7,90 5,62 1,110°8
8 3,99 2.0.0%
10 4,47 4.200°
1 2 3 4 5 67 8 9 1n’dB
1
0,1
o~
0,01 o~
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Figure 8.1 —Decoding noise immunity of cyclic code
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As A-gain is upper bound of a gagrfor fast comparison and a choice of codes
use A-gain. Values of this A-gain often includetire code tables (see tables of
AttachmentA.3). In table 11.1 for an example data about cariat codes with
various lengths of a code lengthand rateR..q are cited. Values of a A-gain are
shown. More detailed data are given in tal#l€3...A.6 from the Attachmemn.3.

Table 11.1 —Characteristics of a convolutional codes

Code rateR Code constraint length= 4 Code constraint length= 6
ode Code A-gain, dB Code A-gain, dB
1/3 25, 33, 37 6,02 133, 145, 175 6,99
1/2 31, 33 5,44 133,171 6,99
2/3 31, 33,31 5,23 133,171,133 6,02
3/4 25, 37, 37, 37 4,78 135, 163, 163,163 6,73

Comparison of a gain values is ensured by the €ydding (see table 8.3 and
figure 8.1) with similar parameters for convolutrodes (see table 11.1 and figure
11.1) shows, thatonvolution codesin a combination to Viterbi decoding algorithm
ensure considerably more gain in comparison with loick codes It explains wide
using of convolution codes in transmission systéwns noise immunity increasing.
Typical a using of the code (133, 171) ensuringafg= 6,99 dB by the rate.,q. =
0,5 here is, i.e. at two-multiple expansion of egfrency band of the coded signal.
The codecs of such code are developed in the fdrtmeo big chips are serially
emitted.

Questions

11.1 How does the gain depend from code constiength?
11.2 How does gain depend from code rate?

Tasks

11.1 Using tables of a convolutional codes fromAliachmentA.3 construct
the dependence of a gain from a code rate by desl fvalues a constraint code
length. Explain tendencies of a progress of thegpeddences.

11.2 Using tables of the Attachmexi3 choose a codes, ensuring A-gain> 6dB
and specify parameters of these codes.

12 INCREASING OF DIGITAL TRANSMISSION SYSTEMS EFFIC IENCY
12.1 Information, energy and frequency efficiency

Generally the result of work of a transmission sys is defined by an
guantity and quality of the transmitted informatidihe quantity is estimated by an
information transmitting rate through a chanRgl (bit per second), and quality — by
the values of an error. According to Shannon thmerethe error with a
corresponding choice of a transmission method faegdulation/coding) can be made
arbitrarily small (see explicitly the materialstbe Module 2). At the same time, the
transmission rate cannot be above some informdti@smurce named a channel
capacityC,. A. Zuko has suggested to consider as one of atmlis of asystem
efficiency the value of mean rat&,, at which the given fidelity of an information
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transferring is ensured. Thus the information syséficiency as degree of use of a
channel capacity of the channel is defined by irdavalue n=R;,/C., . In real

conditions the indicatan always is less than unit. The more clgs® unit, the more
absolutely transmitting information system. Reaghiecessary for a transmission
rate and fidelity is accompanied by certain expemdsof othermajor resources
signal power Ps and achannel frequency bandF.,. Such approach has allowed to

introduce the indicators: powéjz% and frequency efficiencw=%, uses
S 0 ch
of the mentioned resources characterizing degrees PYN, — the ratio of a signal
power to a power spectral density of noise on &ivec input). Thusefficiency
indicators by A. Zuko look like:
Information efficiency of systemwhich define the degree of channel capacity
using

n=eh (12.1)
Cch
Energy efficiency
p=_eh . (12.2)
P;/Ng
Frequency efficiency
v = Ren (12.3)
I:ch

12.2 Limiting efficiency of transmission systems ahShannon bound

Indicatorsp andy make sense a specific rates, and inverse v@uet/3 and
Y =1/ define specific expenses of corresponding ressume an information
transferring with unity rate (1 bit per second).r Rbe Gaussian channel with
frequency bandr., the ratio of signal to noise =P4JP,, and channel capacity
Ccn =Fenlog(p +1)it is possible to establish, that these efficiemoglicators are
connected by the relation:

_ Y
1 loga+v/p) O

For ideal systemn(=1) limiting equationcan be defined According to
Shannon theorem by the corresponding transmissia@thads (coding and
modulation) and receiving (demodulation and deagylithe value) can be as much
as close to unit. Thus the error can be made ashrascsmall. In this case by a
conditionn = 1 it is received limiting equation betwegmandy :

dy=pp (12.4)

B= 2Vv—1' (12.5)
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This formula defines of energy efficiency from tinequency efficiency for the
ideal systemensuring equality of a information rate to a clencapacity. It is
convenient to represent this equation in the fofm curve on a plang = f(y) (figure
12.1, a curve Shannon bound). This curve is limiting and reflects thmest
interchanging betweenf andy in the continuous channelC).

It is necessary to notice, that frequency efficienpwaries in limits from 0 to
oo, energy efficiency is bounded abovby magnitude:

Yy 1

=limB=1lim =—=1443. 12.6
Brax =limB = lim S =1na ™ (12.6)

Differently, energy efficiency of any information transmitting system in a
Gaussian channehn not exceed the magnitude

Pmax =1,443. (12.7)

Similar limiting curves can be constructed and &owy other channels if in
formulas (12.2) and (12.3) instead of a r&g,, to substitute expressions for a
channel capacity of the corresponding channel.isgarticular, on fig. 12.1 the
curve for limiting equatior3 =f (y) the is discrete-continuous channel (D-CC) is
shown.

It "is enclosed" in a curve of the continuous cré@r(€C) that confirms know
result of an information theory according to whibiN channel capacity of D-CC
always is less a than channel capacity of the moatis channel (CC) which is a basis
for construction of corresponding D-CC. In realitibsystems error probabilitp
always has a final value and informational efficgns less then a limiting value
Nmax N these cases for the fixed error probabipty const it is possible to define
efficiency ratiop toy and to construct curvgs=f (y).

B, dB

N\

CC (Shannon bound)

-8 -6 -4 -2 0 2 4 68 10y, dB
Figure 12.1 —Curves of communication systems limiting efficignc
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In coordinates [, y) to each variant of a transmission system therg wi
corresponds a point on a plan&ll these points (curves$hould place below a
limiting curve of «Shannon bound». The place of these curves depmman aspect
of signals (modulations), a codes (coding methadis) a method of the elaborating
of a signals (demodulation/decoding). About pertect of the digital
telecommunication methods judge on a degree ofrganf real efficiency of to the
limiting values.

Concrete data about the efficiency of various matiloth/coding methods and
also their combinations are given in following s@at

12.3 Perspective ways of further increasing efficrey

Using the various methods of error-control codingsidered in these Module
the designer of transmission system owning artpbinosation carflexibly change
of the efficiency indicators approaching them to the limiting, potentially pbbs
values which are established in the previous sectiéfficiency of the digital
transmission systems of transmission can be eallgnticreased by the application
of M-ary signals and error-control codes, and alsa t@nbinations. The choice of
signals and codes in these cases is defining fostaactionhighly effective codems
(the codecs matching among themselves and modé&rs)parison of efficiency of
systems withM-ary signals and error-control codes is convenfentmaking with
using of diagranf3 =f (y), presented on figure 12.1. Thus degree of peoiecf a
modulation/coding methods and can be estimatedpaanyg efficiency with limiting
values. Results of the efficiency analysis are garexd on figure 12.2. At the same
time, comparison various modulation/coding methaglsconvenient for making
comparison taking for "reference point" the effiag of transmission system with
modulation QPSK (without error control cod)ngrrom among simple methods it is
the most effective and widely used method of maithriécoding with indicatory =
2,3 =-9,6 dB,n = 0,47. Conveniently as well that the point représgnon figure
12.2 values of efficiency QPSK is arranged igemtral part of the diagram. If an
origin of coordinates to transfer to a point cop@sding QPSK, in a new framafR,
Ay) on a vertical axis the energy gafd in comparison with QPSK, and on a
horizontal axis a gain on a specific ratg will be counted. Let's notice, that all
possible modulation/coding methods can be diviaged four groups corresponding
to four quadrants on the diagrddwf (y):

Quadrant Il in which thelow efficiency methodsare arranged having rather
QPSK loss o8 andy;

Quadrant Il including methods with high energy efficiency, @msg a gain
on B in exchange for loss on(systems with error-control codes);

Quadrant IV including modulation methods ensuring a gainyem exchange
for loss o (systems witiM-ary M-PSK andV/-APSK signals);

Quadrant | including perspective modulation/coding methodsueimg a
simultaneous gain both energy and frequency effayie
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Figure 12.2 —Efficiency ofM-ary signals and error-correcting codes

Outcomes of calculations show (figure 12.2, Quaidbarthat application such
coded modulationsallows to receive simultaneouslygain both in energy, and
frequency efficiency and, anyway, to get a gain on one indicator, notsemng
another. So, system 8PSK-CC by the using of a datiwo code WwithRyyge = 2/3
ensures a energy gailky = 2,8 dB without a decreasing of a specific rgtand
system 16APSK-CC bR..qe = 1/2 andv = 3 a gain on a specific ratey = 2 dB
without a drop of energy efficiendy. Information efficiency of these systems is
n =(0,6...0,7). The detailed analysis such coded maiduls is reduced in manual
[3, Section 9.2]. Microelectronic progress lastatexinitiated attempts to realise the
potentially possible efficiency, despite of growdh decoding complexity. In 1993
turbo-codes have been offered. Turbo-codes has been in detailsnanual
[3, Section 11.1] described. Intensive developn@niobile transmission systems

has led to the invention ofteme/space codingin details described in the manual [3,
Section 11.2].
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Attachment A. Performances of error-correcting codes
A.1 Performances and generator polynomials of cyclicodes

In table A.1 the short table of performances and generatgmpmials of
binary cyclic codes is presented. Generator polyalsnof codes are given in the
octal form where:

n — word length;

R.oge— COde rate;

k— amount of information symbols in the word;

Jeorr — Multiplicity of corrected errors.

Example A.1. Octal representation of generator polynomials.

The code with parameters= 7,k = 4, geor = 1 has a polynomial (13)
(001.011)— (1011) - 3 +x + 1.

Table A.1 —Performances and generator polynomials of cyddes

n K Qeorr Reode Generator polynomials
7 4 1 0,57 13
15 11 1 0,73 23
7 2 0,47 721
31 26 1 0,84 45
21 2 0,68 3551
16 3 0,52 107657
11 5 0,35 5423325
63 57 1 0,9 103
51 2 0,81 12471
45 3 0,71 1701317
39 4 0,62 166623567
36 5 0,57 1033500423
127 120 1 0,95 211
113 2 0,89 41567
106 3 0,84 11554743
99 4 0,78 624730022327
92 5 0,97 435
255 239 2 0,94 267543
231 3 0,91 156720665
223 4 0,87 75626641375
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A.2 Energy coding gain by using of the cyclic codes

In table A.2 the values of energy coding gan(dB) are given for using of
cyclic codes in channels with BPSK.

TableA.2 —Energy coding gaig (dB) by using of the cyclic codes

Block Code ratdR.qqe
length,n 0,3 0,4 0,5 0,6 0,7 0,8
31 1,2 1,6 1,9 2,0 1,9 1,6
63 2,0 2,4 2,7 2,8 2,7 2,1
127 2,6 3,1 3,4 3,5 3,3 2,8
255 3,2 3,6 3,9 4.0 3,8 3,3

A.3 Performances of binary convolution codes

In tables A.3...A.6) performances of binary convolution codes wiiximum
free Hamming distance and rates (1/8...1/2) are gi@a#mnerator polynomials are
given in the octal form. Labels: — code constrained lengtd; — free Hamming
distancedi,, — upper bound of free distancgi — quantity of erroneous ways with
weight di; A-gain— asymptotic coding gain (dB) by using cadechannels with
BPSK.

Table A.3 —Code ratdR.,ge= 1/8

Code Generator :
number| " polynomials Gim d Wet A-gain, dB
1 4 25,27,33,35, 32 32 8 6,02
37,25,33,37

2 5 45,55,57,65, 36 36 3 6,53
67,73,77,47

3 6 115,127,131,135, 40 40 1 6,99
157,173,175,123

TableA.4 —Code ratdR;oge= 1/4

Code Generator :

number| " polynomials G d Wet A-gain.dB
4 2 57,7,7 10 10 2 3,98
5 3 13,15,15,17 13 13 4 512
6 4 25,27,33,37 16 16 8 6,02
7 5 51,55,73,77 18 18 5 6,53
8 5 53,67,71,75 18 18 6 6,53
9 6 135,135,147,163 20 20 37 6,99
10 7 235,275,313,357 22 22 11 7,40
11 8 463,535,733,745 27 27 4 8,29




Table A.5 —Code ratdR.,q=1/3

59

Code

Generator

number| polynomials Gim d Wet A-gain.dB
12 2 57,7 8 8 3 4,26
13 2 56,7 8 7 1 3,68
14 3 13,15,17 10 10 6 5,23
15 3 11,15,17 10 9 1 4,77
16 3 10,15,17 10 8 3 4,26
17 4 25,33,37 12 12 12 6,02
18 5 47,53,75 13 13 1 6,37
19 5 47,55,75 13 13 4 6,37
20 5 45,55,75 13 12 3 6,42
21 6 133,145,175 15 15 11 6,99
22 6 127,155,165 15 13 3 6,37
23 7 255,331,367 16 16 1 7,27
24 8 557,663,711 18 18 10 7,78

Table A.6 —Code ratdR;oge= 1/2
Code Generator :

number| polynomials Gim d Wef A-gain, dB
25 2 5,7 5 5 1 3,98
26 3 15,17 6 6 2 4,77
27 3 13,15 6 6 4 4,77
28 4 23,35 8 7 4 5,44
29 4 31,33 8 7 4 5,44
30 4 25,37 8 6 2 4,77
31 5 53,75 8 8 2 6,02
32 5 61,73 8 8 6 6,02
33 5 43,75 8 8 6 6,02
34 5 45,73 8 8 5 6,02
35 5 71,73 8 8 10 6,02
36 6 133,171 10 10 36 6,99
37 6 135,163 10 10 46 6,99
38 7 247,371 10 11 2 6,99
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Attachment B. Methodical manual for the course work

Topic of the course workOptimisation methods of error-control coding for
transmission system»

Introduction. In Chapter 12 it is shown, that error-control cadia effective
means for the optimisation of transmission systelmspractice engineer-designer
should solveoptimisation problems on the basis of numerical calculations and
corresponding comparison of a coding methods amthaace of concrete coding
methods and corresponding to them the codes. Tiwiosoof such problem was
underlay in basis of the course work.

Input data are set in the table of variants (table B.2):

1. The digital binary signal with rateis subject to transfer.

2. The transmission channel is the channel withst@m parameters and
additive white noise.

3. Signal to noise ratio on a demodulator inputis

. Methods of modulation are BPSK or QPSK.

Mode of reception is coherent.

Pass band of transmission channéljs

Probability of an error on an output of transia system no mo@..
Permissible complexity of a code trellis — nor@Bperm

It is necessary:

1. To choose and justify a choice of a error-cdrtonle for projected system,
ensuring demanded bit error probability leyal. under condition of a following
restrictions:

1.1. The bandwidth of the modulated sighA&k should not exceeds of a Pass
band of transmission chanr&l, (AFs < Fy).

1.2. By using of convolution codes the code tratimnplexity should be no
more magnitud€,em

2. To develop and give detailed exposition striadtand function schemes of
the encoder and the decoder for the chosen codaustify their parameters.

3. To analyze of energy and frequency efficiencyaqdrojected transmission
system and to compare them to limiting values ftiiehcy.

4. To make a conclusion on the done work

The content of the executed work

1. The introduction and input data.

2. Exposition of the block diagram of designed srarssion system with
indication of inclusion places of the error-contewicoder, modulator, demodulator
and the decoder with detailed explanations of fonstfulfilled by them.

3. An application substantiation in the work of ¢olution codes.

4. A substantiation of a Viterbi algorithm choicer fdecoding of a
convolutional code.

5. Calculation of a bandwidth occupied with a matiedl signalAFs at code
rates 1/8, 1/4, 1/3, 1/2, 1.

6. Definition of an admissible code rae. ;. by a condition 1.14F < F.).

©oNOOA
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7. Definition of the enumeration of codes with tiages that are not exceeding
admissible rateR’, ,., which can be used for a task in view solution.

8. Choice codes from this enumeration ensuring rgibg error probability
level by the Condition 1.1 and restriction satisfyito the requirement on decoder
complexity (by Condition 1.2).

9. Checking calculation of a bit error probability the decoding of the chosen
code.

10. Elaboratingand exposition of a structural and function schemikeshe
encoder and the decoder chosen code.

11. A conclusion with summarising of the performeatk.

12. The list of the used literature.

Methodical instructions

Calculation of a signal BPSK (QPSK) bandwidth sdoblke made under
recommendations from the Module 1. Using of anrecamtrol codes with code rate
Reode l€ads to increasing of a occupied frequency banthe signalKar = 1Rcoge
times (see Chapter 9). On the other hand, a coalibty of a code increases with a
decreasing of a code rate. Therefore the problem a@jde parameters optimisation
consists in a choice of a code with a rate at wiiheéhfrequency band of the coded
signal does not exceed the given pass band of transmissionannel F¢,. If the
demanded pass barfidr the transmission of a coded MPSK signal witte & is
equal toAFypsk, and the code rate is chosen equdakiQ. the pass band of channel
which is necessary for transmission a coded MP§Kasiwill be equal

AF. = AFMPSK
T
RcDode
Then from a inequality4F < F,) it is received a simpleondition for choice
of code rate:

I:Qcode> RcDode' (B-l)

The told is illustrated by figure B.1. The expargiof a frequency band of a
coded signal is proportional to factor of a bangamsion. By the process of a
decreasing of a code rate (increasinggf) the frequency band extends and reaches
values of a given channel frequency baRg. On the same figure the line
A-gain =f(R.q9 IS shown. Intersection of a curve band with bamdyiven value
F.n defines the admissible factor of a channel frequdrand expansiolar = 1R.oqe

and, accordingly, of code rai., ..

The first stage of a choice of a error-control cagl¢he choice of a class of
codes (a class block or convolution codes). Usiatenals of Chapters 8 and 11 itis
recommended to justify with deep arguments for @iashof convolution codefor
using in project. Among decoding algorithms ontdaude of practical application the
in the lead place occupies Viterbi algorithm. Itrecommended to apply Viterbi
algorithm in project. In section of the project hvh substantiation of application of
this algorithm it is necessary to give informat@mout realisation complexity of an
algorithm. Among the codes selected by criteriorm ofte according to the formula
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(B.1) there can be codes with various length ofecadnstraint length (and,
accordingly, with various decoder complexity). Tingise immunity of decoding is
characterised by A-gain. In code tables of a valAigmin are not reduced at certain
level of error probability. At the same time, magde of A-gain is upper estimation
of a real gain. Therefore at choice of a codes iecommended to use A-gain which
values are available from the Attachment A. Amdmg $elected candidates of codes
it is necessary to apply code ensuring maximum ik-gand meeting maximum
requirements on code rate and minimum complexityenioder.

Definitive data about error probability on decodeikput it is necessary to get
by the calculations the decoding bit error probgbibr chosen code from the signal
to noise ratio. In case of representation failuee rheet requirements it is
recommended to apply a code with more value of ik-ga

. ~
Here are arranged ~SS
«codes-candidates for a choice»

Figure B.1—Procedure of code optimization

Example of calculations and code optimisation proahire

Input data:

1 The rate of digital signd& = 64 kbit/s.

2 S/N ratioh? = 4,5 dB.

3 A modulation method is QPSK.

4 Mode of reception is coherent.

5 Pass band of transmission charfgkE 100 kHz.

6 Acceptable bit error probabilifyc. = 10°.

7 Admissible code trellis complexity no md@gem = 150.

Solution

1 Calculation of a necessary channel pass bandrdosmission with the
method QPSK is made under formll&qopsk = [R(1 + ))/2, wherea is roll-off
factor of spectrum . Being set by vale 0,4, we receive
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AFopsk =[R(1 + 0)]/2 = [64 (1+0,4)]/2 = 44,8 kHz.
2 According to the formula (B.1) it is defined litnig value of code rate

. _AF, 448
=" =70 - 0448
Riode F, 100

3 Under code tables we select the codes, satistgitige requirement on a rate.
Data about these codes are shown in table B.1. Bvertable it is visible, that for the
solving given task can be used codes with the Rajg = 1/2 which ensure enough
big A-gain. In the table data the code with ger@rpblynomials (133, 171) which at
rate R.oge = 0,5 ensures A-gain =6,99 dB is chosen for tlugept. Data of bit error
probability calculation is given on figure 8 1 (sads BPSK and QPSK have the same
noise immunity). It is visible, that the using o$ach code ensures such performance:

by the ratio signal/noiséy> = 4,5 dB the bit error probability is less than™10

Comparison with curves for uncoded QPSK showshiliat = 10° this code ensures

coding gain 6 dB.
Table B.1 —Performances for a code choice

Generator Code Trellis .
Code rateéReoge polynomials lengthv | complexityC A-gain, dB

1/8 25,27,33,35, 4 32 6,02

37,25,33,37
1/8 115,127,131,135, 6 128 6,99

157,173,175,123

1/4 25,27,33,37 4 32 6,02
1/4 463,535,733,745 8 512 8,29
1/3 47 53,75 5 64 6,42
1/3 557,663,711 8 512 7,78
1/2 53,75 5 64 6,02
1/2 61,73 5 64 6,02
1/2 71,73 5 64 6,02
1/2 133,171 6 128 6,99
1/2 247,371 7 256 6,99
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Table B.2 —Input data for the course work

Variant number for an elaborating of course wordudth correspond to the numbg

1%

of student surname in the academic group register
Variant| S/N ratio| Modulation| Rate of signa B:;ndmdlt:h o Bltbert:_?_r Trelllls_
number h?,dB | method R, kbit/s ¢ ami h | Probability ) complexity
Pacc Cperm
1 4,0 QPSK 64 80 10 150
2 5,0 QPSK 16 25 10 160
3 6,0 BPSK 256 800 10 170
4 6,5 BPSK 64 200 10 180
5 4,0 QPSK 16 25 10 250
6 7,0 QPSK 128 200 10 350
7 5,0 BPSK 2400 7000 To 560
8 6,0 QPSK 32 50 10 200
9 5,0 BPSK 24 70 10 300
10 4,5 QPSK 256 400 ) 250
11 5,5 BPSK 300 1200 fo 550
12 4,0 QPSK 48 70 10 150
13 4,0 QPSK 32 50 10 250
14 5,0 BPSK 256 800 10 300
15 4,0 QPSK 450 1300 Po 550
16 7,0 QPSK 56 90 10 150
17 5,0 BPSK 24 70 10 160
18 4,5 QPSK 256 400 i) 200
19 5,5 QPSK 500 1400 Po 550
20 6,0 BPSK 64 200 10 150
21 7,5 QPSK 32 400 10 250
23 6,5 QPSK 16 50 10 150
24 6,0 QPSK 64 150 1o 150
25 4,5 BPSK 16 25 10 200
26 5,0 BPSK 6000 16000 fo 550
27 6,0 QPSK 384 600 i) 250
28 4,5 QPSK 56 100 o) 150
29 5,0 BPSK 16 50 10 250
30 5,5 BPSK 5500 32000 fo 560
31 4,5 QPSK 64 200 T0 150
32 5,0 QPSK 64 300 10 250
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Attachment C. Education manual for laboratory works
LW 4.1 Studying of block error-control Hamming codecodecs structure

1 Objectives

1.1 Studying of Hamming systematic code (7, 4) catructure.

1.2 Research of the code (7, 4) control ability.

2 Main principles

The systematic code is error-control code, whicldecavord containk
information bits andr =n— k checking symbols (checking symbols are linear
combination of information bits). Systematic codes denoted am (k) or (0, k,
dmin)- In this work code (7, 4) or (7, 4, 3) is studied
Error-control codes with code distandg, = 3, allowing to correct first order errors
at decoding, name as Hamming codes [5, p. 149].willedetermine connection
between error-control code parametarand k. It is known that for any natural
numberr the Hamming code of lengtims= 2 — 1 ork +r = 2 — 1 exists [5, p. 149].
These equalities can be used and as inequakite® -r - 1. The last expression
allows choosingn andr at givenk.

The matrix method of linear block codes coding atetoding processes
description is most useful (see Sections 5, 6).c8ding by systematic code, (k)
consist in addition to code words checking symlaold can be described by matrix
equality

A[G =B, (1)

whereA = (b, b, ... by) is row matrix siz&, correspond to information code word;

B = (b, ... by byss ... by) is row matrix sizen, correspond to error-control
code word.

G — generator matrikxn, the elements of whicf); take on values 1 or 0.

The G matrix rows must satisfy next conditions [6, p..883].

1 Distance between any two rows must not bedgss

2 Every row must contain no less thagg, units.

3 All rows must be linearly independent, i.e. noheows can be got by adding
(XOR) of some other rows.

For example, for a code (7, 4) generator matrik$ddke formulas (4.4), (4.7).

The coder operation algorithm:

1 k information bits in a parallel code or in a sercesle (in last case a shift
register is needed) on the coder input.

2 The checking symbols=n —k by adders withr calculates.

3 k information bits and checking symbols in a parallel or series coddah
case the converter of parallel in series codeesle@) on the coder output.

On the figure 5.1 the code (7, 4) with generatotrixg4.4) encoder functional
diagram is resulted. Input and output code wordsepresented in a parallel code.

The process of decoding includes the syndrome ledicn. In matrix form is
written down as :

S=HIB, (2)
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whereH is check matrixxn.

B is matrix-column, size, correspond to the code word on the decoder input;

Sis syndrome, matrix-column, size

The decoder algorithm is following:

1 n symbols of the code word come on the decoder input

2 Using (6) a syndrome calculates.

3 Syndromes analyzer, built on the syndromes thhks, forms signals for
error symbols correction.

4 Error symbols correction consist in their invegti XOR for error symbol and
unit (letsb, is some symbol, thea =b 0 1).

5 After correction of error the information coderd@f k symbols come on the
decoder output.

On the figure 5.2 the code (7, 4) decoder functidiiegram is resulted. Input
and output code words are represented in a pacaiti.

A code, encoder and decoder of which, is built amtimput adders (with
XOR operation), name as Hamming code or even pahigck code. Using the
indicated principles it is possible to build encoded decoder for different values of
n andk.

3 Questions

3.1 Give the definition of error-control codes.

3.2 What is code distance?

3.3 Write down expressions for determining of cadatrol ability with given
code distance.

3.4 Give the definition of systematic error-controdes.

3.5 How to define the checking symbol number ansetber ok, if dy, = 3?

3.6 What is generator matrix?

3.7 How to build a generator matrix for a systematide?

3.8 What is check matrix?

3.9 What is syndrome?

3.10 Explain principle of Hamming code decoder tatsion.

4 Home task

4.1 Study main principles.

4.2 A code (7, 4) is set by a generator matrix

1 0 0 0 0 1 1
G=0 1 0 0 1 0 1
O 01 0 1 1 O
O 0 0 1 1 1 1

Write down the number of brigade¢in the binary number. Considering these
four digits as information word on the encoder inpralculate code word on the
coder output. Form the given code check matrix @k syndromes table. Put first
order error into symbdby of formed code word; calculate a syndrome for cbde
word on the decoder input. Make sure, that a syndroorresponds to error symbol

By, -
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4.3 Prepare for discussion on key questions.

5 Laboratory task

5.1 Start the program on a computer and using mous®r study the method
of input data setting.

5.2 Enter the information bits got in the home taskter coding
implementation, make sure in correct results of devork.

5.3 Put an error inty, b,, bs, by, bs, be, b; symbols by turns, make sure in
correctness of decoding and syndromes table whask walculated in the home task.

5.4 Put a double error into arbitrary two symbohgke sure, that a decoder
tries to correct errors in accordance with a symar@and puts the third error. Repeat
the experiment for two-three other double errors.

5.5 Put a triple error into symbols, b,, bs. Make sure, that a syndrome is
equal to the zero — it shows tltgf, = 3. Repeat the experiment putting a triple error
into symbolsh,, by, bs. On the basis of check matrix you will define, whaother
triple errors result in the permitted words.

6 Description of laboratory model

A laboratory model is executes on the personal ctenp A code (7, 4) is
described by generator matrix

1 0 0 0 0 1 1
G:O 1 0 0 1 0 1
O 0 1 0 1 1 O
O 0 0 1 1 1 1

The control by model is produced by the left mobs&on. The putting of
errors produces by setting in «1» digit positioasfions) of errors blocky, e, &3, &,
e, €, €; (which must contain an error). A model producesvession of code word
on the encoder output to code word on the decaogbert by the ruleg, = by O g, for
i=1,2,..,7.

7 Requirements to the report

7.1 Title and objectives of laboratory work.

7.2 Block diagrams of coder and decoder of the aseé (7, 4).

7.3 Results of homework performing.

7.4 Results of implementation of laboratory tasiblgs and graphs).

7.5 Conclusions on every item of laboratory taskhwvanalysis of the got
results.

LW 4.2 Cyclic codes coding and decoding studying

1 Objectives

1.1 Error-control code coding principles studying.

1.2 Experimental research of cyclic code encodet dacoder operation
principles.
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2 Main principles

2.1 One of methods of digital signal transmissigncommunication channel
with errors quality increasing is error-control esdusing. Error-control codes allow
to detect or to correct errors which appear inm@aroanication channel. In this work
binary block error-control codes study.

2.2 General principle of error-control codes camgion easy enough. From
the possible code words of lengthnumberM = 2" not all are used for the
transmission, onlyM, = 2 (Mg <M). The used code words are named permitted.
Other M — My code words is considered forbidden, they can mguear at the
communication channel input, their appearance erchiannel output indicates about
errors. Thus, due to the forbidden code words piEsehe possibility of error
detection appears. So, any error-control codeasde with redundancy = n —k
redundant (checking) symbols in every code wordhsmats by communication
channel).

2.3 For error-control codes description next patanseare used.

Hamming distance; shows the order of difference betweeh andj-th code
words. For any two binary code words distance exjtla¢ noncoincident symbols
number in them.

Code distance,, is the minimum Hamming distance for the given code
Enumerating all possible pair of the permitted caaeds and calculating distances
d; for them, it is necessary to find minimal amonenthdyi, = mind;.

Code rateRr shows the relative number of information symbois code words
of lengthn andRis calculated aR = k/n.

Code control ability is determined by order of déte errorgyye, and order of
corrected errorsgg.

The order of detected errogge is number of errors in code word, which are
assured detected at decoding, — it is determinegh@s dnmin.

The order of corrected errorg,gis the number of errors in code word, which
are corrected at decoding, — it is determinggl; < dmin /2.

2.4 At the error-control coding use in the commatian channel structure
error-control code encoder and decoder is inclullésiresulted on the figure 1.

N . '\_ A
4; Error-control | B; |Telecommunicdon| B, Error-control |——+

| code encoder channel code decoder

with errors

A 4

v

Error
Figure 1- Error-control code encoder and decoder including  signal
in the digital communication channel structure output

Encoder and decoder destination consists in thewwlg. Code wordA;,
lengthk on the encoder input, encoder will transform ieror-control code wor#,,
lengthn in accordance with the coding rule, amé k. Code word, lengtim from a
communication channel on the decoder input:
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A~

B, =B 0 E, 1)

whereE is error word. For exampld; = 101000; let an error appear in the second
and third symbols, theld = 011000, ands; = 110000.

Depending on code control ability and purpose sfapplication the error-
control code decoder can work in the detection marda the error correction mode.

In the error detection mode a decoder analysegoid B, permitted or forbidden? If
word is permitted, a decoder in accordance with daeoding rule forms on the
output information code word;, lengthk. If word B is forbidden, a decoder does

not decode it, on the decoder output no any codel wamd a certain signal appears
on the error signal output (figure 1) (for examplE’). In the error correction mode a
decoder instead of the forbidden code word decdldespermitted code word the
nearest to it in accordance with the decoding arld gives out information code
word lengthk.

2.5 In transmission systems systematic codes ths¢ distributed, code word
of systematic code contakninformation symbols (symbols on the encoder inpuat)

r = n — k checking symbols formed by encoder from informattmde word. In the
case of linear codes checking symbols are linemrbamations of information code
word.

Among systematic block codes wide distribution \yas by cyclic codes, due
to easy encoder and decoder construction. For acyctides description by
polynomials is most useful - for example, the ceded A; =10111 corresponds to
polynomiala(x) =x* + x* + x + 1 (code word symbols are coefficients at theppro
dummy variablex order of, thus to symbol 1, which is written dofuist, the most
high orderx in a polynomial corresponds).

Any cyclic code is set by not only the numbersnadndk but also generate
polynomialg(x) orderr. A cyclic (n, k) code names a code, all code words of which
appear by the polynomials order of- 1 and less, which are divided without
remainder on generate polynomial. In table 1 geagualynomials are resulted for
r=3,4and>5.

Table 1— Generate Cyclic code (, k) encoder operation method consists
polynomials in the following. Lets a(x) is polynomial which
corresponds to information code word on the encoder
r 909 input. Polynomia(x)X ds to additi t
i1 input. Polynomia (X) corresponds to additianzeros to
3 information code word on the right. The polynonaét) X
X+ X+ 1 on the generate polynomig{x) dividing with the purpose
X+ +1 of determination of remainder from the dividim¢x) is
4 P rx+ 1 executed. Remainder from the dividing r(x) is thecking
VI symbols. Polynomial, corresponding to code word on
S| XX +x+1 encoder output, it is determined:

b(x) =a() &’ +r(x), (2)
ther zeros, is change by combination proper to the ihea from the dividing.
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It is easy to show that the polynomlzk) is divided without a remainder on
the polynomial of g(x):
b(x) _ alx)x" , r(») _ o) + r(x)0r(x) _ 0(%).
g(x)  9(x) 9(x) 9(x)
wherep(x) is integer part from the divisica(x)X/g(x).
You should remember that addition of polynomialseisecuted as XOR
operation of coefficients at the equal orders.of
We will consider the example¢
of code (10, 5) code word formin O
with the generate polynomig(x) =

X+ X' +x8 IXC+x+x2+ 1
CHE+C+x XX+ 1

8 7 4
X + x*+ x* + 1 LetsA, = 10110, then TN
i - X + X+ X+ X
a(¥) =X+ + x, anda(x) ¥ = x° + X NIV BN
+ x°. We will execute the divisior U@ 43t + 2 + 1
with the purpose of remainde X+ X2+ 1 =r(x)

determination.

Acording to (2)bi(X) =X +x” +x% +x* +x° + 1 orB; = 1011001101.

In the cyclic code decoder the code word on decwgbert division on generate
polynomial is produced. Polynomials of the codedvon encoder outpud(x), code

word on decoder inpuf)(x) and errorse(x) connected by expression like (1):
6(x) = b(x) O e(x).The result of division on generate polynomial barepresented

09 D6 1 89 _ i 1 89 g vz 0 S,
g9(x) 9(x) g9(x 9(x) 9(x)

From these expression follows that remaing@ depends only on the error
polynomial and does not depend on the code worénaoder outputv(X) is integer
part from the divisiorg(x) on b(x)). Remainderfrom the divisions(x) on g(x) is a
syndrome. A nonzero remaindedicates that the accepted code word is forbidden
(with errors). If a decoder works in the error emtron mode, the error symbol
number (or numbers of error symbols) is determioedhe syndrome analysis base.
For code (10, 5) with the generate polynongigd) = xC + x* + x* + 1 we will make
the syndromes table for all single errors, exegutime divisionse(x) on g(x) and
writing down remainderom the division in table 2.

Table 2— Syndromes for first order errors From table 2 follows that in the case of

Error Syndromes(x) single errors (first order errors) all
polynomiale(x) syndromes are different, therefore every

x> X'+ X +1 syndrome simply specifies the error
X x* + + X symbol number. Error correction by a
X’ X +x + 1 decoder is executes by decipherer built
X X+ +xX+x+1 according to table 2, and inverting
x° x* e +1 element which executes the error symbol
x* x* inversion.

X X The researched code (10, 5) has
X2 X2 code distanced,;;, = 4 and allows to

X X correct first order errors.

1 1
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Questions

3.1 What codes are named as error-control codes?

3.2 Explain error-control code encoder and decddstination.

3.3 What is redundancy and code rate?

3.4 What is the Hamming distance between code waai$e distance, and
error order?

3.5 How to explain detecting and control code aiili

3.6 Explain error detecting and error correctionagal principles.

3.7 What codes are named cyclic?

3.8 How to write code word as polynomials?

3.9 Explain cyclic codes encoding and decodingqgipies.

4 Home task

4.1 Study "Error-control codes" from the compendininfectures and literature
[5, p. 137...150; 2, p. 287...297].

4.2 Write down the number of brigablet 8 in the binary number. Considering
these number as information word, lengter 5 on the encoder input, form cyclic
code (10, 5) code word, using generate polynogfidl= x> +x* +x* + 1.

4.3 For three errors words(x), ex(x) andes(x), given in table 3, calculate
syndromes, and then, using table 2, define decadek result. If the calculated
syndrome is wrote in table 2, a decoder invertsecatbrd symbol which is
considered as error. If the calculated syndronadsent in table 2, a decoder does not
change code word symbols which are decoded. Codeé srothe output of decoder
Is code word on decoder input fikssymbols.

Table 3— Polynomials of errors for the home task

Number of el(x) — e(X) — e3(X) —

work placeN single error doubled error triple error
1,11 X’ X+ 1 X" +°+ 1
2,12 X X+ x8 X +x8 +x¢

3 X’ x° + X X+ X8 + X%

4 x° x> + X X"+ X8 +x

5 X X" +x8 X+ X"+ X

6 X! X"+ x* X+ X+

7 X X + X2 X + X" +x

8 NG X2+ X3 X2 + X8 +x

9 X X'+ X X2 + X8 + x4
10 1 X + X X2+ %8 + x4

4.4 Draw a shame error-control code encoder anddéecincluding in the
digital communication channel structure.

4.5 Be ready to discuss key questions.

5 Laboratory task

5.1 Acquaintance with a virtual modebtart the program 4.2, using the icon
TT (English) on a desktop. It is necessary to stindystructure of a virtual model
using its description in part 6 of this LW. Coordlie the plan of performance of the
laboratory task the teacher.
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5.2 Encoding process researciihe cyclic code (10, 5) from home task is
researched. For this purpose:

- choose in a menu "That do we research?" pointSeimg”;

- choose a code (10, 5) and set a proper genestegonial;

- enter information code word determined in honsk.ta

Run the program and compare the code word on tkeeden output with
calculated in the home task.

5.3 Transmission by a communication channel processares. For this
purpose:

- choose in a menu "That do we research?" poiraridmission by a channel”;

- enter zero error word, length

Run the program at the same settings (from item B4ake sure, that in the
case of zero error code word on the output "Teleoamcation channel" coincides
with code word on the input.

Set error word, which corresponds to the singlereti(x) from Table 2 for
your variant. Run the program, compare code wondsthe telecommunication
channel input and output and make sure in thedeleaunication channel with errors
correct work.

5.4Research of process of decodikgr this purpose:

- choose in a menu "That do we research?" pointéDiag";

- enter zero error word.

Run the program at the same settings. Make suaé atlsyndrome is zeroes,
and code word on the decoder output coincides eaitie word on the encoder input.

Set errors word which corresponds to the singlereri(x) from the home
task. Run the program at the same settings in encddake a table with the
decoding results according to the sample Tabl. 4.

Table 4 —Cyclic code (10, 5) for the code wokl+ 8 = 22 (encoder input —
10110, encoder output - 1011001101) researcheksesu

Errors word Encoger iINpUtEncoder outpytSyndrome|Error symbol number, whig
e(x) b(x) a(x) S(X) decoder define

x> 0011001101 10110 | x*+x%+1 x>

Repeat research of decoding at double) and triplees(x) errors from the
home task. Compare got results with calculatiortbenhome task results.

Repeat research of decoding at the arbitrary fédiréoror e4(x). For certain
error words, for examples(x) = x° + x° + x* + x syndrome is zeroes, that confirms
that a code (10, 5) has code distatige= 4.

5.5 Other cyclic coden( k) research.

Teacher gives a cyclic code, k). Repeat research item 5.4.

6 Description of laboratory model

Laboratory work is executed on a computer in the\HHE environment with
using a virtual model, the block diagram of whishrésulted on the figure 2. A model
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Is intended for cyclic codes: (7, 4), (10, 5), (&9, (11, 7), (12, 8), (13, 9), (14, 10),
(15, 11), encoding and decoding processes research.

A model allows research consistently encoding, sirdssion by a
telecommunication channel and decoding. It contdines marked by a red color
options which a student must set. The blue colordawvs are used for the model
work results indication.

Coder forms the permitted code word by the n — k checking symbols
calculation and add to them information symbolse Glot code word is indicated on
the encoder output.

For the transmission by a telecommunication chammglementation it is
necessary to enter errors word, lengtieonsisting of 1 and 0. The symbol 1 is set in
those positions, which an error at the transmisbipma telecommunication channel
must be in. In a telecommunication channel codedwimm encoder is added with
combination of errors by XOR. The got code word imlicated on the
telecommunication channel output.

Indicator ofb(x) Indicator ofb(x) | |Indicator of &(x)
Setting ofa(®) | gncoder |PO| | Transmission|b(x) Decoder |a(x)
' channel
Setting ofe(x) !
Indicator of | Indicator of errof
(x) symbol numbe

Figure 2 —Virtual model block diagram

A decoder divides code word on his input, on a gEeepolynomial. A
window under a decoder shows the code word synd(@mieinary presentation); a
window left shows the decoder decision about thieresymbol number (all codes
researched in a model allow to correct single sjror

If a syndrome is zero, a decoder gives messageetMus". If a syndrome is
not zero, on the syndromes table a decoder detesniie error symbol number and
"Error inx” " message, whepeis error symbol number.

The syndromes table contains only syndromes which correspond o
symbols of the decoded code word. The possiblersymes number is equal 2. If
n<2'~¥_— 1, a syndrome which is absent in the syndrorabke tcan appear in a
decoder. In this case a decoder gives out the messhknown error".

If a decoder defined the error symbol number iegiout the message "Error in
™, it corrects this symbol and takes away klast symbols. If syndrome is zero or
it is absent in the syndromes table, a decoder taklys away — klast symbols. The
information code word appear on the decoder output.

7 Requirements to the report

7.1 Title and objectives of laboratory work.

7.2 Results of the homework execution
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7.3 Results of execution of items 5.2...5.5 of rabary task.

7.4 Conclusions on every item of the laboratorktagth analysis of the got
results (coincidence of experimental and theorkitndarmation).

7.5 Signature of student about the laboratory werecution, teacher’'s
signature for the laboratory work defend with estilon and date.

LW 4.3 Noise immunity of block error-control codesresearching

1 Objectives

1.1 Study of block diagram oh,(k) block error-control codes decoder with the
errors correction.

1.2 Experimental researches of noise immunity mfk{ block error-control
codes with the errors correction.

1.3 Calculations of coding gain (CG) from data gperimental researches of
noise immunity of i, k) block error-control codes.

2 Main positions

2.1 Correcting ability of error-control codes. Correcting ability of error-
control code is expressed by the guaranteed caliecerrors valugeo, < (dmin — 1)/2
and by the guaranteed detectable errors vaide< dnn — 1, whered,, — code
distance.

Noise immunity of transmission system with a ewontrol code is described
by thepq = f(E/No), Wherepy is bit error probability at the output of the ddeo
Eu/No is the ratio of signal energy expended on thesteanof one bit to the power
density of noise (SNR) at the input of the demottula

Frequently the noise immunity of the transmissigstam with a error-control
code it is convenient to describe by the gain apd®G) value (see below).

2.2 Syndromes decoding.For (1, k) block error-control codes today the
syndromes decoding is basic for a discovery armr®gorrection.

Syndromes method of errors correction is based @imple rule: on the
syndrome of code word the errors location is deteech Therefore under the
syndrome of code word understand the result of diercoalculation on the set rules
of numbers = (s, &, ..., ), r = n —k, which testifies to the errors detected and
determines their placing (configuration) in coderdvdn binary codes a syndrome is
written down in the binary number system, thatditfits s, s, ..., S take on a value
0 and 1.

A zero syndrome specifies on that the received eomtd is permitted, that the
detected errors are not present. Nonzero syndrengerresponding to some errors
configurations. Thus possible such situations:

— the syndrome received by calculation correspondsotoe configuration of
errors which meets a < .o, In this situation the decoder "corrects" errdost
correction not true, and, most likely, the quantifyerroneous symbols in a code
word grows;

- the syndrome received by calculation does not spoed to any of
configurations of errors which can be @t< q., in this situation the decoder
"refuses"” decoding and passes such code word oatpat with errors.
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Thus, the syndromes decoding of binary codes ientak the calculation of
syndrome and search that or by other method ecarBgurations which errors are
corrected on. Correction of an error in some birsgtybol is reduced to its inversion
and carried out by addition of an erroneous symiith 1 on the module 2.The
generalized block diagram of syndromes decodesslted in figure 1.

In the scheme of figure 1 “Syndrome analyzer” s thost complex device. In
it on the calculated syndrome errors configurat@nwhich then the errors corrected
with corrector, is set. As a syndrome can be catedl only after reception of all code
word (block), for the errors correction in a codertvneeded to delay ansymbols,
which is carried oub-digit shift register. After establishment of errors cgofation
an analyzer symbols of the decoding word are cterdiy "pushed" from a shift
register, and from an analyzer symbols "1" acthimsse moments of time, when it is
necessary to invert erroneous symbols.

Decoder
input
P . | Syndrome
b calculato
IE cormmor | 2C0der
Syndrome output
—> —>
analyzer |:| a
n-digit shift
register

Figure 1 — (n, k) block code syndromes decoder generalized bloagrdm

2.3 Coding gain

Coding gain (CG) shows how many decibels lower irequSNR at the input
of the demodulator in a transmission system wighrar-control code, rather than in a
transmission system without error-control codesfgiven valugy.

Let SNR (dB) at the input of the demodulator imansmission system without

error-control coden’;, and in a transmission system with error-contoalech?, with

the same symbol error probability. Then, if thensigto noise ratio expressed in
decibels,

CG=h; - hS,. (1)
We remind that a ratit/, is determined as

h§2 = 5 = _PSTb , (2)
NO NO
where P/N, is ratio of average power of signal to noise powlensity at the
demodulator input;T, is duration of information binary symbol (bit) dhe
transmission system input.
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CG can be calculated in theory or measured expatatig. For example
(figure 2), in a transmission system is requireéneure the symbol error probability

p = 10°. In a transmission system without error-contraie®NRh% = 9,6 dB is

required, and in a transmission system with eromtol code SNRh, = 6,3 dB is
required, then CG =9,6 — 6,3 = 3,3 dB.

2 2
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Figure 2 - Graphs of noise immunity: — transmission system without error-
control codepqy — transmission system with error-control code
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If CG > 0 dB (on figure 2 apy < 107), such error-control code allows to
decrease the signal/noise ratio at the demoduiaput, if CG< 0 dB, such error-
control code does not allow to decrease the sigoisk ratio at the demodulator
Input, its application is worsened by quality ofeption.

Dependenciep = f(h2) andpy = f(h?) can be obtained experimentally by the
method described in the laboratory work 3.3. Irs tlaboratory we study noise

immunity of transmission system with error-contoolde using a model of digital
communication channel with errors (figure 3).

So_ur_cel ofl a(t) | Error-control| b(t) | Digital b | grrorcontrol| &t)
d|_g|ta code coder "| transmission code decodey
signa chennel p Pd

Figure 3 — Experimental studies of noise immunity transmissystem
with erroi-control cod

The order of experimental determination of the Ckeemw using the model of
digital communication channel with errors.

1. A series of values of error probability at tHeaonel outpup in a certain
range of values, such as= 10°-107 is setting (model of the digital communication
channel with errors should allow such settings)r Each value ofp the error
probability at the output of the decoder is detesdp,.

2. Must be specified modulation type which is ugedigital communication
channel. For transmission system without errortwbrdode and with this type of

modulationp = f(h?) is plotted. Figure 2 this dependence is built B®*SK and
QPSK signals.
3. Graphingpy = f(h?) is produced in the following order. For one oé th

values ofp on plotp = f(h?) determine theh? value, which for the transmission
system with a error-control code will be equalite tatio signal/noise

0 0

whereTsis duration of the binary symbols at the modulatgut in a transmission
system with error-control codes (the output of #mer-control code encoder). As

T.=T,k/n, so in a transmission system with an error-contame hZ =h’n/k. In

the presentation in decibettg =h* +10Ig (n/k . This conversion takes into account

the fact that at the error-control code encodinghamredundant code wornd — k
checking symbols are introduced which lead to aredse in a duration of all
symbols in the code word and a corresponding dsergasignal energy.

In the resulting valudy? and the corresponding valpg point depending is set
pa = f(h%). The same procedure is repeated for all othenegabfp. Points are
connected by a smooth curve and get depenggreé(h?).
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4. At a given level of error probability determitie valuesh?, andh/,. CG is
calculated by the formula (1).
Example calculation of points on the graph = f(h?). (31, 26) code is used;

BPSK modulation; error probability = 5102 andpy = 10°. On the value op and
the graph in figure B* = 5,5 dB is defined. Calculate

h? = 5,5 + 10lg(31/26) = 6,3 dB.

Lay off the point schedule, = f(h?), whose coordinates is (6,3; 30

3 Questions

3.1 Specify the methods of error-control codes dexpwhich are known by
you.

3.2 What is syndrome of code word and what purpogaised for?

3.3 What (, k) block error-control codes the syndrome decodmgnainly
used for?

3.4 What function is executed by the analyzer afdsgme in the decoder of
error-control code?

3.5 How errors are corrected in code words of examtrol code?

3.6 How is the syndrome of code words calculatedyalic codes?

3.7 That does determine CG of error-control code?

3.8 What parameters of error-control code does §é&ad on?

4 Home task

4.1 In the workbook, prepare a grapl f(h’) for BPSK and QPSK signals

(redraw from figure 2 or calculate).

4.2 Use the graph to calculate the CG, providecetogr-control block , k)
code, at a given probabilifyy according to table 1.

4.3 Prepare to the discussion of questions.

Table 1 —Error-control code parameters for home task caticuia

Brigade Egﬂggggg?gg;}t Error probability at Code rate
number Do the decoder inpug, Reode=k/N
1 107 5107 0,5
2 107 2.10° 0,6
3 10 107 0,7
4 107 5107 0,8
5 107 21073 0,9

5 Laboratory task

5.1 Acquaintance with the computer model of decoBer this purpose to start
the program, using an icon “Laboratory works” ordesktop, and then folder of
TT-2. To master a conducting method research afectng ability of (, k) block
code, that by introduction of basic data, starthef program, reading of results. To
bring the chart of researches to the LR report.
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Table 2 —Parameters entered in the study

Denotation Comments
n Code word length (bit)
k Number of information bits
Amin Code distance
g(x) Generate polynomial
prob_err | p— decoder input error probability
num_rand | N— number of code words

At each new dimension prob_err and num_rand mushbeged.

5.2 Experimental research of correcting ability of ddeo. The experimentally
determined valuep andpy and recorded in the table 4. Research is conduoted
codes , K):

- brigadeNel: (31, 26), (23, 12) codes;

- brigadeNe2: (30, 25), (22, 11) codes;

- brigadeNe3: (29, 24), (21, 10) codes;

- brigadeNe4: (28, 23), (20, 9) codes;

- brigadeNe5: (27, 22), (19, 8) codes.

On the teacher task can be researched athky ¢odes fon < 32.

Generator polynomials for researches get out fiadstet3.

Table 3 —Generator polynomials of cyclic codes K)

Ordern —Kk Generator polynomials

4 X+x+1; X +x+1

5 XC+HX+1 X +X +1;

11 XTHXO+X+XC+ X+ + 1 X+ +X + X+ X +x+ 1
Example of polynomial input: x*4+x"3+1

During research to set error probability at theodec inputp < 0,01 on
diminishing (5—6 points) until error probability tite decoder outpyt; will not attain
a value, near by 10

Table 4— The results of measurements (specify code)

Measu-| Code Decoder input Decoder output
ring words _ Fault in
number| numberN Ner.in P Ner. out P decoding

g WN|F

Symbol error probability at the decoder input andpat are calculated on
formulas:
N

erin and — erout ’ 4
N O Pad Nk (4)
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whereNe, in and Ng, oyt — NUMber of word errors at the decoder input amgbud in
times of supervision.

According to Table. 4 shall be calculated dependgref (h?), then the CG is

determined at levelsy = 10 andpg = 10°.

6 Description of the computer program of , k) code correcting ability
research

6.1 Decoder For researches the realized programmatic modeViedgitt
decoder of cyclicr{, k) code is fom < 32, the block diagram of which is resulted in a
figure 3. A Meggitt decoder is a tabular decodewimch entered the following of
decoding [8]:

1. Syndrome analyzer includes pre-computing “Tablesyndromes” that
contains all errors configuration that can be ctg®@ by this 1§, k) code and their
corresponding syndromes.

2. For the accepted code word a concrete syndremsalculated by ordinary
rule is dividing of the accepted code word on gatoer polynomial. Calculator
syndrome is based on am-{ k)-bit shift register. Syndrome is the remaindetiad
division.

3. The "Syndrome analyzer" is performed by a seamcthe tables of the
calculated concrete syndrome, reading of erroréigaration and presentation of the
proper sequence of "1" to "Errors corrector” fag #rrors correction in the accepted
code word.

6.2 Research of correcting ability of , k) code. Conducted on a block
diagram, resulted in a figure 4.

As a generator of errors symbols is used geneaditpseudo noises numbers 0
and 1, in which probability 1 equals probabilityesfor of input symbols.

Meters fix:

- number of code words which are analyzed in tinoéssupervision —
decod_suc, let's designaie

- number of code word errors at the decoder inpunpdt_err, let's designate
Ner. iy

- number of code word errors at the decoder outpuitput_err, let's designate
Ner. out

- number of decoding fault (the calculated syndrasneot found in tables) —
decod_err.

6.3 Order of work with computer program.

1. Measuring of noise immunity is conducted thetsi&file of meg32n.exe
(itis in a folder “Laboratory works of TT-2, lakaiory work 4.3).

2. On the requirements of the computer program ssecg for work basic
data are entered.

3. In the program foreseen also step-by-step mbdeeration - parameter /t
in a command line and conclusion (seal) of tablsymidromes is a parameter /s in a
command line.

4. Probability of error can be set, both in an mwady and in scientific format,
for example, 0,025 or 2.5e-2.
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Intermediate results indicate on a display eackcdsds.

s . Fault meter
| BSC | | decod_err
a Coder | Db [] . b Decoder
(n, k) code| T i (n, k) code| & Code words
: ! meter
! i decod_suc
i | J
! ' | Comparison Comparisor
| | scheme scheme
Error Meter of code worgl Meter of code wor
i symbols |!| errors at the input|| errors at the outpu
i| generator | input_err output_err

Figure 4 — Block-diagram ofrf, K code correction ability researching

7 Requirements to the report

7.1 Name of laboratory work.

7.2 Objectives of laboratory work.

7.3 Results of the home work.

7.4 Block diagram of researches, list of devicadi@ators) which are used in
LR.

7.5 Results of implementation of items 5.2, 5.3takory task (measured and
calculation numerical values etc.).

7.6 Conclusions on every point of laboratory task,which to give the
analysis of the got results is a coincidence ofotkical and experimental
information etc.

7.7 Date, signature of student, visa of teachehn ait estimation on the 100-
mark scale of evaluation.

LW 4.4 Studying of coding and decoding by error-cotrol convolution
codes

1 Objectives

1.1. Studying of convolution codes codecs structure

1.2. Researching of convolution code control apilit

2 Main principles

2.1. Definition and description of convolution codesAs is known, in the
case of block codes the sequence of informatiorbsigr(in future bits) is divided on
separate blocks which in future are encoded inddgr®nof each other. Thus, the
coded sequence is the sequence of independentvoods of equal length.
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For convolution codes a principle is other. Theiegdorocess is continuous
and symbols on the encoder output (so-called cgd®als) are one semi-infinite
code word.

Convolution codes (CC) are the special case ofimoniis codes. They got the
name through its property. The sequence of coddaslgon the encoder output is
calculated as mathematical operation of digitaiodution of information bits on the
input with encoder pulse response.

The structure of convolution code encoder and m®adé coding (decoding)
are set by the generator polynomiglé), wherei = 1, 2, ...,n; D is delay. As a rule,
polynomials are written down briefly, three binacpefficients of polynomial
designated as one octal number. For example:

g =7 meang'¥ = 111, i.eg? =D*+D + 1 or 1 +D + D%

g® = 21 meang® = 010101, i.eg® =D*+ D?+ 1 or 1 +D? + D*.

2.2 Main parameters of convolution codes.Code rateis determined as
Re.ode = K/N, wherek is the number of encoder inputsis number of encoder outputs.
Code rate shows that &rninput information bits encoder gives outode symbols.

Constraint lengthv characterizes encoder memory and equals the nuofber
memory cells which encoder contains.

Encoder pulse response the response of CC encoder on one informatibn b
as “1”, which passes through encoder fromithie input to the-th output, encoder
haskn pulse responses.

Free distanceof coded; is the minimum Hamming distance between the
sequence of zero code symbols and all other segseot code symbols. Free
distanced characterizes the correcting ability of CC, i.emier of errorg..,, which
are corrected by CC on length of the accepted sgd#ols sequendd = (5-6)V.
Connection betweend; and g..r is the same, as for code distance of block error-
control code:

df >2 Qcorr + 1. (1)

2.3. Convolution codes encoder.Convolution code encoder contains the
clocked memory register for saving of certain numbieinformation symbols and
transformer of input information sequence to outmde sequence. Block diagram of
CC (7, 5) encoder (code rd®,qe= 1/2) is shown on the figure 1. Encoder contains
shift register with the three memory celdls modulo-two addef] and multiplexer
MX. Inputs of modulo-two adders connected with thoslls of register, in which the
coefficients of generator polynomials equal to unit

Information bitsa on the input of register. In every clock intereal the adders
outputs code symbots” andb®® appear, i.e. on one information bit there willthe
code symbols on output.

For mathematical description of convolution encggdlinalculation of digital
convolution, a few methods is used: state diagtes®e,graph and trellis diagram. The
trellis diagram which is considered below is mostient.
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- b™® — first code symbol
| MX |
a 3 L
Input | L » Output
O . B
b® — second code symbol

Figure 1 — Block diagram of convolution code (7, 5) encoder

2.4. Trellis diagram of CC. The trellis diagram of CC called the directed
graph with structure of "cells" which repeat peroadly. Every cell consists of
columns with the identical number nbdesconnected by grapbranches(figure 2,
a). Between procedure of théC encoding and trellis diagram there is univocal
correspondence which is prescribed by such rules:

- every node corresponds to the encoder interatd,shs a rule, it is content of
two last memory cells in shift register;

- every branch represents encoder transition from siate to other after new
information symbol reception in encoder: upper bhacorrespond to 0, and lower to 1;

- when encoder passes from one state to otheneany branch links this states
initial code symbols which appear on encoder oudypetwritten down;

- the sequence of branches which is determinetidgequence of information
bits and identically gives the code symbols segegmoper to it is called pathon a
trellis;

So, for CC (7, 5) encoder represented on a figura ttellis will have four
states (00, 10, 01 and 11) and it is shown on itperd 2. The evident rule of
calculation of initial code symbols on branchesvet on figure 3 for the encoder
initial state 00 and information bits O and 1 oe thput. The calculation of initial
code symbols of other branches is similar as foeloéncoder states.

Time
b g9 b oo © gg B oo U
00@_
\\41
\\}
0 N
() N
I 10
17
o
go]
3
c 01
w Branch
of trellis
diagram \ \ .
1T - ®
Nodes trellis cagram
a b

Figure 2 — Trellis diagram of convolution code (7, 5):
a — trellis diagram cellp — trellis diagram evolution on time
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Initial encoder bl(1) -0
state — 00 0o +—
I MX

a;=0 | "1 | Branch 00
1

—— | 0 010 : 5
Transition | Ly
to state 00 ______ :

- (2) =0

b =

Initial encoder bl(1) —1
state — 00 o +—
I MX

a=0 | "1 | Branch 11

l 1
— 1 010 : :
Transition Ly
to state 10 ______ :

- (@) = 1

b =

Figure 3 — Convolution coding process for code (7, 5)

Using trellis diagram codiee distance; is calculated as weight (quantity of
units) of shortest nonzero path which begins ar$ @m zero state (on a figure 2 for
CC (7, 5) itis the dotted path).

Example 1For CC (7, 5) encoder represented on a figurendl,the sequence
of code symbols, if sequence of information l@ts 01101000. Accept that in the
initial state a register contains zeros.

Solution. Coding sequence is given in table 1, ts hase on figure 4
represented trellis diagram with coding path, undeding path understand the
sequence of branches which passes during coding$s0

Table 1 —Coding process of information bits sequence 01Q201GC (7, 5)

| i Encoder stateEncoder stat| Output code symbols in
nformation | Encoder | . : >
k bit &, contains | M moment | in moment 5 momentty -
t—1 % bk bk
1 0 000 00 00 0 5
2 1 100 00 10 1 1
3 1 110 10 11 0 1
4 0 011 11 01 0 1
5 1 101 01 10 0 5
6 0 010 10 01 1 0
/ 0 001 01 00 1 1
8 0 000 00 00 0 5
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11
Code symbols 00 11 01 0100 10 11 00
Figure 4 — Encoder trellis diagram for CC (7, 5) and codbagh

2.5.Decoding of convolution codesTypical decoding algorithm, based on the
probabilistic characteristic of the received signas the Viterbi algorithm [9-12],
that uses the structure of certain trellis diagcdr@C.

On anyk time interval the Viterbi algorithm provides deaagl stages given
below.

1) Calculation of distance between received symbols and possigiaools,
which correspond to all branches of trellis, teebranches are included in every state
in the moment,. This distance is called tmeetric of branch

2) Constructionof decoder trellis diagram, which similar to enepdrellis
diagram, on which represent all possible branch#s tiweir metrics. The number of
branches and correspond path on a trellis increasdise increase of trellis cells
number, which are in point (thdecoding depthwhich depends on the capacity of
decoder memory and takes value less then 10 cortidagths).

3) Collapsingof trellis diagram on every step of its constroctiCollapsing of
trellis diagram it is procedure of exclusion of dnam two paths which are included
in every decoder state, according to the rule: th path a greater metrics is
excluding, a path with a less metrics stays (if rrogtare identical, any path is
excluding). Metric of path(or metric of stateof trellis Af;, whereij is number of
decoder state) represents total metric of braneh@sh a concrete path in the
momentt, passes to the concrete state. Collapsing ofgréifigram is necessary for
decreasing of decoder paths number and decreasimgmory capacity.

4) Finding of optimum path on trellis after endiof decoding and making
decision about transmitted information bits. A paith the less metric is optimum is
called assurviving path Decoding is carrying out on a surviving pathit fhasses on
the upper trellis branch, information bit is "0dwer — "1".

On the Viterbi algorithm we will consider proceduedecoding on a concrete
example for a binary symmetric channel, demodulgiees out the "hard" decision

as the sequence of code symbols with erbors
Example 2.Decode using Viterbi algorithm, sequence of theereed code

symbols:B =00 11 00 01 00 10. Convolution code (7, 5). Tdkat at the beginning
of decoding the decoder register is in the zen® sta
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Note. The received sequen(f:e Is the fragment of sequence of encoder code
symbols from example 1.

Solution.Procedures of decoding 1) and 2) on the Viterpoddhm, combine
into one during construction of decoder trellisgiaam, resulted on figure 5 for the
time momentsty — t;. The metric of branches on any moménis calculated as

Hemming distance between a pair of received codabsels 6&1) 6&2) and code

symbols of trellis branches. The calculated distaff; 1 or 2) is shown near every
branch on the figure 5. From figure 5 it is visilikat from the momertt the number
of branches is equal to eight in every trellis calid the number of possible paths

increases exponentially with the increase of dewpdepth.

Code symbols
at the decoder input: 00 11 00 01 00 10

1o 2] L
00 e——e——e-
9 o~

10 @

ol1e

\ \
\ N \
\
\ \ \ N

11@ 1795 179770

Metric of branch~
Figure 5 — Fragment of decoder trellis diagram, CC (7,5)

Procedure 3) collapsing of trellis diagram resulteda figure 6 for the time
momentd; andt,.

Notes.1l. For moments, andt, there no collapsing of trellis diagram, because
in any node which are taken up, one branch entdys o

2. It is obvious, that in errors absence the maifione path will be
zero, because this path repeats the path of ergcodin

On a figure 6a for the moments, andt; shown all branches and paths, and on
a figure 6,b only with a less metric. As none from the meto€paths (states) equals
to zero, it means that in the received sequenceodé symbols error is present.
Making decision about a surviving path is impossilds two paths (states) have
identical metrics.

The process of decoding in a trellis must be comtih For momentg andt,
collapsing of trellis diagram is shown on a figéral. Again in nodes in the moment
t, paths with less metric are chosen. For the nodéhéde are two paths with the
metricMy, = 3, one is chosen arbitrarily.

If to complete decoding on trellis, a path with thetric My; = 1 is optimum,
shown on a figure 6d by bold dotted line, and the decoded sequence hell
a = 011010, which coincides with the sequence obrmftion bits in example 1.
Conclusion: the error is corrected.
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00 11 00 Metrics

to ) t 5 t, ) ts of state

00 @ LN o ® ® Myp=2
2 .

10e \k:\i: Mo =2
o1 e e Mo=1

116 © © @ M;=1

b
00 11 00 01 00 11 00 01 Metrics
to 0 t1 2 7 0 i3 1 [ 7] to 0 t1 to 13 1 of state
00 @ —@ N o0e——®_ © Moo =2
2. a A
10@ o Myo=2

e cie o / Mor=1
\\\ A \\\1 //
\ \\ W
10 @ ;-9 10 @ / "5 @ Mi=3
Surviving path

Decoded information bit&: 0 1 1 0
C d

Figure 6— Surviving path choice: — metrics comparison in momegtb — surviving paths in
momentts; ¢ — metrics comparison in momegtd — surviving paths in moment

2.6 Soft decoding.lt is simple modification of the just expoundeagedure.
At the soft decoding samples from the output of deenodulator matched filter act
on the input of decoder. On the first stage of dewp it is needed to replace the
Hamming metric on the Euclid metric. All other stagf decoding do not change. So
complication of decoder realization with the soéicion not strongly differs from
complication of decoder realization with the hawtidion. It is one of important
advantages of Viterbi decoding algorithm.

3 Questions

3.1 Give definition of the error-control codes iangral and convolution in
particular.

3.2 What is free distance of convolution code ahdtvwdoes it characterize?

3.3 Give definition to CC encoder pulse response?

3.4 What is CC constraint length?

3.5 Give definition for metrics of: branch, patihdastate.

3.6 How is it possible to describe work of convmnotcode encoder?

3.7 How to build the CC encoder trellis diagram?

3.8 Explain the principle of Viterbi decoder work the CC decoding.

3.9 What surviving path on a trellis determines ha to find it?

3.10 What is decoding depth and how it is deterdfne
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4 Home task

4.1 Study item 2 this LW. .

4.2 CC with generator polynomiaf’ = (7, 5) is given. Write down number
(12N + 900) in binary number system, wh&és number of your work place.

Code the got binary sequence by CC (7, 5), bugdréllis diagram of this CC
encoder and mark the encoding path on it.

On trellis diagram (figure 2p) define free distance of code (7, 5) and
multiplicity of corrected errors of this code.

4.3 Be ready to answer questions.

5 Laboratory task

5.1 Acquaintance with a virtual modektart the program 4.4, using the icon
"“TT (English)" on the desktop. In researches thqueace of information bits
(symbols) from home task uses.

5.2 Research of coding procedsis necessary to enter information katgot
in the home task on the CC encoder panel. UsingpmtsStep by Step” to carry out
the coding process (while the button will be adtivgrite into report the sequence of
information bits, content of encoder register amtlal sequence of code symbols on
every step. Make sure in the rightness of the hiasle result.

5.3 Research of decoding process at errors abselhee.checking of decoder
work ability if on the decoder input the sequentearle symbols, which got during
encoding (item 5.2). For this purpose it is necgss$a press the button “Step by
Step” on decoder panel while it will be active. é&fthat push the button “Decision”
and surviving path will appear. Compare it with @iag path and make a
conclusion about decoder work ability.

5.4 Research of decoding process at presence of erfbrist it is necessary
to clean the memory register using the button “Clea the panel of CC decoder.
Put a single error into one of the first six reeeicode symbols by pressure of mouse
left button on code symbol in received sequenceyhith you want to put an error.
Repeat the procedure described in item 5.3. Patregort the fragment of got trellis
diagram for the first four steps of decoding<t;). Draw all possible collapsed paths
with their metrics, surviving path and recovereduance of information bits. Make
conclusions about error correction.

5.5 Research of decoder control abilitifor this purpose put two errors in a
row and separately into any received code symhudsrapeat item 5.4, i.e. decode.
Put three errors in a row and separately and depexkived code symbols. Make
conclusions about order of corrected errors.

Record research results as it is shown below. Ewde symbols and initial
information bits are underlined.

Received code symbols 101 00 01 01 00 10 OO0 10 11 OO0 11 0O
Decoded information bits 1 0 1 0 011 1 0 O 1 1 O

6 Description of laboratory model
A laboratory model is performed on a computer pragrConvolution code is
set by the generator polynomiaf8 = (7, 5).
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The work of virtual model manages by the left mobs#on. Putting of errors
Is makes by the inversion of symbols from "Receliv&ar the repeating of encoding
process it is recommended to clear of encoder metmprusing button “Clear” on
the CC encoder panel. Similar for a decoder to fugton “Clear” on the panel CC
decoder. There is also the global clearing whicremmended to use before new
research. For this purpose it is necessary to fheshutton “Clear All” on a panel
Code Parameters.

7 Requirements to the report

7.1 Title of laboratory work.

7.2 Objectives of laboratory work.

7.3 Results of the home work performing.

7.4 Encoder block diagram that is used in LW.

7.5 Results of performing of laboratory work ite(trellis diagrams, numerical
values of code sequences, etc.).

7.6 Conclusions on every item of laboratory taskyhich to make the analysis
of the got results (coincidence of theoretical amgerimental information, control
ability of CC (7, 5), etc.)

7.7 The date, signature of student, visa of thehawith mark.

ATTACHMENT D. DICTIONARIES
D.1 English-Russian dictionary

additional symbol JIOTIOJTHUTEIIbHBINA CUMBOJI
algebraic description areOpanvecKoe Ormrcanue
algebraic ring aJre0panvecKkoe KOJjbIlio

allowed code word pa3pelieHHast KoJIoBasi KOMOMHAITUS
antipodal signals IIPOTUBOIOJIOKHBIE CUTHAJIBI

a posteriori probability arioCTEPHOPHAs BEPOSITHOCTh

band expansion factor K03 PHUIMEHT pacIIUpEeHus MOIOCHI
binary code JIBOUYHBIA KOJI

block code OJIOKOBBII KOJ
Bose-Chaudhuri-Hochquenghem code xox boy3-Hoyaxypu-Xoksenrema (BUX)
bound IpaHuIa

branch metric METpPUKa BETBU

channel capacity IPOIyCKHAas CIIOCOOHOCTh KaHasia
checking relation MIPOBEPOYHOE COOTHOITICHUE

code constrained length JUTMHA KOZOBOI'O OTPaHHYCHUS
coded modulation CHTHAJIbHO-KO/I0Basi KOHCTPYKITUS
code rate CKOPOCTh KOJ1a

code with even number of units KOJI C YETHBIM YHMCIIOM E€IUHHUILL
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code word

code word weight
coding algorithm
complexity

compound estimation
continuous code
convolutional code
cyclic code

cyclic property

detect

directed graph

double error

dynamic programming
element-by-element reception
encoder state

(energy) coding gain

error
error-control code

error correction capability
error detection capability
error vector

errors configuration

even number of unit symbols
exhaustive search

fidelity

finite state machine
forbidden code word

free distance

full search algorithm

Galois field

generator matrix

generator polynomial

Goley code

Hamming code

Hamming distance

KOJIOBOE CJIOBO (KOJ0Bast KOMOMHAIIHS)
BEC KOJIOBOT'O CJIOBA

aJIrOPUTM KOJUPOBAHUS
CJIOKHOCTbD

COCTaBHas OIICHKA

HENPEPBIBHBIN KOJI

CBEPTOYHBIN KOJI

UKINYECKUN KOJT

IIUKJINYECKOE CBOMCTBO
OOHaPYXUTh

HarpaBJICHHBIN rpad

JIByKpaTHas OINOKa
JTAHAMHAYECKOE MPOrpaMMUPOBAHUE
MO3JIEMEHTHBIN MPUEM

COCTOAHHC KOJACpa

SHEPreTHYSCKUN BHIMTPHIT (OT
PUMEHEHUS) KOJIUPOBAHHS

omuoKa

KOPPEKTUPYIOIIHAN KOJ

CHOCOOHOCTH MCTIPABIISITH OIIHOKH
CIIOCOOHOCTh OOHAPYKUBATH OIMIUOKHU
BEKTOP OIINOKH

KOH(Urypamus ommubdok

YETHOE YMCJIO CTUHUIT
MCYEPIIBIBAIOIINI MOUCK

TOYHOCTb, BEPHOCTD

aBTOMAT C KOHCYHBIM YHCJIOM COCTOSTHUMA
3anpeleHHOe KOJ0BOE CIOBO
CBOOOJIHOE PACCTOSIHUE

JIITOPUTM TOJHOTO nepedopa

none ['anya

HOpOKIAIoNIasi MaTpuia

MOPOXK AT MHOTOUJIEH

kon ['omes

KoJ XPMMHUHTA

paccTosiHue 0 X3MMUHTY



Hamming upper bound

hard decision

hardware

identity matrix

information block of symbols
length of encoder shift-register
linear code

linear combination

majority decoding

majority element

minimum distance of the code
module-2 addition
multiplicity of errors

noise immunity

nonlinear code
nonsystematic code

odd number of units
orthogonal

parity check matrix

path metric

primary code

prime number

probability decoding methods
protective interval
Reed-Solomon code
reception in a whole
redundancy

row

guantization

sequential decoding

single error

soft decision

software

state diagram

state metric
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BEPXHSIS TpaHuIla X3MMHUHTa
KECTKOE peIlIeHNe

anmnapaTHoe obecreueHue
eMHUYHASI MaTpHUlIa

6110k “H(DOPMAITMOHHBIX CHMBOJIOB
JUIMHA PErUCTpa KoAepa
JUHEWHBIN KO

JIMHEWHass KOMOMHAIA
MaKOpPUTapPHOE IEKOAUPOBAHUE
MayKOPUTAPHBIN JIEMEHT
KOJIOBOE€ PacCTOSIHUE

CJI0KEHHUE 0 MOJYJIIO 2
KpPaTHOCTh OITUOKU
MIOMEXOYCTOMYNBOCTh
HEJIUHEWHBIN KO
HECHUCTEMAaTHUECKUI KO
HEYETHOE YUCIIO €AUHUIL
OPTOTOHAIBHBIN

pOBEpOYHAs MaTpUIIA
METpHUKa IyTH

IIEPBUYHBINA KOJI

POCTOE YHCIIO

BEPOSTHOCTHBIE METO/IbI IEKOAUPOBAHUS
3alUTHBIA UHTEPBAI

ko1 Puna-CosnoMona

IpUEM B 1IEJIOM

H30BITOYHOCTh

CTpOKa

KBaHTOBaHUE
MOCJEA0BATEIBHOE IEKOAUPOBAHUE
OJIHOKpaTHasi omroOKa

MSATKO€ PEeIlICHHE

nporpaMMHOe oOecrieyeHne
JarpaMma COCTOSTHUM

MCTpPHUKA COCTOSHUA
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survived path
syndrome decoding
systematic code
threshold decoding

time-space coding

transposed matrix
trivial estimation
trellis diagram
turbo code

Viterbi algorithm

D.2 Russian-English dictionary

ABTOMAT C KOHEYHBIM YHUCJIIOM COCTOSTHUI
anredpandecKoe KOJbIlo

anre6pa1/1q601<oe OITMCAaHHC

anroput™ ButepOu

QITOPUTM KOJUPOBAHHUS
aJTOPUTM IOJHOTO fepedopa
aroCcTepHOPHAst BEPOSITHOCTh

aIrrapaTHoc obecneueHue

OJIOKOBBII KOJI

boy3-Uoynxypu-Xoksenrema (bUX) kox

BEPOATHOCTHBIC METOAbI JCKOAUPOBAHUA
BCPXHSA I'paHUIIA XOMMUHTa

BeC KOJ0BOTO CJIoBa (KOMOWHAITHN)

BBDKUBIIUN My Th
rpaHuia

JIBOMYHBIN KO
JBYKpaTHas oIHOKa

AuarpamMma COCTOSIHUM

JTUHAMUYECKOE IPOrpaMMHUPOBAHKE
JUTMHA KOJIOBOT'O OIPAaHUYECHUS
JUTMHA PErucTpa Kojepa

I[OHOJ'IHI/ITCJ'IBHBII\/’I CHMBOJI

CAMHNYHAasA MaTpula

BBDKUBIIUA Ty Th
CHUHJIPOMHOE AEKOAUPOBAHUE
CUCTEMATHUYECKUU KO

IMOpOroBoc ACKOJUPOBAHUC

IMPOCTPAHCTBECHHO-BPEMECHHOC
KOJUPOBAHUC

TPAHCIIOHUPOBAHHAS MaTPHUIIA
TPUBHAJIbHAS OIICHKA
peleTyaTas ruarpamMMa
TypOO KO

anroput™ Butepou

finite state machine
algebraic ring
algebraic description
Viterbi algorithm
coding algorithm
full-search algorithm
a posteriori probability
hardware

block code

Bose-Chaudhuri-Hochquenghem(BCH)
code

probability decoding methods
Hamming upper bound

code word weight

survived path

bound

binary code

double error

state diagram

dynamic programming

code constrained length
length of encoder shift-register
additional symbol

identity matrix



KECTKOE pelleHre
3anpelieHHas KoJoBasi KOMOMHaIus
3aIUTHBIM UHTEPBAI
U30BITOYHOCTh
MH(GOPMAaLMOHHBIN OJIOK
MCYEPIBbIBAIOIINI MTOUCK
KBaHTOBaHHE

kon ['ones

ko Puna-Conomona

KOJ[ C YeTHBIM YHCJIOM €IUHUI]
KO XOMMHUHTA

KOJI0Basi KOMOMHAIUs (CJI0BO)
KOJIOBO€ PacCTOSTHUE
KOH(Urypanus ommuodok
KOPPEKTUPYIOIIasi CIOCOOHOCTh
KOPPEKTUPYIOLIUN KO

KO3 (UIUEHT paCHIMPEHUS MOJIOCHI
KpPaTHOCTh OLIUOKU

JTUHEeNHass KOMOUHALIUS
JIMHENHBIN KO

Ma)KOpUTAPHOE JEKOJUPOBAHKE
MaKOPUTAPHBIN JJIEMEHT
METpPHUKA BETBU

METpHUKa My TH

METpPUKa COCTOSHUS

MSITKOE pellleHne
HaIpaBJICHHBINA rpad
HEJIUHEWHBIN KOJT
HETIPEPBIBHBIN KOJ
HECUCTEMATUYECKUM KOJT
HEYETHOE YUCJIO €AMHUI]
0oOHapyKUBaTh

OJIHOKpaTHasi olmoOKa
OPTOTOHAJIBHBIN

OCHOBAaHHUEC KOAAa

hard decision
forbidden code word
protective interval
redundancy
information block
exhaustive search
gquantization

Goley code
Reed-Solomon code

code with even number of units

Hamming code
code word

minimum distance of the code

errors configuration
adjusting ability
error-control code
band expansion factor
error multiplicity
linear combination
linear code
majority decoding
majority element
branch metric

path metric

state metric

soft decision
directed graph
nonlinear code
continuous code
nonsystematic code
odd number of units
detect

single error
orthogonal

size of a code alphabet

93
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noJie ["anmya

MIEPBAYHBIN KO
MMOMEX0YCTOMYUBOCTD

[IOPOTOBOE ACKOAUPOBAHUE
MOpOXKAAroNIasi MaTpHLa

NOPOK A0V MHOTOYJIEH
[IOCJIEIOBATEIBHOE JEKOJUPOBAHNE
ITOAJIEMEHTHBIN ITPUEM

IPUEM B LIEIIOM

MIPOBEPOYHAs MaTpHLA
IIPOBEPOYHOE COOTHOILIECHUE
IIPOrpaMMHOE 00ECIIEUeHHE
MPOITyCKHAsl CIOCOOHOCTH KaHasia

IMPOCTOC YUCJIO

IMPOCTPaAHCTBCHHO-BPEMCHHOC
KOAWPOBAHHC

MPOTUBOMOJIOKHBIE CUTHAJIBI
pa3peleHHOe KOJOBOE CIIOBO
paccTosiHue Mo X3MMUHTY
pelieryaras ggarpamma
CBEPTOYHBIN KOJI

CBOOOTHOE PACCTOSTHUE
CUTHAJIbHO-KOJI0BAsl KOHCTPYKLIMS
CHUHIPOMHOE JIEKOUPOBaHUE
CUCTEMATUUYECKUI KO

CKOpPOCTb KOJIa

CJIO’KEHHE TI0 MOAYIIO 2
CJIOKHOCTh

CIOCOOHOCTH MCTIPABIATH OIITHOKH

CIOCOOHOCTH OOHAPYKUBATh OIIUOKHU
COCTaBHas OIICHKA
COCTOSIHHE KOJIepa

CTpOKa
TPAHCIIOHUPOBAHHAS MaTPHUIIA
TPUBHAIBbHAS OIICHKA

Typ0OO KOII

Galois field

primary code

noise immunity
threshold decoding
generator matrix
generator polynomial
sequential decoding

element-by-element reception

reception in a whole
parity check matrix
check relation
software

channel capacity
prime number

time-space coding

antipodal signals
allowed code word
Hamming distance
trellis diagram
convolutional code
free distance
coded modulation
syndrome decoding
systematic code
code rate

module-2 addition
complexity

error correction capability

error detection capability
compound estimation
encoder state

row
transposed matrix
trivial estimation
turbo code
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LUKJIUYECKUN KO cyclic code
[IUKJIMYECKOE CBOMCTBO cyclic property
YETHOE YHUCJIO SAUHUIY even number of unit symbols

SHEPreTUYCCKHUIA BRIUTPHIII (OT

MPHMEHEHHS) KOMPOBAHHS (energy) coding gain
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