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1 INFORMATION CHARACTERISTICS OF MESSAGE SOURCES
1.1 Quantitative measure of the information

Transmission systems are created for transfer of the information. It is necessary
to be able to calculate the quantity of the information, which is given out by a source
and transferred by a channel. Also it is necessary to estimate limiting possibility of
transmission channel for transfer of the information.

Therefore it 1s necessary to use some quantitative measure, which would
enable to estimate objectively quantity of the information which message contains in.
Such measure has been entered by K. Shannon in 1948.

The quantity of the information in the message a (a sign, a word, a phrase) is
defined as:

1
Ila)=1log, ——=-log, Pla), 1.1
( ) g2 P(a) ) ( ) (1.1)

where P(a) — probability of the message a. The relation (1) is an axiom.

The probability of the message there is less, the more information contains in
it.

The logarithmic function uses for realization of two obvious properties.

1. The message is beforehand known (P (a) = 1 — uncertainty is absent). Then
the quantity of the information in the message a is equal to zero: I(a) = log, 1 = 0.

2. The source consistently chooses two independent messages a; and a;. The
probability of such choice P(a;, a;) is joint probability of events a; and a;

I(aj’ak):_logZ(P(aj’ak)):_logZ(P(aj)P(ak)):
Z_IOgZ(P(aj))_IOgZ(P(ak))zI(aj)+I(ak)

Quantity of the information in two messages is equal to the sum of information
quantities in each message (the measure is additive).

Unit of measure of information quantity is binary unit or bit.

Example 1. The probability of message a is equal to 1/16. Define the
information quantity in this message.

Solution. I(a) = —log, (1/16) = 4 bit.

1.2 Models of discrete message sources

(1.2)

Let's consider a source of messages A (figure 1). The

Message | % source gives out sequence of signs. The source chooses
source 4 signs from the alphabet randomly {a} = a1, az, ... q,, ,
A

Figure 1 — Message ~ Where M, — size of the source alphabet. For the source
source A description it is necessary to specify probabilities of signs.

There can be such cases.
1. Source without memory: the probability of given sign does not depend on
signs what were before it and will be after it. In this case the source is given by
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probabilities of signs P(a;), P(ay), ... P(4 M, ). Special case — signs is equiprobable
P(a)) = P(ay) = ... P(aMA) =1/M,.

2. Source with memory: the probability of given sign depends on signs what
were before it and will be after it. In this case a source is given by joint probabilities
of signs.

For example, dependence only between two signs: P(a;, ai) = P(a))-P(ai/a));
dependence between three signs P(a;, ai, a;) = P(a))-P(ai/aj)-P(ala;, ay), etc.

1.3 Entropy of an independent message source

Source is characterized by average quantity of the information, fall on one
sign. The average quantity is called source entropy.

1. We shall consider a source without memory. It is described by probabilities
of separate signs. If probabilities of signs are different, then signs contain different
quantity of the information according to the formula (1.1)

I(ak): —log, P(ak)'

Let's find source entropy

My
H(A)=1(a,)=-> P(a,)-log, P(a,). (1.3)
k=1
Entropy properties:
1. Entropy is a real, limited and non-negative value. Property follows from a
structure of expression for H(A), and consequently that 0 < P(a;) < 1.
2. Entropy of determined messages source is equal to zero, H (4) = 0 because
the probability of one of messages is equal to one and others are equal to zero.
3. Entropy 1s maximal, if all source messages are equiprobable. We shall prove
it.
Let's consider a difference

My M,
H(A)-log, M ,=-> P(a,)-log, P(a,)—log, M , ==Y P(a,)-log, M ,P(a,) =
k=1

k=l (1.4)

K 1
=log,e) P(a,) - In———.
2 ,; M P(ay)

Let's take advantage of a known relation
Inx<x-1, (1.5)
which is correct for any positive x. Then
H(A)-log, M , <log, e%P(ak) - {; 1} =

~ M P(a,)
k=1 A (ak) (1.6)

M, P(a ) M,
=1 — 0k N P(a,) |=log,[1-1]=
OgZLZ:‘iMAP(ak) kgi (ay )} ng[ ]=0,



equality takes place only at M,P(a;) = 1, so:
P(Cll) = P(Clz) =..= P(CIK) = I/MA

and then

H_. (A ! Aﬁl ! log, M (1.7)
e — 0] — | =10 . .
max MA poert g> MA g> A

Apparently from last expression, in case of equiprobable messages entropy
increases with increasing of source alphabet size (growth of signs number). At not
equiprobable signs entropy, accordingly, decreases.

For example, the source A of discrete independent messages uses 4 signs with
probabilities P(a;) = 0,7; P(a,) = P(as;) = P(ay) =0,1. Let's define source entropy.

K
H(A)=->"P(a, )log, P(a, )=—-0,710g,0,7 — 3-0,1-log,0,1 = 1,36 bit.
k=1
The maximal value of source entropy for alphabet size M, is
H.x(A) = log,M, = log,4 = 2 bit.

Properties of source entropy can be easy calculated in case of a binary source
(M, = 2). Let probabilities of signs P(a;) = p, and P(a;) = 1 — p. Then binary source
entropy will be written down

H(A):_P(a1)10g2 P(a1)_P(a2)10g2 P(a2)=—p10g2 p—(l—p)logz(l—p). (1.8)

1 On figure 2 dependence (1.8) is
plotted. From figure it is visible, that

H(A), bit entropy is equal to zero at P(a;) = O0;
05 P(a,)= 1 or P(a;) = 1; P(a,) = 0; the

maximum of entropy takes place, when
P(a)) =P(a,) =0.5, and the maximal
value is equal 1 bit, as well as calculated

0 under the formula (1.7). If probabilities of
0 0.5 p ! signs different and final then entropy
Figure 2 — Binary source entropy accepts values between zero and one.

1.4 Entropy of a dependent message source

Strong statistical connection between signs appears on the source output in
actual practice.

So, in texts, probabilities of separate letters depend on what letters preceded
them. For example, let's consider the English sensible text. The letter "P" has
appeared. The probability of that following will be "A", much more, than probability
of the letter "H". At transfer of images observes the similar situation — the adjacent
elements of the image have usually almost identical brightness and color.

For definition of source entropy when signs are statistically connected, it is
necessary to take into account conditional probabilities of separate signs. Let two
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signs of the message following one after another are statistically connected. Using
formula (1.1), we shall define quantity of the information in sign a; what appeared
after (already known) sign received earlier g;

i(ai/aj) = —log,P(ailaj). (1.9)

In this case entropy of dependent messages source is calculated by averaging
on indexes k and j:

H,(A)=1(a,/a;) =—%%P(aj,ak)logzP(ak/aj)z

j=1k=1

— —AiP(aj )%P(ak/aj )logzp(ak/aj)

k=1

(1.10)

Calculation becomes complicated. Important that, a source entropy decreases if
connection between signs present

Hy(A) > H,(4) > Hy(A) > ... Hy(A), (1.11)

The expression specifies how many signs have statistical dependence.
So, for the Russian text Hy(A4) = 5 bit, Hg(A4) = 2 bit.

1.5 Redundancy of a message source

Redundancy of a messages source is a property of a source to give out
information by greater number of symbols, than it could be possible. Quantitatively
redundancy is defined by coefficient of redundancy on the formula

H_ (A)-H(A)
A)

max (

H

Xr = (1.12)

max (

The formula (1.12) can be treated so: redundancy shows relative underloading
of signs by information on the average. Properties of redundancy:

1. Positive property is the opportunity to correct the mistakes arising at
message transfer.

2. Negative property is loading of a communication channel or the storage
device superfluous symbol.

Example. Find the coefficient of redundancy of the source:

H(A) = 1,36 bit, H,,x(A) = 2 bit.

Decision. %, = (2 -1,36)/2 =0,32.

1.6 Source rate

Source rate is quantity of the information which are given out by a source on
the average per 1 second

_H(A)
ST

symb

R , (1.13)

where T, — average time, spent by a source on delivery with one symbol.



1.7 Joint entropy and mutual information

Let’s consider two message sources A and B

Message | %+ (figure 3). Joint entropy is average quantity of information
source A which contains in common appearing signs a; and b;
....bj... MM
Message J aMp
source B j H(A,B)=—ZZP(ak,bj)logzP(ak,bj)o (1.14)
k=1 j=1

Figure 3 — Two o ) o
message sources It 1s is possible to calculate joint entropy:

H(A,B)=H(A)+ H(B/A)=H(B)+ H(A/B), (1.15)

where H(B/A) — conditional entropy of source B, the average quantity of

information in one sign of source B provided that the message of source A is known.
The similar definition of conditional entropy H(A/B). If signs of sources A and B are

independent, then H(B/A)= H(B), H(4/B)= H(A).
For sources of messages A and B the mutual information is entered. It is

average quantity of the same information, which contains in signs of sources
messages A and B

I1(A,B)=1(B,A)=H(A)-H(A/B)=H(B)—- H(B/A). (1.16)

If signs of sources A and B are independent, then I(A, B)=1(B,A)=0. Mutual
information I(A, B) also called as the information from A to B.

1.8 Models of continuous message sources

a().. Let's consider a continuous messages source A
Message |77 (figure 4). The source gives out the continuous message
source 4 a(f). The message will be transformed by different

Figure 4 — Message transducers to a baseband telecommunication (analogue)

source A signal b(¢): b(t)= ka(t), where k is a factor of
proportionality. We shall consider further, that the source

gives out a signal b(?).
For the decision of information tasks it is necessary to set probabilistic
characteristics. It is enough to know a probability density p(b).

1.9 Differential entropy of a continuous signal

b(t) There is a signal on the source output (figure 5).
b(t) We shall find quantity of information in one sample

b(ty)

1(6(t,)) = log, (1

P(b(t,))
As P(b(t,)) = 0, then I(b(z,)) — oo.
Let's execute quantization of sample (digitization

on a level). Then sample will accept values by, b,, ...by,
where L — number of quantization levels.

t;\/

Figure 5 — Continuous
signal
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Probabilities of these values are finite
P(b, )= p(b, )Ab.
Entropy of samples

L oo
H(B)= lim - 3" plb, )b 10g, (5, 136) ... =~ | p(e)iog, plb)- lim log, . (117
-0 5 -

—00

The first component names as differential entropy

W(B)=~ | plb)iog, p(b). (118)

—00

The second component — Algmologz Ab — oo (tends to infinity).
-

Thus, the quantity of the information in one sample tends to infinity.

For comparison of different messages differential entropy is used. The second
component for all signals is the same.

Differential entropy 1is maximal, if the signal has normal probability
distribution

»2
|

b)= e_?,
p(b) —

where 6% — dispersion of signal b(z).
After substitution we receive

h(B)=log,2mec” , bit/sample. (1.19)
1.10 Epsilon-entropy of a continuous signal

Any continuous signals suppose the approximate representation l;(t)

There is an error of approximate representation £(¢)= I;(t) — b(r). Quantitatively

the size of error is described by its average square €*(z).
Epsilon-entropy H.(B) is minimum average quantity of mutual information

between b(¢) and l;(t) in one sample at the given allowable error of its approximate

representation €°(¢)< €7 :
H,(B)=min{a(B) - h(B/B)}= h(B) - max h(e). (1.20)

where h(¢) — differential entropy of error &().
The maximal value h(g) takes place at the normal distribution &(¢), and formula
for calculating of epsilon entropy looks like

H_(B)=h(B)-1log,2mec”, (1.21)

where 6% — dispersion of error &(¢).
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1.11 Redundancy of a continuous message source

The redundancy factor of continuous message source can be calculated
according to the formula (1.12) at substitution of corresponding values of differential
entropy A(B) and A (B).

_ 1 (B) = h(B)
L= B)

max (

(1.22)

If the signal has normal distribution, then ¥, = O.
1.12 Continuous message source rate

Epsilon rate R, of a continuous message source can be calculated according to
the formula (1.13) in which it is necessary to substitute values of epsilon entropy
H.(B), and sampling interval T = 1/(2F ax)

R =2F,_ h(B). (1.23)
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2 EFFECTIVE CODING OF MESSAGES

2.1 Problem of message coding

The problem of message coding consists in representation of messages by a
digital signal (binary symbols). Binary symbols are convenient for transmitting and
storing.

At first we shall consider coding of discrete messages. Message coding is
carried out on the basis of the certain code. The code is a rule or the table, according
to which each sign in the message put in conformity the code word (a set of binary
symbols). As a result of coding we receive a baseband digital signal. Inverse
transformation of baseband digital signals to messages called decoding, which is
carried out by the decoder on the basis of the same code.

Inclusion of the source coder is shown on figure 6: M, — size of message
source alphabet; m — the code base, as a rule, equal 2.

Coding performs without information losses. Therefore source rate is same, on
the source output, and on the coder output. On figure 6 inclusion of the source coder
1s shown. The basic characteristic of a digital signal is its rate R.

Message ...... Clk.....‘ Source ...1001011 :
source A bin.unit coder bin.symb.
RS,T R,T

Figure 6 — Inclusion of the source coder

If lengths of code words are identical and equal n the code is called uniform
(fixed length) or primitive. The length of a binary code depends on size of the source
alphabet and is defined as:

nz2 IOgQMA, (21)

Length of code words can differ at non-uniform (variable-length) codes. At
construction of a non-uniform code it is necessary take into account probabilities of
coded signs: to those signs which meet more often, give shorter code words and vice
versa. Therefore non-uniform codes name statistical. Example of such code is the
code (alphabet) Morse (code Morse was created near 170 years ago). Morse has made
his code intuitively. Below we shall formulate rigorous methods of non-uniform
codes construction.

2.2 Primitive codes for discrete messages

Examples of a primitive code are the following basic codes: ITA-2, ASCII,
EBCDIC. Feature of primitive coding is that if the source message has redundancy
then redundancy does not reduce by the coder, redundancy can even increase.

Code ITA-2 (International Telegraph Alphabet Ne 2) has length n = 5, that is
M <32. How it is possible to code Latin and Russian letters, Arabian digits and
moreover some signs? Practically, we have three code tables, and before the
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beginning of coding the register, what determines what table the coder and,
accordingly, the decoder should use, is underlined. Before transition to another table
it is necessary to replace the register.

Codes ASCII (American Standard Code Information Interchange) and
EBCDIC (Extended Binary-Coded-Decimal Interchange Code) has length n = 8,
there is each sign is coded with byte.

From the point of view of the information theory the use of primitive codes
does not demand the decision of any problems.

2.3 Shannon theorem for the channel without noise

The Shannon theorem of coding for the channel without noise (for a source)
approves, that the average length n of code words (binary sequences) can be
arbitrary closely to the source entropy:

n>H(A) +¢, (2.2)

where H(A) is message source entropy;
€ — arbitrary small value.

From entropy properties for a binary source (on the coder output) follow, that
entropy cannot exceed 1 binary unit. Hence, the average length of a code word n
cannot be less then entropy.

Let's analyse, can an equalityn = H(A) be there?
Let's define a source rate on coder output, considering, that coded signs
independent

) _3 P(a log, P(a,)
— . 2.3)

M
T, Z P (ak )nk
k=1

_H@A)_H(A
T T,

sign

R

We admit, that at coding of sign a, length of code word is:
n, = -log,P(a;) for all k. (2.4)

Then the sums in numerator and denominator will be equal and the formula
(2.3) pass to next:

R =—=R. (2.5)

That is, each binary symbol transfers one binary unit of the information and
equality is carried out 7 = H(A4). Really equality (2.4) cannot be executed exactly for
all £ and then n come close to H(A). For reduction € in the ratio (2.2) it is necessary
to code the big blocks of signs. It means to pass to the integrated alphabet.

2.4 Principles of discrete messages effective coding

Coding at which the average length of code word is minimized is called
effective (economical) coding. The same that at the fixed source rate R, the rate of a
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digital signal on the coder output is minimized. Effective coding called also
compression of the information.

For realization of effective coding it is necessary to take off redundancy at
coding. The reasons of redundancy are: dependence between signs of source and not
equiprobable signs.

Accordingly, at coding 2 stages are carried out.

— Dependence between signs of a source is eliminated at coding by transition
to the integrated signs, which will be independent. For example, to pass from coding
letters to coding words or phrases.

— The integrated independent signs are coded by one of the developed
effective codes: Shannon-Fano or Huffman.

For estimation of compression methods efficiency the parameter a degree of
compression is used:

uw=n/n, (2.6)
where n — length of code word at uniform coding.
2.5 Shannon-Fano code

Optimum algorithms of compression of discrete messages with independent
signs are Shannon-Fano and Huffman algorithms. These algorithms have much
common and provide practically identical degree of compression. Necessary
operating condition of these algorithms is that signs probabilities should be known
P(ay), P(a,), ... The principle of coding consists that to more probable signs shorter
words are appropriated, and to less probable signs longer words are appropriated.
Besides probabilities of symbols 1 and 0 on coder output any way should be equal or
almost equal.

The Shannon-Fano algorithm consists in following. Signs write down in
decreasing order their probabilities. Then signs share on two groups so that the sums
of signs probabilities of each group were approximately identical. To signs from first
group, as the first symbol of a non-uniform code, the zero is assigned, and to symbols
of the second group the unit is assigned. Each of the received groups, if it contains
more than one sign, shares for two equiprobable groups and a rule of coding repeats.
This process proceeds until in each group one coding sign will stay.

Let the source, which is giving out the messages with the help of eight signs, is
given. Probabilities of these signs: P(ay) = 0,05; P(a;) = 0,3; P(ay) =0,2; P(a3) =0,1;
P(ay) =0,06; P(as) = 0,15; P(ag) =0,11; P(a;) = 0,03.

Source entropy equal to:

M
H(A)= —z P(a,)-log, P(a,)=2,524 binary units.
k=1
In tab. 1 the non-uniform code made on Shannon-Fano algorithm is shown.
Let's calculate average length of a code word

M
n=-Y Pla,) n, =2,72,

k=1
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Though for separate symbols length of a code word is equals 5, the average
length of a code word n= 2,72. In case of uniform coding n = 3. Degree of
compression in this case W = 1,103. Comparison source entropy and average length of
a code word shows, that in this case the maximal degree of compression is not
achieved.

Table 1 — Coding on the Shannon-Fano algorithm

Sign a; Pro}lz(a;i)lity Appropriated binary symbols
a, 0,3 0 0
a, 0,2 0 1
as 0,15 1 0 0
ag 0,11 1 0 1
as 0,1 1 1 0
ay 0,06 1 1 1 0
a 0,05 1 1 1 0
@ .03 11 1 1 |1 |1
2.6 Huffman code

In case of the Huffman coding algorithm the coding signs write down in
decreasing order their probabilities. If some signs have identical probabilities, they
are placed in any order. Then it is necessary to construct the probability tree: choose
two signs with the least probabilities and form the first branch of the tree. The chosen
signs unite into "intermediate" sign with probability, equal to the sum of probabilities
of the chosen signs. Then among the staying signs (together with intermediate sign)
again find two signs with the least probabilities and do the same as on the first step.
This procedure carries out until all signs from source alphabet and intermediate signs
will be used and the root of tree with probability equal 1 will be received.

“Movement” on a tree from root to corresponding symbol carries out getting of
code words. Passage through a branch means addition of a binary symbol to code
word: if "movement" through upper branch then unit is added and if down branch
then zero is added.

Let's consider an example of signs coding, the alphabet consist of 7 signs. In
table 2 signs are resulted and their probabilities are point. On figure 7 construction of
probability tree is shown. For this purpose signs are located from top to down in
decreasing order their probabilities. Procedure of probability tree construction
described above. The received code words are shown in table 2.

Entropy is calculated : H(A) = 2,524 binary unit.

Let's calculate average length of a code word
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Table 2 — Huffman code

M
n=-> Pla,)-n, =2,72.

Sign Code
a Py word =
£ Average length of the received code the same as
ap 0,05 |10001
for Shannon-Fano code.
aj 0,3 11 . .
p 03 lo1 According to Shannon theorem of source coding
2 P

the average length of code word cannot be less source
as 0,1 (000

a; | 0,06 (1001 entropy. For our example

as | 0,15 |101 n =272 > H(A) = 2,524 bit.

e 0.11 |001 These values differ only on 7%.

az 0,03 10000

Signs and their Tree of probabilities

probabilities
0.3 1 0.59 1 1£) Root of
a® a tree
0.2 0
a M 1041
0.11 = 029
Qg — 1 0.21 T—=
0.1 o
as — o 0
L ’

Figure 7 — Coding on Huffman algorithm

2.7 Application of discrete messages effective coding

It is necessary to note, that Huffman and Shannon-Fano codes are prefix
codes. The codes are called prefix codes when there are no demanding separating
symbols between code words. From tables of Huffman and Shannon-Fano codes it is
visible, that any of short code words is not the beginning of longer word.

Let's code sequence of signs... a; a¢ as a, a, ay ... with Huffman code

...11001000110110001 ...

We use the same table for decoding and we shall receive

L..adragdsagdayay ...

If a code uniform (primitive) separating symbols between code words are

required. For example, M =4

a; dp ap a as
Code word 00 01 10 11
Let's code sequence of signs... a; as a; a, a, ay ... with the mentioned code
...011110011000 ... It is necessary to know boundaries of code words

for correct decoding. For this purpose enter a separating symbols.
1 01111110101 11O01¢0°¢01..




17

Separating symbols are redundant, additional resource of a communication
channel is spent for their transmission.

Huffman codes are used in some telecommunication technologies, for
example, data compression in Rec. V.42, coding of images by method MPEG
(Motion Picture Expert Group).

The universal algorithm of compression Ziv-Lempel-Whelch is used in modern
computer archivers. This algorithm is updated Huffman algorithm. For some types of
files the factor of compression can achieve 5-10.

2.8 Digital methods of analog signals transmission

Methods of digital transmission of analog signals are widely used in modern
telecommunications:

— the analog signal will be transformed in digital, to the sequence of binary
symbols;

— the digital signal is transmitted by a digital communication channel;

— from digital signal the analog signal is recovered.

Any method of digital transmission is characterized by rate of digital signal R
(bit per second) and accuracy of transmission — the signal/quantization noise ratio pg.
The problem is to satisfy the requirement to the ratio p, at minimal value R. There
were developed a lot of digital methods of transmission. The elementary methods
among them are pulse code modulation (PCM)".

2.9 Discretization of analog signals on time

At any method of digital transmission the analog signal b(¢), first of all, will be
transformed to a discrete signal which represents itself sequence of samples b(kTy),
taken through an sampling interval 7 < 1/(2F.), where F.x is the maximal
frequency of a signal spectrum b(¢). This transformation names sampling of a signal
on time, and the device for its realization names sampler. Sampling frequency should
be not less the double frequency F,y:

fi= UT, > 2F .

According to Kotelnikov theorem, performance of this ratio guarantees an
opportunity of exact recovery of an analog signal on samples. Such recovery is
carried out by LPF with a cut frequency F,. (figure 8).

HkT) A()

T— LPF —

b(1) Sampler b(kTy), Transmission

channel of samples

Figure 8 — Transmission of an analog signal by samples

All methods of digital transmission of analog signals differ in the ways of
representation of discrete signals by digital signals. The converter of samples in a

" Despite of presence of a word "modulation”, these methods of transmission have relation neither to analog,
nor to digital modulation.
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digital signal is called as the coder of digital transmission system (DTS), and the
converter of a digital signal in samples is called as decoder DTS.

2.10 Methods of pulse code modulation

Feature of these methods is that each sample is represented by a digital signal
independently of other samples. Methods differ between themselves a used code. The
diagram that describes transmission of samples at PCM is represented on figure 9.

PCM coder : Binary A
; i(kT, ; oo | bt k
b(kT“: Quantizer {kT,) Coder A?d(t) communication | Pt )= Decoder b(—Z)»
' ' channel

Figure 9 — PCM coder and decoder

Basic parameter of quantizer is number of quantization levels L. At uniform
quantization a range of values b from —b,, to b« 1s broken on L — 1 intervals in size

Ab =2byx I(L—1),

which is called as step of quantization. On figure 10 shown breakdown at L = 8.
Discrete values b; correspond to the middle of intervals. The

_l_ bb B index i accepts values 0, £1, £2, ..., £0,5L — 1. Discrete values
ey ZI,H;X are determined b; = i-Ab. At quantization each sample b(kT5) is
0 approximated to the nearest discrete value b;, and on an
2+ by I Ab quantizer output the integer i(k7) acts. Representation of
— sample b(kT;) by discrete value b; brings an error
LEE & e((kTy) = i(kT,)-Ab — b(KT),
T which is called as quantization noise.
:_ bo In the coder included in PCM coder (figure 9), numbers
ek i(kT;) are represented by the given binary code. Length of a
0 code
20 b2 n =log,L.
3 = b The digital signal on an coder output by(f) has rate
— 1 ~bmax - R =n+f..
Figure 10 — To the The decoder from a digital signal by(r) forms numbers

i(kT,) on which are recovered quantizing samples:

explanation of :
b, (kTS)Zl(kTS JAb. They are recovered samples of a

quantization
transmitted analog signal l;(kTS )= by (kT,). From formula
follows, that samples are recovered with errors €,(kT5).

The average square of an quantization error (average power of quantization
noise) is determined by a quantization step
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and the ratio signal/quantization noise
o =B 3(L-1)
q % Kj
where K is an amplitude factor of an analog signal.
The considered transformation of an analog signal to a digital signal with
uniform quantization step called as analog-digital conversion (ADC); return
transformation is called as digit-analog conversion (DAC). ADC and DAC diagrams

are shown on figure 11.

Figure 11 - ADC and DAC

Method PCM with non-uniform quantization are widely used: in the domain of
great values b] steps of quantization big and on the contrary. It is equivalent to
nonlinear transformation of samples with the subsequent uniform quantization (figure
12). Characteristics of nonlinearity are described by the A-law or u-law. Due to such
transformation decreases K, and grows p, at constant number L, or, keeping value py,
it is possible to reduce number L, length of a code n and a digital signal rate R. Such
method of PCM is standardized the Rec. G.711. The sampling frequency f; = 8 kHz,
the signal rate R = 64 kbit/s.

Compressor .. Expander
P PCM transmission P

LU ‘ with uniform 7 ﬂ»
‘ quantization

Figure 12 — PCM transmission with companding

A 4

A 4

2.11 Coding of analog signals with prediction

Samples of real analog signal are correlated. This fact allows to predict with
any accuracy value of the next sample of a signal on values of the previous samples.
In the coder of transmission system with a prediction (figure 8) the error of a
prediction is calculated

d(kT,) = b(kT.) — b (kT,),
where b(kT) — the sample of an analog signal acting from sampler;
b (kT) — the predicted sample generated by the predictor on basis N of the
previous samples b((k —1)T.), b((k —2)T,), ---b((k - N)T,).

The error of a prediction is transferred on a communication channel by a digital
signal. Therefore in the circuit of the coder of system (figure 13) quantizer and the
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coder of the prediction error samples are available. The decoder of samples recovers
samples of a prediction error; in the system decoder there is precisely same predictor,
as in system coder; the predicted samples develops with the transferred sample of a
prediction error and, thus, sample of a transmitted analog signal are recovered.

Coder of system with prediction EDecoder of system with predictioni
| bKT)  + d(KT) [Quanti- [ Binary | b(KT,) |
- — — > —* Decoder ™ i
: j‘ zer Coder i | channel |: ceocet -![: J |

Predictor[~ b (kTS ) Predictor

Figure 13 — Coder and decoder of system with prediction

Peak-to-peak of a discrete signal d(kT,) smaller, than peak-to-peak of a signal
b(kTy;), therefore number of quantization levels L at a constant quantization step Ad
will be smaller, than transmission of samples b(kT) by method PCM. Reduction of a
quantization levels number reduces length of a code n and a digital signal rate
R =n-f,. Or, at constant number of quantization levels L the step of quantization
decreases Ad = (dmax — dmin) / L, the power of quantization noise decreases

2

€, Ad*/12, the ratio signal/quantization noise grows Pq-

2.12 Methods of differential PCM

In different variants of DPCM method the number of samples N on the basis of
which predict sample are defined, is in limits from 1 up to 6. Predictor at N =2 is
carried out under the circuit of not recursive filter. At case N = 1 predicting sample
b (kT,) is the previous sample b((k - 1)T,).

Circuits of the DPCM coder and decoder, used in the real equipment, are
resulted on figure 14. In the coder prediction error acts on quantizer, similar quantizer
systems with PCM, then the quantized error dy(kT;) 1s transferred by a digital signal
on a communication channel. Predictors in the coder and the decoder are completely
identical.

As opposed to circuit resulted on figure 13, the predictor in the coder is

included in a loop of a feedback. Therefore predicting samples b (kTS) in the circuit
of the coder and in the circuit of the decoder are developed from the same samples
E(kTS) (if in a channel there were no errors by transfer).

In the decoder the predictor is included in circuits of a feedback and
consequently at decoding quantization noise can collect. Let's define a quantization
error at DPCM under the circuit figure 14

ey(kTy) = BT ) — b(kT,) = [b (KT,) + dy(kT)] — [b (KT, ) + d(KT)] = dy(kTy) — d(kTy).

From last ratio it is visible, that, due to inclusion of the predictor in the coder in
a circuit of a feedback, the quantization error is defined only by quantizer parameters,
and there 1s no effect of accumulation of quantization noise in the decoder.
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2.13 Adaptive DPCM

Methods of adaptive DPCM (ADPCM) are widely applied. Adaptive parts of
ADPCM coder are:

— predictor with N = 4...6 — its coefficients are automatically adjusted so that
the dispersion of a signal d(kT;) was minimized, coefficients of the predictor are
transferred on a communication channel, that in the predictor in decoder the same
coefficients, as well as in the predictor of the coder were used;

— quantizer — peak-to-peak of its characteristic (dp.x, dmin) and accordingly a
quantization step changes in conformity to peak-to-peak of a current signal d(kTy),
data on a quantization step are transferred by a channel, that in the decoder the
quantization step same, as well as in quantizer was set.

Coder DPCM § . Decoder DPCM
. d(KT | kT )
kT, > » Quantizer M — Digital « ; . ib(kTS)
+ + 5 channel i + 5
| bk ) - L
5( kT T Predictor + b (kTs) Predictor
i

................................................................................................

Figure 14 — Coder and decoder of system with DPCM

2.14 Methods of delta modulation (DM)

Methods of DM concern to methods of transfer with a prediction. Methods of
DM differ from PCM and DPCM that two-level quantizer (L =2) are used. It
becomes possible if the sampling frequency greater, than 2F,,,. Then adjacent
samples from the sampler differ a little. On figure 15 circuits of coder and decoder,
explaining one of DM methods, are resulted.

DM encoder DM decoder |
| d(KT, | | - i
’ dy(kT) [ B; do(kT) b(KT,)=b(kT,)
b(k—T:): + Quantizer : corgﬁlrli]n. : X Accumulator >
' i v i | channel A i
~ Accumulator [+ X | |
b(kT,)

.............................................................................................

Figure 15 — DM encoder and decoder

The error of a prediction is calculated the same as at DPCM,
d(KT)) = b(kT) - b (KT, ),

The error of a prediction is calculated the same as at DPCM,



22
d(kT,) = b(kT,) — b (kT,),

and the predicted sample grows out works of the accumulator

- k-1
b(kT,)=>d, (kT,)-Ab,

i=0
where Ab 1s coefficient;
+1, if d(kT,)=0,

d (kT.)= -
o (kT {—1, if d(kT.)<0

Error of a prediction is quantized on two levels which are transferred by a
binary communication channel.

The described method of coding is illustrated by time diagrams on figure 11.
Here the predicted signal and a quantized prediction error signal are submitted by

signals of continuous time. It is visible, that the predicted signal b (r) "traces"
changes of an input signal. The essence of factor Ab follows from figure — it is a step

of quantization, as with this step a signal b (t) quantizes. In figure it is visible two
domains:
1) domain where are observed distortion of an overload on an inclination — the

predicted signal b (t) has not trace changes of an input signal;

2) domain where subdivision noise is observed — at a constant input signal the
predicted signal changes in peak-to-peak amplitude Ab.

Clearly, that for reduction of the first effect it is necessary to increase a step of
quantization, and for reduction of the second effect — to reduce a step of quantization.
It is obvious, that there is an optimum step of quantization at which the total effect
from an overload on an inclination and noise of subdivision on realizations of a signal
b(t) 1s minimized.

Distortion b(t)
of a slope overlo
b(r)
-/ \/ Noise of subdivision
R z(/\j
P N t
(1) oo
T DR TS O S S 4

Figure 16 - Illustration of work of the DM coder

Work of the decoder of DM (figure 16) is contained to calculation of predicted
samples of the signal under the formula for b (kT,).
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It is possible to formulate features of DM methods:

— the sampling frequency f; (figure 10) in some times is more, than 2F,;;
— as quantizer is two-level so the code has length n =1, and R = f;;

— as n =1, so necessity of the decoder synchronization disappears.

2.15 Adaptive DM (ADM)

At adaptive delta - modulation (ADM) the quantization step can change. It is
carried out as follows. On a coder output the analyzer of sequence of binary symbols
i1s connected. If there was a sequence 111 or 000, the step of quantization increases
to reduce distortions of an overload on an inclination. If there was a sequence 101 or
010, the step of quantization decreases to reduce distortions from noise of
subdivision.

The similar analyzer is connected on a decoder input and in the same way the
step of quantization in the decoder changes.

2.16 Conclusion

The effective encoding of continuous signals is removed redundancy which is
conditioned by statistical connection between samples (by correlation of samples).
The effective encoding of continuous signals is based on the followings methods:

- static images compression (photo, fax) is subsampling (diminishing of
frequency of sampling of color components), discrete Fourier cosine-transform,
JPEG, GIF algorithms and other, vectorial compression (all curves on image are
described by mathematical expressions);

- movable images compression (video) is methods of prediction (in the first
approaching - not samples, but difference between them is transferred), subsampling,
discrete Fourier cosine-transform, methods of motion compensation (information
about direction of object element moves is formed), MPEG-1(2, 4) algorithms. By
these methods of encoding it was succeeded to reduce television signal digital stream
rate from 200 Mbit/s to 1,5 - 25 Mbit/s;

- voice message compression (telephony) is methods of prediction - CELP
algorithm, vocoders (design of human vocal organs). If at telephony signals
transmission by a standard PCM method in the digital channel R = 64 kbit/s, then the
effective voice encoding methods allow to form the digital streams of 9,6 kbit/s (and
even 4,8 kbit/s);

- musical message compression (sound broadcasting and television) is a
method of the subband encoding (the signal spectrum is divided on bands, and the
values of spectral density of different bands are quantized with the different
quantization step) - MUSICAM algorithm. Higher class sound broadcasting signals
and digitized records on disks by a PCM method require R = 700 kbit/s on one
monophonic channel; the sound broadcasting signals effective encoding reduce rate
to 100 kbit/s.

Last ten years there is rapid adoption of digital methods of television and sound
broadcasting signals transmission. Main advantage is a high carrying capacity of the
transmission systems, if to express it by the number of the programs.
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At the compression of converted in digital signals continuous messages, it is
possible to use the methods of discrete messages compression. However, at the
continuous messages compression (video, photo, voice and music) the loss of
information it admits or, more exactly, the exception of unimportant information it
admits. It is possible because of man feature sensing of these messages types,
nonidealness of his sense-organs. In this case the degree of compression is limited to
the required quality of messages transmission only.
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3 INFORMATION CHARACTERISTICS OF COMMUNICATION CHANNELS

3.1 Models of communication channels

Two models of communication channels are most distributed: a digital
communication channel and a continuous communication channel.

The communication channel is called digital if it is intended for transmission
of a digital signal. Such channel is characterized:

— by the rate of digital signal R (bit per second) which can be transmitted by a
communication channel;

— by the number of signal levels in a communication channel M;

— by the symbol rate, symbol/s, which shows quantity of channel symbols,
transmitted on a communication channel per 1 second, B = R/log,M,

— Dby probabilities of symbol transitions P(IS i /bk) fork=0,1,2,... M -1,

j=0,1,2,... M- 1, where b, — symbol on an input of the channel, b I symbol on

an output of the channel.

The majority of digital communication channels are binary (M = 2), and for
them it is carried out P(I;O / bl) = P(I;1 / bo) = p, where p — probability of a bit error in a
communication channel. Such communication channel is called as a binary
symmetric communication channel (BSC). It represent as the graph (figure 17).
BSC is characterized by two parameters: B and p.

The digital communication channel always is under construction on the basis
of the continuous channel. The communication channel is called continuous if it is
intended for transmission of a continuous signal. The most widespread model of the
continuous channel is a Gaussian communication channel. Consider, that in such
communication channel acts additive white Gaussian noise (AWGN), i.e. the noise
has Gaussian distribution of probabilities of instant values with zero average and a
uniform spectrum in a passband of a communication channel. The model of a
communication channel is shown on figure 18. — relationship between an output and
an input is described by a ratio z(¢) = s(t) + n(z).

1 - . s ' 2(1)
b d e b, o + i i
| n
P . i Noise  |!
bo 1—p by || generator |
Figure 17 — Model of BSC Figure 18 — Communication
channel with AWGN

The Gaussian communication channel is described by the following
parameters:

F., — passband of the channel;

P, — average power of a signal on channel output;

Ny — power noise density on channel output.
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Consider, that noise takes place in a passband of a communication channel, and
its average power on a channel output is defined

P n— N() F ch-
3.2 Transmission rate of the information on a communication channel

Transmission rate of the information on a communication channel R, is
defined as average quantity of the mutual information between input and output of
the channel per 1 second. Unit of measure is bit/s. In the information theory
consider, that errors or noise acting in a communication channel result in destruction
of a part of the information.

Let's define transmission rate of the information in a digital communication
channel. For this purpose we will take the concept of the mutual information of two
sources of messages entered earlier. Let's consider here, that the output of one source
is an input of a communication channel where the signal b(r) operates, and the output
of other source is an output of a communication channel where the signal b(r)
operates. It is possible to write down

o _1A.B)_m(A)-H(A/B)_nH(B)-H(/A)
0 O o) ’

av av av

where H(B) — entropy of a signal b(¢), describing average quantity of the information
in one symbol on an input of a communication channel;

H (B/ l§) — conditional entropy of a signal b(7) provided that the signal I;(t) 1S

known, characterizes losses of the information in a communication channel
(unreliability of the channel);

A

H (B) — entropy of a signal I;(t) describing average quantity of the information
in one symbol on an output of a communication channel;

H (é/ B) — conditional entropy of a signal lS(t) provided that the signal b(%) is

known, describing quantity of the extraneous information (generated by errors) on an
output a communication channel;

T,, — average duration of one symbol.

The similar approach is used for definition of transmission rate of the
information in a continuous communication channel. On the input of a
communication channel the signal s(f) operates, and on the output of a
communication channel the signal z(¢) operates. It is possible to write down

h(S)-h(S/z) _ h(z)-h(Z/S)

R = = s
ch T T

N N

rae h(S) — differential entropy of a signal s(¢), describing average quantity of the
information in one sample on an input of a communication channel;
h(S/Z) — conditional differential entropy of a signal s(¢) provided that the signal
z(#) 1s known, characterizes losses of the information in a communication
channel (unreliability of the channel);
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h(Z) — differential entropy of a signal z(¢), describing average quantity of the
information in one sample on an output of a communication channel;
h(Z/S) — conditional differential entropy of a signal z(¢) provided that the signal

s(t) 1s known, describing quantity of the extraneous information (generated
by noise) on an output a communication channel;
T, — sampling interval.

3.3 Capacity of binary symmetric communication channel

Communication channel capacity C is the greatest possible transmission rate
of the information in communication channel at the set characteristics of a channel.

C = maxR,,.
For calculation of capacity of BSC use next formula

H(B)—H(B/fej

C = max .
T

av

Symbols have duration 7,, = 1/B (since a communication channel is binary
than symbol rate coincides with a digital signal rate).

Further it 1s necessary to search for a maximum of values:
max [H (A)-H (A/ é)] The maximum of the first term takes place, when symbols on
an input of a liaison channel independent and equiprobable: max|[H(B)]= 1 binary
unit.

Let's calculate the second term

H(B/B)= —éép(bk,éj Jiog, Plb, /5, ).

After substitution of M = 2 and values of probabilities from figure 17 we shall
receive

H(B/B)Z_plogzp_(l_p)logz(l_p)'

Let's remind, that this conditional entropy reflects losses of the information in a
communication channel.
Final expression looks like

B C = B[l + plog, p+(1- p)log,(1- p)]
C, bits/s Special cases:
p = 0 — losses of the information
0,5B are equal to zero and C = R;

p = 1 — all symbols in a
communication channel are inverted,
there is no losses of the information and

0 05 p 1 C=R;
Figure 19 — Capacity of BSC p = 0,5 — losses of the information

0
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are equal to unit and C = 0;
3.4 Capacity of communication channel with AWGN

For calculation of a communication channel capacity with AWGN next
formula is used
C = max h(Z)_h(Z/S).

N

Let's search for a maximum of values: max[h(Z)-h(Z/S)] The maximum of

the first term takes place, when the signal z(f) has Gaussian probability distribution.
As z(t) = s(t) + n(t), and noise n(¢) has Gaussian probability distribution, than z(¢) will
have Gaussian distribution, if a signal s(¢) has Gaussian distribution. If it is correct,

than
h(Z)=1og, /2ne(P, + P,).

Conditional differential entropy of a signal z(¢) (provided that the signal s(z) is
known) is equal differential entropy of a Gaussian noise n(¥)

h(z/S)=h(N)=1log, /2meP, .

Sampling interval Ty = 1/(2F,), thus samples of signals are independent.
Let's substitute the received values:

C=2F, |log, \[2ne(P, + P,) ~log, 2meP, |.

After simple transformations we shall receive

P P
C=F_,log,|1+—= |=F_,klog,| 1+ 3 .
ch gz[ P} ch gz[ N }

n 0~ ch

The ratio determining capacity of a communication channel with AWGN, is
called as Shannon formula. From Shannon formula it is visible, that the basic
resources of a communication channel are the passband of channel F, and power of a
signal P,. If F, = 0 or Py — 0, than C — 0.

If a passband of a communication channel tends to infinity, capacity of a
Gaussian communication channel tends to final size
=1,443 A X

0

C

Fch —>

3.5 Efficiency coefficients of transmission system

For the estimation of as far as the basic resources of transmission system are
effectively used, are used coefficient of frequency efficiency Yy and coefficient of
power efficiency B, determined by ratios:

Y= Rch/Fch; B = Rch/(Ps/NO)'



29

Coefficient Y has dimension ((bit per second)/Hz) and shows, how many bits in
a second are possible to transmit in a band of frequencies of 1 Hz with a considered
method of transmission.

In transmission system at the fixed reliability of transmission the exchange of
frequency efficiency for power efficiency and on the contrary is possible. Such
exchange for ideal transmission system is expressed by a ratio

et
27 -1

This ratio allows to fined limit value of one efficiency coefficient at fixed other
and is called as Shannon limit. If as a measure of "perfection" of transmission
system to accept a degree of approach of parameters y and P to limiting on Shannon it
is possible to fined, that the methods of coding of the channel developed for today
(including modulation) are highly effective, and are not present significant reserves
for increase of efficiency.

Except for the considered coefficients of efficiency 3 and y the operating ratio
of capacity of a communication channel is used also

n= Rch/ C.
3.6 Shannon theorem for a communication channel with noise

Importance of Shannon formula is connected with to well-known Shannon
theorem for a communication channel with noise: If a message source rate is less than
capacity of a communication channel (R; < C) there is a way of the transmission,
allowing to transfer all source messages as much as precisely.

Hence, noise in a communication channel doesn’t limit accuracy of message
transfer, and rate of the information transfer on a channel.
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THE LABORATORY WORK 2.1
INFORMATION CHARACTERISTICS OF MESSAGE SOURCES

1 Objectives

1.1 The studying the message sources information characteristics.
1.2 The acquiring the experience to perform the calculations of information
characteristics of various sources.

2 Main positions

2.1 The information characteristics of discrete sources

The source of discrete messages produces the messages that consist of the
separate signs and the quantity of this signs is finite. The signs may be symbols,
letters, words, single phrases and so on.

Information quantity, 1(a, ), binary unit (or bit), in the sign (message) a, , that

has the probability of its appearance equals P(a, ), 1s calculated on a formula

I(a,)=-log, P(a, ). (1)

The source entropy,H(A), 1s the average quantity information, that one sign

keeps. If signs are independent, the source entropy can be calculated as the average
value:

M
H(A)=-) P(a;)log, P(a,), 2)
k=1
where M — a size of source alphabet.
The entropy, as well as the information, is always nonnegative, and it achieves
a maximal value, equals

Hmax (A) = 10g2 M ’ (3)

if the signs are independent and equiprobable.

The message source redundancy is the source property to get out the

information, using the greater quantity of signs, that it would be necessary. The
availability of message source redundancy decreases the source entropy.

The redundancy coefficient of message source characterizes the relative

decreasing of source entropy in compare with its maximal value:
H_ (A)-H(A)

x — max(
g H__(A)

4

(
max
The message source rate,R_, bit/s, 1s the average quantity of information, that
the source gives out during 1 second. It is equals
_H(A)
s T—

sign

R ) (5)

where T, — average time spent by a source on delivery with one sign.
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2.2 The information characteristics of continuous message sources
Differential entropy, h(B), of continuous source B is calculated on a formula:

h(B):—_Tp(bnogz plb). ©)

p(D) is a probability density of the signal b(¢).
Differential entropy achieves its maximal value, if the probability density p(b)

1s Gaussian, and it is equal
h(B)=log, \2mec? , (7)

o is the variance of signal b(¢).
Epsilon entropy, H¢(B), bit/sample, is minimum average quantity of the mutual

information between and l;(t) in one sample at the given allowable error of

approximate representation of a signal b(f) by l;(t) e (t)<e;
The epsilon entropy is calculated on a formula:

HE(B)=min{h(B)—h(B/ é)}zh(B)—maxh(E) ®)

h(E) is the differential entropy of error (7).

The h(E) will get the maximum value, if €(f) would have the Gaussian
probability distribution, and the calculated formula for the epsilon entropy will be the
same:

H_(B)= h(B)-1log,2mec’ , 9)

where 6° — variance of error e(r).
The redundancy coefficient of continuous message source is calculated

h B)—h(B)-

x — max (
' hmax (B)

The epsilon source rate, R, of continuous message source is calculated on
formula (5), and is necessary to put in it the value of epsilon entropy He(B), and T,
would be equal to the sampling interval according the Kotelnikov theorem.

R =2F. h(B). (11)

(10)

3 Questions

3.1 Give the determination of the information

3.2 How it is possible to calculate the information quantity that message
contains?

3.3 Give the determinations of the source message information characteristics:
the entropy, the differential entropy, the epsilon entropy, the source rate, and the
source redundancy.
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3.4 What parameters of discrete message source would be necessary known so
as to calculate the entropy, the redundancy, and the rate?

3.5 What parameters of continuous message source would necessary is known
so as to calculate the differential entropy, the epsilon entropy, the rate, and the
redundancy?

4 Home task

4.1 Repeat the basic concepts of section “The source message information
characteristics” using the summary and the textbooks [1, p. 101 — 106, 112 — 114, 124
— 129, 276 — 280]; [2, p. 276 - 280].

4.2 Calculate the information quantity/, that Your initials contain (three
concrete letters), and compare it with the information quantity, that 15 bits contain
(the information quantity in three source signs, when the signs are independent and
equiprobable, and the volume of alphabet equals M = 32). Probabilities of letters are
given in the appendix of A. If 7 will differ from 15 bits, explain this difference.

4.3 Prepare for discussing the key questions.

5 The order of study conduction

It is the calculating laboratory work, and is conducted in such order.

5.1 The discussion the key positions and calculation technique of source
message information characteristics. The solution the typical examples, that are
recommended to the study (point 6) or examples, that are prepared by the teacher
(about 50 minutes).

5.2 The individual work with using individual cards (about 30 minutes).

Instruction: So far as the binary logarithm tables are absent, it is possible to use
for the calculating the binary logarithms the mathematical rule of passing to the
second basis of logarithm:

log, z=Inz/In2=1,443Inz; log, z =1gz/1g2 =3,321gz.

6 The typical examples that are considered on the study

Example 1 Calculate the information quantity in the Ukrainian word of N = 8
letters. For calculations should be counted, that all the letters are of equal probability
and independent, the number of letters M = 32.

The answer: /(word) = 40 bits.

Example 2 Calculate the binary message source redundancy, if the probability
of one message P(a,)=0,1.

The answer: ¥, = 0,53.

Example 3 Calculate the rate of message source; this source uses 3
independent signs, that have the probabilities: P(a,)= 0,1; P(a,)= 0,25; P(a;)="?
The duration of the 1-st message is equal 0,5 ms, of the 2-nd and 3-rd are equal 0,1

ms.
The answer: H(A)= 1300 bit/s.
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Example 4 Calculate the information characteristics of continuous message
source: the epsilon entropy H, (B); the redundancy coefficienty, ; the epsilon source
rate R,.

Basic data: the continuous signal b(¢) has the Gaussian probability density and
the maximum spectrum frequency F_, = 500 Hz; the ratio of the average signal

power to the average error power p = 40 dB.
The answer: the epsilon entropy H.(B)= 6,64 bit/sample; the redundancy

coefficienty, = 0; the epsilon source rate R, = 6640 bits/s.

Literature

1 Teopus »snexTpuueckod cBs3u: YueOnuk s By3oB / A, 3ioko,
J. . Knosckuii, B.1. Kopxuk, M.B. Hazapos; Ilox pen. JI./1. Knosckoro. — M.: Pa-
MO U CBA3b, 1998.

2 MMandinos LII., Jupaa B.1O., Kanamin A.B. Teopist e1eKTpU4IHOTO 3B’ A3KY:

[Tinpy4HuUK A CTYJICHTIB BUIIIUX HaBuainbHUX 3akiaaiB I Tta Il piBHIB akpeauTartii. —
K.: Texunika,1998.
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Appendix A

Reference tables for the calculations of information characteristics
Table A.1 — The letter probabilities distribution in the English texts

Letter Probabilit [ etter Probabilit [ etter Probabilit Letter Probabilit

Blank 0.198 R 0.054 U 0.022 A" 0.008
E 0.105 S 0.052 M 0.021 K 0.003
T 0.072 H 0.047 P 0.017 X 0.002
O 0.065 D 0.035 Y 0.012 J 0.001
A 0.063 L 0.029 W 0.012 Q 0.001
N 0.059 C 0.023 G 0.011 y4 0.001
I 0.055 F 0.022 B 0.010

Table A.2 — The differential entropy calculating formulas

Probability distribution

Differential entropy h(B),

bit/sample
p(b) = ! eXPE—i — Gaussian log, (o \/ﬁ)
V2ro, 26, 2
1 V21 bl .
pb) = \/Ecb exp(— 5, — two-sided log, (G,¢ J2)
exponential
05/b,,., 1bI<b,,. .
p) = {0, b — uniform log, (G,2+/3)
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THE LABORATORY WORK 2.2
BASEBAND TELECOMMUNICATION SIGNALS SAMPLING

1. Objectives

1.1 Studying sampling of continuous signals and recovery of continuous signal from
samples.
1.2 Analysing characteristics of discrete signals.

2 Main positions

2.1 Sampling of continuous signals.

The sampling of continuous signal s(7) is representation it by its instant values
(samples) s(kT), where k= ..., -1, 0, 1, 2, ...; T, — sampling interval. The sequence
of samples represents with vertical lines in height s(k7y) (figure 1). Such sequence is
named discrete signal s,(t).

In real devices signal sample s(kT;) is an pulse with amplitude s(k7;) and
duration t < 7§, beginning at the time moment k7. Usually t << T (figure 2). The
device that forms samples is called sampler. In a case © < T, sampler is the key
closing a chain from a source to loading for time < (figure 3).

NN

W(1) (1) .
I N I R [ N
+ y p > |‘—TS‘+ p >
s(kT;,
sa(t) l/ &T) sqa(t) Hn
kT I | 7
Figure 1 — Getting of discrete signal Figure 2 — Sampling process in real
devices
\If(f)l
r=—--
(1) I I 54(1)
L
Oscillograph

Analytical expression of a discrete signal s4(¢):
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sa() = s(O-y(®) = s(t) 2 h(t=KT,), (D)
k=—oo
where Y(#) — sequence sampling pulses that defines the time moments of sampling
and their duration;
h(t) — sampling pulse:

() = {

1, 0 <t<r,
0, t<0, t=21.

2)

2.2 Spectrum of a discrete signal.

The Fourier transform of right part expression (1) defines spectral density

S (27f) of discrete signal (corresponding mathematical calculations can be found in
[1, p. 64-66])

Sai2m) = D.,a,S(G2R(f — nf,)) — o< f <oo, 3)
where f; = 1/T; — sampling frequency;
S(j2nf) — spectral density of a continuous signal s(7);
a, = 1 SIS (4)
Iy, nmf 7T
decomposition factors A(f) in Fourier series; as t << T, for small values n factors
practically do not depend from n, thatis a, =t/ T.

It is follows from (3), that the spectrum of a discrete signal is the sum of
continuous signal spectrum S(j27f), repeating per f; and decreasing with increase n
according to expression (4).

For baseband telecommunication signals it is characteristic, that their spectrum
adjoin zero frequency. On figure 4, a the amplitude spectrum of arbitrary form S(f)
with maximum frequency Fy,.x is plotted. Further on figure 4 amplitude spectrum,
which can take place at signal sampling, are represented:

Figure 4, b — sequence sampling pulses spectrum Sy(f) (), constructed on the
basis of representation Y(¢) in Fourier series:

v = Sa, -cos Qmafa);
n=0

Figure 4, ¢ — discrete signal spectrum S,(f), if f; > 2F .x;
Figure 4, d — spectrum S4(f), if f; = 2F ax;
Figure 4, e — spectrum Sy(f), if f; < 2F pax-

2.3 Signals recovering on their samples.

According to Kotelnikov theorem (the sampling theorem) arbitrary signal
with the band-limited spectrum can be recovered precisely to (interpolate) from its
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samples which are taken through interval T < 1/(2F.x), where F,x — the maximum
frequency of signal spectrum.

It is easy to be convinced of Kotelnikov theorem justice, having considered
figure 4, ¢, d and e. If f; 2 2F .« (figure 4, ¢, d) after giving of a discrete signal to an
input ideal low pass filter (LPF) with cut frequency Fa.x < Fou < fs — Fiax On an
output we will receive a signal with spectrum S(f) (figure 4, ¢, d) that is the recovered
continuous signal. On figures by dotted lines are shown the amplitude-frequency
response (AFR) of ideal LPF with cut frequency F = Fuax. If fi < 2F . that,
apparently from figure 4, e, it is not impossible to recover spectrum S(f) as spectrum
aliasing takes place.

S(H

0 Frone 4 f
S\,,(f) ‘

0 1, , 2, /o

A

Sa(H AFR of ideal LPF

Nl N

0 fs
A C
Sah|
0 fi p 2f, ;o
Sa(f)
/F?\M/ R
fi , 2f. f

Figure 4 — The spectral diagrams sampling and
continuous signals recovering processes illustration

Continuous signal recovering process on its samples can be also treated in time
domain. If as signal recovering it is used ideal LPF with cut frequency F_, its
impulse response (without a delay in the filter):
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sin(2nF,, t)
1= .
#) 2F, ¢

cut

As sample pulses short (T << T;) (tend to d-function) it is possible to consider, that
response LPF to an pulse with amplitude s(kTy), supplied at the moment ¢ = kT, looks
like

sin (ancut (t - kTv ))

s(kT,) =
&) 2nF,, (t—kT,)

If you give to LPF input a signal s,(¢), on its output we will receive the sum of
responses

- sin@nF, (t — kT)))
s(t) = z S(kTﬂ) ([—kTs) .

k=—oo 2nF

cut

Let's compare this expression with Kotelnikov series that is mathematical
expression of Kotelnikov theorem,

- . sin2nF,_ . (t—kT,))
s(?) —k;w s(kTy) INE KT

If Foie= Foax, S(f) = s(t), i.e. the continuous signal exact recovering takes
place.

2.4 Errors at signals recovering on their sample

2.4.1 Real signals spectrum limitlessness. Real signals with strictly limited
spectrum does not exist, as signals of finite duration have unlimited spectrum — at
f —oo spectrum decrease with limited speed. For real signals the spectrum maximum
frequency F.x 1s defined from a condition, that components with frequencies > F,.x
are small (in a sense). In spectrum of real discrete signals there is an aliasing of
spectrum, at least, the making sums (3) with indexes n = 0 and n = 1 (figure 5). We
will assume, that for continuous signal’s recovering the ideal LPF is used with cut
frequency F .y = Fax, 1ts AFR is shown by a dotted line on figure 5.

4 n=0 n:l

Sa(h)

1
F max ﬁ = 2F max f

Figure 5 — Illustration of recovering errors
because of continuous signal spectrum limitlessness

The recovered signal will have two making errors of recovering:
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— linear distortions because of signal components s(f) with frequencies
[ > Fpnax are cutting off;

— spectrum components S(f — f;) with frequencies f < Fy,,x alias on a signal
spectrum s(f) (an aliasing error).

Taking this into account, value Fy,, and f; define from a condition that the
recovering error was enough small.

2.4.2 Difference real LPF characteristics from the ideal ones. Ideal LPF has
the rectangular form AFR, and linear PFR. l.e., ideal LFF without distortions passes
all signal spectrum components in band f <F_,, and completely weakens components
with frequencies f > F.,. Real LPF are described by pass-band with boundary
frequency F\;, and attenuation band with boundary frequency F,, (figure 6).

If LFF is intended for recovery continuous signal with maximum frequency
Frax from a discrete signal with frequency sampling f;, it is necessary that Fy, = F,y
and F, < fi— Fna. In case of real LPF there can be two making errors of recovering:

— because of inconstancy AFR and nonlinearity PFR in a pass-band the filter
brings linear distortions in the recovering signal;

— because of insufficient easing in attenuation band LPF passes signal
components s4(f) with frequencies f > f 4— Fu.x which form an spectrum aliasing
error.

Real LPF for recovering of continuous signals can be projected that the
recovering error was enough small.

A

H(f)

O Fcut f
a

Figure 6 — AFR: a — ideal LPF; b—real LPF

3 Questions

3.1 Explain physical essence of a continuous signals sampling.

3.2 What purpose is continuous signals sampling carried out for?

3.3 Explain dependence of continuous and discrete signals spectrum.

3.4 Explain physical essence a signal on sample recovery process.

3.5 Formulate Kotelnikov theorem.

3.6 Write down Kotelnikov series for a signal with the band-limited spectrum.
3.7 In what basic differences AFR and PFR ideal and real LFF consist?

3.8 What are errors reasons which arise at signal restoration on samples?

4 Home task

4.1 Study section “Continuous signals sampling” under the lectures abstract
and the literature [1, p. 59-67; 2, p. 64—69].
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4.2 Signal s(f) = A;sin (27f 1) + Assin (27tf>t) + Assin (27tf51) have sampling with
frequency f;. For the data specified in table 1 (according to number of your laboratory
stand), represent a spectrum of signal S(f) and a discrete signal spectrum Sy(f),
constructed in a range of frequencies 0 < f < 2f,.

Table 1 — Initial data to homework

nitri%ir ALV | fukHz| 4,V | fkHz | 45,V | fi kHz | £, kHz
1 0 1 1 2 3 15 5
2 1 1 5 25 4 15 5.5
3 2 0.5 4 15 35 25 6
4 3 1 3 15 25 25 6.5
5 25 | 05 2 25 1 3 7
6 15 1 5 2.5 4 3 75
7 35 | 05 4 2 3 3 3
8 1 0.5 3 1 35 2 7

4.3 Calculate and draw impulse response ideal LPF with cut frequency
F... =142 for values ¢, belonging to an interval (—4T5, 47;) (value f; it is necessary to
take from table 1).

4.4 Be prepared for discussion concerning section 3.

4.5 Study the laboratory model description (section 6).

S Laboratory task

5.1 Familiarize with a virtual breadboard model. For this purpose start the
program 1.0, using an icon TT(English) on a desktop. Study the laboratory model
scheme on the computer display, using section 6. Specify with the teacher the
laboratory task-fulfilling plan.

5.2 Investigate sampling process in time and frequency domain. For this
purpose set values Ay, fi, A, f>, Az, f5 and frequency f;, given in a home task, to
appoint input LPF from sampler and run the program. Sketch signals on source and
sampler outputs oscillograms and the spectrograms in the report. Compare the
spectrograms calculated and received on a laboratory model. Enter in the report
comparison results. Increase sampling frequency on 1 kHz. Sketch in the report the
signal spectrogram on an output sampler, make conclusions.

5.3 Investigate characteristics recovering LPF. Appoint influence on LPF 6-
pulse and set LPF cut frequency value, which is given, in a home task for this
purpose. Enter in the report the impulse response and AFR LPF. Compare impulse
response LPF with calculated. Set sampling frequency twice smaller, enter in the
report the impulse response and AFR LPF, make conclusions.

5.4 Investigate continuous signal recovery process a in time and frequency
domain. Set parameters Ay, fi, Ay, f>, A3, f3, fs and F, given in a home task, give on
LPF input a signal from sampler for this purpose. Compare oscillograms and
spectrum on LPF output and on a source output, make conclusions.

Set LPF cut frequency smaller then frequency f.x, and then bigger then f; —
Jmax- In both cases sketch oscillograms and spectrograms on output LPF, describe
recovery errors character, explain the errors reasons.
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6 Laboratory model description

Laboratory work is carried out on the computer in the HP VEE environment
with virtual model use. The virtual model block diagram resulted on figure 7.

The laboratory model consists of: a continuous signal source
s(t) = Aisin (2mfit) + Azsin (2nfht) + Aszsin (27f3t), sampler, recovery LPF, the
generator sampling pulses and the O-pulses generator. It is possible to set the
frequencies and amplitudes of harmonic waveform Ay, fi, A,, f>, Az, f3, sampling
frequency f; and cut frequency LPF F values.

The switch gives the chance to submit on an input recovering LPF a discrete
signal s4(¢) or d-pulse. Time and spectral diagrams can be observed in three points of
laboratory model: on a source output, on a LPF input and on a LPF.

Oscillograph Oscillograph Oscillograph
A Y
_Continuous s(?) | sampler sa(?) Recovering Srec(?)
signal generator > — 1 '/ > LPF
1
Setting of 8(1) Set of cut
Al, f1,A2, 12, A3, /3 frequency Fey
\ \ Y
Spectrum Spectrum Spectrum
analyser analyser analyser
Sampling pulses d-pulses
generator | generator

Setting of sampling
frequency f;

Figure 7 — Virtual model block diagram

7 Requirements to the report

6.1 Work purpose.

6.2 Homework performance results.

6.3 Laboratory task execution results.

6.4 Conclusions on each item of the laboratory task.

The literature

1. T'onopoBckuii U.C. PaqnorexHuueckue ey U CUTHaIbl. YUEOHHMK MJis
By3o0B. — M.: Panuo u cBa3b, 1986.

2. Teopusi nepexayu cUrHajoB: YueoHuk s By3oB / A.I'. 31oko u ap. — M.:
Panno u cBs13b, 1986.
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THE LABORATORY WORK 2.3
RESEARCH OF ANALOGUE SIGNALS CODING BY PCM

1. Objectives

1.1 Studying the digital transmission of analog signals with PCM method.
1.2 Research the basic characteristics of the transmission system using the
PCM method.

2 Main positions

2.1 The digital transmission methods

The digital transmission methods of analog signals are widely used in modern
telecommunications: an analog signal is transformed in digital one, that is in the
sequence of binary symbols; a digital signal is transmitted by the digital
communication channel; after that an analog signal is recovered. Any digital
transmission method is characterized by the rate of digital signal, R (bits/s), and by
the transmission accuracy, that is by the signal/quantization noise ratio p, The
problem is usually set — to satisfy the requirement to the p, when R has a minimum
value. It was resulted in development of plenty digital transmission methods. The
simplest method among them is pulse code modulation (PCM)*.

2.2 The sampling of analog signals

At any digital transmission method the analog signal b(¢), first of all, is
transformed in a digital signal, that is a sequence of samples b(kT,), taken with the

sampling interval T, <(1/2F,_,, ), and F_,, is the maximum frequency in the signal

ax

b(t) spectrum. This transformation is called the signal sampling in the time, and

device for its realization is called sampler. The sampling frequency must be not the
less of doubled frequency F,_, :

f,=1/T, 22F, . (1)

In accordance with the Kotelnikov theorem, the execution of this relation
guarantees the possibility of exact analog signal recovery from the samples. Such
recovery 1s carried out in low-pass filter (LPF) cutoff frequency F. (figurel).

b()

(KT ) A A
—>1  Sampler > Sample b{KT) b(1),

transmission ” LPF

Figure 1 — The analogue signal transmission by the samples

All digital transmission methods of analog signals differ in the ways of
presentation the discrete signals in digital form. The transformer the samples in the

? In spite of the presence the term “modulation”, these transmission methods are a relation neither to analog
nor digital modulations
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digital signal is called encoder of the digital transmission system (DTS), and
transformer the digital signal in the samples is called the decoder of DTS.

2.3 The PCM methods

The peculiarity of these methods is that every sample is represented by the
digital signal apart from other samples. These methods differ between itself by the
used code. A scheme, that represents the sample transmission with PCM, is shown on
a figure 2

PCM encoder
i(kT)

4:7d(t): Binary telecom. |Pa(?) -

» Encoder H Decoder
: channel

Quantizer

Figure 2 — Encoder and decoder PCM

The basic quantizer parameter is a number of quantization levels L. If the
number of quantization is even, the values range of b (—b ) 1is broken up on

max ° max

L—1 intervals with the size equal

Ab=72b_. I(L-1), (2)

that is called the quantization step. The breakdown with L = 8 is shown on the figure

i b 3. The discrete values b.correspond to the interval middles.

— | bglax - The index i takes the values equal O, £1, £2,..., £0,5L — 1.
30 O3

Discrete values are determined as b,=i-Ab. During the

> = b, I Ab quantization every sample b(kT,) is round off to the nearest

discrete value b;, and the integer number acts on the quantizer

LEE b output. But the presentation the sample b(kT,)as a discrete
0= by value perform the error
W, e, (kT,)=i(KT,)- Ab—b(kT,), 3)
-1 7 b

and it is called as the quantization noise.
27 b2 In the encoder, that is the part of PCM encoder
(figure 2), the numbers i(kT,)are represented by the binary

-3 7 b
i _;max | code, which is set. Code word length is equal
Figure 3 — The n = log,L. 4)
quantization A digital signal rate at the encoder output is equal to
explanation

R=n-f (5)

The decoder forms the numbers i(k7,) from the digital signal b,(z). This

numbers are used for the recovery the quantized sampling:
b, (KT,)=i(kT,)Ab .

These are the recovered samples of analog signal:
b(KT,)=b, (KT,).
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It is follows from the formula (3), that the samples are recovered with the
errors€ (k7,). The average square error of quantization (the average power of

quantization noise) is determined by the step of quantization:

= _(ap)’
€y = ,
12
and signal/(quantization noise) ratio is equal:
P, 3(L-1)
pq==§=—( L8 (6)
€ KA

q

K, is the amplitude coefficient of analog signal.

There are widely used PCM methods with the ununiform quantization: in area
of large values of ‘b‘ the quantization steps are large and vice versa. It is equivalent
nonlinear transformation the samples with the following uniform quantization. Due to
such transformation K, decreases, and p g increases, and L is constant, according to
the formula (6). It is possible, if the value p g wouldn’t change, to decrease L, the

code word length n and rate of digital signal R according to the formulas (4) and (5).
3 Questions

3.1 Explain the digital signal forming principle in the PCM method
transmission system.

3.2 How is the sampling interval or the sampling frequency determined?

3.3 What is the quantization step and how it can be defined?

3.4 What code word length depends of in PCM systems?

3.5 Explain, what’s noise of quantization? What is the reason of its origin?

3.6 How it is possible to increase the signal/(quantization noise) ratio in the
transmission systems using the PCM methods?

4 Home task

4.1 Study the section “Digital methods of transfer of continuous messages”,
using the summary and literature [1, p. 242...252], [2, p. 262...270].

4.2 Represent the structure schemes of PCM encoder and decoder.

4.3 Calculate the characteristics of analog signal transmission system by the
PCM method with uniform quantization. It is set: the sample frequency is equal to 8

kHz; the quantization level quantity L, =2" *2(Nis the brigade number); L, =2L;;
L, =2L,. Calculate for three values of L: the quantization step Ab(‘b(t)‘mX =1V?);

the code length n; the average quantization noise power % (the analog signal
amplitude coefficient K, = 2,85); the signal/(quantization noise) ratio p, , dB; the
digital signal rate R. Present the results of calculations like table 1. Analyze, how p,

and R will change if the code length would changes on unit.
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Table 1 — The characteristics of the transmission system by the PCM method
fi.kHz | L n | Rkbits's| B.V? | Ab,v | g2,v? | p,.dB
L
L,
Ly

—_

4.4 Be prepared for discussion concerning section 3.
S. Laboratory task

5.1 Familiarize with a virtual breadboard model. For this purpose start the
program 2.10a, using an icon TT(English) on a desktop. Study the laboratory model
scheme on the computer display, using section 6. Specify with the teacher the
laboratory task-fulfilling plan.

5.2 Research the origin of quantization noise

Set the number L, (from a home task) of quantization levels. Present the
results of fulfilling the program like table 2: write down the Ab and b(kT,), i(kT,),

b, (kT;) for k=1, 2, 3 and 4. Calculate the values of € (kT,), compare them with

AD, 8(21 and explain a result. Repeat the task forL, .

Table 2 — Analysis of quantization error
L Ab k b(kT.) ,V i(kT,) | b, (kTy).V | &,(KT}),V

1

1

4| | | |

5.3 Research the signal/(quantization noise) ratio
Set the quantization levels number L, (from a home task). Write down the

results of the program fulfilling to the table like table.1: the values of Ab, % and P,.

Calculate the experimental value of p,. Compare the got values Ab, 83 and p, with

the results of their calculations in a home task. Repeat the task for L,and L;. On the

fulfilling results build the graphs of signal/(quantization noise) and of digital signal
rate as the functions of quantization levels number. Carry out the conclusions.

6 Laboratory model description

Laboratory work is fulfilled on a computer in the HP VEE environment with
using the virtual model. Its structure scheme is shown on a figure 4. The virtual
model is based on the schemes, which are shown on the figurel and 2.

The analog signal generator forms the signal as a sum of a few harmonic
waves. The signal duration is equal 2 ms, and maximal frequency of its spectrum
F,. =34 kHz. An analog signal is normalized so, that |p()| =1V.
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Oscillograph Oscillograph Oscillograph Oscillograph
Analog Meter and
signal e+ Sampler |¢» Quantizer 4+ Encoder [—| Decoder ¢+ Low pass »| indicator of
generator filter P ;
b(t) Setti
etting L b(t A
ot ' p : ~1lp( 1)
eter an
; Meter and
indicator of Indicatorof b indicator of
P A 4 v A —_—
b Sample Sample Sample g2
indicator indicator indicator d

Figure 4 — Virtual model block diagram for research PCM method

7 Requirements to the report

7.1 The name of laboratory work.

7.2 The purpose of laboratory work.

7.3 The results of the home task.

7.4 The results of fulfilling the items 5.2 and 5.3 of laboratory task (tables,
graphs).

7.5 The conclusions on every item of laboratory task, in which it necessary to
give the analysis of the got results, such as the coincidence of theoretical and
experimental data, etc.

7.6 The date, the signature of student, the visa of teacher with an estimation on
a 100-mark scale.

Literature

1 Teopust »snexTpuueckol cBsa3u: YueOHuk it By3oB / A.I. 3ioko,
J. . Knosckuii, B.1. Kopxuk, M.B. Hazapos; Ilox pen. I./1. Knosckoro. — M.: Pa-
MO U CBA3b, 1998.

2 Mandinos LIL., Iupaa B.IO. Kanauin A.B. Teopis enexkTpuyHOro 38’ A3KY:
[linpyyHuk ajis CTyJIEHTIB BY3iB 1-ro Ta 2-ro piBHIB akpeauTtaiii. — K.: TexHika,
1998.
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THE LABORATORY WORK 2.4
COMMUNICATION CHANNELS INFORMATION CHARACTERISTICS

1 Objectives

1.1 The studying the communication channels information characteristics.
1.2 The acquiring the experience to perform the calculations of information
characteristics of various channels.

2 Main positions

The transmission rate of the information on a communication channel is the
mutual information between an input and an output of the channel per 1 s:

_1l4.4)
DA,

av

R, (1)

1 (B, Bj i1s the mutual information between an input and an output of the

channel per one symbol;

A
Band B are the channel input and output messages;
T, 1is the average time of one transmission symbol.

av

The message b(r) is distorted attitude to message b(¢) because of noise in an
analog channel and errors in a digital communication channel, so the part of

information is lost in a communication channel, and the mutual information / (B , B j

is less than source entropy H (B)( the source is connected to the channel input), and

information rate is less than source productivity.

The basic information characteristic of any communication channel is channel
capacity, that determines the maximal possible transmission rate of information
through this channel.

The capacity of the discrete symmetric communication channel C, bits/s, that
assume the transmission passing the M symbols of identical duration, is calculated on
a formula

C = Bllog> M + p log, (p/(M —1)) + (1- p) log, (1- p)], 2)

B — is the symbol rate, Bods or syms/s;
p —1s the symbol error probability in the communication channel.
The Gaussian channel capacity, bits/s, is calculated on a formula

C=F,log,(1+P /P)), (3)

F,, 1s the communication channel passband;

C

P, /P, is the average powers of signal and noise ratio.

The Shannon theorem, that was formulated for the communication channel
with noise is present, characterizes the potential possibilities of message
transmission. The theorem asserts: if the source message rate R, is less than the
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channel capacity C, that is R < C,, there are a encoding method (the method of

transformation the messages into the signal at the channel input) and a decoding
method (the method of transformation the signal into the messages at the channel
output), when the precision of message renewal would be high as someone want.

3 Questions

3.1 Give the determination of: the information rate; the channel capacity.

3.2 Explain the reasons of information losses in a discrete (continuous)
communication channel.

3.3 What parameters of discrete symmetric communication channel and
Gaussian communication channel would be known, so as to calculate their
capacities?

3.4 What communication channel (or source) information characteristics are
measured in bits/s or binary digits/s?

3.5 What are the conditions for the capacity became maximum (for the discrete
symmetric channel and Gaussian channel)?

4 Home task

4.1 Repeat the basic concepts of section “Information characteristics of
communication channels” using the summary and literature [1, p. 106-109; 114-122],
[2, p. 281-284].

4.2 Prepare to the discussing the key questions.

S The order of study conduction

It is the calculating laboratory work, and is conducted in such order.

5.1 The discussion the key positions and calculation technique of channel
message information characteristics. The solution the typical examples, that are
recommended to the study (point 6) or examples, that are prepared by the teacher
(about 50 minutes).

5.2 The independent student work (ISW) with using individual cards (about 30
minutes).

6 The typical examples that are considered on the study

Example 1 Define the capacity of binary symmetric communication channel,
if the symbol rate is equal B = 1000 symbs/s and probability of symbol errors
p=10"". How does symbol rate differ from the capacity of ideal channel (without

errors)?

Answer: the capacity of this communication channel with errors is equal to
988,6 bits/s; the capacity of ideal communication channel is equal 1000 bits/s; the
channel errors are resulted in the capacity decreasing of 11,4 bits/s (or 1,14 %).

Example 2 Calculate the channel capacity of a quaternary symmetric
communication channel without errors, if the symbol rate is equal to 50 symbs/s.

Answer: C = 100 bits/s.
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Example 3 Calculate the voice-frequency channel capacity (the cut-off
frequencies are 0,3 kHz and 3,4 kHz), if at the channel output the average power of
signal P, = 3,2- 10 B2, and the average power of noise P, =8,7- 108B2.

Answer: C = 2,64 bits/s.

Example 4 Is it possible to transmit, with a high quality, the 1-st class voice
broadcast signal (the source epsilon-rate is equal to 240 kbits/s) through the baseband
channel, that has the capacity equals 320 kbits/s, (see the table 18.1 [2])?

Answer: It is possible, because the source epsilon-rate (279 bits/s) is less than
the channel capacity (320 bits/s).

Literature

1 Teopusi »snexkTpuueckod cBsizu: YueOHuk it By3oB / A.I'. 3ioko,
J.A. Kinosckuit, B.1. Kopxuk, M.B. Hazapos; Ilox pen. 1.J1. Knosckoro. — M.: Pa-
JINO U CBA3b, 1998.

2 MMaundinos LIL., /Tupaa B.YO., Kanamin A.B. Teopist e1eKTpUIHOTO 3B’ SI3KY:
[Tigpy4HuK A CTYIEHTIB BUIMX HaBUadbHUX 3akianiB | Ta Il piBHIB akpenuTarii. —
K.: Texuika,1998.
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INDIVIDUAL TASK Ne 2.1
CODING OF DISCRETE MESSAGE

Input data:

— the message made of a surname and a name of the student, carrying out the
task;
— values of probabilities of letters in substantial English texts.

It is necessary:

1. Write out values of probabilities of letters and a blank, meeting in the given
message from [5, LW 2.1a]. Execute normalization of these probabilities that their
sum was equaled to unit. For this purpose it is necessary for probability of letters and
a blank divide into the sum of probabilities.

2. Calculate entropy of the given message, considering, that the alphabet of a
source is formed only from letters and a blank, meeting in a surname and a name,
signs on the message are independent.

3. Carry out coding the given message by Shannon-Fano code or Huffman
code (the variant of a code gets out on last digit of number of the student's record-
book: odd — the Shannon-Fano code, even — the Huffman code).

4. Calculate average length of a code word of the letter and compare it to
length of a code word of the letter at uniform coding.

5. Compare numerical values entropy and average duration of a code word of
the letters. Explain in what ratio they can to be. Explain difference of these numerical
values.

6. Calculate compression factor of the given message with the received code.

Methodical instructions to performance IT Ne 2.1

1. Information characteristics of message sources are in details described in [1,
part 8], [2, part 18], [5, LW 2.1].

2. Effective coding by Shannon-Fano code is described in [1, p. 307-310], [4,
p. 143], and effective coding by Huffman code is described in [4, p. 192].

3. Probabilities of letters in substantial English texts are resulted in “Help
material to IT Ne2.17.

4. Average length of code words is calculated as an average quantity of binary
symbols in code words after coding by a nonuniform Shannon-Fano code or Huffman
code.

5. Result the list of the literature in the executed task, and in the text to specify,
from what reference (with the indication of number of subitem or numbers of pages)
specific data for execute of the individual task are taken.
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INDIVIDUAL TASK Ne 2.2
CODING OF CONTINUOUS MESSAGE

The continuous message of a source will be transformed to a baseband signal
and then transferred by a communication channel method PCM with utilization of
uniform quantization.

Input data:
— the maximal frequency in a spectrum of a baseband signal Fy;
— average power of a baseband signal P;
— amplitude factor of a baseband signal Kj;
— the allowable ratio signal / quantization noise on output DAC p_ .

The concrete numerical data get out on two last digits of number of the
student's record-book from Table 3 — The initial data for I'T Ne2.2 (p. 57).

It is necessary:

1. Make up and describe block diagram of ADC and DAC.

2. Define: the sampling frequency f; the sampling interval 7§; a number of
quantization levels L; a length of a binary code n; a duration of a binary symbol 7}; a
digital signal rate R.

3. Calculate the ratio signal / quantization noise p, at chosen parameters of
ADC.

Methodical instructions to performance IT Ne 2.2

1. The principle of construction ADC and DAC is described in the literature on
telecommunication theory, for example, [2, part 17].

2. The technique of calculations ADC and DAC is resulted in [3, part 4] and in
an electronic database of the chair.

3. Result the list of the literature in the executed task, and in the text to specify,
from what reference (with the indication of number of subitem or numbers of pages)
specific data for execute of the individual task are taken.

Literature

1. CrexaoB B.K., bepkman JI.LH. Teopis enexkrpuunoro 3B’s3ky: Iligpyunux
s ctynedTiB BY3iB. 3a pen. B.K. Creknosa — K.: Texnika, 2006.

2. Manginos LII., {upaa B.}YO., Kanamin A.B. Teopist enekTpudHOro 3B’s3Ky:
[Minpyunux nus crynentiB BY3iB 1-ro ta 2-ro piBHiB akpeaurtamnii. — K.: Texnika,
1998.

3. Po3paxyHku i onTuMmizaiisi XapakTEpUCTUK CHCTEM EJIEKTPO3B’ A3Ky. 3a-
BJIaHHS HAa KypCOBY po0OTYy 3 nucuuiutiau “Teopis eneKTpUuHOro 3B'A3Ky”~ Ta METO-
IWYHI BKa31BKU 10 1X BukoHauHs / Yxi. IBamenko I1.B. Oxeca: OHA?3, 1999.

4. Knosckmii JI. /1., unkua B.A. Teopust anextpudeckoii cBszu: CO. 3a1a4 u
ynpaxHeHuid.— M.: CBs3p, 1990.
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5. MeToanyHi BKa3iBKM 10 BUKOHAHHS J1a0OpAaTOPHUX POOIT 3 AUCLMILIIHU
“Teopis enekTpuuHoro 3B’ s13Ky”. Yactuna 2 / Iamenko I1.B. Ta in. — Ongeca: OHA3
M. O.C. ITomoBa, 2004.

Help material
to individual tasks Ne 2.1 and Ne 2.2
Table A.1 — The letter probabilities distribution in the English texts

Letter Probability | Letter Probability | Letter Probability | Letter Probability
Blank 0.198 R 0.054 U 0.022 \Y% 0.008

E 0.105 S 0.052 M 0.021 K 0.003

T 0.072 H 0.047 P 0.017 X 0.002

0 0.065 D 0.035 Y 0.012 J 0.001

A 0.063 L 0.029 W 0.012 Q 0.001

N 0.059 C 0.023 G 0.011 Z 0.001

I 0.055 F 0.022 B 0.010

Huffman code [4, p. 192]

In case of Huffman coding algorithm signs of the source alphabet sign up in
decreasing order their probabilities. If some signs have identical probabilities, they
are placed in the any order. Then the probability tree as follows is under construction:
choose two signs with the least probabilities and form the first branching of a tree.
The chosen signs unite in the "intermediate” sign having probability, equal to the sum
of probabilities of the chosen signs. Then among the staying signs (together with
intermediate sign) again find two signs with the least probabilities and act the same as
on a first step. This procedure carries out until will all signs on the source alphabet
and intermediate signs will use up and the root of a tree which probability is equal 1
will be received.

«Movement» on a tree from a root to corresponding symbol carries out
reception of code words. Passage through a branching means addition of a binary
symbol in a code word: if through a branching "movement" upwards then unit is
added and if downwards then zero is added.

Let's consider an example of coding of signs on the alphabet consisting of 7
signs. In tab. 2 signs are resulted and their probabilities are specified. On figure 1
construction of a probability tree is shown. For this purpose signs are located from
top to down in decreasing order their probabilities. Procedure of construction of a
probability tree, described is carried out above. The received code words are brought
in tab. 2.

Calculation entropy of a considered source gives value

M
H(A)=-Y P(a,)-log, P(a,)= 2,524 bit.

k=1

Let's calculate average length of a code word



Table 3 — Huffman code
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M
n=-> Pla,)-n, =2,72.

Sign Code P
ag Play) word _
a, | 0,05 (10001 According to Shannon theorem of source
a (; 3 11 coding the average length of a code word cannot be
a 0’2 01 less source entropy. In our example
21— 7 =272 > H(A) = 2,524 bit.
a; | 0,1 1000 _
2. | 0.06 11001 These values differ only on 7%.
! : If lengths of code words are identical and
as | 0,15 (101 ) . ..
equal n the code is called uniform or primitive. The
g | 011 011 length of such code depends on size of the source
a; | 0,03 (10000 & p

alphabet:
n =log,M =log,8 = 3.

For an estimation of compression efficiency the parameter factor of compression

1s entered:
w=n/n =3/2,72 =1,103.

Signs and their

probabilities Tree of probabilities

a, ®
0.2

Cl'). 

0.15
as

0.11
ag®— 1 0.21

PRIL I

as
a49\ \/
Ao
az

!

0.1 _
0
.06
1 0.14
0.05 :
:ﬂgg/’
0.03 0
0
Figure 1 — Coding on Huffman algorithm

Calculation of ADC and DAC parameters
(it is carried out under the manual [3])

Input data (write out from table 3):

— the maximal frequency in a spectrum of a baseband signal Fx;
— average power of a baseband signal P,;

— amplitude factor of a baseband signal Ky;

— the allowable ratio signal / quantization noise on output DAC p ;.

It is necessary to:
— make up and describe block diagram of ADC and DAC;
— define the sampling frequency f; and the sampling interval T;

0.3 1 059 1 lg) Root of a
tree
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— define a number of quantization levels L, a length of a binary code n and a
duration of a binary symbol 7};

— calculate the ratio signal / quantization noise p, at chosen parameters of
ADC;

— calculate allowable probability of a symbol error of a p,; in a communication
channel between ADC and DAC (on DAC output).

Calculating formulas

According to the Kotelnikov theorem [1, part 2.7; 2, part 2.4] the sampling
frequency f,= 1/T should satisfy to a condition

fs 2 2F . (1)
The sampling interval is value return sampling frequency
T, = 1/f.. (2)

The noise immunity of transmission system of continuous messages is defined
by the ratio signal / noise on an input recipient (in our case on output DAC)

pout :Pb/Gf; s (3)

where o2 — average power of noise on an input recipient.

In digital transmission system by method PCM power of a noise on output
DAC is defined

2 _ o2 a2
G, =€, +¢€,, , 4)

where efl

g2 — average power of the noise caused by errors in a digital communication

— average power of a quantization noise;

channel.
It is defined also the ratio signal / quantization noise in transmission system by
method PCM

P =PlE, . (5)
Value p; 1s defined at uniform quantization
pq=3(L-1)/Kj}. (6)

Power of the noise, causing by errors in a digital communication channel, on
output DAC is defined by a proportion [1, formula (8.14)]
e = p(Ab)* Y 22" = p(Ab)® T (7)

i=1

where p — probability of a bit error on input DAC;
Ab — step of quantization;
n — the length of binary code ADC connected to number of quantization levels
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n =log,L. (8)

This ratio takes into account, that number of quantization levels L is the whole degree
of number 2.

The baseband signal b (¢) accepts values from by, up to byax. The interval (Duin, Dmax)
1s subject to quantization. The quantization step is defined

Ab = (bmax - bmin)/L- (9)

If average value of a signal equal to zero, then b, = —bp.x. If value by, 1S not given,
it is defined from a proportion

bmax:KA\/Fb’ (10)
Duration of a binary symbol on output of ADC is defined
T,=T,/n. (11)

Procedure of calculation

Block diagrams of ADC and DAC are in detail described in [1, part 8; 2, part
16]. It is necessary to add ADC circuits with LPF. LPF in real telecommunication
systems is used for limitation of a baseband signal spectrum. It explains that at
spectrum of baseband signals are slowly decreasing function. Value F,,, is limiting
frequency of a band, which is necessary for transmitting from a condition of
achievement of the given quality of a baseband signal reproduction. Value F,y is
defined by necessary legibility of speech, image sharpness, etc.

The increase in sampling frequency allows simplifying the input LPF of ADC
and the output (interpolating) LPF of DAC. The LPF output of DAC recoveries a
continuous signal on samples. The increase in sampling frequency results in
reduction of binary symbol duration on output ADC. It causes undesirable spread of a
frequency band of a continuous communication channel for transmitting of binary
symbols. Usually parameters of the input LPF of ADC and the output LPF of DAC
choose identical.

On figure 2 are given: S(f) is a spectrum of the samples submitted by narrow
pulses, S,(f) is a spectrum of a continuous signal b(f), A(f) is a performance
attenuation of LPF. That LPF did not bring linear distortions in a continuous signal;
limiting frequency of LPF pass band should satisfy to a condition

J12 Fraxe (12)
Limiting frequency of LPF stop band should satisfy to a condition
S = (= Frnay)- (13)

It excludes aliasing S,(f) and S,(f — f;) and provides attenuation components
Sy(f — f;) with a recovering LPF.

That LPF were not too complex, the relation of limiting frequencies choose
from a condition

fz/fi = 1,31,4 (14)
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After substitution of proportions (12) and (13) in (14) it is possible to choose
frequency of digitization. Then it is necessary to calculate a sampling interval.
Under the given allowable ratio signal / quantization noise py 4 it is necessary

to calculate allowable number of quantization levels L,; with the help of a proportion
(6). Then choose L > L,; and calculate n under the formula (8).

The ratio signal/noise given in decibels is necessary for presenting in times at
carrying out of calculations

p :100,1p[dB]. (15)
Under the formula (6) it is necessary to calculate value pq at chosen parameters
ADC. Translate the designed value into decibels and compare with given p ;-

Define allowable value of noise power caused by errors in a digital
communication channel on the basis of proportions (3), (4) and (5), having accepted
Pout= Pout a1~ The allowable error probability of a binary symbol on input DAC pall is

defined from a proportion (7). The size of a quantization step is defined by the formula

9).

Dp 50 Suf~f)
7\ WA
Frax  fs = Frnax Js f
A
%)
A, S
0 ho f f
Figure 2 — The spectrum of samples and a filter amplitude response
both ADC and DAC
Literature

1. Teopusi snmexkTpuueckod cBsizu: YueOHuk mnsi By3oB / A.I. 3ioko,
J.A. Kinosckuit, B.1. Kopxuk, M.B. Hazapos; Ilox pen. 1./1. Knosckoro. — M.: Pa-
MO U CBA3b, 1998.

2. lHanduaos HU. Il., sipna B. E. Teopus snekTpudecKor CBs3U: YUCOHUK
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3. Po3paxyHku I onTuMizallisl XapaKTepUCTUK CHUCTEM EJIEKTPO3B'S3KY. 3a-
BJIaHHS Ha KypCOBY poOOTYy 3 AUCIHUILUIIHU “Teopis eJeKTpUUHOIO 3B'A3KY”~ Ta METO-
IWYHI BKa31BKU 10 1X BUKoHaHH // Yki. IBamenko I1. B. — Oneca: OHA3, 1999.
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4. Knosckmii JI./1., Hlunkuna B.A. Teopus snekrpudeckoit cBs3u: CO. 3ama4 u
ynpaxHeHuid.— M.: CBs3p, 1990.
Table 3 — The input data for performance IT No 2.2

Number Parameters of a message source
of a variant | P,, V? Ka Foax, kKHz Pout all » 4B Pqall> dB
00 3,0 5 6,5 36 39
01 1,2 8 12 31 34
02 2,5 V3 2,4 38 41
03 0,1 5 6,5 42 45
04 0,3 5,5 8,0 42 45
05 0,5 \3 2,4 44 47
06 0,7 3 2,7 40 43
07 0,9 4 3,5 37 40
08 1,2 V3 5000 50 53
09 1,5 3,5 2,5 39 42
10 1,8 45 12 36 39
11 2,0 \3 3500 38 41
12 2,5 45 14 42 45
13 2,8 6,5 18 33 36
14 3,0 V3 800 44 47
15 0,2 7 12,5 39 42
16 0,4 8 15 37 40
17 0,6 \3 1,6 50 53
18 0,8 3,5 45 45 48
19 1,0 45 7,0 36 39
20 1,1 V3 0,8 38 41
21 1,3 5,5 7,5 42 45
22 1,4 6,5 9,5 37 40
23 1,6 \3 100 44 47
24 2,2 45 11 42 45
25 24 6,5 8,5 33 36
26 2,6 V3 0,1 50 53
27 1,9 3,5 2,5 45 48
28 0,1 3 2,7 46 49
29 0,3 \3 22 38 41
30 0,5 3,5 2,5 39 42
31 0,7 45 12 42 45
32 0,9 V3 110 44 47
33 1,1 45 14 36 39
34 1,3 7 12,5 39 42
35 1,5 \3 0,1 50 53
36 1,7 8 15 37 40
37 1,9 3,5 45 45 48
38 2,1 V3 180 38 41
39 2,3 45 7,0 36 39
40 2,5 5,5 7.5 42 45
41 2,7 \3 56 44 47
42 2,9 6,5 9,5 39 42
43 0,2 45 11 36 39
44 0,4 V3 44 50 53
45 0,6 6,5 8,5 33 36
46 3,5 0,8 2,5 45 48
47 1,0 \3 95 44 47
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48

1,2

2,7

40

43

49

1,4

3,5

2,5

45

48




The ending of the table 3
Number Parameters of a message source
of a variant Py, V* K Finax, kHZ Poutait- 4B Pqa- 4B
50 1,6 \3 120 50 53
51 1,8 45 12 36 39
52 2,0 45 14 42 45
53 2,2 V3 144 38 41
54 24 3,5 22 39 42
55 2,6 3,5 1,5 45 48
56 2,8 \3 380 44 47
57 3,0 45 2,7 36 39
58 0,01 45 74 42 45
59 0,1 V3 500 50 53
60 0,02 5,5 16 35 38
61 0,2 5,5 12,5 41 44
62 0,03 \3 0,24 38 41
63 0,3 6,5 15 39 42
64 0,04 7,0 2,8 39 42
65 0,4 V3 12 44 47
66 0,05 7,5 3,3 32 35
67 0,5 8,0 4.4 31 34
68 0,06 V3 300 50 53
69 0,6 5 5,5 42 45
70 0,07 9,0 6,5 30 33
71 0,7 V3 9,6 38 41
72 0,08 3,5 43 45 48
73 0,8 45 7.5 42 45
74 0,09 V3 10,2 44 47
75 0,9 5,5 4.8 42 45
76 0,1 6,5 5,2 39 42
77 1,0 V3 1,5 50 53
78 0,12 7,5 3,6 38 41
79 1,2 8,0 10,0 37 40
80 0,15 \3 240 38 41
81 1,5 8,5 45 36 39
82 0,2 3 5,6 46 49
83 2,0 V3 480 44 47
84 0,25 45 11 36 39
85 2,5 5,5 14 35 38
86 0,3 \3 75 50 53
87 3,0 6,5 2,6 33 36
88 0,35 7,5 6,5 38 41
89 0,65 V3 68 38 41
90 0,4 6,5 16 39 42
91 0,7 5,5 6,3 42 45
92 0,45 \3 18 44 47
93 0,75 4 8,2 37 40
94 0,5 8 18 31 34
95 0,8 V3 72 50 53
96 0,55 4,5 6,4 42 45
97 0,85 6,0 12 40 43
98 0,6 \3 0,6 38 41
99 0,9 7,0 2,75 39 42

59
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6 ENGLISH-RUSSIAN DICTIONARY

accumulator

ADC (analog-to-digital convertor )
ADPCM (adaptive differential PCM)

aliasing
amplitude factor
amplitude response (AR)

AWGN (additive white Gaussian noise)

binary channel

channel capacity

code length
communication channel
compression of information
conditional entropy
continuous source

cut-off frequency

DAC (digital-to-analog converter)

decoding method
degree of compression
differential entropy
digital transmission
discrete source

DM (delta modulation)
effective coding
encoding method
epsilon entropy
epsilon rate
equal-length code
frequency efficiency
Huffman code
information characteristics

information efficiency

HaKOIINTCJIb

AIIIT (anamoro-mudpoBoii mpeoOpazoBa-
TEJb)

AJIUKM (apmantuBHas auddepeHmaib-
Hast UKM)

HAJIOXKEHUE CIIEKTPOB

KOA(PGUIIUEHT aMILTUTYIbI

AUX (aMITUTYHO-4aCTOTHAS XapaKTe-
pUCTHKA)

ABI'IIl (apnuTUBHBIN OENBIN TayCCOBCKUIMA
LIy M)

JIBOMYHBINA KaHa

MPOMYCKHAasi CHOCOOHOCTh

JUTHHA KOJa

KaHaJI CBSA3H

cxaTue uH(popmaIuu

yCJIOBHAs SHTPONUSA

VCTOYHUK HETIPEPHIBHBIX COOOICHUN
4acToTa cpesa

LIAII (undpo-ananorossiit mpeodbpazoBa-
TEJb)
METO/]I IEKOIUPOBAHUS

CTEINEHb CKATHUS
nuddepeHnranbHas SHTPOIHS
udpoBas nepempaya

MCTOYHUK JUCKPETHBIX COOOIICHHI
JAM (zmenbTa MOZYJISILIAS)

¢ PeKkTUBHOE KOTUPOBAHUE

METOJI KOJIUPOBAHUS
ATICUJIOH-YHTPOIHS
ATICUJIOH-TTPOU3BOAUTENEHOCTh
PAaBHOMEPHBINA KO

gacToTHas 3 PEKTUBHOCTH

kox Xabhdmana

UH(OPMAIMOHHBIEC XapaKTEPUCTUKHU

nHpopmarmonHast 3PEeKTUBHOCTD



information quantity
instantaneous values
joint entropy

linear distortions
low-pass filter (LPF)
message source
mutual information
non-uniform code
power efficiency
predictor

primitive code

pulse code modulation (PCM)

quantization noise
quantization step
redundancy
redundancy coefficient
sampling

Shannon theorem

Shannon-Fano code

signal/(quantization noise) ratio

slope overload

source entropy

source rate

statistical code
subdivision noise
symbol rate

time domain
transmission accuracy
uncorrelated messages
uniform quantization

variable-length code
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KOJIMYECTBO HH(OpManu
MTHOBEHHBIC 3HAUCHUS
COBMECTHAs SHTPOIHS
JIMHENHBIC UCKAKEHUS
bunbTp HWKHUX yacToT (DHY)
HUCTOYHUK COOOIICHUN
B3aMMHas UH(OpMaLUs
HEpPaBHOMEPHBIN KO/
sHepreTryeckas 3 (HeKTUBHOCTD
npejacKasaresb
MIPUMUTHUBHBIN KOJI
MMITYJIbCHO-KO10Bast MoayJssinust (MKM)
IIYM KBaHTOBaHUS
ar KBaHTOBAHUS
HU30BITOYHOCTh
KO3 PUIMEHT H3OBITOYHOCTH
JUCKpPETU3ALIHS
teopema lllennona
kon lllennona-danHo
OTHOIIEHUE CUTHAI/IIIYM KBAHTOBAHUS
neperpysKa 1no HaKkJIoOHY
SHTPOIHUS UCTOUHHUKA
MIPOU3BOAUTEILHOCTh UCTOUYHUKA
CTaTUCTUYECKUN KOJT
IIyM IpOOJICHUS
CKOPOCTb MOYJISIIAN
BpeMEHHas 00J1acTh
TOYHOCTH TIepeauu
HE3aBUCUMBIE COOOIIICHHUS
PaBHOMEPHOE KBAHTOBaHUE

HEPAaBHOMEPHBINA KO/
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7 RUSSIAN-ENGLISH DICTIONARY

ABI'I (ammutuBHbIN Oenbiit TayccoBckuit AWGN (additive white Gaussian noise)

IyM)

AIII (ananoro-mudpoBoii nmpeodpazoBa-
TEJb)

AYX (aMIUTUTYyIHO-4aCTOTHAs XapaKTe-
PUCTHKA)

B3auMHast UHpOpMaIus

BpPCMCHHaAA 001acTh

TBOWMYHBIN KaHal

AJIUKM (apantuBHas nuddepeHnmaib-

Hast UKM)
JTUCKPETU3ALIMS

nuddepeHranbHas SHTPOIHS
JUTHHA KOJ1a

JAM (nenbTa MOAYJISIIIS)
M30BITOYHOCTh

UMIYJIbCHO-KO10Bast MoayJssinust (MKM)
uHpopmarmonHas 3 PeKTUBHOCTD
WH()OPMAITMOHHBIC XapaKTEPUCTHKU
UCTOYHUK TUCKPETHBIX COOOIICHUIM
HMCTOYHHUK HEMIPEPHIBHBIX COOOIIEHUH
MCTOYHHUK COOOIIEHUN

KaHaJI CBSI3U

kon Xadhdmana

kon Illernona-dano

KOJMYECTBO MH(DOpMAIIH
KOA(DPUITUEHT aMIUTUTY 1Bl

K03 PUIMEHT H30BITOYHOCTH
JUHENHbIE UCKAXKEHUS

MT'HOBEHHbBIEC 3HAUCHHUSI

METO/I IEKOTUPOBAHUS

METO]T KOJUPOBAHUS

HAKOIUTEITh

HaJIOXEHUE CIIEKTPOB

HE3aBUCHUMBIE COOOIIICHUS

ADC (analog-to-digital convertor)
amplitude response (AR)

mutual information

time domain

binary channel

ADPCM (adaptive differential PCM)

sampling

differential entropy
code length

DM (delta modulation)
redundancy

pulse code modulation (PCM)
information efficiency
information characteristics
discrete source
continuous source
message source
communication channel
Huffman code
Shannon-Fano code
information quantity
amplitude factor
redundancy coefficient
linear distortions
instantaneous values
decoding method
encoding method
accumulator

aliasing

uncorrelated messages



HEpPAaBHOMEPHBIN KOA
OTHOLIEHUE CUTHAJI/IIYM KBAHTOBAHMS
HEeperpy3Ka 10 HAKIJIOHY
IIpeACKa3aTelb

IPUMUTUBHBIN KOJI
MIPOU3BOAUTEIBHOCT HCTOYHHUKA
MPOITYCKHAs CIIOCOOHOCTH
PaBHOMEPHOE KBAHTOBAaHUE
PABHOMEPHBIN KOA

ckatue uHpopMaluu

CKOPOCTb MOAYJISILIUN
COBMECTHAsI YHTPOIHUS
CTaTUCTUYECKUI KO

CTENEHb CKATHS

teopema [llenHona

TOYHOCTb IIEpEAAUN

YCIIOBHAsI SHTPOIIUS

¢bunbTp HIKHUX YacToT (OHY)

HAII (undpo-ananorossiii mpeodpazoBa-

TEJb)
nudposas nepeaada

JacToTa cpesa
yacToTHast 3pPEeKTUBHOCTD

I1ar KBaHTOBaHMSI

IIyM ApoOJIeHUS

IIYM KBaHTOBaHUs
sHepreTudeckas 3 HEeKTUBHOCTh
SHTPOMHS UCTOUHHUKA
ATICHJIOH-TIPOU3BOIUTEITHPHOCTh
ATICHIJIOH-3HTPOIHUS

a3 PeKTUBHOE KOJUPOBAHUE

non-uniform, variable-length code
signal/(quantization noise) ratio
slope overload

predictor

primitive code

source rate

channel capacity

uniform quantization
equal-length, fixed length code
compression of information
symbol rate

joint entropy

statistical code

degree of compression

Shannon theorem

transmission accuracy

conditional entropy

low-pass filter (LPF)

DAC (digital-to-analog convertor )

digital transmission
cut-off frequency
frequency efficiency
quantization step
subdivision noise
quantization noise
power efficiency
source entropy
epsilon rate

epsilon entropy

effective coding
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