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1 INTRODUCTION TO ELECTROMAGNETISM.  

BASIC EQUATIONS OF ELECTROMAGNETICS  

 

 

1.1 Mathematical tools of electromagnetics: complex numbers,  

      basics of vector analysis 

 

1.1.1 Goal of the practical training 

 

Recurrence of mathematical tools used in an electromagnetics; 

development of problems solution skills . 

 

1.1.2 Key points 

 

A complex number is an expression of the following kind: aiaa ′′+′=& , 

where a′  and a ′′  are real numbers; i is the imaginary unit determined from the 

expressions 

12 −=≡ iii ,   2

π

=
i

ei . 

 

Here and after the sign <≡> specifies transition to other label. 

 

Two complex numbers aia ′′+′  and aia ′′−′  are called complex conjugate 

numbers. The complex conjugate number is designated by a «*» sign, i.e. 

numbers a&  and *a& are complex conjugate numbers.  

Consider a complex plane (fig. 1.1).  

 

 
Each point of a complex plane corresponds to a complex number a&  which 

is possible to be presented in the algebraic form:  

a ′′

a′

a&

aϕ

a

a ′′

a′

a&

a

aϕ

 
 

Figure 1.1 – Complex number on a complex plane 
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aiaa ′′+′=& ,      (1.1) 

 

or the exponential form: 

ai
aea

ϕ=& .      (1.2) 

 

where  a′  and a ′′  are real ( )a&Re  and imaginary ( )a&Im  parts of complex number 

a& ;  

 a  and aϕ  are module and argument (phase) of the complex number. 

 

Sometimes the number a′  is called an abscissa ( ( )a&Re  – real part), and a ′′  

is called ordinate ( ( )a&Im  – imaginary part) of the complex number aiaa ′′+′=& .  

From fig. 1.1 and expressions (1.1), (1.2) one may derive: 

 

22
aaa ′′+′= ,      (1.3) 

 










<′
′

′′
+π=ϕ

>′
′

′′
=ϕ

−

−

0where,tan

0where,tan

1

1

a
a

a

a
a

a

a

a

     (1.4) 

aaa ϕ=′ cos , aaa ϕ=′′ sin .    (1.5) 

 

Addition, subtraction, multiplication and division of complex numbers 

aiaa ′′+′=&  and bibb ′′+′=& is performed with the help of the expressions: 

 

( ) ( )baibaba ′′±′′+′±′=± && ,    (1.6) 

( ) ( ) ( )bai
ebababaibababa

ϕ+ϕ=′′′+′′′+′′′′−′′=&& ,  (1.7) 

( )bai
e

b

a

bb

baab
i

bb

baba

bib

aia

b

a ϕ−ϕ=
′′+′

′′′−′′′
+

′′+′

′′′′+′′
=

′′+′

′′+′
=

2222&

&
,   (1.8) 

where ba ϕϕ ,  are accordingly arguments (phases) of complex numbers a&  and b& . 

 

At the heart of the vector analysis the concept of a vector (a directional 

line) lies. A vector is possible to be presented in a general (not coordinate) view 

as AaA 0

rr
= , where 0a

r
 is an ort (unit vector), co-directed with a vector A

r
; A  is a 

module (length) of a vector A
r

, and also in the form of the sum of three 

perpendicular vectors, co-directed with the orts of the given coordinate system.  
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In the Cartesian, cylindrical and spherical coordinate systems vector A
r

 

representation via the orts looks like the following  

 

zyx AzAyAxA 000

rrrr
++= ,                                   (1.9) 

 

where 000 ,, zyx
rrr

 are the orts of Cartesian coordinates (fig. 1.2); zyx AAA ,,  are 

projections of a vector A
r

 on corresponding directions of the Cartesian 

coordinate system 

zr AzAArA 000

rrrr
+ϕ+= ϕ ;    (1.10) 

 

where 000 ,, zr
rrr

ϕ  are the orts of cylindrical coordinates (fig. 1.3а);  

zr AAA ,, ϕ  are projections of a vector A
r

 on corresponding directions of the 

cylindrical coordinate system 

 

ϕθ ϕ+θ+= AAArA r 000

rrrr
,    (1.11) 

 

where 000 ,, ϕθ
rrr

r  are the orts of spherical coordinates (fig. 1.3b);  

ϕθ AAAr ,,  are projections of a vector A
r

 on corresponding directions of the 

spherical coordinate system.  

 

If vectors A
r

 and B
r

 are presented via its projections, for example, in the 

Cartesian coordinates: 

 

zyx AzAyAxA 000

rrrr
++= ;  zyx BzByBxB 000

rrr
++= ,   (1.12) 

 

the projections of the sum (difference) of vectors A
r

 and B
r

 are equal to the sums 

(differences) of corresponding projections  

 

( ) ( ) ( )zzyyxx BAzBAyBAxBA ±+±+±=± 000

rrrrr
.   (1.13) 

 

The dot product of vectors A
r

 and B
r

 is defined: 

 

( ) 







=⋅≡

∧

BABABABA
rrrrrr

,cos, , 

where 






 ∧

BA
rr

,  is a corner between vectors BA
rr

, , 

or                                         ( ) zzyyxx BABABABA ++=
rr

, .                            (1.14)



 

 7 

X

Y

Z

y0

z0

A

x0 x0
y0

z0

Az

Ay

Ax

A

Z

Y

X  
a) 

 
b) 

Figure 1.2 – Vector A
r

 representation: a) – in space;  

b) – projections of vector A
r

 on the planes of the Cartesian coordinates  

 

 

Y

X

Z

r0

0

A

0

Y

X

Z

A

0

r0

z0

 
 

 a)                                                             b)      

 

Figure 1.3 – Vector A
r

 representation:  

a) – in the cylindrical coordinates;  b) – in spherical coordinates 
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           The cross product of vectors A
r

 and B
r

 is defined: 

 

[ ] 







=×≡

∧

BAABnBABA
rrrrrrr

,sin, 0 , 

 

where  
0

n
r

 is a unit vector (ort) normal to a plane containing vectors A
r

 and B
r

 

and moreover vectors A
r

, B
r

 and 0n
r

 are mutually perpendicular and form 

“right-hand triple”, 

 

or       [ ] ( ) ( ) ( )xyyxzxxzyzzy BABAzBABAyBABAxBA −+−+−= 000,
rrrrr

.    (1.15) 

 

Expressions for the sum (difference), scalar and cross product of vectors A
r

 

and B
r

, presented in cylindrical, spherical and other orthogonal coordinate 

systems, are similar to corresponding expressions (1.13), (1.14) and (1.15).  

 

The vector analysis is used for research of scalar and vector fields featured 

by scalar Ψ  and vector F
r

 functions accordingly. The basic operations of the 

vector analysis: a scalar field gradient, a divergence and curl of vector field.  

The gradient of scalar function Ψ  is defined in corresponding coordinates 

by the following expressions: 

 

in Cartesian                        
z

z
y

y
x

x
∂

Ψ∂
+

∂

Ψ∂
+

∂

Ψ∂
=Ψ 000grad

rrr
;                       (1.16) 

 

in cylindrical                      
z

z
rr

r
∂

Ψ∂
+

ϕ∂

Ψ∂
ϕ+

∂

Ψ∂
=Ψ 000

1
grad

rrr
;                     (1.17) 

 

in spherical                   
ϕ∂

Ψ∂

θ
ϕ+

θ∂

Ψ∂
θ+

∂

Ψ∂
=Ψ

sin

11
grad 000

rrr
r

rrr
.               (1.18) 

 

The divergence of the vector function F
r

 is defined in corresponding 

coordinates by the following expressions: 

 

in Cartesian                          
z

F

y

F

x

F
F zyx

∂

∂
+

∂

∂
+

∂

∂
=

r
div ;                                 (1.19) 

 

in cylindrical                   ( )
z

FF

r
rF

rr
F z

r
∂

∂
+

ϕ∂

∂
+

∂

∂
=

ϕ11
div

r
;                          (1.20) 
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in spherical     ( ) ( )
ϕ∂

∂

θ
+θ

θ∂

∂

θ
+

∂

∂
=

ϕ
θ

F

r
F

r
Fr

rr
F r

sin

1
sin

sin

11
div 2

2

r
.  (1.21) 

 

The curl (vortex) of the vector function F
r

 is defined in corresponding 

coordinates by the following expressions: 

 

in Cartesian                   +








∂

∂
−

∂

∂
=

z

F

y

F
xF

yz
0rot
rr

  










∂

∂
−

∂

∂
+








∂

∂
−

∂

∂
+

y

F

x

F
z

x

F

z

F
y xyzx

00

rr
;                            (1.22) 

 

in cylindrical         +








∂

∂
−

ϕ∂

∂
=

ϕ

z

FF

r
rF z1

rot 0

rr
 

( ) 








ϕ∂

∂
−

∂

∂
+








∂

∂
−

∂

∂
ϕ+ ϕ

rzr F

r
rF

rr
z

r

F

z

F 11
00

rr
;                     (1.23) 

 

in spherical       ( ) +








ϕ∂

∂
−θ

θ∂

∂

θ
= θ

ϕ

F
F

r
rF sin

sin

1
rot 0

rr
 

( ) ( ) .
1

sin

11
00 






θ∂

∂
−

∂

∂
ϕ+









∂

∂
−

ϕ∂

∂

θ
θ+ θϕ

rr F
rF

rr
rF

r

F

r

rr
            (1.24) 

 

1.1.3 Key questions 

 

1) What is a complex number? 

2) What numbers are called complex conjugate, how are the complex 

conjugate numbers designated? 

3) What is a complex plane? 

4) What is algebraic and exponential forms of complex numbers, real and 

imaginary part of complex numbers, its module and argument and how do they 

relate to each other? 

5) Explain the expressions of transformation of a complex number from the 

algebraic form into exponential one and back. 

6) How the addition and division of complex numbers is done. 

7) How the subtraction and multiplication of complex numbers is done. 

8) Define a vector quantity. 

9) What is general and coordinate representation of vectors (in Cartesian, 

cylindrical and spherical coordinates). 

10) Explain rules of addition (subtraction) of vectors. 

11) What is dot product of vectors? 

12) What is cross product of vectors? 

13) What is a gradient of scalar function? Write down the expression for 



 

 10 

evaluation of gradient of scalar function in Cartesian coordinates. 

14) What is a divergence of vector function? Write down the expression for 

evaluation of divergence of vector function in Cartesian coordinates. 

15) What is a curl of vector function? Write down the expression for 

evaluation of a curl of the vector function in Cartesian coordinates. 

 

1.1.4 Problems and methodical recommendations to their solutions 

Problem 1. Two complex numbers are given 42

π

=
i

ea&  and 33

π
−

=
i

eb& . 

Transform the numbers into the algebraic form. Find the sum, difference, 

product and the ratio of the two numbers. Find modules, arguments, the real and 

imaginary parts of the numbers. Arrange complex numbers on a complex plane 

(both given complex numbers and derived during calculations). 

Problem 2. Two complex numbers are given 32 ia −=&  and ib += 3& . 

Transform the numbers into the exponential form. Find the sum, difference, 

product and the ratio of the two numbers. Find modules, arguments, the real and 

imaginary parts of the numbers. Arrange complex numbers on a complex plane 

(both given complex numbers and derived during calculations). 

 

Methodical recommendations to the solution of problems 1 and 2. For 

transformation of the complex number presented in the exponential form into 

algebraic and vice versa one needs to use expressions (1.5) and (1.3), (1.4) 

accordingly. To find the sum, difference, product and the ratio one needs to use 

expressions (1.6), (1.7) and (1.8) accordingly. The module, argument, real and 

imaginary parts of a complex number are the factors or addends in 

corresponding expressions (1.2) and (1.1). 

To show a complex number on a complex plane one may use an example, 

as is shown in fig. 1.1. 

 

Problem 3. Two vectors are set: 03yA
rr

=  and 00 4zyB
rrr

−= , where 

000 ,, zyx
rrr

 are orts in Cartesian coordinates. Find the sum and difference of 

vectors, their dot and cross products. Plot these vectors on plane Y0Z. 

Problem 4. Two vectors are set:  000 32 zyxA
rrrr

−+=   and 

000 23 zyxB
rrrr

−−= , where 000 ,, zyx
rrr

 are orts in Cartesian coordinates. Find the 

sum and difference of the vectors, their dot and cross products. Plot vectors 

0zA
rr

+  and 02zB
rr

+  on plane X0Y. 

 

Methodical recommendations to the solution of problems 3 and 4. For 

finding of sum or difference of vectors one may use the expression (1.13), dot 

and cross products of vectors — expressions (1.14) and (1.15) accordingly. 

 

For the plotting of vectors on a corresponding plane one needs using an 

example, as is shown in fig. 1.2,b. 
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Problem 5. Scalar function is set ( ) zyxzyxf 32,, 2 ++= . Calculate 

gradient of this function. 

Problem 6. The vector function is set ( ) 0
2

00 322,, zzyyxxzyxF
rrvr

+−= , 

where 000 ,, zyx
rrr

 are orts in Cartesian coordinates. Calculate divergence of this 

function and find, where does the function have source or sink. 

Problem 7. The vector function is set ( ) 000 22,, zyxxyzyxF
rrvr

+−= , where 

000 ,, zyx
rrr

 are orts in Cartesian coordinates. Calculate curl of this function. 

 

Methodical recommendations to the solution of problems 5,6 and 7. For 

evaluation of a gradient of scalar function ( )zyxf ,,  in Cartesian coordinates 

one needs using expression (1.16) in which instead of Ψ  one needs to substitute 

( )zyxf ,,  and find derivatives on corresponding coordinates. 

For evaluation of divergence and curl of the vector function ( )zyxF ,,
r

 in 

Cartesian coordinates one needs to use expressions (1.19) and (1.22) accordingly 

in which one needs to find derivatives on corresponding coordinates and then 

find the sum and difference of the terms accordingly. 

Streamlines of the vector field featured by the vector function ( )zyxF ,,
r

 

begin (come to an end) in those points of space, where 0div ≠F
r

. Points in 

which streamlines begin ( F
r

div >0), are called sources, and points in which 

streamlines come to an end ( F
r

div <0), are called sinks. 
 

 

 

1.2 Basic postulates of electromagnetism 

 

1.2.1 Goal of the practical training 

 

Recovery of basics of electromagnetism; getting skills in solving of 

problems. 

 

1.2.2 Key points 
 

A particular case of electromagnetic field is electrostatic field resulting 

from a system of fixed charges. Thus electrostatic field means the field of 

fixed electrical charges. 

For a quantitative estimation of the electric field in general and of 

electrostatic field in particular a physical quantity of electric field intensity E
r

 is 

introduced from the Coulomb's law. 

Coulomb's law is fundamental law of electrical interaction. The force 12F
r

 

between two charges 1q  and 2q  is directed along the line joining the charges and 

is directly proportional to the value of the charges and inversely proportional to 

the square of the distance between them (fig. 1.4). 
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2
12

21

0
012

4

1

r

qq
rF

πε
=
rr

,     (1.25) 

 

where 12F
r

 is power which acts on charge 1q  from the side of charge 2q  in 

vacuum;  

 0r
r

 is ort directed from 1q  to 2q ;   

 12r  is distance between 1q  and 2q ;  

 0ε  is permittivity of free space    

 

,10854,83610 129
0

−− ⋅=π=ε  F/m. 

 

The electric field intensity is the ratio of the force 12F
r

 acting on the charge 

1q  to the value of the point test charge 2q . The electric field is independent on 

the test charge 2q  and characterizes electric field in vacuum for the field created 

by the charge 1q  in the point where the test charge 2q  is located.  

 

,
4

1
02

12

1

02

12 r
r

q

q

F
E

r
r

r

πε
==   

m

V
.      (1.26) 

 

The direction of the electric field intensity vector E
r

 determines the 

direction of the force acting on a positive charge placed at a particular point in 

the field. 

For example if the field is created due to the positive charge 1q  the 

intensity vector E
r

 is directed along the radius vector 0r
r

 from the charge to the 

outer space, if the field is created due to the negative charge 1q , the intensity 

vector E
r

 is directed to the charge. 

Thus electric field intensity is a vector quantity equal to the force which a 

unit positive point charge placed at a given point of the field experiences from 

the side of electric field. 

The mathematical relationship between the flux of electric field through a 

closed surface and charge in the volume bounded by this surface is established 

on the basis of the Gauss theorem. The physical basis of the Gauss theorem is 

Coulomb's law or otherwise Gauss theorem is an integral formulation of 

Coulomb's law. 

 

 

Figure 1.4 – Graphical interpretation of Coulomb's law 
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Gauss theorem for electric field intensity in vacuum states: the flow of the 

electric field intensity vector E
r

 through any randomly selected closed surface S  

is proportional to the total charge Q  in a volume V  bounded by this surface S  

 

∫∫ ρ
ε

=
ε

=
VS

VQSE d
11

d
00

vr
,                       (1.27) 

 

where ∫
S

SE
vr

d  is the flow of the electric field intensity vector E
r

 through closed  

 surface S ; 

 ∫ρ=
V

VQ d , C is total charge within the volume V ;  

 ρ , C/m
3
 is volume density of charge Q . 

 

Equation (1.27) is the electrostatic Gauss theorem in integral form for a 

continuous charge, according to which the flow of the electric field intensity 

vector E
r

 through a closed surface is independent on the charge distribution 

(disposition of charges) within the volume V  and can be considered as a 

measure of the amount of electric charge Q  in a volume limited by surface S . 

Electrostatic Gauss theorem in differential form is as follows: 

 

0

div
ε

ρ
=∇≡ EE

rr
,                                 (1.28) 

 

where  ∇  is del operator or nabla-vector or Hamiltonian which is symbolic 

differential vector operator and in rectangular coordinates has the following 

form: 

 

z
z

y
y

x
x

∂

∂
+

∂

∂
+

∂

∂
=∇ 000

rrr
. 

 

The divergence of vector E
r

 characterizes the features of the electrostatic 

field in the places where either 0≠ρ  or 0=ρ . Positive charge can be 

considered as a source of electrostatic field streamlines so the streamlines begin 

at positive charges. The negative charge is a sink of electrostatic field 

streamlines where they terminate (fig. 1.5). 

If in a certain volume V  (fig. 1.6) volume charge density is not equal to 

zero ( 0≠ρ ) then the surface bounding this volume V , is threaded by 

streamlines of vector E
r

 which are divergent in space ( 0>ρ ) or convergent 

( 0<ρ ).  

In the region of space where there are no charges ( 0=ρ ), the lines of 
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vector E
r

 neither start nor end (fig. 1.7), any element of such a space the field 

lines go through only but neither diverge from it nor converge to it. The 

electrostatic field in the space where 0=ρ  and respectively 0div =E
r

 is called 

solenoidal. 

 

 

 

 

 

 
 

Figure 1.7 – Graphical interpretation of electrostatic Gauss  

theorem for 0div =E
r

 

 

 
 

Figure 1.6 – Graphical interpretation of electrostatic Gauss  

theorem for 0div ≠E
r

 

q1

E

q1

E

 
Figure 1.5 – Source and sink of electrostatic field 
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When replacing the vacuum by dielectric medium under the influence of 

electric field the medium gets polarized (positive charges in the dielectric 

displace in the direction of the electric field lines and the associated negative 

charges move against the direction of field). The influence of the dielectric on 

the electric field can be described by introducing an additional charge, which 

leads to a change in the flow of the electric field intensity vector E
r

. With that 

change a new vector D
r

 is introduced. D
r

 is electric displacement vector. For a 

linear homogeneous medium electric displacement vector is associated with the 

electric field intensity vector by expression 

 

ED a

rr
ε= ,      (1.29) 

 

where 0εε=εa  is absolute permittivity of the medium; 

 ε  is relative permittivity of the medium;  

 0ε  is permittivity of vacuum 

 

,10854,83610 129
0

−− ⋅=π=ε  F/m. 

 

Circulation of the electrostatic field E
r

 along any closed loop L  is zero 

 

0d∫ =
L

lE
rr

. 

 

The field with this property is called potential. The vanishing of the 

circulation of the vector field means that lines of electrostatic fields can not be 

closed, they start and end on charges (respectively positive or negative) or go to 

infinity. 

 

 

Magnetostatic field as well as the electrostatic one is a special case (or 

approximation) of electromagnetic field. The sources of magnetic field are 

moving electric charges (currents). The magnetic field arises in the space 

surrounding the conductor. The magnetic field of the permanent magnet is also 

generated by electrical micro-currents circulating within the molecules of matter 

(Ampere’s hypothesis). Magnetostatic field is field produced by constant 

electric currents and permanent magnets (static magnetic dipoles). 
To quantify magnetic field at a given point in space, the physical quantity 

of magnetic flux density B
r

 is introduced which is a vector quantity that 

determines the force F
r

 (Lorentz force) exerted by the magnetic field on the 

charge q  moving with the speed v
r

 (fig. 1.8). 
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In this case, the Lorentz force F
r

 is defined from the expression 

 

[ ];, BvqF
rrr

=  

,sin α== BvqFF
rrr

2for,max π=α= BvqF
rr

, 

 

where [ ]Bv
rr

, is vector product of vectors v
r

 and B
r

; 

 α is angle between the velocity vector v
r

 and the magnetic flux density 

vector B
r

. 

 

The value of magnetic flux density B
r

 equals to the ratio of the maximum 

force maxF  acting on the charge q  due to the magnetic field at a given point to 

the product of the charge q  and its speed v
r

 

 

T,max

vq

F
B r

r
= , 

 

or, the value of the magnetic flux density B
r

 is numerically equal to the force 

with which the magnetic field acts on unit positive point charge moving with 

unit velocity perpendicularly to the lines of force. 

The direction of magnetic flux density vector B
r

 is perpendicular to the 

direction of speed v
r

 and force F
r

, moreover the vectors v
r

, B
r

 and F
r

 form a 

right-handed system. 

 

Magnetic field intensity vector H
r

 is introduced axiomatically resulting 

from the influence of magnetic field on the atoms and molecules of matter and 

vacuum. In the matter magnetic flux density vector B
r

 and magnetic field 

intensity vector H
r

 are related by expression 

 

 

vq
F

B

 

 
Figure 1.8 – Graphical interpretation of Lorentz force 
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HB a

rr
µ= ,                                     (1.30) 

 

where 0µµ=µà  is absolute permeability of the media; 

 µ  is relative permeability of the media; 

 0µ  is permeability of vacuum 

 

mH10257,1104 67

0

−− ⋅=⋅π=µ . 

 

In the magnetic field the stream-lines of the magnetic flux density B
r

 are 

continuous, they have neither start nor end that is they are always closed upon 

themselves and never dropped. Therefore magnetic flux through any closed 

surface is equal to zero (the principle of the continuity of the magnetic flux) 

 

0d∫ =
S

SB
vr

.                                  (1.31) 

 

Fields that have this property are called eddy. The reason for this 

phenomenon is absence of magnetic charges (monopoles) in nature that could be 

the sources of magnetic field. 

 

1.2.3 Key questions 

 

1) What is electrostatic field? 

2) What is the electric field intensity vector E
r

? 

3) What is the source of stream-lines of electrostatic field E
r

? 

4) What is the sink of stream-lines of electrostatic field E
r

? 

5) What is determined by electric displacement vector D
r

 and how is it 

related to the vector of the electric field intensity E
r

? 

6) Which fields are called potential? 

7) What is magnetostatic field? 

8) What is the magnetic flux density vector B
r

? 

9) What is determined by magnetic field intensity vector H
r

 and how is it 

related to the vector of magnetic flux density B
r

? 

10) Which fields are called eddy? 

 

 

1.2.4 Problems and methodical recommendations to their solutions 

 

Problem. Point positive charge 10109,2 −⋅=q  C is placed in the center of 

Cartesian coordinate system. Find the electric field intensity E
r

 at a point 

( )zyxA ,, , created by the charge q  and specify the direction of the vector E
r

. 
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Cartesian coordinates of point A  are the following: 2,0=x  m, 3,0=y  m, 

4,0=x  m, the space under consideration is vacuum. 

 

Methodical recommendations to problem solution. To determine the 

electric field intensity vector E
r

 one can use expression (1.26), in which instead 

of 1q  one needs to substitute the given value of a point charge q , and in order to 

determine the distance between the point charge and the point under 

consideration one may use the expression 

 

( ) ( ) ( )2
0

2
0

2
012 zzyyxxr −+−+−= , 

 

where zyx ,,  are Cartesian coordinates of point A ; 

 000 ,, zyx  are Cartesian coordinates of point charge (as a point charge, 

according to the statement of the problem, is located in the center of the 

Cartesian coordinate system, 0,0,0 000 === zyx ). 

The direction of the electric field intensity vector can be determined 

according to the sign of the charge (positive or negative). 
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2 BASICS OF TRANSMISSION LINES THEORY 

 

 

2.1 Parameters and performances of a transmission line  

      with finite length 

 

2.1.1 Goal of the practical training 

 

Study of the transmission lines basics; acquisition of skills of the problems 

solution. 

 

2.1.2 Key points 

 

Any transmission line (two-wire line, coaxial line, waveguide or other) 

may be represented in a form of equivalent line with distributed parameters. 

Line with distributed parameters is a transmission line formed by two parallel 

conductors the length of which exceeds the wavelength of electromagnetic 

oscillations transmitted by the line and the distance between the conductors is 

considerably smaller than the wavelength. There are three operation modes of 

lines with distributed parameters: traveling waves when the transferred energy 

is fully absorbed by the load; standing waves when the transferred energy is 

fully reflected back from the end of the line and intermediate mode — mixed 

waves. 

When a complex load LLL iXRZ +=&  is connected to a transmission line the 

line works in the mixed waves operating mode. According to the wave model an 

electromagnetic wave in any section of a transmission line is possible to be 

presented in the form of superposition of incident ( )zEm
inc& , and ( )zHm

inc&  and 

reflected ( )zEm
ref& , ( )zHm

ref&  waves of electric and magnetic field intensities, 

accordingly 

 

( ) ( ) ( )

( ) ( ) ( )





+=

+=

Σ

Σ

.

;

refinc

refinc

zHzHzH

zEzEzE

mm

mm

&&&

&&&

    (2.1) 

 

Let's transform (2.1) to a view 

 

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]





+=

+=

Σ

Σ

.1

;1

increfinc

increfinc

zHzHzHzH

zEzEzEzE

mmm

mmm

&&&&

&&&&
   (2.2) 

 

Let's introduce complex reflection coefficient on electric field 

( ) ( )zEzEz mm

incref)(Г &&& =  then taking into account orthogonality of electrical and 

magnetic field vectors in a transmission line it is possible to write down and 
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( ) ( ) )(Гincref
zzHzH mm

&&& −=  and rewrite (2.2): 

 

( ) ( )[ ]
( ) ( )[ ]





−=

+=

Σ

Σ

.)(Г1

;)(Г1

inc

inc

zzHzH

zzEzE

m

m

&&&

&&&
    (2.3) 

 

The complex reflection coefficient for electric field is defined from the 

expression: 

 

( ) zi

L ez
β−= 2ГГ && ,    Li

LL e
ϕ= ГГ& ,    (2.4) 

 

where z  is coordinate measured from a load LZ& , located in section 0=z ; 

LГ
&  is complex reflection coefficient in a place of insert of load LZ& ; 

LГ , Lϕ  are accordingly module and argument (phase) of reflection 

coefficient from a load LZ& ; 

wλπ=β 2  is longitudinal wave number or phase coefficient; 

wλ  is a wave length of the microwave oscillations in a transmission line.  

 

Thus, for the homogeneous lossless transmission line the equations (2.3) 

can be written down: 

 

( ) ( ) [ ][ ]
( ) ( ) [ ][ ]





β−ϕ−β=

β−ϕ+β=

Σ

Σ

,)2(expГ1exp

;)2(expГ1exp

inc

inc

ziziHzH

ziziEzE

LLm

LLm

&

&

  (2.5) 

 

where amplitudes of incident waves 
incinc

, mm HE  don’t depend on z . 

 

The longitudinal distribution (distribution along the transmission line) of 

amplitudes of electrical ( )zEΣ
&  and magnetic ( )zHΣ

&  field intensities represents 

the greatest interest for study. The distribution can be calculated on the basis of 

(2.5) in a form:  

 

 
( )

( )






β−ϕ−+=

β−ϕ++=

Σ

Σ

.)2cos(Г2Г1

;)2cos(Г2Г1

2inc

2inc

zHzH

zEzE

LLLm

LLLm

&

&

   (2.6) 

 

The graphic representation of longitudinal distribution of the relative 

amplitudes of electrical ( ) inc
mEzEΣ

&  and magnetic ( ) inc
mHzHΣ

&  field 

intensities is shown in fig. 2.1. 
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Maximums of amplitudes of electric field intensity 

( )( )
max

inc
max mEzEE Σ= &  are observed in those sections of a line maxz  termed 

also as loop, (fig. 2.1) in which the reflected wave is summed up with the 

incident wave in phase: 

 

nzL π=β−ϕ 22 max ,  where 2,1,0=n ...   (2.7) 

 

Minimums of amplitudes of electric field intensity 

( )( )
min

inc
min mEzEE Σ= &  correspond to anti-phase addition of waves in the 

sections minz  called also as nodes, (fig. 2.1): 

 

nxL π+π±=β−ϕ 22 min ,  where 2,1,0=n …  (2.8) 

 

The neighboring minimums and maximums of amplitude distribution of 

electric intensity are located 4wλ  apart from each other, therefore it is enough 

to find, for example, a situation of the first maximum of amplitude of an electric 

field intensity from (2.7)  

 

ZW

L

ZL

Hmax Emax

HminEmin

|E (z)|
inc
mE

| (z)|H
ref
mH

0zmaxz =L z min

| |

| |

 
 

Figure 2.1 – Longitudinal distribution of the relative amplitudes  

of electrical and magnetic field intensities 
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wL zz λπ=β=ϕ maxmax 42 ,     (2.9) 

or 

πϕ=λ 4max Lwz .     (2.10) 

Then  

4maxmin wzz λ±= .     (2.11) 

 

The peak values of an electric field intensity corresponding maxz  or 

minz (fig. 2.1), according to (2.7) are repeated every 2wλ  and are equal:  

 





−=

+=

.Г1

;Г1

min

max

L

L

E

E
     (2.12) 

 

As one can see from fig. 2.1, distribution of relative amplitude of magnetic 

field intensity is completely the same in shape as distribution of relative 

amplitude of electric field intensity, but it is shifted on 4wλ . Thus, the place of 

maximums maxz  of electric intensity amplitude corresponds to the place of 

minimums of magnetic intensity amplitude and vice versa. 

 

Using traveling-wave ratio definition (TWR) or standing wave ratio 

definition (SWR), we derive: 

 

L

L
TW

E

E
К

Г1

Г1

min

max

+

−
==    or  

L

L
SW

E

E
К

Г1

Г1

min

max

−

+
== .  (2.13) 

 

Then 

1

1

1

1
Г

+

−
=

+

−
=

SW

SW

TW

TW
L

К

К

K

K
.     (2.14) 

 

Due to electric intensity ( )zEΣ
&  is proportional to a voltage in the given 

section z  of a transmission line, and the magnetic intensity ( )zHΣ
&  is 

proportional to a current flowing through the given section z  of a transmission 

line, it is possible to write down expression for definition of the full impedance 

at a given section z  of a transmission line on the basis of (2.3), (2.5)  

 

( ) ( )
( )

( )
( )

[ ]
[ ])2(expГ1

)2(expГ1

Г1

Г1

zi

zi
Z

z

z
Z

zH

zE
zZ

LL

LL
WW

β−ϕ−

β−ϕ+
=

−

+
==

Σ

Σ

&

&

&

&
& ,       (2.15) 

 

where incinc
mmW HEZ =  is transmission line wave impedance.  
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From (2.15) follows that at 0=z  (section of load LZ& ) 

 

( ) ( )
( ) LW Z
z

z
ZzZ &

&

&
& =

=−

=+
==

0Г1

0Г1
0 , 

 

( )
( )LL

LL
W

L

L
WL

i

i
ZZZ

ϕ−

ϕ+
=

−

+
=

expГ1

expГ1

Г1

Г1

&

&
& ,    (2.16) 

or 

( )
WL

WL
LLL

ZZ

ZZ
i

+

−
=ϕ=

&

&
& expГГ ,    (2.17) 

 

On the basis of (2.17) module LГ  and argument Lϕ  of reflection 

coefficient in a place of a load LZ&  insert are defined from expressions: 

 

( )

( ) 22

22

Г

LWL

LWL

WL

WL

L

XZR

XZR

ZZ

ZZ

++

+−
=

+

−
=

&

&

;    (2.18) 

 


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








<
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




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−








−
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
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
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
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
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WL

L

WL

L

WL
WL

L

WL

L

L

ZR
ZR

X

ZR

X

ZR
ZR

X

ZR

X

(2.19) 

 

For a given length L  of a piece of a transmission line the quantity ( )LzZ =&  

is called  full input impedance INZ&  of transmission line and is defined 

according to (2.15).  

After transformation of (2.15) with the account of Lz = , one can derive 

 

( )
[ ]
[ ]

=
β−ϕ−

β−ϕ+
===

)2(expГ1

)2(expГ1

Li

Li
ZZLzZ

LL

LL
WIN

&&  










β−ϕ−+

β−ϕ
+

β−ϕ−+

−
=

)2cos(Г2Г1

)2sin(Г2

)2cos(Г2Г1

Г1
22

2

L

L
i

L
Z

LLL

LL

LLL

L
W .  (1.20) 

 

In fig. 2.2 the distribution of the full impedance along the transmission line 

(active part is shown by a continuous line and reactive part is shown by dashed 
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line) is shown, the values LL XR ,  and ININ XR ,  are also shown. According to 

fig. 2.2 extreme values (maximums and minimums) of the active component 

)(zR  correspond to zero values of reactive component )(zХ  of full impedance. 

 

 
 

The full impedance in the )()()( ziXzRzZ +=&  at a given section z , 

impedance of a load LLL iXRZ +=&  and full input transmission line impedance 

INININ iXRZ +=&  are generally complex numbers. A complex plane may be 

used for a graphical representation of complex numbers (fig. 1.1) however in 

practice the Smith’s chart is often used (polar impedance chart), that is named 

after the Soviet scientist A. R. Volpert and the American engineer Ph. Smith 

who offered the chart independently from each other in 1939.  

The Smith’s chart is a circle in which two families of the orthogonal circles 

corresponding to geometrical places of points of the normalized resistances 

WZR = const and WZХ = const are located. The use of normalized impedance 

allows to apply the chart for measurement of the full impedance connected in 

transmission lines with any wave impedance. On vertical diameter the values of 

WZR  corresponding to circles of equal active resistances going through them 

are placed. In places where equal reactance circles cross with an exterior circle 

the values WZХ  are placed: in the left half of the chart there are negative 

values, in right half there are positive ones (fig. 2.3).  

 
 

Figure 2.2 – Distribution of the full impedance  

(active and reactive components) along a transmission line 
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The full impedance is defined on the Smith’s chart in the following way. 

Find an intersection point of two orthogonal circles WZR  and WZХ . Values 

WZR  and WZХ , corresponding to the cross point, after multiplication by WZ  

allow to determine iXRZ +=& . 

As an example in fig. 2.4 two Smith’s charts are shown with the values of 

the full normalized impedances WWW ZХiZRZZ +=&  plotted on them. In 

particular, the intersection point of dashed lines in fig. 2.4, a correspond to value 

7,05,0 iZZ W −=&  and in fig. 2.4,b accordingly 8,07,0 iZZ W +=& . 

 
 

Figure 2.3 – The Smith’s chart  

(polar impedance chart) 
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                                                              а 

 
                                                             б 

 

Figure 2.4 – Examples of numerical values of 

full impedances shown on Smith’s chart  
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         2.1.3 Key questions 

 

1) What is complex reflection coefficient? 

2) What is wave impedance of a transmission line? 

3) What is traveling-wave ratio (TWR) and standing wave ratio (SWR)? 

4) Explain concepts of “wave length”, “longitudinal wave number”. 

5) Explain concepts of “node” and “loop”. How do the neighboring node 

and loop are located in the amplitude distribution? 

6) Write down and explain the expression linking a traveling-wave ratio 

(standing wave ratio) and the module of load reflection coefficient. 

7) Write down and explain the expression linking a complex reflection 

coefficient and impedance of the load. 

8) Write down and explain the expression for full impedance of a 

transmission line in the given section. 

9) Write down and explain the expression for full input impedance of a 

transmission line. 

10) What is the reactive component of wave impedance in the extremes 

(maximums and minimums) of active part of the full impedance?  

11) What is Smith’s chart? 

12) Explain how full impedance is determined from a value shown on the 

Smith’s chart? 

 

2.1.4 Problems and methodical recommendations to their solutions 

 

Problem 1. Find complex reflection coefficient LГ
&  from load LZ&  if 

complex amplitudes of the incident ( )0inc =zEm
&  and reflected ( )0ref =zEm

&  waves 

of electric field intensity on a load are equal accordingly mV10  and 

mV5 4πiе . Calculate TWR and SWR in the line.  

Problem 2. Find TWR and SWR in transmission line with a wave 

impedance Ω= 300WZ , terminated with a load with impedance 

Ω+= ,50200 iZL
& . 

 

Methodical recommendations to the solution to problems 1 and 2. In 

order to find complex reflection coefficient LГ
&  from a load depending on the 

given data one may use expressions (2.16), (2.17) and (2.8) or expression 

=LГ
& ( ) ( )00 incref == zEzE mm

&& . To find TWR and SWR it is enough to find the 

module of reflection coefficient from load LГ  and use expressions (2.13). 

 

Problem 3. The generator is connected to a two-wire lossless transmission 

line with a wave impedance Ω= 600WZ  at frequency 60 MHz. The generator 

excites an incident wave of electric intensity in a line with amplitude 

mV4inc =mE . The line is terminated with a load with impedance 
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Ω+= ,30500 iZL
& .  

It is required to:  

− find complex reflection coefficient from the load LГ
& ; 

− find TWR and SWR in the transmission line; 

− find value of amplitude ( ) inc
mEzEΣ

&  in nodes and loops of electric 

field intensity distribution; 

− find a position of first two nodes and loops of electric field  intensity; 

− calculate and plot a graph of electric field intensity amplitude 

( ) inc
mEzEΣ

&  dependence in a transmission line on a distance from the load. 

 

Methodical recommendations to the solution of problem 3. To find 

complex reflection coefficient LГ
&  from a load, and also TWR and SWR in a 

transmission line one may use methodical recommendations to the solution of 

problems 1 and 2.  

To find position of nodes and loops, and also values of amplitude 

( ) inc
mEzEΣ

&  in nodes and loops of electric field intensity taking into account 

known values of the module and argument (phase) of a reflection coefficient LГ
&  

from a load one may use expressions (2.10), (2.11) and (2.12). 

For calculation of dependence of amplitude ( ) inc
mEzEΣ

&  of electric field 

intensity in a transmission line it is possible to use the expression (2.6), an 

example of the distribution graph that is shown in fig. 2.1.  

Calculation and building of distribution graph may be implemented by 

means of specialized software, for example, MathCAD, MATLAB or other. 

 

Problem 4. Calculate the input impedance of a transmission line with a 

wave impedance Ω= 50WZ , shown as a point in the Smith’s chart. The point 

in the Smith’s chart is set by the teacher. 

 

Methodical recommendations to the solution of problem 4. For 

evaluation of the full impedance of a transmission line iXRZ +=&  it is firstly 

necessary to find the active WZR  and reactive WZХ  components of the 

normalized impedance. The procedure of calculation of active WZR  and 

reactive WZХ  components of the normalized impedance is illustrated by the 

examples shown in fig. 2.4. Further the determined values of the active WZR  

and reactive WZХ  components of the normalized impedance are multiplied by 

numerical value of a wave impedance of a transmission line WZ . The found 

complex number iXRZ +=&  is the full impedance of a transmission line with a 

wave impedance WZ . 
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2.2 Matching of transmission lines with complex load 

 

2.2.1 Goal of the practical training 

 

Study of methods of the narrow-band matching of a line with a load; 

acquisition of skills of problems solution. 

 

2.2.2 Key points 

 

The matching is a maintenance in a transmission line of a mode, close to 

traveling waves in the given frequency band. When the demanded frequency 

band is narrow (practically no more than 5 % from centre frequency), the 

matching is called narrow-band, and matching in a wide frequency band is 

called broadband and even wide-band. 

Now there are two methods of narrow-band matching used widely in 

practice: a method of transformation of impedances on the basis of the quarter 

wave transformer and a method of neutralization of reactance on the basis of 

Tatarinov's shunt. 

The method of transformation of impedances is realized by insertion of a 

load LLL iXRZ +=&  into transmission line via the transformer which is 

implemented on a basis of a piece of a line with other wave impedance tr

WZ  (fig. 

2.5). 

 
 

Matching is achieved when transformer’s input impedance is equal to a 

transmission line wave impedance, that is  

 

( ) Wtr ZlZ =Re ;  ( ) 0Im =trlZ .   (2.21) 

 

Using expressions (2.15) and (2.17), it is possible to derive a common 

solution of the equations (2.21) in a form: 

 
Figure 2.5 – Matching with  

quarter wave transformer 

 



 

 30 

( )
( )( )

WL

LLWLLWW
tr

ZX

XRZRRZZ
l

22

tan
−−−

=β ;  (2.22) 

 

( )
LW

LLWLWtr
W

RZ

XRZRZ
Z

−

−−
=

22

.    (2.23) 

 

For purely active load LL RZ =&  one gets ( ) ∞=β trltan , accordingly 

 

( ) ,44 nl wwtr λ+λ=  where ,...2,1,0=n ; 

 

LW
tr
W RZZ = .     (2.24) 

 

Usually the minimum length of a transformer 4wλ  is chosen. Such 

transformer is called quarter wave transformer. It can be applied even for a 

complex load. Thus the transformer is inserted in such section of the basic 

transmission line in which the full impedance is purely active – in points of a 

minimum or maximum of distribution )(zR  (fig. 2.2).  

In practice the nearest to a load extremum is chosen. Then the place of the 

transformer insertion is defined by max0 zl =  or min0 zl =  depending on which of 

the extremums is the nearest to a load, the transformer length is equal 

4wtrl λ=  and its wave impedance tr

wZ  is defined on the basis of expressions: 

 

when transformer is inserted in a voltage loop ( max0 zl = ) 

 

maxRZZ W
tr
W = , where TWWSWW KZKZR ==max , (2.25) 

 

when transformer is inserted in a voltage node  ( min0 zl = ) 

 

minRZZ W
tr
W = , where TWWSWW KZKZR ==min .  (2.26) 

 

The method of neutralization of the reactance, realized on the basis of 

Tatarinov's shunt (fig. 2.6), is based on the following. The short-circuited piece 

of a transmission line has purely reactive input impedance which can be of any 

value and of any sign depending on the length of the shunt shl  and its wave 

impedance sh
WZ  that allows to compensate any reactance of a load.  

The short-circuited piece of a transmission line is connected in parallel into 

certain section 0lz =  (fig. 2.6) in which the active component of full admittance 

is equal to quantity, reciprocal to a transmission line wave impedance.  



 

 31 

 
 

Then the reactive component of full admittance can be compensated by a 

reactive admittance of the shunt (a short-circuited piece of a transmission line) 

taken with opposite sign: 

 

( )
Wtl ZlZ

11
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=



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&
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
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1
Im

1
Im

0

,  (2.27) 

 

where ( ) 1

0

−
lZtl  is admittance of a transmission line in section 0lz =  without shunt; 

 

( )
( )
( )0

0
0

tan

tan

lZiZ

liZZ
ZlZ

LW

WL
Wtl

β+

β+
=

&

&
& ;    (2.28) 

 

( )shsh lZ&  is a shunt input impedance; 

 

( ) ( )sh
sh
Wshsh liZlZ β= tan& ;    (2.29) 

 

Let’s solve equations system (2.27) taking into account (2.28) and (2.29), 

the following expressions are derived: 
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Figure 2.6 – Matching with a compensating reactance 
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or                         
( ) 




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
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+−π
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22
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W
wsh

XZR
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If as a result of calculation in (2.31) 00 <λwl  (case WL ZR <  and 0>LX ) 

the true value wl λ*

0  is determined from expression 5.00
*
0 +λ=λ ww ll . 

 

In case 0=LX  expressions (2.30) – (2.33) become simpler: 

 

( ) WL ZRl =β 0tan ;    (2.34) 

 

or                                          ( )WLw ZRl
1

0 tan
2

1 −

π
=λ ;                           (2.35) 
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Usually for convenience of engineering implementation and for better 

electrical strength the shunt is made on a basis of a piece of a similar 

transmission line with the same design parameters. Therefore a shunt wave 

impedance is equal to wave impedance of a transmission line W
sh
W ZZ = . 

 

2.2.3 Key questions 

 

1) Explain what is «matching of transmission line with a load»? 

2) Why there is a necessity of matching of the line with a load?  

3) What is the difference between narrow-band and broadband matching of 

a load with a line? 

4) Explain the essence of matching method of a line with a load by means 

of quarter wave transformer. 

5) In which case the quarter wave transformer is necessary to be inserted 

directly next to load? 

6) Is it possible to use the quarter wave transformer for the matching of 

complex impedances? 

7) State the idea of matching by means of Tatarinov's shunt.  

8) What is shunt? How does input impedance of a shunt change at change 

of its relative length? 

 



 

 33 

2.2.4 Problems and methodical recommendations to their solutions 

 

Problem 1. Transmission line with the wave impedance Ω= 100WZ  is 

connected to the load =LZ 50+i100 Ω . Find the power LР  dissipated in a load 

LZ  if root-mean-square value (rms value) of voltage on the input of 

transmission line is 60=INU  V. Find the maximum power maxL
Р  which will be 

dissipated in a load LZ  in case of its full matching with a transmission line. 

 

Methodical recommendations to the solution of a problem 1. The power 

LР  dissipated in a load LZ , for known rms value of a voltage at transmission 

line input INU  can be calculated from expression 

 

( ),Г1 2
2

L

W

IN
L

Z

U
Р −=  

 

where LГ  is the module of reflection coefficient. 

 

For known values of a wave impedance WZ  of transmission line and 

complex impedance of a load LLL iXRZ +=  module of reflection coefficient 

can be found according to (2.18). 

The maximum power maxL
Р  which is dissipated in a load LZ  in case it is 

fully matched with a transmission line ( 0Г =L ) and known rms value of a 

voltage at transmission line input INU  can be calculated from expression 

 

W

IN
L

Z

U
Р

2

max = . 

 

Problem 2. Find how many times (how many percent) is it possible to raise 

the power LР  dissipated in a load LZ , if the level of matching of a load with a 

transmission line is raised from 5,21 =
SW
К  to 5,12 =

SW
К . 

 

Methodical recommendations to the solution of a problem 2. As the 

power LР  dissipated in a load LZ , is determined by expression 

 

( ),Г1 2

max LLL РР −=  

 

and LГ  (module of reflection coefficient) taking into account known SWК  on the 

basis of (2.14), 
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Then increase of power LР  dissipated in a load LZ  for the level of 

matching of a load with a transmission line raised from 1SW
К  to 2SW

К  where 

1SW
К > 2SW

К , can be determined from following expression 
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Problem 3. Calculate parameters of matching device in the form of the 

quarter wave transformer for matching of a transmission line with a wave 

impedance Ω= 100WZ  that is connected to a load =LZ 50+i100 Ω . Plot the 

matching schema. 

Problem 4. Calculate  parameters of matching device in the form of 

Tatarinov's shunt for matching of a transmission line with a wave impedance 

Ω= 100WZ  that is connected to a load =LZ 50+i100 Ω . Plot the matching 

schema. 

 

Methodical recommendations to the solution to problems 3 and 4. 
Among the parameters of matching device there are its length, wave impedance 

and place of insertion. The matching schema is similar to the schemas shown in 

fig. 2.15 and 2.16. 

According to a statement of the problem 3 the matching device is quarter 

wave transformer, that is the transformer with length 4wtrl λ= , where wλ  is  

wave length of the microwave oscillation in a transmission line. As the quarter 

wave transformer provides matching of only active resistances it is necessary to 

insert it into the place where reactive component of the line full impedance is 

equal to zero, that is an extreme point of electric field distribution. 

Positions of extremes in a transmission line is determined by expressions 

(2.10) and (2.11) which, in turn, are calculated on the basis of an argument 

(phase) of the reflection coefficient Lϕ  (2.19). From every possible values 

calculated on the basis of these expressions, one needs to choose the minimum 

positive value (less than 0,25 wλ ) that will correspond to the extreme nearest to 

the load or the place of quarter wave transformer insertion wl λ0 . 

The wave impedance of the quarter wave transformer tr

WZ  is calculated on 

the basis of (2.25) or (2.26) depending on extreme type (a maximum or a 

minimum). The numerical value of SWК  in (2.25) and (2.26), can be calculated 

via the module of a reflection coefficient LГ  (2.13) which, in turn, is calculated 

on the basis of (2.18).  
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According to a statement of the problem 4 the matching device in form of 

Tatarinov's shunt is used. The device in its design is a short-circuited piece of 

the similar transmission line with the same design parameters. Therefore one 

need to accept W
sh
W ZZ = . 

Due to the fact that Tatarinov's shunt possesses purely reactive input 

impedance (2.29) and is intended for neutralization of a reactive component of 

impedance of a transmission line it is necessary to insert it in a point where the 

active component of full transmission line admittance is equal to a transmission 

line original admittance.  

Place of insertion of Tatarinov’s shunt wl λ0  and its length wshl λ  where 

wλ  is wave length of the microwave oscillations in a transmission line, can be 

calculated on the basis of expressions (2.31) and (2.33) accordingly. 
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