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1 INTRODUCTION TO ELECTROMAGNETISM.
BASIC EQUATIONS OF ELECTROMAGNETICS

1.1 Mathematical tools of electromagnetics: complex numbers,
basics of vector analysis
1.1.1 Goal of the practical training

Recurrence of mathematical tools used in an electromagnetics;
development of problems solution skills .

1.1.2 Key points

A complex number is an expression of the following kind: a¢=a"+ia”,
’ ” . . . . . .
where @ and a  are real numbers; i is the imaginary unit determined from the
expressions

Here and after the sign <=> specifies transition to other label.

Two complex numbers a +ia” and a’ —ia” are called complex conjugate
numbers. The complex conjugate number is designated by a «*» sign, i.e.
numbers a and a* are complex conjugate numbers.

Consider a complex plane (fig. 1.1).
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Figure 1.1 — Complex number on a complex plane

Each point of a complex plane corresponds to a complex number a which
is possible to be presented in the algebraic form:



a=da +id, (1.1)
or the exponential form:

a=ae™® (1.2)

where a” and a” are real Re(a) and imaginary Im(a) parts of complex number
as;
a and @, are module and argument (phase) of the complex number.

Sometimes the number a” is called an abscissa (Re(d) — real part), and a”

is called ordinate (Im(a) — imaginary part) of the complex number ¢ =a’+ia”.
From fig. 1.1 and expressions (1.1), (1.2) one may derive:

a=\a*+d"?, (1.3)

”

1 a /
¢, = tan ! ~, where a >0
“ (1.4)
1 4a ’
¢, =T+ tan 1—,, where a <0
a
a=acos®,,a =asing,. (1.5)

Addition, subtraction, multiplication and division of complex numbers
a=a +ia” and b =>b"+ib"is performed with the help of the expressions:

atb=(a"2b")+i(a"+b"), (1.6)
ab=(a'b’ —a'b")+i(a’b” +a’b )= abe'®t®) (1.7)

g_a,+la”=ab +a'b +iba —ab zﬁei(%—%), (1.8)
b b+ib” pr+b* bP4bp* b

where @,,@, are accordingly arguments (phases) of complex numbers a and b.

At the heart of the vector analysis the concept of a vector (a directional
line) lies. A vector is possible to be presented in a general (not coordinate) view

as A=dyA, where q, 1s an ort (unit vector), co-directed with a vector A; A isa

module (length) of a vector A, and also in the form of the sum of three
perpendicular vectors, co-directed with the orts of the given coordinate system.



—

In the Cartesian, cylindrical and spherical coordinate systems vector A
representation via the orts looks like the following

A=3A, + VoA, +ZpA,, (1.9)

where X;, Y, Z, are the orts of Cartesian coordinates (fig. 1.2); Ax,Ay,AZ are

projections of a vector A on corresponding directions of the Cartesian
coordinate system

—

A=FyA, +PpAy+ZpA.; (1.10)

where 7, ®,, Z, are the orts of cylindrical coordinates (fig. 1.3a);

A,, A,, A, are projections of a vector A on corresponding directions of the

cylindrical coordinate system
A=FHA, +04g +PoA,, (1.11)

where 7,,0,,§, are the orts of spherical coordinates (fig. 1.3b);

A,, Ay, A, are projections of a vector A on corresponding directions of the

spherical coordinate system.

If vectors A and B are presented via its projections, for example, in the
Cartesian coordinates:

A=FgA, + VoA, +Z)A,; B=%,B, + 5B, +7B., (1.12)

the projections of the sum (difference) of vectors A and B are equal to the sums
(differences) of corresponding projections

A+B=3%,(A, +B )+5,(4, B, )+7,(A. £B.). (1.13)

The dot product of vectors A and B is defined:

(;\,E) A-EzABcos(A,AEJ,

A
where (A, BJ 1S a corner between vectors A, B,

or (4,B)=A,B, +A,B, +AB.. (1.14)
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Figure 1.2 — Vector A representation: a) — in space;
b) — projections of vector A on the planes of the Cartesian coordinates
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Figure 1.3 — Vector A representation:
a) — in the cylindrical coordinates; b) — in spherical coordinates



The cross product of vectors A and B is defined:
— — —_ — g A —
|4, B]= Ax B =7i,AB sin(A, Bj,

where 7 is a unit vector (ort) normal to a plane containing vectors A and B

and moreover vectors A, B and ny are mutually perpendicular and form
“right-hand triple”,

or  |AB|=%(a,B, - A.B,)+7,(4,B,~AB,)+7,(A,B,-A,B,). (115

Expressions for the sum (difference), scalar and cross product of vectors A

and B, presented in cylindrical, spherical and other orthogonal coordinate
systems, are similar to corresponding expressions (1.13), (1.14) and (1.15).

The vector analysis is used for research of scalar and vector fields featured
by scalar ¥ and vector F functions accordingly. The basic operations of the
vector analysis: a scalar field gradient, a divergence and curl of vector field.

The gradient of scalar function ¥ is defined in corresponding coordinates
by the following expressions:

SN

in Cartesian grad¥ =x) —+ Yy, —+Z, = (1.16)
ox dy 0z
in cylindrical grad¥ =7, Chd +Q, 1% + 2, o ; (1.17)
or r 0@ 0z
¥ - 1d¥ 1 o¥
in spherical radV =1y —+0,———+¢ : 1.18
b y O 770 30 T P rsind o (119

The divergence of the vector function F is defined in corresponding
coordinates by the following expressions:

_ JF, +8Fy LOF,

in Cartesian divF = ; (1.19)
ox dy 0oz
~ oF,
in cylindrical div F =1i(rF,)+l—‘P+a£; (1.20)
ror r 09 0z



- oF,
in spherical diVini(rzF,)+ 1 i(Fe sin@)+———+. (1.21)
r2 or rsin® 00 rsin® 9@

The curl (vortex) of the vector function F is defined in corresponding
coordinates by the following expressions:

. oF
in Cartesian rot F = X, oF, S
dy 0z
oF. OF aFy oF
Vol S || s = | 1.22
yo[az ax) Zo(ax ayJ (1.22)

- oF,
in cylindrical rot F =7, [l@i — —(PJ +

rop 0z
oF, OF 10 1 oF
Q| —L——Z2 |+ 74| ——\rF, )-=—L|; 1.23
+(P0( dz Or )-I_Zo(r Br(r (p) r Bq)j (1.23)
in spherical rot F =7, rsilne{%(SineF(P)_aai(S}_

~ 1| 1 oF, 0 1| d oF
0, — = ——|\rF, Gg—| —rFy)——= | 1.24
’ rLinG e10) ar(r (p)}+(Por[ar(r o) 86} (129

1.1.3 Key questions

1) What is a complex number?

2) What numbers are called complex conjugate, how are the complex
conjugate numbers designated?

3) What is a complex plane?

4) What is algebraic and exponential forms of complex numbers, real and
imaginary part of complex numbers, its module and argument and how do they
relate to each other?

5) Explain the expressions of transformation of a complex number from the
algebraic form into exponential one and back.

6) How the addition and division of complex numbers is done.

7) How the subtraction and multiplication of complex numbers is done.

8) Define a vector quantity.

9) What is general and coordinate representation of vectors (in Cartesian,
cylindrical and spherical coordinates).

10) Explain rules of addition (subtraction) of vectors.

11) What is dot product of vectors?

12) What is cross product of vectors?

13) What is a gradient of scalar function? Write down the expression for

9



evaluation of gradient of scalar function in Cartesian coordinates.

14) What is a divergence of vector function? Write down the expression for
evaluation of divergence of vector function in Cartesian coordinates.

15) What is a curl of vector function? Write down the expression for
evaluation of a curl of the vector function in Cartesian coordinates.

1.1.4 Problems and methodical recommendations to their solutions
T T

Problem 1. Two complex numbers are given a= 2¢ and b=3e 3.
Transform the numbers into the algebraic form. Find the sum, difference,
product and the ratio of the two numbers. Find modules, arguments, the real and
imaginary parts of the numbers. Arrange complex numbers on a complex plane
(both given complex numbers and derived during calculations).

Problem 2. Two complex numbers are given a=2-i3 and b=3+i.
Transform the numbers into the exponential form. Find the sum, difference,
product and the ratio of the two numbers. Find modules, arguments, the real and
imaginary parts of the numbers. Arrange complex numbers on a complex plane
(both given complex numbers and derived during calculations).

Methodical recommendations to the solution of problems 1 and 2. For
transformation of the complex number presented in the exponential form into
algebraic and vice versa one needs to use expressions (1.5) and (1.3), (1.4)
accordingly. To find the sum, difference, product and the ratio one needs to use
expressions (1.6), (1.7) and (1.8) accordingly. The module, argument, real and
imaginary parts of a complex number are the factors or addends in
corresponding expressions (1.2) and (1.1).

To show a complex number on a complex plane one may use an example,
as is shown in fig. 1.1.

Problem 3. Two vectors are set: A= 3y, and B=y,—4%,, where
X, Yo, 2o are orts in Cartesian coordinates. Find the sum and difference of
vectors, their dot and cross products. Plot these vectors on plane YOZ.

Problem 4. Two vectors are set: A=2%,+3%,— %, and
B=3%, -y, —2%,, where X,,5,, Z, are orts in Cartesian coordinates. Find the
sum and difference of the vectors, their dot and cross products. Plot vectors
A+7, and B+27, on plane X0Y.

Methodical recommendations to the solution of problems 3 and 4. For
finding of sum or difference of vectors one may use the expression (1.13), dot
and cross products of vectors — expressions (1.14) and (1.15) accordingly.

For the plotting of vectors on a corresponding plane one needs using an
example, as is shown in fig. 1.2,b.

10



Problem 5. Scalar function is set f(x,y,z)=x>+2y+3z. Calculate
gradient of this function.

Problem 6. The vector function is set F(x,y,z)=2x%, —2yy, +32°Z,,
where X, y,, Z, are orts in Cartesian coordinates. Calculate divergence of this
function and find, where does the function have source or sink.

Problem 7. The vector function is set F(x,y,z)=2y%X, — 2xy, + Z,, Where
Xo> Yo, Zo are orts in Cartesian coordinates. Calculate curl of this function.

Methodical recommendations to the solution of problems 5,6 and 7. For
evaluation of a gradient of scalar function f(x,y,z) in Cartesian coordinates

one needs using expression (1.16) in which instead of ¥ one needs to substitute
f(x,y,z) and find derivatives on corresponding coordinates.
For evaluation of divergence and curl of the vector function F(x,y,z) in

Cartesian coordinates one needs to use expressions (1.19) and (1.22) accordingly
in which one needs to find derivatives on corresponding coordinates and then
find the sum and difference of the terms accordingly.

Streamlines of the vector field featured by the vector function F(x,y,z)
begin (come to an end) in those points of space, where divF #0. Points in
which streamlines begin (divF >0), are called sources, and points in which
streamlines come to an end (divﬁ <0), are called sinks.

1.2 Basic postulates of electromagnetism
1.2.1 Goal of the practical training

Recovery of basics of electromagnetism; getting skills in solving of
problems.

1.2.2 Key points

A particular case of electromagnetic field is electrostatic field resulting
from a system of fixed charges. Thus electrostatic field means the field of
fixed electrical charges.

For a quantitative estimation of the electric field in general and of

electrostatic field in particular a physical quantity of electric field intensity E is
introduced from the Coulomb's law.

Coulomb's law is fundamental law of electrical interaction. The force F,
between two charges g; and ¢, is directed along the line joining the charges and

is directly proportional to the value of the charges and inversely proportional to
the square of the distance between them (fig. 1.4).

11
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Figure 1.4 — Graphical interpretation of Coulomb's law

- _ 1 gqq
Fip =1y o2, (1.25)
4me, 5

where Fj, is power which acts on charge ¢, from the side of charge ¢, in

vacuum;
1y 1s ort directed from ¢, to g,;

1, 1s distance between ¢; and g, ;
€, 1s permittivity of free space

g, =107/36m=8,854-10""2, F/m.

The electric field intensity is the ratio of the force 17"12 acting on the charge
q, to the value of the point test charge ¢,. The electric field is independent on
the test charge g, and characterizes electric field in vacuum for the field created
by the charge g, in the point where the test charge ¢, is located.

E=-12= L5, =, (1.26)

—

The direction of the electric field intensity vector E determines the
direction of the force acting on a positive charge placed at a particular point in
the field.

For example if the field is created due to the positive charge g, the

intensity vector E is directed along the radius vector 1y from the charge to the
outer space, if the field is created due to the negative charge ¢;, the intensity

vector E is directed to the charge.

Thus electric field intensity is a vector quantity equal to the force which a
unit positive point charge placed at a given point of the field experiences from
the side of electric field.

The mathematical relationship between the flux of electric field through a
closed surface and charge in the volume bounded by this surface is established
on the basis of the Gauss theorem. The physical basis of the Gauss theorem is
Coulomb's law or otherwise Gauss theorem is an integral formulation of
Coulomb's law.

12



Gauss theorem for electric field intensity in vacuum states: the flow of the

electric field intensity vector E through any randomly selected closed surface S
is proportional to the total charge Q in a volume V bounded by this surface §

§EdS=—0=—[pav, (1.27)
S

where ifE dS is the flow of the electric field intensity vector E through closed
S
surface S;

0= J.p dV, C is total charge within the volume V ;
14

p, C/m’ is volume density of charge Q .

Equation (1.27) is the electrostatic Gauss theorem in integral form for a
continuous charge, according to which the flow of the electric field intensity
vector E through a closed surface is independent on the charge distribution
(disposition of charges) within the volume V and can be considered as a
measure of the amount of electric charge Q in a volume limited by surface S .

Electrostatic Gauss theorem in differential form is as follows:

divE=VE=" (1.28)
€

where V is del operator or nabla-vector or Hamiltonian which is symbolic
differential vector operator and in rectangular coordinates has the following
form:

i+" i+2 i
ox yoay 00z

V=X,
The divergence of vector E characterizes the features of the electrostatic
field in the places where either p#0 or p=0. Positive charge can be
considered as a source of electrostatic field streamlines so the streamlines begin
at positive charges. The negative charge is a sink of electrostatic field
streamlines where they terminate (fig. 1.5).
If in a certain volume V (fig. 1.6) volume charge density is not equal to
zero (p#0) then the surface bounding this volume V, is threaded by

streamlines of vector E which are divergent in space (p>0) or convergent

(p<0).
In the region of space where there are no charges (p=0), the lines of

13



vector E neither start nor end (fig. 1.7), any element of such a space the field
lines go through only but neither diverge from it nor converge to it. The
electrostatic field in the space where p=0 and respectively divE =0 is called
solenoidal.

Figure 1.6 — Graphical interpretation of electrostatic Gauss
theorem for divE #0

divE=0

Figure 1.7 — Graphical interpretation of electrostatic Gauss
theorem for divE =0

14



When replacing the vacuum by dielectric medium under the influence of
electric field the medium gets polarized (positive charges in the dielectric
displace in the direction of the electric field lines and the associated negative
charges move against the direction of field). The influence of the dielectric on
the electric field can be described by introducing an additional charge, which
leads to a change in the flow of the electric field intensity vector E. With that
change a new vector D is introduced. D is electric displacement vector. For a
linear homogeneous medium electric displacement vector is associated with the
electric field intensity vector by expression

D=¢,E, (1.29)

where €, =€g is absolute permittivity of the medium;

€ is relative permittivity of the medium;
€ 1s permittivity of vacuum

g, =107/36m=8,854-10""2, F/m.
Circulation of the electrostatic field E along any closed loop L is zero

§E dl =0.
L

The field with this property is called potential. The vanishing of the
circulation of the vector field means that lines of electrostatic fields can not be
closed, they start and end on charges (respectively positive or negative) or go to
infinity.

Magnetostatic field as well as the electrostatic one is a special case (or
approximation) of electromagnetic field. The sources of magnetic field are
moving electric charges (currents). The magnetic field arises in the space
surrounding the conductor. The magnetic field of the permanent magnet is also
generated by electrical micro-currents circulating within the molecules of matter
(Ampere’s hypothesis). Magnetostatic field is field produced by constant
electric currents and permanent magnets (static magnetic dipoles).

To quantify magnetic field at a given point in space, the physical quantity
of magnetic flux density B is introduced which is a vector quantity that
determines the force F (Lorentz force) exerted by the magnetic field on the
charge ¢ moving with the speed v (fig. 1.8).

15
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Figure 1.8 — Graphical interpretation of Lorentz force

In this case, the Lorentz force F is defined from the expression

F= qlv, E],
F|=F=qfi|Bsinc. F,, =45

for a=m/2,

where [\7,l§] is vector product of vectors ¥ and B;
a is angle between the velocity vector v and the magnetic flux density
vector B.

The value of magnetic flux density ‘E‘ equals to the ratio of the maximum

force F,, acting on the charge ¢ due to the magnetic field at a given point to

ax

the product of the charge ¢ and its speed ‘\7‘

-t 1
qp|’

or, the value of the magnetic flux density ‘E‘ 1s numerically equal to the force

with which the magnetic field acts on unit positive point charge moving with
unit velocity perpendicularly to the lines of force.

The direction of magnetic flux density vector B is perpendicular to the
direction of speed v and force F, moreover the vectors ¥,B and F form a
right-handed system.

Magnetic field intensity vector H is introduced axiomatically resulting
from the influence of magnetic field on the atoms and molecules of matter and

—

vacuum. In the matter magnetic flux density vector B and magnetic field
intensity vector H are related by expression



B=u i, (1.30)

where W, =M, 1s absolute permeability of the media;
L is relative permeability of the media;
L, 1s permeability of vacuum

W, =4n-107 =1,257-10° H/m.

In the magnetic field the stream-lines of the magnetic flux density B are
continuous, they have neither start nor end that is they are always closed upon
themselves and never dropped. Therefore magnetic flux through any closed
surface is equal to zero (the principle of the continuity of the magnetic flux)

§Ed§=o. (1.31)
S

Fields that have this property are called eddy. The reason for this
phenomenon is absence of magnetic charges (monopoles) in nature that could be
the sources of magnetic field.

1.2.3 Key questions

1) What 1s electrostatic field?

2) What is the electric field intensity vector E ?

3) What is the source of stream-lines of electrostatic field E?

4) What is the sink of stream-lines of electrostatic field E?

5) What is determined by electric displacement vector D and how is it

related to the vector of the electric field intensity E ?
6) Which fields are called potential?
7) What is magnetostatic field?

8) What is the magnetic flux density vector B ?
9) What is determined by magnetic field intensity vector H and how is it

related to the vector of magnetic flux density B ?
10) Which fields are called eddy?

1.2.4 Problems and methodical recommendations to their solutions

Problem. Point positive charge g = 2,9-107'° C is placed in the center of

Cartesian coordinate system. Find the electric field intensity E at a point
A(x,y,7), created by the charge g and specify the direction of the vector E.

17



Cartesian coordinates of point A are the following: x=0,2 m, y=0,3 m,
x =0,4 m, the space under consideration is vacuum.

Methodical recommendations to problem solution. To determine the
electric field intensity vector E one can use expression (1.26), in which instead
of g, one needs to substitute the given value of a point charge ¢, and in order to
determine the distance between the point charge and the point under
consideration one may use the expression

r12:\/(X—Xo)z"‘()’—)’0)2"'(2—20)2 ;

where x,y,z are Cartesian coordinates of point A;
Xy, Y. 2o are Cartesian coordinates of point charge (as a point charge,
according to the statement of the problem, is located in the center of the
Cartesian coordinate system, x, =0,y =0,z =0).
The direction of the electric field intensity vector can be determined
according to the sign of the charge (positive or negative).

18



2 BASICS OF TRANSMISSION LINES THEORY

2.1 Parameters and performances of a transmission line
with finite length

2.1.1 Goal of the practical training

Study of the transmission lines basics; acquisition of skills of the problems
solution.

2.1.2 Key points

Any transmission line (two-wire line, coaxial line, waveguide or other)
may be represented in a form of equivalent line with distributed parameters.
Line with distributed parameters is a transmission line formed by two parallel
conductors the length of which exceeds the wavelength of electromagnetic
oscillations transmitted by the line and the distance between the conductors is
considerably smaller than the wavelength. There are three operation modes of
lines with distributed parameters: traveling waves when the transferred energy
is fully absorbed by the load; standing waves when the transferred energy is
fully reflected back from the end of the line and intermediate mode — mixed
waves.

When a complex load Z, = R, +iX, is connected to a transmission line the

line works in the mixed waves operating mode. According to the wave model an
electromagnetic wave in any section of a transmission line is possible to be

presented in the form of superposition of incident E,i;C (z), and H ,i;C (z) and

reflected E,ﬁff (z), H,ﬁff (z) waves of electric and magnetic field intensities,
accordingly

{Egz):m ) B o
H,(z)=H, () + H)'(z).
Let's transform (2.1) to a view
{@@):E‘::%z)h + B (B ; 02
Hy(2)=H () + A )/ H(2)].

Let's introduce complex reflection coefficient on electric field
I'(z)= E*(z)/ E™(z) then taking into account orthogonality of electrical and

m

magnetic field vectors in a transmission line it is possible to write down and

19



H™(z)/H™(z)=-T(z) and rewrite (2.2):

E(2)=E™()ll +T(2)]:
{Hz(z)=Hj:°(z)[1 —f(z)]. (2.3)

The complex reflection coefficient for electric field is defined from the
expression:

I'(z)=T,e™, TI,=T,e", (2.4)

where z is coordinate measured from a load Z 1 » located in section z=0;

I, is complex reflection coefficient in a place of insert of load Z, ;
I',, @, are accordingly module and argument (phase) of reflection

coefficient from a load Z LS
B =2m/A,, is longitudinal wave number or phase coefficient;
A, is a wave length of the microwave oscillations in a transmission line.

Thus, for the homogeneous lossless transmission line the equations (2.3)
can be written down:

exp(ipz)[l +T, explitg, —282)]];
exp(iBz)[l —T, explitg, —282)]];

E (z)=|E,"

Ay ()= |t

(2.5)

inc
Em

inc
H m

where amplitudes of incident waves don’t depend on z.

9

The longitudinal distribution (distribution along the transmission line) of

amplitudes of electrical ‘EZ (z)‘ and magnetic ‘H Z(z)‘ field intensities represents

the greatest interest for study. The distribution can be calculated on the basis of
(2.5) in a form:

‘EZ(Z)‘=E;‘°\/1+Fi+2FLCOS((PL—2BZ)§ 26

|, (z)|= H}* 1+ ;- 2T, cos(e, —2B2).

The graphic representation of longitudinal distribution of the relative
amplitudes of electrical ‘Ez(z)‘ / E,i;C and magnetic ‘Hz(z)‘ / ‘Hi;}c field

intensities is shown in fig. 2.1.
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Figure 2.1 — Longitudinal distribution of the relative amplitudes
of electrical and magnetic field intensities

Maximums of amplitudes of electric field intensity
Emax = (‘EZ(Z)‘/ E111111C

also as loop, (fig. 2.1) in which the reflected wave is summed up with the
incident wave in phase:

) are observed in those sections of a line z,, termed
max

Q; — 2Bz =271, where n=0,1,2... (2.7)

Minimums of amplitudes of electric field intensity
Ein = (‘EE(Z)‘/E;IC

sections z,;, called also as nodes, (fig. 2.1):

) ~ correspond to anti-phase addition of waves in the
min

@, —2Bx,, =+m+27mn, where n=0,12... (2.8)

The neighboring minimums and maximums of amplitude distribution of
electric intensity are located A,,/4 apart from each other, therefore it is enough

to find, for example, a situation of the first maximum of amplitude of an electric
field intensity from (2.7)
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(pL = 2Bzmax =4n Zm2JLx/7\‘w ’ (29)
or

Zmax /My = @ /4T (2.10)
Then

Zmin = <max T 7\’w/4 : (211)

The peak values of an electric field intensity corresponding z.,, oOr
Zuin (fig. 2.1), according to (2.7) are repeated every A,,/2 and are equal:

{Emax =1+T,; 2.12)

Emin :1 - l—‘L .

As one can see from fig. 2.1, distribution of relative amplitude of magnetic
field intensity is completely the same in shape as distribution of relative
amplitude of electric field intensity, but it is shifted on A, /4. Thus, the place of

maximums Z of electric intensity amplitude corresponds to the place of

max
minimums of magnetic intensity amplitude and vice versa.

Using traveling-wave ratio definition (TWR) or standing wave ratio
definition (SWR), we derive:

R'Tszmale_rL or szzEmale-i-FL.
E, 1+T, E, 1-T,

min

(2.13)

Then
rLzl_KTW _ K =1 (2.14)
1+K,, K, +1

Due to electric intensity Ez (z) is proportional to a voltage in the given

section z of a transmission line, and the magnetic intensity HZ(Z) 1s

proportional to a current flowing through the given section z of a transmission
line, it 1s possible to write down expression for definition of the full impedance
at a given section z of a transmission line on the basis of (2.3), (2.5)

2()= Bl _, 140, 14T, explity, ~2B2)] 2.15)

Hy(z) "1-T(z) " 1-T explitp, —2B2)]

where Zy, = E™ /H™™ is transmission line wave impedance.
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From (2.15) follows that at z =0 (section of load Z L)

1+F(z=0)_Z.

Z(z=0)=Z O) Lo

Y1-T(z

1+, _ 1+ T, explio,)

Z =7 L — , 2.16
L WI—FL WI—FLeXp(i(pL) ( )
or
. Z -7
I, =T, explip, )= 5= 2.17
. =T, explio,) 7z (2.17)

On the basis of (2.17) module I', and argument ¢; of reflection

coefficient in a place of a load Z; insert are defined from expressions:

‘ZL_ZW‘_\/(RL_ZW)Z-FX[% . (2 18)
L : = > N .
‘ZL+ZW‘ \/(RL+ZW) +XL
tan " (Lj—tan_l (LJ when R; 2Zy ;
¢, = (2.19)

T+ tan L —tan”! L , when R; <Zy,.

For a given length L of a piece of a transmission line the quantity Z(z=L)

is called full input impedance Z, of transmission line and is defined

according to (2.15).
After transformation of (2.15) with the account of z = L, one can derive

1+, expli(p, —2BL)] _
"1-T expli(p, —2BL)]

_y 1-T; L 2T sin(p, - 2BL)
"I 14+T2-2T, cos(p, —2BL)  1+T:-2T, cos(p, —2BL)

He=1)=7, =

}. (1.20)

In fig. 2.2 the distribution of the full impedance along the transmission line
(active part is shown by a continuous line and reactive part is shown by dashed
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line) is shown, the values R;,X; and R;y, X;y are also shown. According to

fig. 2.2 extreme values (maximums and minimums) of the active component
R(z) correspond to zero values of reactive component X (z) of full impedance.

R(z)
X(2)

Z(z) = R(2)+iX(z)

Figure 2.2 — Distribution of the full impedance
(active and reactive components) along a transmission line

The full impedance in the Z(z)=R(z)+iX(z) at a given section z,
impedance of a load Z, = R, +iX; and full input transmission line impedance

Zy =Ry +iX v are generally complex numbers. A complex plane may be

used for a graphical representation of complex numbers (fig. 1.1) however in
practice the Smith’s chart is often used (polar impedance chart), that is named
after the Soviet scientist A. R. Volpert and the American engineer Ph. Smith
who offered the chart independently from each other in 1939.

The Smith’s chart is a circle in which two families of the orthogonal circles
corresponding to geometrical places of points of the normalized resistances
R/Zy, = const and X/Z,, = const are located. The use of normalized impedance

allows to apply the chart for measurement of the full impedance connected in
transmission lines with any wave impedance. On vertical diameter the values of
R/Zy, corresponding to circles of equal active resistances going through them

are placed. In places where equal reactance circles cross with an exterior circle
the values X/Z, are placed: in the left half of the chart there are negative

values, in right half there are positive ones (fig. 2.3).
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1,0

Figure 2.3 — The Smith’s chart
(polar impedance chart)

The full impedance is defined on the Smith’s chart in the following way.
Find an intersection point of two orthogonal circles R/Zy,, and X/Z, . Values

R/Zy, and X/Z, , corresponding to the cross point, after multiplication by Zy,

allow to determine Z = R +iX .

As an example in fig. 2.4 two Smith’s charts are shown with the values of
the full normalized impedances Z/Z, =R/Z, +iX/Z, plotted on them. In
particular, the intersection point of dashed lines in fig. 2.4, a correspond to value
Z/ZW =0,5—-i0,7 and in fig. 2.4,b accordingly Z/ZW =0,7+1i0,8.
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Figure 2.4 — Examples of numerical values of
full impedances shown on Smith’s chart
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2.1.3 Key questions

1) What is complex reflection coefficient?

2) What is wave impedance of a transmission line?

3) What is traveling-wave ratio (TWR) and standing wave ratio (SWR)?

4) Explain concepts of “wave length”, “longitudinal wave number”.

5) Explain concepts of “node” and “loop”. How do the neighboring node
and loop are located in the amplitude distribution?

6) Write down and explain the expression linking a traveling-wave ratio
(standing wave ratio) and the module of load reflection coefficient.

7) Write down and explain the expression linking a complex reflection
coefficient and impedance of the load.

8) Write down and explain the expression for full impedance of a
transmission line in the given section.

9) Write down and explain the expression for full input impedance of a
transmission line.

10) What is the reactive component of wave impedance in the extremes
(maximums and minimums) of active part of the full impedance?

11) What 1s Smith’s chart?

12) Explain how full impedance is determined from a value shown on the

Smith’s chart?
2.1.4 Problems and methodical recommendations to their solutions

Problem 1. Find complex reflection coefficient I, from load Z, if

complex amplitudes of the incident E™(z=0) and reflected E™'(z =0) waves
of electric field intensity on a load are equal accordingly 10 V/m and

5¢™* V/m . Calculate TWR and SWR in the line.

Problem 2. Find TWR and SWR in transmission line with a wave
impedance Zy, =300 Q, terminated with a load with impedance

Z, =200+i50, Q.

Methodical recommendations to the solution to problems 1 and 2. In
order to find complex reflection coefficient I', from a load depending on the
given data one may use expressions (2.16), (2.17) and (2.8) or expression
I, =E*(z =0)/E,i;C (z=0). To find TWR and SWR it is enough to find the
module of reflection coefficient from load I', and use expressions (2.13).

Problem 3. The generator is connected to a two-wire lossless transmission
line with a wave impedance Zy, =600 Q at frequency 60 MHz. The generator

excites an incident wave of electric intensity in a line with amplitude
E" =4V/m. The line is terminated with a load with impedance
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Z, =500+i30, Q.
It is required to:
— find complex reflection coefficient from the load r L
— find TWR and SWR in the transmission line;

— find value of amplitude ‘EZ(Z)‘ / Ec

in nodes and loops of electric

field intensity distribution;
— find a position of first two nodes and loops of electric field intensity;
— calculate and plot a graph of electric field intensity amplitude

‘EE(Z)‘/ Eli’;llc

dependence in a transmission line on a distance from the load.

Methodical recommendations to the solution of problem 3. To find
complex reflection coefficient I, from a load, and also TWR and SWR in a

transmission line one may use methodical recommendations to the solution of
problems 1 and 2.
To find position of nodes and loops, and also values of amplitude

‘EZ(Z)‘/ Ey°

known values of the module and argument (phase) of a reflection coefficient I,

in nodes and loops of electric field intensity taking into account

from a load one may use expressions (2.10), (2.11) and (2.12).

E™| of electric field

For calculation of dependence of amplitude ‘EE (z)‘ /

intensity in a transmission line it is possible to use the expression (2.6), an
example of the distribution graph that is shown in fig. 2.1.

Calculation and building of distribution graph may be implemented by
means of specialized software, for example, MathCAD, MATLAB or other.

Problem 4. Calculate the input impedance of a transmission line with a
wave impedance Zy; =50 €, shown as a point in the Smith’s chart. The point

in the Smith’s chart is set by the teacher.

Methodical recommendations to the solution of problem 4. For
evaluation of the full impedance of a transmission line Z = R+iX it is firstly
necessary to find the active R/Zy and reactive X/Z, components of the

normalized impedance. The procedure of calculation of active R/Zy; and
reactive X/Z, components of the normalized impedance is illustrated by the
examples shown in fig. 2.4. Further the determined values of the active R/Zy,
and reactive X/Z, components of the normalized impedance are multiplied by
numerical value of a wave impedance of a transmission line Zy, . The found

complex number Z = R+iX is the full impedance of a transmission line with a
wave impedance Zy, .
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2.2 Matching of transmission lines with complex load
2.2.1 Goal of the practical training

Study of methods of the narrow-band matching of a line with a load;
acquisition of skills of problems solution.

2.2.2 Key points

The matching is a maintenance in a transmission line of a mode, close to
traveling waves in the given frequency band. When the demanded frequency
band is narrow (practically no more than 5 % from centre frequency), the
matching is called narrow-band, and matching in a wide frequency band is
called broadband and even wide-band.

Now there are two methods of narrow-band matching used widely in
practice: a method of transformation of impedances on the basis of the quarter
wave transformer and a method of neutralization of reactance on the basis of
Tatarinov's shunt.

The method of transformation of impedances is realized by insertion of a

load Z, =R, +iX, into transmission line via the transformer which is

implemented on a basis of a piece of a line with other wave impedance Z;, (fig.
2.5).

lo

Zy Zf 7

Ztr

Figure 2.5 — Matching with
quarter wave transformer

Matching is achieved when transformer’s input impedance is equal to a
transmission line wave impedance, that is

ReZ(l,)=2Z,; ImZ(l.)=0. (2.21)

Using expressions (2.15) and (2.17), it is possible to derive a common
solution of the equations (2.21) in a form:
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.
b

2 2
tan(Bl,, ) = \/ Zu (2o = Ry)Ru 2oy ~RE =X (2.22)

XLZW
. |zyR,Zy —RZ-X2)
Zyy ="V LEEW L L) (2.23)
ZW_RL

For purely active load Z, = R, one gets tan(Bl, )= oo, accordingly

I =\, /4+(N, /4)n, where n=0,1,2,...;

Zw =\Zy Ry . (2.24)

Usually the minimum length of a transformer A, /4 is chosen. Such

transformer is called quarter wave transformer. It can be applied even for a
complex load. Thus the transformer is inserted in such section of the basic
transmission line in which the full impedance is purely active — in points of a
minimum or maximum of distribution R(z) (fig. 2.2).

In practice the nearest to a load extremum is chosen. Then the place of the
transformer insertion is defined by [, =z, or [y =z.;, depending on which of

the extremums is the nearest to a load, the transformer length is equal

I, =\, /4 and its wave impedance Z is defined on the basis of expressions:

when transformer is inserted in a voltage loop ( [y = Z,,.¢ )

Zr=\Zy R, where R, =Zy, Kay =Zy [Kpy»  (2.25)

W “Ymax

when transformer is inserted in a voltage node ([ =z, )

Zr =\Zy R, where R, .. = Zy, | Koy = Zy Ky . (2.26)

min °

The method of neutralization of the reactance, realized on the basis of
Tatarinov's shunt (fig. 2.6), is based on the following. The short-circuited piece
of a transmission line has purely reactive input impedance which can be of any
value and of any sign depending on the length of the shunt [ and its wave
impedance Z‘f‘fl that allows to compensate any reactance of a load.

The short-circuited piece of a transmission line is connected in parallel into
certain section z =/, (fig. 2.6) in which the active component of full admittance

1s equal to quantity, reciprocal to a transmission line wave impedance.
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lyp Z I/I‘Sh

Figure 2.6 — Matching with a compensating reactance

Then the reactive component of full admittance can be compensated by a
reactive admittance of the shunt (a short-circuited piece of a transmission line)
taken with opposite sign:

e e

where Z,(I,)" is admittance of a transmission line in section z = [, without shunt;

Z, +iZy tan(Bly)

Z,ly)=2 . ; 2.28
ulo) V' Zy +iZ, tan(Bl,) (2:28)

Z,(1,,) is a shunt input impedance;
Z (1) =iz} tan(Bly,); (2.29)

Let’s solve equations system (2.27) taking into account (2.28) and (2.29),
the following expressions are derived:

R, —Zy ) +X?
tan(Bl, ) = XL R (R, ~Zy ) L. (2.30)
RL _ZW RL _ZW RLZW
1 4 x R (R, —=Zy ) + X2
or ly/A\,, =—tan~ L L L —W L1, (231
Z R, Z
tan(Bl, )= =2 \/ L. (2.32)
Zy (RL_ZW) +X1
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Z
or L, /N, - . Ry ZV2V = |- (2.33)
2n Ziy (RL_ZW) +X,

If as a result of calculation in (2.31) [,/A,, <0 (case R, <Z, and X, >0)

the true value ) /A, is determined from expression I, / A, =1, / A, +0.5.

In case X; =0 expressions (2.30) — (2.33) become simpler:

tan(Bly)=/R, /Zy, ; (2.34)
or lo/M,, = 2—1ntan_1 R, /Zy ); (2.35)

tan(Bl,, ) = (2.36)
Tz (R -2y P
Z
or lsh/xwzitan‘l w Ry Zw - | (2.37)
2n Zy \ (R, = Zy)

Usually for convenience of engineering implementation and for better
electrical strength the shunt is made on a basis of a piece of a similar
transmission line with the same design parameters. Therefore a shunt wave

impedance is equal to wave impedance of a transmission line szVh =Zy .

2.2.3 Key questions

1) Explain what is «matching of transmission line with a load»?

2) Why there is a necessity of matching of the line with a load?

3) What is the difference between narrow-band and broadband matching of
a load with a line?

4) Explain the essence of matching method of a line with a load by means
of quarter wave transformer.

5) In which case the quarter wave transformer is necessary to be inserted
directly next to load?

6) Is it possible to use the quarter wave transformer for the matching of
complex impedances?

7) State the idea of matching by means of Tatarinov's shunt.

8) What is shunt? How does input impedance of a shunt change at change
of its relative length?
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2.2.4 Problems and methodical recommendations to their solutions

Problem 1. Transmission line with the wave impedance Z; =100 Q is
connected to the load Z, = 50+i100 Q. Find the power P, dissipated in a load
Z; 1if root-mean-square value (rms value) of voltage on the input of
transmission line is Uy =60 V. Find the maximum power P, which will be

dissipated in a load Z; in case of its full matching with a transmission line.

Methodical recommendations to the solution of a problem 1. The power
P, dissipated in a load Z,, for known rms value of a voltage at transmission

line input U, can be calculated from expression

UZ
i),

w

P

L

where ', is the module of reflection coefficient.

For known values of a wave impedance Zy,, of transmission line and
complex impedance of a load Z; =R; +iX; module of reflection coefficient

can be found according to (2.18).
The maximum power P

L max

which is dissipated in a load Z; in case it is

fully matched with a transmission line (I', =0) and known rms value of a
voltage at transmission line input U, can be calculated from expression

PLmax = U12N
ZW

Problem 2. Find how many times (how many percent) is it possible to raise
the power P, dissipated in a load Z,, if the level of matching of a load with a

transmission line is raised from K, =2,5 to K, =15.

Methodical recommendations to the solution of a problem 2. As the
power P, dissipated in a load Z; , is determined by expression

p, =P, (1-12),

L — * Lmax

and I', (module of reflection coefficient) taking into account known Ky, on the
basis of (2.14),
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P, 4K,

(Kgy +1)°

=(1-13)=

Lmax

Then increase of power P, dissipated in a load Z; for the level of
matching of a load with a transmission line raised from K, to K,, where

K, ,> K, ,, can be determined from following expression

_ P, (for Kyyy) _ Kyyo (K +1F
P, (for Kyy)  Kgy, (Kgy, +1F

5P,

Problem 3. Calculate parameters of matching device in the form of the
quarter wave transformer for matching of a transmission line with a wave
impedance Zy, =100  that is connected to a load Z, = 50+i100 Q. Plot the

matching schema.

Problem 4. Calculate parameters of matching device in the form of
Tatarinov's shunt for matching of a transmission line with a wave impedance
Zy =100 Q that is connected to a load Z, = 50+i100 €. Plot the matching

schema.

Methodical recommendations to the solution to problems 3 and 4.
Among the parameters of matching device there are its length, wave impedance
and place of insertion. The matching schema is similar to the schemas shown in
fig. 2.15 and 2.16.

According to a statement of the problem 3 the matching device is quarter
wave transformer, that is the transformer with length [, =A, /4, where A, is
wave length of the microwave oscillation in a transmission line. As the quarter
wave transformer provides matching of only active resistances it is necessary to
insert it into the place where reactive component of the line full impedance is
equal to zero, that is an extreme point of electric field distribution.

Positions of extremes in a transmission line is determined by expressions
(2.10) and (2.11) which, in turn, are calculated on the basis of an argument
(phase) of the reflection coefficient @; (2.19). From every possible values
calculated on the basis of these expressions, one needs to choose the minimum
positive value (less than 0,25,,) that will correspond to the extreme nearest to

the load or the place of quarter wave transformer insertion [, /A, .

The wave impedance of the quarter wave transformer Z;, is calculated on

the basis of (2.25) or (2.26) depending on extreme type (a maximum or a
minimum). The numerical value of K, in (2.25) and (2.26), can be calculated

via the module of a reflection coefficient I', (2.13) which, in turn, is calculated
on the basis of (2.18).
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According to a statement of the problem 4 the matching device in form of
Tatarinov's shunt is used. The device in its design is a short-circuited piece of
the similar transmission line with the same design parameters. Therefore one

need to accept Zjj = Zy .

Due to the fact that Tatarinov's shunt possesses purely reactive input
impedance (2.29) and is intended for neutralization of a reactive component of
impedance of a transmission line it is necessary to insert it in a point where the
active component of full transmission line admittance is equal to a transmission
line original admittance.

Place of insertion of Tatarinov’s shunt , /A, and its length [, /A, where

is wave length of the microwave oscillations in a transmission line, can be

Ay
calculated on the basis of expressions (2.31) and (2.33) accordingly.
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