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SERIES

I. NUMERICAL SERIES

§ 1.1. Definition of the sum of a series

Consider an infinite sequence of numbers a,, a,,...q,,, ...

Definition. An expression

a,+a, +..+a, +..
is called a series, and the numbers a,, a,,...q,, ... are called the terms of the series.

A series is briefly written as
2 s
n=l1
and a,, is called the nth term or the general term of the series.
The sequence {S, }defined by

Sl =a1
S2 =a1 +az
k=n
S,=a,+a, +..+a,=> a;
k=1

is the sequence of partial sums of the series, S, being the nth partial sum.

Definition. If the sequence of partial sums of the given series has a definite
limit as n — o, 1.€.

lim S, =8 < oo
n—o0

the series is said to be convergent and the number S is called the sum of the series.
In this case we write
S=a,+a, +..+a, +...
If the sequence S, does not tend to any finite limit, the series is said to be
divergent.

§ 1.2. Geometrical Series

Geometrical series are series of the form
n=oo
a+aq+aq® +..+aqg"" +..= > ag"" (1.2.1)
n=l1

in which a and ¢ are fixed real numbers and a #0.
The sum of the first n terms of the series (1.2.1) is the sum of n terms of the
corresponding geometrical progression

— (1.2.2)
l-¢q



It | ¢|<1 then lim S, =a lim -9~ = _*

n—c0 n—e 1 —q _l—q.

Consequently, a geometric series with ‘ q ‘ <1 is convergent and its sum is
a
1—-¢q .
If ‘ q ‘ > 1then 1i_r>n q" =oo, and hence lim S, =oo, that is the series (1.2.1) is

n—oo

S =

(1.2.3)

divergent.
Now, let g = 1. The series a + a +...+ a +...(a # 0) has the nth partial sum

S, =na, which tends to infinity together with n: lim §, =oo.
n—oo

If g=-1 we get the series a—a+a—a+... . Its partial sums take on values
Si=a, S, =0,53=a, S, =0, etc., thatis §, does not tend to any limit.

Thus, a geometric series is convergent for ‘ q ‘ <1 and divergent for ‘ q ‘ >1.

Example.You drop a ball from meter above a flat surface. Each time the ball
hits the surface after falling a distance 4, it rebounds a distance gh, where ¢ is
positive but less than 1. Find the total distance the ball travels up and down.

Solution. The total distance is

2 1+
S=a+2aq+2aq2+2aq3+...=a+ aq=a el

1-qg 1-gq

2 ) ) )
Ifa=6mand ¢g= 5 ,for instance, the distance is

S=6M=30m
1-(2/3)

§ 1.3. Basic Properties of Series

Convergent series have certain properties that allow operations to be performed
on them, as on finite sums.

L. If the series

a+a, +..+a, +.. (1.3.1)
has the sum S, the series

aa, +aa, +...+aa, +..., (1.3.2)

obtained by multiplying all the terms of the first series by the same factor a, has the
sum aS, because the sum o, of the first n terms of (1.3.2) 1s

o,=aa, +aa, +..+aa, =as,,
and hence lim o, = lim a§, =as$.

n—oo n—oo

II.  Convergent series can be added and subtracted by terms, i.e. if
at+a,+..+a,+..=A,
bl +b2 +...+bn +...:B,



the series (a; + b, )+ (a, +by)+...+(a, +b, )+...
1s also convergent, and its sumis A+ B.

IlI. The convergence and divergence of a series is unaltered by removing or adding
a finite number of terms at the beginning.
You must prove the last two properties by yourself.

§ 1.4. A necessary (but not sufficient) condition for convergence

Theorem. If a series is convergent its nth term tends to zero as n — oo.
Proof.
Wehave §, =a, +a, +...+a,_, +a,=5,, +a,.
If the series is convergent we obtain
lim§, ;=S and lim S, =S.

n—oo n—oo

Since
lim a, = lim(S, -5, ;)= lim S, — lim S, _,,
n—oo n—oo n—oo n—oo

we get

lima,=S-8=0.

n—oo
It should be pointed out that if the nth term of a series tends to zero as n — oo
that this fact is not sufficient for the convergence of the series.
To do this we consider the following series

1 1 1
I+ —+—+..+—+..

2B

whose nth term tends to zero. Here we have

S —1+L+L+ + ! > ! + ! + +L—l—\/ﬁ

B N N N I N R
Consequently

lim §, =

n—oo

and the given series diverges.
Keeping this in mind we can state the nth — term test for divergence:

If lima, #0, orif lim a, fails to exist, then ) a, diverges.

n—oo n—o n=1

Example. 1.The series Y n’ diverges because n? —oo#0 as n— oo,
n=1

+1 1
" —1#0 as n — .

: n+
diverges because
n n

2. The series Y|

n=l1

3. The series Y. (—1)" diverges because lim(—1)" does not exist.

n=1 n—oo



§ 1.5. Series with positive terms. Comparison test

Let us consider a positive series whose all terms are positive:
a,+a,+..+a, +..(a,)>0 (1.5.1)

Lemma. If the partial sums of a positive series are bounded above, that is
S, <M, M =const
the series is convergent.
Proof.
Since all the terms of the series are positive, its nth partial sum increases on
infinite increase of n:
S <8, <..<S5, <....

But if a monotone increasing sequence is bounded above by a constant number it has
a limit which does not exceed that number either. Hence
limS, =S<M.

n—eo
Conversely, if a positive series is convergent its partial sums are less than the
sum of the series: S, <S.

Comparison Test. Consider two positive series

2.4, (1.5.2)
n=1
and
an (1.5.3)
n=l1

satisfying the condition that each term of the series (1.5.2) does not exceed the
corresponding term of the series (1.5.3), i.e.
a,<b, (n=12,.) (1.5.4)

Then:
1. If the series (1.5.3) is convergent the series (1.5.2) is also convergent.
2. If the series (1.5.2) is divergent the series (1.5.3) is also divergent.

Proof. We start with the first part of the statement.
Let us set

k=n k=n
A}’l = ZQk . B}’l = Zbk .
k=1 k=1

By the condition, series (1.5.3) is convergent and therefore B, < B, where B is the

sum of the second series.
It follows from the inequality (1.5.4) that

A <B,<B
which means that the partial sums of series (1.5.2) are bounded above. But then the

lemma implies that series (1.5.2) is convergent.
The second part of this theorem can be proved in the same way.



Example. We can establish the convergence of the series

by ignoring the first four terms and comparing the remainder with the convergent
geometric series

= 1 1

Y —=—+

11
—+—4....
Zon 2l 4008

§ 1.6. The Integral Test

Let a, = f(n) where f(x) is a continuous, positive, decreasing function of x

for all x>1. Then the series Y a, and the improper integral I £ (x)dxboth converge
n=l 1
or both diverge.
Proof. We start with the assumption that f(x) is a decreasing function with
f(n)=a, for every n. This leads us to observation that the rectangles in Fig..1,
which have areas a,,
y Ay, ..., collectively
enclose more area than
that under the curve
y=f(x) from x=1 to

az/\ y=f(x) x=n+l. That 18

a
/ n+l
/// V0% — x [f(X)dx<a; +ay +..+
o1 2 3 n n+l 1
an
Fig.1
; In Fig.2. the rectangles have been
faced to the left instead of to the
right.
/ If we momentarily disregard the
a’l/a{ a3 £ () first rectangle, of area a, we see
ay that
X
01 2 3 n-1 n n
a, +as+..+a, Sj-f(x)dx
1
Fig.2

If we include a; we have



a+a, +..+a,<q +jf(x)dx
Combining these results gives

n+1

If(x)dxﬁal +a, +..+a,<aq +Tf(x)dx
1 1

+o0 o
If the integral I f(x)dx is finite, the right-hand inequality shows that > a, isalso
1 n=l1
“+oo
finite. But if I f(x)dx is infinite, the left-hand inequality shows that the series is also
1
infinite.
Hence the series and the corresponding improper integral are both convergent
or both divergent.

Example. The p — series.

If p is a real constant, the series

2—— — et —+—F .t —+..
_1nP 17 2P 3P n?

converges if p>1 and diverges if p <1.To prove this, let f(x)= Lp Then we have
X
—[7+1 ‘oo 1 !
= lim (x AR 1).
-p+ 1‘1 = pxoe

I f(x)dx = I—dx—

So integral is convergent if p >1 because in this case lim x 7 *1'=0 and

X—>0
|
[ L=t
1 x? p _1
If p<I the integral is divergent because in the latter case we have lim x 7" =co.

X—>00
: : : 71 00
For p =1 the integral is also divergent: I —dx=In x|, =ce.
X

Therefore the series is convergent for p >1 and divergent for p <1.
For p =1 we have the harmonic series :

> |
zl:1+l+l+m+—+”.
n=1 n 2 3 n



The divergence of this series was devised by the French theologian, mathematician,
physicist and bishop Nicole Oresme (1320 — 1382), (pronounce ‘“or-rem”) by
grouping the terms of the series in some special way.

§ 1.7. The Limit Comparison Test

If the limit of the ratio of a, to b, exists and is not equal to zero, i.e.

. a
lim—"=A>0
n—eo b,
then series (1.5.2) and (1.5.3) are both convergent or both divergent.
Proof. From the definition of a limit it follows that, given any &€ >0, there is a

number N such that for all n> N the inequality < &€ holds, or equivalently

In _ 4
b

n

a}’l
A—-e<—<A+eg,
bn
where £ is assumed to be so small that A — &> 0. Let us suppose that series (1.5.3) is
convergent, then the series with the general term (A + £)b, is convergent, and by the

comparison test, series (1.5.2) is also convergent because  a,<(A+€)b, for all

n>N.

Conversely, if series (1.5.3) is divergent, the inequality an>(A — &)
that series (1.5.2) is divergent as well.

The theorem has been proved.

The difficulty in applying the comparison tests is that for the given series it is
necessary to construct another series with which the former can be compared. The
harmonic series is often taken as a “standard” divergent series, whereas as a
“standard” convergent series we usually take a convergent geometric series or a
convergent p-series.

, 1mplies

Example. Which of the following series converge and which diverge?
35 7 9 > 2n+1
1) -+ —+—+—+... —;
4 9 16 25 n=1 (n + 1)2

101 102 103 <100+ n
+ +—+..= :

2 .= :
S T TR TIPS
3)—+—+l+...:z !

Solution.

1) Let a, = 2n 1 and we take b, =

(n+1)? n’

10



d g . : 2n? +
Then > b, = > — diverges and lim D~ im zn—n =2+#0, so
n=1 n=11 n—e0 bn n—epn< +2n+1
> > 2n+1 .
da, = L 5 diverges.
n=1 n=t(n+1
100 + . : : 1
2)Leta, = T When nis large, this ought to compare with % =—- So
n”+2 n n
we take b, = % and apply the limit comparison test:
n
= = 1 . _n’ +100n°
2.b, =2, —; converges and lim &n — lim n3—n =1#0.
n=1 n=1Nn n—ee bn n—eo n- +1
> = 100 +
So Y a, =Y " converges.
n=l1 n=1 N —

and we take b, = L (We know that 2"™! behaves somewhat
2" -1 2"
like 2" when n is large.) Then

3) Let a, =

a

lim 2 = lim =lim;=1¢0.

[ee) oo
Because an converges, we conclude, that Zan converges too.

§ 1.8. D’Alembert’s Test

- . . .. .. a
Let Y a, be a series with positive terms, and suppose that lim —ml—p.
n—e q,

n=l

Then:

1. The series converges if D <1.

2. The series diverges if D >1.

3. The series may converge or it may diverge if D =1. (The test provides no
information.)

Proof.

1. D <1. By the definition of a limit, it is always possible to choose a number N
such that for all n > N there holds the inequality

11



a
—HleDte=p

ap

where € is chosen sufficiently small so that p <1. Then
Ay <P-ay
2
Any2 <P -day

3
AN <P -ay

It follows that the terms of the series

Any T Ay T aynz T+ (1.8.1)
are smaller than the corresponding terms of the convergent geometric series
pay+p-ay+pay +.. (1.8.2)

By comparison test series (1.8.1) is also convergent and the given series » a, is
n=l1

also convergent since the series Y a, is convergent.
n=N+l

2. Now let D >1. Then there is a number N such that for all n > N the
inequalities

]

>1,1e. a,,,>a,

ap

hold. This means that every term of the series is greater than the preceding one and,
since they are all positive, the necessary condition for convergence is violated.
Hence, the series is divergent.

3. D = 1
A <1
The two series » — and 2—2 show that some other test for convergence must be
n=1 n n=1Nn

used when D =1.

i . a i n
For > —: lim L = lim =1.
gl n—oe a,  noen+l

2
| . a : n
For > —: lim —! = lim =1.
oin’  noe a,  noe\n+1
In both cases D=1, yet the first series diverges while the second one
converges.

Example. Use D’ Alembert’s test to investigate the convergence or divergence
of the following series.

n=l1 (27”) n=1 5n

12



Solution.

_ (1))

T n+2)
(

D= tim @t iy @) el 1
e a, o ()20 +1)2n +2)n!)? o= n+1)2n+2) 4

, and

a) Ifanz(n

. 1.
The series is convergent because D = 2 1s less than 1.

! '
b) If anzi,then an+1zm,and
5)’1 5n+1
15"
D= lim &L = Jim (n + 115 =lhm(n+1)=°°

n—e a, n—c0 5”“(11)! 5 n—o

The series diverges because D > 1.

§ 1.9. The nth — Root Test. (Cauchy’s Root Test)

Let > a,be a series with positive terms, and suppose that lim %/a, =C.

n=1 n—oo

Then:
1. The series converges if C <1,
2. the series diverges if C >1,
3. the test is not conclusive if C =1.
Proof.
1. C<1. Choose an € >0so small that C + £ <1 also. Then there exists an
index N such that

Ya, <C+ée,when n=2N.
It is also true that
a,<(C+eg)' forn=N.

o0

Now, Z(C+€)n, a geometric series with ratio C+&<1, converges. By
n=N

comparison test, z a, converges, from which it follows that
n=N

Y a,=a;+a,+..+ay_ + Y a,converges.
2. C>1. For all indices beyond some integer N, we have %/a, >1, so that
a, >1 for n= N . The terms of the series do not converge to zero. The series diverges

by the nth — term test for divergence.

> 1 1
3. C = 1. The series Z— and Z— show that the test is not conclusive
n=11 n= 1”

13



when C = 1: the first series diverges and the second converges, but in both cases

lim %/a, =1.
n—oo

Example. Which of the following series converges and which diverges?

}12 oo n
a) Zi(””] : b)Y

Solution.

I n+1)"
The series Z—( j converges because

n=15n n
© n" 1 1"
C = lim 4fa, = 1imni(”+1j =—1im(n+ J =—1im(1+—J =¢<l.
n—oo n—e | 5"\ n S5n—e\ n 5 n—oo n 5
But the series 2—2 diverges because
n=11
2

C = lim #fa, = lim

n—oo n—oo (%)2

§ 1.10. Alternating Series

=—=2>1.
1

Definition. A series in which the terms are alternately positive and negative is
called an alternating series, that is

by—by+bs—by +..+(=1)"b, +.. (b,>0) (1.10.1)
Leibniz’s theorem.The series (1.10.1) converges if the following conditions are

satisfied:
1. b,2b,,, for all n,

2). lim b, =0.

n—oo
Proof. If n is an even integer, say n = 2m, then the sum of the first n terms is
Som =y =by) + (b3 —by )+ ... +(by,, 1 — by, ) OF
Som =Dy = (bz —b3)— (b4 —bs)—---— (me—Z _b2m—1)_b2m'
The first equality shows that S,,, is the sum of m nonnegative terms, since each term
in parentheses is positive or zero. Hence S,,., >S,,, and the sequence {S,,, } is
nondecreasing. The second equality shows that S,, <b,. Since {S,,} is

nondecreasing and bounded, from above, it has a limit, say
lim §,, =L (1.10.2)

m-—>oo
If n is an odd integer, say n = 2m + 1, then the sum of the first n terms is

14



Som+1 = Som + Doy -
Since b,, = 0, li_r>n b+ =0 and as m — oo,
m—>o0

When we combine the results of (1.10.2) and (1.10.3), we get
lim S, =L.
n—oo

The theorem is proved.

Example. Test the alternating series:

1+\/§_1+\/§+1+\/Z_1+\/§+

2 4 6 8
for convergence.
Solution. An alternating series is convergent if (1) the terms after a certain nth
term, decrease numerically, i.e., b,,; <b,, and (2) the general term approaches zero

as n becomes infinite. Therefore, we determine the nth term of the given series. By

1++Vn+1
2n

discovering the law of formation, we find that b, = . Therefore, the

. To satisfy the condition stated above, we must show that

+
2(n—1)

1+Vn+1_ 1++n

on  2(n—1)

Obtaining the common denominator for both these terms gives

(v +1)(n=1) _(1+n)n

n(n—1) " (n-1)n

Since the denominators are the same , to prove condition (1) we must show

(t+Vn+1)(n-1)<(+n)n.

This is obvious since subtracting 1 from » has a grater effect than adding 1 to Jn.
Since b,.; < b, we have the first condition for convergence.

preceding term 1s

Now we find the limit:
lim M:Q,
n—oo 2(n —1)
Since both conditions of Leibniz’s theorem hold the given alternating series is
convergent.

§ 1.11. Absolute Convergence

Definition. A series Y a, converges absolutely (is absolutely convergent) if
n=l1

the corresponding series of absolute values, )’ ‘an

n=1

, converges.

15



Example. The alternating geometric series
I 1 1

2 4 8
converges absolutely because the corresponding series of absolute values

I 1 1
I +—+—+—+..
4 8

1s convergent.

Definition. A series that converges but does not converge absolutely converges
conditionally.

The alternating harmonic series converges conditionally.

Theorem.If Y |a,| converges, then )" a, converges as well.
n=l n=l1
Proof. For each n:
—‘an‘ <a,< ‘an

9

N
0<a, + ‘an‘ S2‘an‘.

If 2‘%‘ converges, then Z2‘an‘converges and, by the comparison test, the

nonnegative series i(an +‘an‘) converges. The equality a, =(a, +‘an‘ )—‘an‘

n=1

now lets us express Y. a, as the difference of two convergent series:
n=1

(o]

Ya, =Y (@, +la,| ) -|a,)=X (@, +]a,| )= X|a,].
n=l1 n=1

Therefore, > a, converges.
n=l

Examplel.For >’ sm2n , the corresponding series of absolute values is
n=1 N
= |sinn| . o .
> , which converges by comparison with 2—2 because ‘sm n‘ <1 for every n.
n=l N n=1n
The original series converges absolutely, therefore it converges.

1+vn+1
2n

Example 2. The series Y. (- 1)+

n=1

does not converge absolutely. In fact, corresponding series of absolute values is

w£1+MJ
2n

]converges (see § 1.10), but it

, which diverges by comparison with Y —.
n=1vVnh

2.

n=l1

16



II. POWER SERIES
§ 2.1. The Radius and Interval of Convergence

Definition. A power series is the series of the form:

e X" =co+epx+eyxt ot e, X"+ (2.1.1)
n=0
or

ZCn(x—xo)n =cy +c1(x—x0)+c2(x—x0)2 +...+cn(x—x0)" +... (2.1.2)
n=0

in which the center x, and the coefficients ¢, ¢y, ¢5,..., ¢,,,... are constants.
Definition. A point x =a for which the number series
Ye,a" =cy +catc,a’ +.+c,a + ..
n=0
is convergent is called a point of convergence of the series (2.1.1). The set of all
points of convergence is the domain of convergence of this series.

Abel’s theorem. If a series > ¢, x" =co + ¢ x + cx% +..+ ¢, x" + ...
n=0

converges for x = x, (x, #0), then it converges absolutely for all ‘ X ‘ <‘ xo‘. If the

series diverges for x = x,, then it diverges for all ‘ X ‘ >‘ xo‘.

Proof. Suppose the series Y_c,x" converges. Then lim ¢, x" =0.
n=0 n—eo

<1forall n> N. That is

Hence there is an integer N such that ‘ c,x"

| eal<

for n>N. (2.1.3)

n

Xo

Now take any x such that ‘ X ‘ <‘ xo‘ and consider
1 ‘ N+,

‘co‘ + ‘ clx‘+...+‘cN_1xN_ +‘ chN ‘+‘ Cn41X

There is only a finite number of terms prior to ‘c NxN ‘ and their sum is finite.

Starting with ‘ c NxN ‘ and beyond, the terms are less than

N N+1

+... (2.1.4)

because of (2.1.3). But series (2.1.4) is a geometric series with ratio g = , Which

X0

1s less than 1 since ‘ x‘<‘ xo‘. Hence the series (2.1.4) converges, so the original
series (2.1.2) converges absolutely. This proves the first half of the theorem.

17



The second part of the theorem follows from the first. If the series diverges at
x=Xx, and converges at a value x; with ‘ X ‘ >‘ Xo|, we conclude kipping in mind

the first part of the theorem that the series converges absolutely at x,. But the series
can not converge absolutely and diverge at one and the same time. Hence, if it
diverges at x, it diverges for all ‘ X ‘ >‘ xo‘.

Abel’s theorem implies that all the points of convergence are not farther from
the origin than any point of divergence. It is also clear that the points of convergence
entirely cover the whole interval with the center at the origin. Thus we can say that
for every power series possessing both points of convergence and points of
divergence there is a positive number R such that for all x which absolute values are

less than R that is ‘ X ‘ < R, the series converges absolutely and for all x exceeding R

1n their absolute value, that is ‘ X ‘ > R, it diverges.

Such R is called the radius of convergence of the power series. The interval
(— R, R )is referred to as the interval of convergence.
Now we calculate the radius of convergence of a power series. For this reason

we consider the series
n

+... (2.1.5)

composed of the absolute values of the terms of series (2.1.1). Suppose that the limit

| o +\c1x\+‘c2x2 ‘+...+‘cnx

p = lim ‘ ‘C"Jr‘l‘ exists and apply D’ Alembert’s test to the positive series (2.1.5)
n—ee | C,
c ‘ xn+1
D= tim :\x\-hmMz\x\-p.
= ol [ T e T

: : : 1
The series (2.1.5) converges if D<I1 i.e. ‘x"p< 1 and ‘x‘<—. Therefore the
Yo,

series (2.1.1) also converges for such x. If D >1 that is ‘x‘>l than the series

Yo,
(2.1.5) diverges and also its general term does not tend to zero. But then the general
term of the series (2.1.1) does not tend to zero and this series by the nth term test for
divergence is divergent.

It should be noted that D’ Alembert’s test is inapplicable to the end points of
the interval of convergence (the corresponding limit is equal to unity for these
points), and therefore some other means should be used for testing the series for
convergence.

So we have the following formula to define the radius of convergence of a
power series

R— tim 1< (2.1.6)

n—>c0 ‘ Cn+1‘

If we apply Cauchy’s test we get
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(2.1.7)

R=— 1
im 4| c,,|

n—>o0
Example 1. Find the domain of convergence of series

2 X X x"
x— ()T
2 3 4 n
Solution. First of all we determine the radius of convergence
c
R tim L6l i 2

n_)oo‘ cn+1‘ n—ee N

The series is absolutely convergent on the interval of convergence (—1,1). For

x =—1 we have the divergent series —1— 1.1 . — L ..., and for x =1 we get the
2 3 n
: I 1 : : .
convergent series 1—5 + 371 +... . So the domain of convergence of this series is

(-1;1].

Example 2. Find the domain of convergence of series

1 2 3 n
ottt +...
2x  4x°  8x 2" x"
. N |
This is a power series in —.
X
Solution. Apply D’ Alembert’s test to obtain
PRI 52 S AT S S SRS SIS U
n—>oo‘2”+1x”+1‘ n ‘ 2‘ x‘ n—e 1 2‘ x‘
: 1
The series converges absolutely for 2‘ ‘ <1 or ‘ X ‘ > 5
X

For x =% the series becomes 1+2+3+4 + ...
and for x = —% the series becomes —1+2—-3+4 —...

L : : : 1
Both of these series diverge. Thus the given series converges on the intervals x < 5

and x > %, and diverges on the closed interval {— l ; l}

2 2

§ 2.2. Properties of Power Series

1. The sum of a power series is a continuous function in the interval of convergence
of the series, i.e. the function

S(x)=cy +c;x+cox® ot x" +... (-R<x<R)
1S continuous.
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2. A power series can be integrated termwise within its interval of convergence:

X X X X X
jS(x)dx = Icodx + jclxdx + jczxzdx +..+ Icnx”dx +...=
0 0 0 0 0
.\ x2 .\ .X3 .. xn+1
:Co.x Cl_ C2_ c
2 3 "n+l1

The integrated series has the same radius of convergence as the original series.
3. A power series can be differentiated termwise in its interval of convergence:
S’ (x)=c; +2cox+ ...+ nc,x" ' +..., (FR<x<R).
The radius of convergence of the differentiated series is the same as that of the
original series.

+...,(-R<x<R).

§ 2.3. Taylor’s and Maclaurin’s Series

Suppose the function f(x) is infinitely differentiable in a neighborhood of a
point x,. Assume that it is represented as the sum of power series convergent in an
interval containing the point x:

fx)=c, +c1(x—x0)+c2(x—x0)2 totc,(x—x)) +...  (23.1)
Find coefficients ¢, ¢;,c,,..., ¢,. To do it let us set x = x,in equation (2.3.1). This
yields

co = f(x).
Now, let us differentiate series (2.3.1) and put x = x,, into the differentiated series

n—1

f(x)= ¢ + 2c2(x—x0)+...+ ncn(x—xo) + ...
This results in

c=f ,(xo ).
The repeated differentiation gives

f(x)=2c, +..+nn—-1)c,(x - X0 )n—2 +...

whence, on substituting x = x, we obtain

_ f N(xo)
Cy="7—.
2!
Proceeding in this way we have, after the nth differentiation
(n)
¢ = f—(’xo) 2.3.2)
n!

On substituting into formula (2.3.1) coefficients ¢, defined by expression (2.3.2) we
arrive at the series

Fx)=fxg)+ £l Jox = x0) +
f(n)(xo)(

n!

(x—xp)7+

f N(Xo )
21

Fot x—xo)" +... (2.3.3)
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which is called the Taylor series of the function f(x).
If we set x, =0 we get such a series:

2 (n)
£(x)= £(0)+ £70)-x+ %xz o4l '(O)x” F.. (2.3.4)
! n.

which is called the Maclaurin’s series.
The nth partial sum of series (2.3.3) is referred to as Taylor’s polynomial of
the nth order:

T, (x)= f (xg )+ f "o Nor = x0 )+

Now we get the conditions under which the Taylor series (2.3.3) formed for a
given function f(x) converges in an interval and its sum exactly equal to f(x).

Setting
f(x) =T, (x)+ R, (x), (2.3.6)
R, (x)is called the remainder after n terms in Taylor’s formula.

’7 (”)
F0) (e ) (23.5)
21 n!

The convergence of the Taylor series to the function f(x) at a point x is
equivalent to the condition

lim T, (x)= f(x) (2.3.7)
n—o0

or which is the same to the relation
lim (f(x)-T,(x))= lim R,(x)=0 (2.3.8)
n—o0 n—o0

The value of R, (x) is exactly equal to the error appearing when the function f(x) is
replaced by Taylor’s polynomial 7, (x).
It is possible to represent the remainder R, (x) in the following Lagrange form

(n+1)
Rn (x) — f (é:) (x — X, )n+1

(n+1)
where & is lying between x,, and x.

(2.3.9)

Theorem. Let there exist a number M >0 such that for all x in some interval
containing the point x, and for all n the following inequality holds

‘ f () (x)( <M
then the function f(x) can be expanded into Taylor’s series in this interval.
Proof. By formula (2.3.9) we have

n+l n+l1
f(nﬂ)(f) n+l (n+1) ‘x_xo‘ i ‘X_XO‘
R = — = — < e
Rube) =Ty o) e (n+1) (n+1)
n+l
Since the ratio ‘ * ( i 1‘)’ tends to zero for n — oo it follows that
n !
lim R, (x)=0
n—»o0

and we get
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f(n)(xo)(

- x—xg)" +... (2.3.10)

§ 2.4. Expansion of Elementary Functions in Power Series

1. Let us expand the function f(x)=e* into Maclaurin’s series.
Expressed in terms of x, the given function and its derivatives are:
f(x)=e*, fx)=e", ...,f(”)(x)=ex, oo
SO
f0)=1, =1, ...f"0)=1,..
Now we consider an interval [- N, N] where N is an arbitrary fixed number. For all
values of x of this interval we have e <e” =M , therefore ‘ f (”)(XX <M. According

X

to the previous theorem the Maclaurin series generated by the function f(x)=e

converges and its sum is equal to e*. So we have the expansion of the function

f(x)=e" into Maclaurin’s series as follows:
2 n
X X
et =l+x+ —+...+—+.. (2.4.1)
2! n!
The radius of convergence of this series is:

|
R=tim " im0 1) = oo
n—e ! n—soo

So the series (2.4.1) converges for all x.

2. Working in the same way we obtain such expansions:
3 5 2n—1

. X X n-1 X
=x——4+—+...+(-1 +.. (o< x <00 242
a)siny=x-— 4y 1) 2n—-1) (Feo<u<e) (242

2 4 2n-2

X X n—-1 X
b =l-——+—+...+ (-1 ———— 4+ ... |—o<x <o 243
Jeosx=l=2+ 1) (2n-2) (Feo<r<e) (43)

19) (1+x)m=1+mx+m(m2'1)x +m(m l)gn 2 +.o.+
+m(m—1)(m—2).'..(m—n+1)x N (—1<x<1) (2.4.4)
n!

The series (2.4.4) is called the binomial series.

3. Let us expand the functions f(x)=In(1+x) and f(x)=arctanx into
Maclaurin’s series.

22



Setting in the formula (2.4.4) m =—1 we have

1 RS PN S ot ()" L (1<x<]) (2.4.5)
+ X
Integrating this series term by term we get
X 2 3 4 n
[ w::x—£—+£——£—+m+GJV4£—+”
ol+x 2 3 4 n
or
PN R X
In(l+x)=x—"—+"—-"—+. . +(-1)" —+... (-1<x<l) (2.4.6)
2 3 4 n
If we put x =1 we obtain
1n2=1—1+1—l+...+(—1)”‘11+... (2.4.7)
2 3 4 n

The expansion of the function f(x)=arctan x is found completely analogously. To

this end we substitute x? for x in series (2.4.5) and integrate from O to x q X ‘ < 1) to

receive

x3 xS x7 2n-1

arctanx = x—— + >~ 4 (=12
35 7 -1

This series remains convergent at the end points of the interval of convergence,
and therefore expansion (2.4.8) is also valid for x ==1.

Substituting the value x =1 into this series we get the representation of the
number 7 in the form of the numerical series:

amtanl:E = 1—l+l—l+ (2.4.9)
4 3 5 7

+..(-1<x<1) (2.4.8)

2
Example 2.4.1. Obtain the Maclaurin expansion for f(x)=e™* .

Solution. Replace x by (— xz) in the expansion for e (2.4.1);

’+“i—w<x<w)

Example 2.4.2. Let us estimate the number of terms needed to compute the
number e to within 0.00001.

Solution.Using the expansion (2.4.1) and setting x =1 by means of estimation
(2.3.9) we have:

R, <

<107,
(n+1)

It is easy to check that this inequality holds for n =8
3 3

9 362880
1

ez1+1+l+l+...+—z2.71828.
2! 3! 8!

< 10_5, SO we obtain
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1 -
Example 2.4.3. Evaluate J-wdx
0 X

Solution. The difficulty here is that [~

dx can not be expressed in
X

elementary functions. However,

Lsin x b1 x> X! x> x> x’
j dxzj-— X——+———+...dx=| x— + - + ...
0 X 0 X 3! 57 3-31 5.5 7-7 0

=0.946083.

The error in using only four terms is less than or equal to ﬁ =(.0000003.

1
Example 2.4.4. Estimate jsin x?dx with an error less than 0.001.
0
Solution. From the series for sin x (2.4.2) we have
6 10 14 18
sinx?=x2- 44X 1 4t (~oo<x <o)
3 5! 7! ol

Therefore
1
. , 3 57 1 ME 19
jsmx dx=|—— + — + - =
0 3 7-3 11-5 15-70 19-9!
1 1 1 1 1

=—- + — + — ...
3 7-30 11-50 15-70 19-9!
The series alternates, and we find by experiment that

= 0.00076

15-7!
1s the first term to be numerically less than 0.001. The sum of preceding two terms
gives

With two more terms we could estimate

1
['sin x*dx = 0.310268
0

with an error of less than 10~°, and with only one term beyond that we have.
1 1 1 1 1

1
jsinxzdxz———+ — +
0 3 42 1320 75600 6894720

with an error of less than 10~°.

~(0.310268303
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Example 2.4.5. In the theory of probability an important role is played by the

function
2

q)(x)z\/% Iexzczx

called Laplace’s function or the probability integral. This integral cannot be
2

X

computed in the finite form since I e 2 dx is inexpressible in terms of elementary

functions. Expanding the integrand into a power series gives
2

X 2 4 6
e 2 =1

X X

2.1 2% 233
The term by term integration now yields the representation of the function ®(x) in
the form of the infinite series:

3 5 7
CIJ(x)z\/z x——2 P S
V4 3-2-1' 5.2221 7.23%3)

convergent for all values of x.

+... (-oo<x<oo).
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II1. Fourier Series
§ 3.1. Orthogonal Systems of Functions

Suppose that the functions y= f(x) and y = g(x) are given and continuous in
the closed interval [a, b].

Definition. The integral of the product f(x)- g(x) over the closed interval
[a, b] is called the scalar product of these functions and denoted by

=lff(x)- g(x)dx (3.1.1)

The scalar product (f, g)satisfies the following conditions:

L (f.8)=(s.f).
2. (#.8)=A(f.8)
Ef1+)f2 .8)=(f1.8)+ (f2.8),

Defimtlon. The functions y= f(x) and y = g(x) are said to be orthogonal in
[a, b] if their scalar product is equal to zero, that is:

jf x)dx =0

Example. Check the orthogonality of the functions y =x and y =3x—2 in the
interval [0, 1].
Solution.

I 1
(x,3x—2 =jx3x 2)dx = (x —x2]0=0.
0

Definition. The norm of the function f(x) is

b
[£]= /] £ 2 ()x (3.1.2)

Definition. A system of functions ¢@,(x), @,(x),...,0, (x)... is said to be
orthogonal in the interval [a, b] if the scalar product of any two different functions of

this system is equal to zero:
(9,,,9,)=0 for m #n.

Theorem. System of functions
1, cos x, sin x, cos2x,sin 2x,..., COS XA, SIN nx,...

1s the orthogonal system of functions in the closed interval [— 7[,7[]. This system is
called the trigonometric system of functions.

Proof. Let us denote C, =cosnx,n=0,1,2,..., §, =sinnx, n=12,... We
should prove that:
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1. (Cy,C,)=0,if n#0,
2. (Cy.S,)=0,

3. (c,.S,)=0,

4. (C,,,C,)=0,if n#m,
5. (S5,,,S,)=0,if n#m,
6. (Cy.Cy)=2x,

7. (C,.C,)=7,

8. (S,.5,)=x

Now we prove the statements 3, 6, and 7.

( : 1% 17
3.(C,.S,)= jcos mx - sin nxdx = — Ism(n +m)xdx + — Ism(n —m)xdx=0,
/2 2 /2 2 /2
since definite integrals in symmetric limits from odd functions are equal to zero.

VA
6. (Cy.Cy)= [dx=2m.

-
T VA V4

7. (C,.C,)= J'cos2 nxdxz% j(l+c052nx)dx=7£+ jcosandxzi[+O=7[.
/A /2 /2

The others can be proved in the same way.
§ 3.2. Fourier Series

Let ¢,(x), 9, (x),.... 0, (x).... be the orthogonal system of functions in the
interval [a, b]. Taking the sequence of numbers &, Q>,..., &, ... we form the series:

o, ¢ (x)+a, 9, (x)+a, @, (x)+... (3.2.1)
Suppose this series converges uniformly in the interval [a, b] and its sum equals f(x):
fx)=a,0,(x)+a, 0, (x)+a, @, (x)+... (3.2.2)

Let us find the coefficients &, @,,...,2,, ,... To do this we multiply relation (3.2.2)
by @, (x) and integrate with respect to x from a to b:

[ £ (), (ki =, [ oy (), (N + 2, | 9 (0, (e 4

b
+ ad@% (x)dx + ...,

or
(f.0.)=a(01.0,)+ 2, (0,.0,)+ a,(9,.0,)+.. (3.2.3)
Because of the orthogonality of the system of functions {¢, (x)}, where n=12,... we
have ((pm,¢n)=0 for m # n.
Thus we get

a, = (f.0.) (3.2.4)

(@,.9,)
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Suppose that the function y = f(x) is integrable on the interval [a, b].
Take any orthogonal system of functions {¢, (x)} where n=1,2,... and form the

series
a0 (x)+a, 0, (x)+a, o, (x)+... (3.2.5)

where the coefficients &, (n =1,2,...) are defined by formula (3.2.4).
The series  (3.2.5) is called the generalized Fourier’s series of the function
y=f(x).

We can say that the function f(x) generates its generalized Fourier’s series

fx) ~ a0, (x)+a, 0, (x) + @, 9, (x)+ ... (3.2.6)

Coefficients «, (n=1,2,...) are called the generalized the Fourier coefficients.

Now let us take the trigonometric system of functions:
1, cos x, sin x, cos2x,sin 2x,..., COS XA, SIn nx,...

In this case we get
a

flx)~ =2 +Za cosnx + b, sin nx, (3.2.7)
n=l1
where 20 = (f’CO) ! If x)dx =
(CO’CO) 27[ -
1 V4
ag=— | f(x)dx (3.2.8)
71-—7[
T T
a, = 7.C.) —l I x)cosnxdx, b, = (7.5, —l I x)sin nxdx (3.2.9)
(c,.c,) =_. (S,.8,) =7

The series (3.2.7) is called the Fourier series and the coefficients (3.2.8),
(3.2.9) are called the Fourier coefficients.
We cannot assert that the Fourier series (3.2.7) of an arbitrary function f(x) is

convergent and its sum (in case of the convergence) is equal to the function f(x).
Now we state without proof the key theorem on expanding a given function
f(x) into the Fourier series.
The Dirichlet Theorem. Let a function f(x) together with its derivative f(x)

be continuous or have finite number of points of discontinuity of the first kind in the
closed interval [-7,7z]. Then the Fourier series converges at any point of this

interval and its sum S(x) is defined by the formula:
1. S(x) = f(x) if x is the interior point of the interval [- 7,z at which the
function is continuous.
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f(x=0)+ f(x+0)
2
first kind in the interval [- 7, z].

f(—7z+0)+f(7z—0).

2. S(x)= if x 1s the interior point of discontinuity of the

3. S(-7)=S(x)= >
The trigonometric series
flx) = a70+ > a, cosnx + b, sin nx, (3.2.10)

n=l1
can be represented as a sum of simple harmonics only involving the sines. To this end
we combine the summands cosnx and sinnx (n =1, 2,...) with the same frequencies
and transform the combination
a, cosnx + b, sin nx

by putting a, = A, sin@, and b, = A, cos @, . This results in
a,cosnx+b, sinnx=A, sin(nx+¢,).

In this equality
A, =+la> +b’} isthe amplitude of vibration, and

a, . C .
@, =arctan—= is the initial phase of the nth harmonic,

n
n =, 1s a circular frequency,

T = 2z 1s the period.
w

n

Series (3.2.10) then takes the form

flx) = “70+ S A, sin(nx+ ¢, ) (3.2.11)
n=l1
) -1, —7<x<0 . ) )
Example. Expand the function f(x)= into the Fourier series.
1, 0<x<r«
Solution. This function is odd and discontinuous at the point x =0. We extend
this function periodically with the period 27z for all points of Ox-axis and find the

Fourier coefficients:

T
a, = 1 jf(x)cos nxdx=0,n=0,1, 2,..., since the integrand is odd.
V4
/4

V4 V4 _
b, 1 jf(x)sinnxdx=3j1-sinnxdxz—z(cosm—l)zl(l—(—1)”),
T Ty m m

since coszm =(—1)".
Finely we obtain:
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0, if n=2m,
—, fn=2m+1.

The given function f(x) satisfies the conditions of the Dirichlet theorem and we get
4 & sin(2m+1)x
Flr)= 2 3 sin2m +1)x

, for all x, at which the function is continuous.
T m=0 2m+1

§ 3.3. Expanding Functions with Arbitrary Period

Let us consider the problem of expanding into Fourier’s series function f(x)
defined in an interval [— ¢, ¢]. If in the interval [- ¢, ¢], the function f(x) satisfies the
conditions of Dirichlet’s theorem its expansion can be obtain by changing variable

according to the formula ¢ =%x. When the variable x runs through the interval
[— l, f] the variable ¢ runs through the interval [— 7T, 7[]. The expansion of the function

l ). : :
f (— t) into Fourier’s series has the form:
T

f(ﬁt) = a70+ > a, cosnt +b, sinnt (3.3.1)
V4

On returning back to the old variable, we get

n=l1

f(x)za—OJr > a, cos@+bn sin 7% (3.3.2)
2 g / /
where
V4 l
a, L | f(ﬁjcosmdz:l jf(x)cos@dx, (n=0,1,23,..), (3.3.3)
o\ 02, /
V4 ¢
by = | f(ﬁ)sinntdt=l [ F(x)sin ™ dx, (n=1,23,...). (3.3.4)
T . \”x 02, ¢

The sum of Fourier’s series is a periodic function of x with the period T =2/.

The frequencies of the harmonics of series (3.3.2) are @, = %, (n=1,273,...).

§ 3.4. Expanding Even and Odd Functions into the Fourier Series

Assume that a function f(x) is even. Then the functions f(x)sinnx, n =
1,2,... are odd and all the coefficients b, are zero. Consequently the Fourier series of
an even function consists only of cosines:

f(x):%)+ Sa, cosnx. (3.4.1)

n=l1
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where
1 T
a,=— | f(x)cosnxdxc (3.4.2)
T x

If the function f(x)is an odd function, then the functions f(x)cos nx are odd, and all
the coefficients a, are zero. In this case the Fourier series consists only of sines:

f(x)=> b, sinnx, (3.4.3)
n=l
17 2%
b, =— jf(x)sin nxdx =—jf(x)cos nxdx, (n=1,2,...), (3.4.4)
71-—7[ g 0

since f(x)sin nx are even functions.

Example. Expand the function y =‘ X ‘ given in the interval (- 7z, 7] into
Fourier’s series.

Solution. For the function y = ‘ x ‘ is an even function then the Fourier
coefficients are defined by formulas (3.4.2) :

T 2|
ao——jxdxzzx— =T,
T T 2 0
2% 2(x . 1 §
a, =—j x_ cosnxdx= —|—sinnx+-—cosnx | =
71'0 T\n n 0
1 2(7: . 1 1 j
1 —sin nx =—| —sin/m+—cos/m ——-cos0 |=
n T\ n n? n?
1 2 4
0 ——cosnx| _ 2((_1)}1_1):_ -
n m 7(2k - 1)
b, =0.

The function y = ‘ X ‘ satisfies the conditions of the Dirichlet theorem and we have:
& 4(cosx cos3x cosSx cos(2k —1)x
| x|= P R e T v A el I
1 3 5 (2k —1)

§ 3.5. Fourier’s Series in the Complex Form

Consider a Fourier series:

f(x)=a70+ Sa, cos%wn sin% 3.5.1)

n=l1
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On replacing cos@ and sin % by their expressions given by Euler’s formulas

elax +e—lOOC iox _e—zax
cosox=———————, sinox= .
2 2i
we have
inyux inyux
a ©*a —ib, —— a,—ib, —-———
f)="2+> 1 et 4 e (3.5.2)
2 0 2 2
Let us denote
a a, —ib a, +ib
COZ_O’Cn:n n, _n:n n
2 2 2
and write
o InJx o _inﬂ:x
fx)=co+Dc,e ! +>c e !
n=1 n=1
or
- Inyx
flx)=Dce !t (3.5.3)
Nn=—oo0
where

—ib ¢
c, = A=ty _ 1 J'f(x)(cos@—isin@)dxz
2 20, ( ¢

1 Y —inznx
= 2—£_.[€f(x)e t dx,
a,+ib, 1L "
c_, =u=—.[f(x)e U dx.
2 ),

Therefore for all n =0,+1,+2,... we obtain
—inmx

/
c, =2i£:[€f(x)e tdx (3.5.4)

inmx

The expression e ¢ is called a harmonic;

nrx
Numbers o, = A are called spectral or wave numbers.

A set of wave numbers is called a spectrum of f(x).
The coefficients ¢, are referred to as complex amplitudes of a function f (x).
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§ 3.6. Fourier’s Integral

Suppose the function f(x) satisfies the following conditions:
1. The function f(x) is bounded and absolutely integrable on the interval (— oo, o),

that is the improper integral H f (x]dx exists and is finite.

2. The function f(x) satisfies the Dirichlet conditions in any finite interval [— 0,0 ]
Take any number ¢ and write the expansion of the function f(x) into the

Fourier series

a

flx)=—2 +Za cos®,x+b, sinw, x, (3.6.1)
n=1
where
nrx
o, =7, ——jf cosw,tdt, b, = — If sin w,, tdt (3.6.2)
— —
The substitution of a, and b,, into the Fourier’s series (3.6.1) gives
0
flx) = 21£ If dt+£ Z jf COS ,1 COS W, X + sin®, tsin , x)dt =
n=l1 /
1 z 0
ﬂ f(t)de +~ ij cosw, (r — x )t (3.6.3)
n 1y

Let us introduce the notation Aw, =&, —®, ZZ and substitute it into the

expression (3.6.3):
0 00
flx) = 2% [ f(e)dt +— ! [jf cosw, (t — x)dt)Aw (3.6.4)

-/ T =1 —/
¢
If / — oo then the first term tends to zero, the integral I f(t)cosw, (¢ — x)dt tends to
—0

the improper integral I f(t)cosw, (t — x)dt and the sum of the formula (3.6.4) tends

—0Q

to the integral with respect to @

T[ [ £()cos als - x)dtjda).

—0Q

Finally we obtain

=— j (j f(t)cos w(t — )dt]da). (3.6.5)

This formula is called the Fourier integral formula and the integral is referred to as
the Fourier integral.
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For a periodic function with period 2/ we have its Fourier’s expansion

consisting of an infinite number of harmonics with frequencies @, =7 differing

V3 . .
from each other by the constant Aw =Z' Every such harmonic has a discrete

spectrum. For a nonperiodic function defined in the interval (—oo,4o0) and

representable as Fourier’s integral we can say that this function has a continuous
spectrum. In this case the frequencies of the harmonics vary continuously.

§ 3.7. Fourier Integral for Even and Odd Functions

Since cos aj(t - x) =coswrcosw x+sina@tsinw x the formula (3.6.5) can be
rewritten in the form
flx)=— [ jf(t)cos a)tdtj cosw xdw + — j[ jf(t)sm a)tdtj sinw xd@.

T

T

(o]

—o0 —o0

Suppose the f(x) is an even function. Then the function f(¢)sin@t is odd ant the
oo
integral j £ (¢)sin @ tdt vanishes. Besides, in this case

o0 ~+o0
jf(t)cosa)tdt =2 jf(t)cosa)tdt.
—oo 0

Consequently, for even functions the Fourier integral takes the form

f(x)=2j(jf(t)coswtdtjcoswxdw (3.7.1)
T o\o
Similarly, if f(x) is an odd function we get
f(x)zgj(jf(t)sina)tdt)sina)xda) (3.7.2)
T o\o

Example. Let us represent as the Fourier integral the function
I forO0<x<1,
(x)=
0 forx>1

by extending it as an even function and as an odd function.
Solution. In the former case we have

f(x)zzj'cosa)xda)jcosa)tdt =%J'C08a)xsmwda).
T 0 T w

In the latter case (the odd extension) we obtain:

f(x)z2 [sin @ xdo[ sin o tdt _2 | sin @ x{1 - cos @) dow.
Ty 0 Ty w
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§ 3.8. Fourier Integral in Complex Form

Consider the Fourier integral formula

f)=o- | [T £(t)cos a)(x—t)dt]da).

—0Q0 —00

Using Euler’s formulas we have

iw(x—t) —iw(x—t)

+e
2

= [ J Flefeies) +e-f“<x-”)dr]dw=

417[ oo[,[of io(x— t ]dw+$1[]if(t)(em’(“))dt]dw.

On substituting z =—a 1in the second integral we verify that this integral equals the
first integral. Therefore we arrive at the formula:

= j [jf olx—t) g ]d (3.8.1)

This formula is called the expansion of the function f(x) into the Fourier integral in

cos@(x—1)= ¢

complex form.

Example. Let us represent as the Fourier integral in complex form the function

1 fi </,
f(x)z{ or‘x‘<

0 for‘ X ‘ > /.
Solution. We have jf 0l—t) gy = Ie’w(x_t)dtz sinw (.
@
—oco —f
So
() l I sinw / TN
T ., @

§ 3.9. Fourier Transformation

Let us write the Fourier integral in the real form:

flx =—j[jf t)cos ot — x dt]d :—j{[jf cosa)tdt]cosa)x+

—0Q

+[ J'f(t)sina)tdt] sina)x}da). (3.9.1)

We introduce the notation
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A@)=— [ rO)cosomr,  B@)=— [f@)sinorr

(3.9.2)
We can rewrite the expression (3.9.1) in the following form:
f(x)=[(Al@)cos @ x + B(w)sin w x[d@ (3.9.3)
0

The relations (3.9.2) and (3.9.3) are called the Fourier transformations in the real
form.
If the function f(x) is an even function then we get

f [ 7 (t)cos wdt (3.9.4)

and

= E of f.(w)cosw xdw (3.9.5)
0

If f(x)is an odd function then

= \E T f(t)sin wtdt (3.9.6)
T o

and

= \E T f.(w)sin @ xdw (3.9.7)
T o

The functions f,(w) and f,(w) are called, respectively, the Fourier cosine
transform and the Fourier sine transform of the function f(x).
The function f(x) in formulas (3.9.5) and (3.9.7) is called Fourier’s inverse

transform in the both cases.
Let us write a complex Fourier integral in the following form

f(x)zﬁ_z [\/;z]f(r)e"“”dr]z““dw (3.9.8)

t)e'® dt

On setting

1 o0
Flo)=——

(@) oo _L f(
we obtain from formula (3.9.8)

1 TF(t)e_imdt (3.9.9)
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The function F(w) is called the Fourier transform of the function f(x) and is a
complex function of the real argument @. The original function f(x) is the Fourier
inverse transform of the function F(w).

Example. Let us find the Fourier’s transform of the function
e ™ for x>0,
f (x)= (a >O).
0 forx<O
Solution. We have

ix(a+ia)) ‘oo 1

F(w)=ofe_“x e dx = = :
0 a+iw ‘0 a+iw

§ 3.10. Properties of the Fourier Transform

1. The Fourier transform F(w) of an absolutely integrable function f(x) is bounded
and continuous function, which tends to zero as ‘ w ‘ —> o0,
2. The Fourier transform is a linear operator, that is

F{4 fi + L fot= AF{f b+ LU T (3.10.1)
3. The Fourier transform of derivatives:

F{f ()= (-iw)F{f(e)} (3.10.2)
4.1f a function f(x) is absolutely integrable on the interval (= oo,+o0) then

T\f(x)(zd” T\F(w)(zdw (3.10.3)

The integral j ‘ f (x)(zdx is called a normalized energy E scattered by the

current f(x) passing through the resistance in one Ohm.

The function ‘F (a))(2 is called the spectrum of density of energy and shows

the relative contribution of different frequencies into the total energy.
5. Given two functions f(x) and g(x), both absolutely integrable on (— co,4+0). Let §

denote the set of x for which the improper integral
1 oo
hx)=— t)glx—t)dt (3.10.4)
(x) N _Lf (t)g(x—1)

converges. This integral defines a function i(x) on S called the convolution of
f(r) and g(r). We also write i = f * g to denote this function.
The integral (3.10.4) is encountered in signal processing and other fields.
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The Fourier transform of the convolution product of two functions is equal to
the product of their Fourier’s transforms, i.e.

F{f=g}t=F{f} Flg} (3.10.5)

Formula (3.10.5) is the basis and essence of all linear signal processing. Its
meaning is that a linear system acts on a signal as a frequency filter.
All these five properties are given without proof.

§ 3.11. Spectral Properties of the Fourier Series and Integral

Sets of coefficients a, and b, (n=12,...) of the expansion of a periodic
function f(¢) into the Fourier series are called frequency spectrums of this function.
If a period of a function is equal to 2/, then a, = an(nAaJ), b, =b,(nAw), where

T . : : :
Aa)zz 1s the frequency of the firs harmonic. Hence spectrums are the functions

depending on the number of harmonic as an independent variable.

The quantity A, = \/af + b,f is termed the amplitude spectrum of the
function f£(z).
Let us write the Fourier series in a complex form

f(t)= chei’mm, 3.11.1)
where
‘
P [F()e™ dt, n=0£142,...
207,

The expression
( .
S(mAw)=2c,0= [ f(t)e ™ " dt

1s referred to as the spectrum function or the spectrum density of the Fourier series.
The complex function S(nAw) is defined by the module and the phase.

The module of the spectrum function is called the amplitude spectrum, i.e.

( .
pnAa)=|S(nAa) =|[ f(t)e™™**" dt), (3.11.2)
4
and ®(nAw)=—arg S(nAw) is the phase spectrum.
The expression
= [ f()e™"dt (3.11.3)

is called the spectrum function or the spectrum density of the Fourier integral.
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plw)= ‘S (w){ is termed the amplitude spectrum and
®(w)=—arg S(w) is the phase spectrum.

Example 3.11.1. Find the spectral characteristics of the periodic square impulse

f<t)={E’ 0<t<m o eT)=10)

0, 7<t<T

| | | | |
| | | | |
| | | | |
| | | | | !
-T -T+1 0 T T T+t
Fig. 3.11.1

Solution. Let us find the spectrum function:
T

(COS 2nAwt —1—isin 2nAw r) =

2
S(Aw)=2c, 0= [ f(t)e > " dt =i
(naw)=2c,= [ ek i

2

(2sin? nA@ 7+ isin 2nAw 7).
2nAw

The amplitude spectrum:

pnAw)=|S(hAw) = \nfw\ sin nA® 7.

The phase spectrum:

2sin? nA
cI>(nAaJ)=—argS(nAa))zrclrctan s'm " a)z':
SIN2nAw T
2sin’ nAw
= arctan S nawr = arctan(tan nAw 7)=nAa 7.

2sinnA@ 7T - cosnAw T
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oo

~

nA®
Fig. 3.11.2
b
I
[ ]
[ 1 1
L 111 -
nA®
T

Fig.3.11.3

Example 3.11.2 . Find the spectral characteristics of the trapezoidal impulse

1425, -25<1<15,
1, ~1.5<t<1.5,

F0=125,  15<i<25,
0, | t]>2.5.
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f@

/ N

=25 -1.5 0 1.5 2.5

Fig. 3.11.4

Solution. The spectrum function of the impulse f(¢) is

Fo0 ) +2.5 ) +2.5
S(@)= [ fle)e™dr= [ ft)e"dr= [f(t)Ncoswr—isinwi)dt=
—0 -25 -2.5
+2.5
=2 j f(t)coswtdt = izsin 20 - sing.
0 w 2
The graph of the amplitude spectrum of the impulse f(¢)
(@)= |sin20-sin | is
> 2
y
S )|
—2m 3 - -z 0 1 n 3 2
Fig. 3.11.5
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IY. Miscellaneous Problems

4.1. Investigate the convergence or divergence of the following series:

1 2 n+2
n? +1 Nn+3 J3n
| —1Mm
4) a, =sin—- 5)a,="" 6) a,FM
3" 2" 3" nl
2
(n+1) Jn eV 3"
10) a,, =( L j 11) a, =3"( k j 12) a, = arctan
2n+1 n+1 n+1
1
1 1+cos(7£—j )
13) a, _nn 14) a, = : n 15) a, = 2
n n Sn® +1
16) a, = (”_1) 17) a, = (2”_1j 18) a, = arctan/n
n n+1

4.2. Which of the following series are absolutely convergent, which are
conditionally convergent, and which are divergent?

oo (_ l)n—l oo (_ 1)n—l oo (_ l)n—l n2
ny —~— 2 3y —
)nz:l(zn—l)3 )n=110n+1 )nz=1 2n% +3

o (_ n—1 3 o (_ n—1 oo n
n=l1 n=l1

n! min-1n’ n n
4.3. Prove that:
1) lim>—=0 2) lim =0
n—e n! n—so0 (2n)!
! )"
3) lim -~ =0 4) lim%=0
n—yc0 (2n)!! n—ee o n

4.3. Find the domain of convergence of series:

e 3" 33

n=1 4" n=1x" =l n-9"
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o 2n oo 2n 00 1\
x“"'n! 5)2 X 6)2()5 1)

n=l1 n5 n=l1 (21’1)2 : 22n n=l1 4n

4.4. Obtain the Maclaurin expansion for following functions:

1

1) y=cos? x 2) y=e** +2¢7" 3) y= 5
(1+x)

1

A+ x

4.5. Estimate the given integrals with an error less than 0.001.

4) y= 5) y=arcsinx 6) yzln(l—xz)

! x2 ! Kn(l + x) 2
1) jarctan[7de 2) [——dx 3) J(;

0 0 X

1—cosx

2
X

dx

4.6. Estimate the given expressions with an error less than 0.001.

1
1)cos9° 2) 368 3) /nl.04 4, —
e

4.7. Expand the given functions into Fourier’s series.

—2x, —w<x<0

3x, 0Zx<rx 2) f(x):4—)€, if xe((),4)

L f<x)={

3) f(x)=x%, if xe (-7 7) 4. f(x)=4—| x|, if xe(-4,4)
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