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CHAPTER 1
FUNDAMENTAL DEFINITIONS AND THEOREMS OF
PROBABILITY

§ 1.1. Combinatorial Analysis. Arrangements. Permutations.
Combinations

Definition. A set consisting of m elements chosen from n giving
elements and put in the definite order is called an arrangement of n

elements taken m and denoted by A".

Arrangements can differ one from another either by elements or by their order.
Arrangements are calculated by the formula

(0 -m)!

A" =nn-1).(n-m+1)=

n

(1.1.1)

where
nl=1-2-...-(n=1)-n.

Example 1.1.1. In how many ways it is possible to choose the trade-union
group organizer and his deputy from the group of seven students?

Solution. N = AZ =7-6=42.

Definition. Any ordered set which consists of m elements is called a
permutation and denoted by P,,.

It is read: permutation of m digits at a time.
Permutations are calculated by the formula

P =m! (1.1.2)

m

Example 1.1.2. In how many ways six different textbooks can be planted on
one book shelf?

Solution. N=P;=6-5-4-3-2-1=T720.

Definition. An arrangement of objects in which the order of the selection in not
important is a combination and denoted by C,".
It is read: combination of n digits taken m at a time.



Combinations are calculated by the formula
A n!

C = . 1.1.3
S & m!(n-m)! ( )

m

Note. In practice it is better to use the next formula:
m nln=1.(n—m+1)
C, = '
n!

Examplel.l1.3. A standard deck of playing cards consists of 52 cards. How
many five-card hands can be chosen from this deck?

52! 55-54-53-52-51

Solution. We have N=C3= =
51(52-5)! 1-2-3-4-5

=2598960.

There are 2598960 five- cards hands.

The following formulas are valid
1. CP+Cl+...+C" =2" (consequence of the Newton binomial formula).

2. C'=C, " (symmetry property).
n 1
3. C' =1, C! =n.
4

. CM ™M =™ where 0<m<n (arecurrent formula).

§ 1.2. Events. Classification of events

Definition. Realization of some definite complex of conditions is called a trial
(or test). A possible result of trial is called an event.

Definition. An event that can occur or can not occur in a given trial is termed a
random event.

Definition. An event which can not come in a given trial is called an
impossible event.

Definition. An event which necessarily comes in a given trial is termed a
certain event.

Definition. Events A, A,,...,A, that can not occur at the same time are
mutually exclusive or incompatible. Otherwise events are named joint.

n

Definition. Events A, A, ,..., A, are said to be uniquely possible if one of them
necessarily occurs in a given trial.



Definition. Events A, A,,...,A, form a total group if they are unique and
incompatible.

Definition. Two events A and A which form a total group are called mutually
opposite.

Definition. We will say that an event B implies an event A if in the given trial
the occurrence of the event B implies that of the event A.

§ 1.3. Algebra of Events

Union of two events. A complex event which consists of the occurrence of at
least one of the events A and B is called the union or the sum of two events A and B.
The union of the events A and B is denoted A U B. For exclusive events A and B we
also use the notation A + B.

The union of several event A, A,,...,A, 1s defined in the same way, and is

denoted by k];)Ak, k=12,...,n.
Intersection of two events. The joint appearance of two events A and B is

called the intersection or the product of these two events and is denoted A M B or AB.
By the intersection of several events A, A,,...,A denoted by

UA, (k=1,2,..., n) we mean the event consisting of the occurrence of all events.
k

n

Given two events A and B, by the difference A— B we mean the event in
which A occurs but not B.

Properties of unions and intersections. The operations of unions and
intersections of events posses some properties which are similar to those of addition
and multiplication of numbers.

1. The union and intersection of events are commutative:
AUB=BUA, AB = BA.

2. The wunion and 1ntersection of events are  associative:
(AUB)uC=A4AuU(BuC)=(AuC)UB=AUBUC,
(AB)C = A(BC)=(AC)B = ABC.

3. The union and intersection of events are  distributive:
(AUB)C=ACUBC.

All these properties follow directly from the definition of union and
intersection. Thus, (A U B)C means the joint occurrence of the event C with the
event A, or with the event B, or with A and B together. The event AC U BC also



means the occurrence of either C together with A, or C together with B, or C
together with AB.

But not all laws of addition and multiplication of numbers are valid
for union and intersection of events. Thus, for instance, the events AU A
and AA evidently coincide with A. Therefore A U A= AA = A.

Complementary events. Non-occurrence of A, which is denoted by A,
1s the event complementary to the event A.

It is easy to see that the event A is complementary to the event A:
A=A

Gain and loss in a game, failure of a device in a given time interval
and its faultless functioning in the same time interval, are examples of
complementary events.

It is evident that complementary events are exclusive, and their union
1s a certain event:

where Q is the certain event and © is the impossible event.
It is also clear that

AUOD=A, AO0=0, AuUQ=Q, AQ=A.

§ 1.4. Classical Definition of Probability

Definition. The probability of an event A is defined by the formula
m

P(A)== (1.4.1)

n 2
where n is the total number of outcomes uniquely possible, equiprobable and
incompatible, m is the number of outcomes leading to the occurrence of the event A.

Example 1.4.1. In throwing a single unbiased die, there n = 6 mutually
exclusive, equiprobable and unique outcomes, namely getting a number of spots
equal to each of the numbers 1 through 6.

Solution. Let A be the event consisting of getting an even number of spots.

Then there are m = 3 outcomes leading to the occurrence of A, and hence
3 1
P(A)=—=—.
(4)==7



Example 1.4.2. From a lot of n items, k are defective. Find the probability that /
items out of a random sample of size m selected for inspection are defective.

m
Solution. The number of possible ways to choose m items out of 7 is Ci'- The
favorable cases are those in which [ defective items among the k defective items are

!
selected (this can be done in Cr ways) and the remaining m — [ are nondefective, i.e.,

C m—I

they are chosen from the total number n — k (in 7% ways). Thus number of

ci.cm!

favorable cases is n—k . The required probability will be

I ~m=l
C,

Properties of Probabilities.

1.0 < P(A)<1 for any event;

2. P (Q)=1 for a certain event;

4. P(Q) =0 for an impossible event.

§ 1.5. Statistical Definition of Probability

Let n be the total number of experiments in the whole series of trials and m be
a number of experiments in which A occurs. Then the ratio W(A)=— is called the
n
relative frequency of the event (in the given series of trials).

It turns out that the relative frequencies — observed in different series of trials

n
are virtually the same for large n, clustering about some constant
p(a) ~ 2, (1.5.1)
n

called the probability of the event A.
More exactly, (1.5.1) means that

P(A)=1im .
n—e 1
Roughly speaking, the probability P(A) of the event A equals the fraction of
experiments leading to the occurrence of A in a large series of trials.



Example (De Mere’s paradox).

As a result of extensive observation of dice games, the French gambler de
Mere noticed that the total number of spots showing on three dice thrown
simultaneously turns out to be 11 (the event A) more often than it turns out to be 12
(the event B), although from his point of view both events should occur equally often.
De Mere reasoned as follows: A occurs in just six ways (6:4:1, 6:3:2, 5:5:1, 5:4:2,
5:3:3, 4:4:3), and B also occurs in just six ways (6:5:1, 6:4:2, 6:3:3, 5:5:2, 5:4:3,
4:4:4). Therefore A and B have the same probability P(A)= P(B).

The fallacy in this argument was found by Pascal, who showed that the
outcomes listed by de Mere are not actually equiprobable. In fact, one must take
account not only of the number of spots showing on the dice, but also of the
particular dice on which the spots appear. For example, numbering the dice and
writing the number of spots in the corresponding order, we find that there are six
distinct outcomes leading to the combination 6:4:1, namely (6,4,1), (6,1,4), (4,1,6),
(1,6,4) and (1,4,6), whereas there is only one outcome leading to the combination
4:4:4, namely (4,4,4). The appropriate equiprobable outcomes are those described by
triples of numbers (a,b,c), where a is the number of spots on the first die, b the
number of spots one second die, and ¢ the number of spots on the third die. It is easy

to see that there are then precisely n = 6° =216 equiprobable outcomes. Of these,
m(A)=27 are favorable to the event A (in which the sum of all the spots equals 11),
but only m(B)=25 are favorable to the event B (in which the sum of all the spots
equals 12). To see this, note that a combination a:b:c occurs in 6 distinct ways if a, b
and c are distinct, in 3 distinct ways if two (and only two) of the numbers a, b and ¢
are distinct, and if only 1 way if a = b = ¢. Hence A occurs in 6+6+3+6+3+3=27
ways, while B occurs in 6+6+3+3+6+1=25 ways. This fact explains the tendency
observed by de Mere for 11 spots to appear more often than 12.

§ 1.6. Dependent Events. Conditional Probability. Multiplication Theorem of
Probabilities

Definition. Two events A and B are said to be independent if occurrence of
one is in no way affected by the occurrence or nonoccurrence of the other. Otherwise
event are called dependent.

Example 1.5.1. An urn contains 5 white and 3 black balls. At random from an
urn a person draws a ball without returning it to the urn. The second ball is taken out
of the urn. What is the probability that this ball is black (event B).

Solution. The occurrence of the event B depends on of what color was the first
ball. If the first ball is white (event A), then the probability of the event B provided
that the event A has come is

P,(B)= P(B/A):%.

If the first ball is black then the probability of the event B provided that the event A
has not come (event A has come) is



P.(B)=P(B/A)=

o

P, (B) is called the conditional probability of the event B relative to the event A. In
this case the events A and B are dependent events.

Theorem. The probability of the product of two dependent events is equal to
the probability of one of them multiplied by the conditional probability of the other

P(AB)=P(A)P,(B)= P(B)Pz(A) (1.6.1)

Proof. Let n be the total number of uniquely possible, equiprabable and
incompatible outcomes; m a number of outcomes leading to the occurrence of the
event A; [ the number of outcomes leading to the occurrence of the event B and k the
number of outcomes leading to the occurrence of both A and B. Then

9

P(AB):E k
n

S |3

k
n m

3

but = P(A), L3 = P,(B) and hence
n m

P(AB)= P(A)- P,(B).

It follows from (1.6.1) that the probability of joint appearance of any number of
events is equal to the probability of one of them multiplied by:

the conditional probability of another relative to the first event,

the conditional probability of the third event relative to the intersection of two first
events, etc. by the conditional probability of the last event relative to the intersection
of all preceding ones:

P(A/A,..A,)=P(A;) P(A, 1 A)) P(Ay 1 AjA,)...P(A, ] AjA, .. A, ;) (1.6.2)

It is easy to see that conditional probabilities have properties analogous to
those of ordinary probabilities. For example,

1. 0<P,(B)<1

2. If A and B are incompatible, so that AB = @, then P,(B)=0

3. If A implies, so that A B then P,(B)=1.

10



If the events A and B are independent then the probability for their product is defined
by the formula

P(AB)= P(A)P(B) (1.6.3)

Examplel.6.2. The break in an electric circuit occurs when at least one out of
three elements connected in series is out of order. Compute the probability that the
break in the circuit will not occur if the elements may be out of order with the
respective probabilities 0.3, 0.4 and 0.6. How does the probability change if the first
element in never out of order?

Solution. The required probability equals the probability that all three elements
are working. Let A, (k=1,2,3) denote the event that the kth element functions.

Then p=P(A)=P(A;A,A;) Since the events may be assumed independent,
p=P(A)=P(A,)=P(A;)=0.7-0.6-0.4=0.168.
If the first element is not out of order, then p = P(A, As )=0.24.

Examplel.6.3. A lot of 100 items undergoes a selective inspection. The entire
lot us rejected if there is at least one defective item if five items checked. What is the
probability that the given lot will be rejected if it contains 5 % defective items?

Solution. Find the probability g of the complementary event A consisting of
the situation in which the lot will be accepted. The given event is an intersection of
five events A=A A,A;A,As , where A, (k=123,4,5) means that the kth item

checked is good.

The probability of the event A, is P(A1 )= % since there are only 100 items,

of which 95 are good. After the occurrence of the event A;, there remain 99 items, of
. 4

which 94 are good and, therefore, P(A, / A, )= 3—9 Analogously, P(A; / AA, )= %,

P(A,/ AJALAy)= %, P(As /1 AJAALA,)= %. According to the formula (1.6.2), we

find that g = — . 2>.92.21_ 5

The required probability p=1-¢g=0.23.
§ 1.7. The Addition Theorem

Theorem. The probability of the sum of two events is equal to the sum of their
probabilities minus the probability of their intersection, that is

P(A+B)=P(A)+ P(B)- P(AB) (1.7.1)

Proof. Let n be the total number of uniquely possible, equiprobable and
incompatible outcomes; m the number of outcomes leading to the occurrence of the

11



event A; [ the number of outcomes leading to the occurrence of the event B and k the
number of outcomes leading to the occurrence of both A and B. Then

P(A+B)=Ll_k=ﬁ+£—§,butﬁzP(A),

L p(B).
n n n n n n

K = P(AB), and hence
n

P(A+B)=P(A)+ P(B)- P(AB).
Observe, that k =0 if the events A and B are incompatible.

Consequence 1. If the events A and B are incompatible then

P(A+B)= P(A)+ P(B) (1.7.2)
since P(AB)=0 for incompatible events.

Consequence 2. The sum of probabilities of events A, A,,...,A,, which form
a total set is equal to 1, that is
P(A)+P(A) +..+P(A,)=1 (1.7.3)

Since the events A;, A,,...,A, form a total set, their sum is a certain event

Z A, = Q. On using the formula (1.7.2) we can show that
k=1
P(A +A, +..+A )=P(A)+P(A,) +..+P(4,)

and P(Z A, ] = P(Q) that is

k=1
P(A)+P(A)) +...+P(A, )=1,since P(Q)=1.

Complementary events are incompatible and form a total set. There it follows
from (1.7.3) that the sum of the probabilities of complementary events is unity:

P(4) + P(a)=1 (1.7.4)

This formula i1s very important for practice. In many problems it is difficult to

calculate the probability of an event while the probability of the complementary event
may be easily calculated. In such cases formula (1.7.4) is useful.

Example. The scheme of the electric circuit between two points M and N is

given in Figure 1. Malfunctions during an interval of time 7 of different elements of
the circuit represent independent events with the following probabilities (Table 1)

12



Element K, K, L, L, L,

Probability | 0.6 0.5 04 0.7 0.9

Table 1.7.1

Find the probability of a break in the circuit during the indicated interval of time.

L,
M)
Ki YL | K
M —O O O—N
M Ls
\
Fig.1.7.1

Solution. Denote by A; (j =1,2) the event meaning that an element K ; 1s out
of order, by A that at least one element K ; is out of order and by B that all three

elements L, (i =1,2,3) are out of order. Then, the required probability is
p=P(A+B)=P(A)+ P(B)- P(A)P(B)..

Since
P(A)=P(A) + P(A,)- P(A,) P(A,)=0.8,
P(B)=P(L,) P(L,) P(Ly) = 0.252,

we get p =0.85.

§ 1.8. The Total Probability Formula

Suppose that an event A can occurs only together with one of events
H,, H,,.., H,, which form a total group.

Events H,, H,,..., H, are called hypotheses.
Probabilities P(H,), P(H,)..., P(H,) are known and conditional probabilities
Py (4),(i=12,...,n) also are known. Find the probability P(A).

Since the events H,, H,,..., H, form a total group their union (sum) is a

certain event.
The event A may appear only together with some event H,. Thus the event A

is the union of the events AH,,AH,,.,AH,. As by condition the events
H,, H,,.., H, are exclusive (incompatible) the events AH,, AH,,.., AH, are
also exclusive and we can use the addition theorem

n?

13



n

P(A) = P(AH,) + P(AH,)+..+ P(AH,)=) P(AH,).

k=1
On using the product theorem we obtain
P(AH )= P(H )Py, (A)
and therefore
P(A)=> P(H, )P, (A) (1.8.1)

k=1
Example. Electric bulbs are produced at two plants. Products of the first plant
contains 70% standard bulbs, the second — 80%. The bulbs were sent for sale to
shops. To the first shop were sent 60% of the general amount of bulbs, to the second
—40%.
What is the probability, that at random purchased bulb at the shop is a standard
bulb?

Solution. Denote by A the event meaning that a standard bulb was bought,
by H, — a bulb was produced at the first plant, by H, — a bulb was produced at the

second plant.
We have P(H,)=0.6, P(H,)=0.4, Py (A)=0.7, P, (A)=028.

By the total probability formula we have
P(A)=P(H,)- Py (A)+ P(H,) Py (A)=0.6-07+0.4-0.8=0.74.

§ 1.9. Bayes Formula

In practice we are often interested in a total group of incompatible events
H,, H,,.., H, whose probabilities P(H,)(i=1,2,..n) are known. These events are

not observable but one may observe some event A whose conditional probabilities
Py (A4)(i=1,2,..n) are known. Assume that a trial was performed resulting in the
appearance of the event A. Using this result of the trial it is required to make some
inferences about the events H,, H,,..., H,, namely to determine their probabilities

after the trial. In other words, it is necessary to find the conditional probabilities of
the events H,, H,,..., H, with respect to the event A.

From the probability multiplication theorem (1.6.1) follows

P(AH, )= P(A)P,(H )= P(H, )Py (A)

whence

PA(Hk): :

14



Substituting the expression of the probability of the event A from the formula of total
probability (1.8.1) we obtain

P(H )Py, (A)

n

> P(H,)P

P,(H,)= (k=12,...,n) (1.9.1)

This formula which solves the problem is called Bayes formula.
The probabilities P(H, )(k =1,2,...n) of the events H 1» H,,..., H, before the trial are

usually called prior probabilities, from the Latin a priori, which means “primary”
i.e. in our case before the trial was performed. The probabilities Py (A)(k =1,2,...,n)

of the same events after the trial are called posterior probabilities, from the Latin a
posteriori, which means “after”, i.e. after the trial was performed.

Example. A telegraphic communications system transmits the signals dot and

. : 2
dash. Assume that the statistical properties of obstacles are such that an average of 5

1 :
of the dots and 3 of the dashes are changed. Suppose that the ratio between the

transmitted dots and the transmitted dashes is 5:3. What is the probability that a
received signal will be the same as the transmitted signal if

a) the received signal is dot,

b) the received signal is a dash.

Solution. Let A be the event that a dot is received, and B that a dash is received.
One can make two hypotheses: H, that the transmitted signal was a dot; and H, that

P(H,) 5
P(H,) 3

the transmitted signal was a dash. By assumption,

(V)
N—

Moreover, P(Hl )+ P(H,)=1. Therefore P(H1 )= g, P(H2 )=

o0 | W

One knows that

3

1
Py (A)=",

P H, (A) = g s
The probabilities of A and B are determined from the total probability formula:
p(A) EE El 1 P(B) 5 2 EE l
§5 83 2 8 5 8 3 2
The required probabilities are:

2

2
Py (B)==,

PHZ(B):E‘

15
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CHAPTER II
RANDOM VARIABLES

§ 2.1. General Definitions. Discrete Random Variables

Definition. A random variable is a variable, which assumes as a result of a
trial depending on casual circumstances.

Definition. A random variable is said to be discrete if it takes only a finite or
countable infinite number of values.

Definition. A random variable is said to be continuous if it takes all values
in some finite or infinite interval, that is values completely fill some interval (finite or
infinite).

A set of possible values of a discrete random variable X and the probabilities
of these values refers to as the law of the distribution of a discrete random variable.
DRYV is set by the table

X X Xy N

P P1 223 oo | Pn

Where x; (i=1,2,..,n) a values of DRV X and p; =P(X =x;) — corresponding

probabilities.
py+ po+...+ p, =1, since the events X = x; form a total group.

Example2.1.1. A total number of lottery tickets is 100. This lottery distributes 1
prize worth 50 dollars, 10 prizes worth 1 dollar each. Find the law of the distribution
of the RV X as a volume of a winning for one lottery ticket.

Solution.RV X can takes the following values: x; =50, x, =1, x5 =0.

1
Th =PlX = =——=0.01,
en  py ( x1) 100

10
=PlX = =—=0.1,
P> ( x2) 100

p3=P(X =x;)=1-(p, + p,)=1-0.11=0.89.
So, the law of the distribution of this DRV is

17



P 0.01 0.1 0.89

Table 2.1.1.
§ 2.2. Arithmetical Operations with DRV
Definition. Two DRYV are called independent if the law of distribution of one

of them does not depend on what possible values were accepted by other DRV.
Let independent DRV X and Y be denoted by the distribution tables

X X1 Xy X,
P P1 P2 Pm
Y V1 Y2 Yn
P q1 q> qn

Definition. By the sum of two independent DRV X and Y we mean a DRV
which accepts all possible values x;+y; which probabilities p; defined by the

product theorem.
In the case of independent variables we have

Pij=Pid; (2.2.1)

Definition. By the product of two independent DRV X and Y we mean a
DRV which accepts all possible values x; y; with probabilities p; defined by the

product theorem.

Definition. By the k-th degree of a DRV X we mean a DRV which takes
k. eyel.
values x;” with the same probabilities p;.

18



Definition. By a product of a DRV X and a constant A we mean a DRV which
accepts values Ax; with the same probabilities.

Remark. For DRV X - X #X?, X + X #2X

§ 2.3. Numerical Characteristics of DRV

In what follows we consider such numerical characteristics:
e A. Mathematical expectation or mean value.
¢ B. Dispersion or variance.

¢ C. Mean square deviation.
A. Mathematical Expectation and its Properties

Definition. By the mathematical expectation of a DRV X we mean the sum of
products of all its values and corresponding probabilities, that is

M(X)zzn:xipi (2.3.1)
i=1

Let us calculate a mathematical expectation of the DRV and the average win
for one ticket in the example of § 2.1 (Table 2.1.1.)

M(X)=1-£+50-L+0-£=0.6.
100 100 100

10+50:0.6.

Average win is
100

So we can see that the probability meaning of a mathematical expectation is
the mean value of a random variable.

Using the formula (2.3.1) it is possible to prove the following properties of
mathematical expectation (ME).

1. M(C)=C,

2. M(CX)=C M(X) for an arbitrary constant C;

3. M(X +Y)=M(X)+ M(Y) for arbitrary random variables X and Y;
4. M(XY)=M(X)-M(Y) for independent random variables X and Y,
5. M(X -M(X))=0.
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B. Dispersion and its Properties

Definition. By the dispersion of a random variable X denoted by D(X) we

mean the mean square value M (X — M (X ))2 of the difference X — M (X).
So
D(X)=M(X -M(x)) (2.3.2)

Theorem.The dispersion also can be found by the formula
D(x)=m(x?)-m>(x)

Proof. D(X)=M(X =M (X))>=M(X* —2M(X)- X + M*(X))=
=m(x2)-2m(x) M(x)+ My (x2) = m(x2)-m2(x).

The following properties of a dispersion are valid.
1. A dispersion of a constant is equal to zero: D(C)=0.
2. D(CX)=C?*D(X) for an arbitrary constant C.

3. D(X +Y)=D(X)+ D(Y) for independent random variables X and Y.

4. D(xv)=M(x?)M(r?)-m2(x)M2(Y) for independent random
variables X and Y.

C. Definition. By mean square deviation we mean

o(X)=+/D(X) (2.3.3)

Example. Find the mean square deviation of the data in the following table

X -2 -1 0 1 2
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For DRV X *we get

P 0.1 0.1 0.5 0.1 0.2

Hence M(X)=0.2, M(X2)=1.4 and

D(X)=M(x?)- M*(X)=1.4-0.04=136, so

o(X)=./D(X)=+/136.
§ 2.4. Bernoulli Trials. The Binomial and Poisson Distribution

By Bernoulli trials we mean identical independent experiments in each of
which an event A, say, may occur with probability

p=P(A) (p#0)
or fail to occur with probability
qg=1-p.

Occurrence of the event A is called a “success” and nonoccurrence of A (i.e.,

occurrence of the complementary event A) is called “failure”.
Suppose that n independent trials are performed in every one of which the
probability of the event A is equal to p. It is required to find the probability P, (m)

that the event A will appear m times.

Example 2.4.1. A marksman fires 5 shots at a target. The probability of hitting
the target is one and the same p = 0.8 for all shots. Find the probability that the target

1s hit one time, two times, ..., five times.
Solution. Ps (0)= P(Z ‘A-AA- Z)z (0.2)5 ,

P(2)=P(A-A-A-A-A+..+A-A-A-A-A)=10-(0.8)" - (0.2)’.

21



Hence we can write
P(0)=C5q’. Ps(1)=Cspq*. Ps(2)=C5sp’q”..... P5(5)=C3p’.
Generalize these formulas we get
P,(m)=C)'p"q" ™", 2.4.1)
where

m n!

" oml(n—m)!

The formula (2.4.1) is called Bernoulli formula and corresponding probability
distribution of the random variable m given by the formula (2.4.1) is known as the
binomial distribution. The binomial distribution is specified by two parameters, the
probability p of a single success and the number of trials n. Suppose the number of
trials is large while the probability of success p is relatively small, so that each
success is a rather rare event while the average number of successes np is
appreciable. Then it is a good approximation to write

m _—a
P (m)=2 e' , where a=np (2.4.2)
m!
A random variable m taking only the integral values 0, 1, 2,... is said to be a
Poisson distribution if P, (m)= a e'
m!

Example 2.4.2. How many lottery tickets must be bought to make the
probability of winning at least P ?
Solution. Let N be the total number of lottery tickets and M the total number of

winning tickets. Then N is the probability that a bought ticket is one of the winning
tickets. The purchase of each ticket can be regarded as a separate trial with
probability of “success” p :W in a series of n independent trials, where n is the

number of tickets bought. If p is relatively small, as is usually the case, and the given
probability P is relatively large, then it is clear that a rather large number of tickets
must be bought to make the probability of buying at least one winning ticket no
smaller than P. Hence the number of winning tickets among those purchased is a
random variable with an approximately Poisson distribution, i.e. the probability that
there are precisely m winning tickets among n purchased tickets is
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- M
P, (m)= a.¢ ,where a=n—.
m! N

The probability that at least one of the tickets is a winning ticket is just

1-P,(0)=1-¢"".
Hence n must be at least as large as the smallest positive integer satisfying the
inequality

M
e “=e N L<1-P.

§ 2.5. The Local Laplace Theorem
Suppose the number of trials n is large and m is also large and determining the

binomial distribution become very cumbersome. In this case we make use of Laplace
formula

P (m)=—— g(x), where

\IpPYq

2 —
(P(x) =£ — Gauss function and x = m—np

Gauss function ¢(x) satisfies the following conditions:
1. ¢(x)>0 for all x;

2. function @(x) is even function, that is @(— x) = ¢(x);

3. lim @(x)= 0. Practically for ‘ X ‘ >4 ¢(x)=0.

X—>o00

Example 2.5.1. Given p =0.6,n=15. Find P,5(7).

Solution. g=1-—p=0.4, np=15-0.6=9, x:m—np =-1.05,
N nmp
-(1.05)
Pis(7)= Lo e 202290 60007,
1.8970 /6.28 1.8970

By Bernoulli formula we get

|
Ps(7)= 15! (0.6)" - (0.4)* =0.1183.

718!
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§ 2.6. Integral Function of Distribution

Definition. The probability of the inequality X < x considered as a function of

the variable x is called the distribution integral function of the random variable X
that is

F(x)=P(X <x) (2.6.1)

Example 2.6.1. Find the integral function of the following distribution of a
random variable and form a graph of this function.

X 0 1 3

Solution. Using the formula (2.6.1) we obtain

(0, if x<0
0.2,1f O0<x<1
0.5,1f 1<x<3
I, if x>3

F(x)z

Fig. 2.6.1

Conclusion.In the case of DRV a graph of integral function of distribution is
represented in a staircase form.

Definition. A random variable is called continuous if its integral function of
distribution is continuous for all x.

Now we consider the properties of an integral function of distribution.
1. 0<F(x)<1;
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2. F(=o0)= lim F(x)= lim P(X <x)=0,
X—>—00 X—>—oo
F(—o0)= lim F(x)= lim P(X <x)=0,

X—>—oc0 X—>—oc0
3. An integral distribution function is a non-decreasing function of x.

Proof. Let x; < x, then

P(X<x,)=P(X <x;)+ P(x; <X <x,),
but

F(xy)=P(X <xp), Flx)=P(X <x;),

hence
F(x,)=F(x)=P(x; <X <x,). (2.6.2)
A probability of any event is non-negative, so
Flx)< F(xy).
Rewrite the equality (2.6.2) in such a form to have

Px, <X <x,)=F(x,)- F(x;) (2.6.3)

Thus, the probability of the occurrence of a random variable in a given interval is
equal to the increment of its distribution function on this interval.

4. The probability of occurrence of a continuous random variable in a specific point
1s equal to zero.

Proof.  On setting in the formula (2.6.3) x, = x; + Ax we get
Let Ax — 0O then

lim P(x; <X <x,)= lim (F(x; + Ax)— F(x;)) = lim AF(x;)=0 since a
Ax—0 Ax—0 Ax—0

function F(x) is continuous.
Corollary.The following equalities are valid for a continuous random variable
Pl <X <xy))=Plx; <X <x,)=Plx; <X <x,)=Px; <X <x,).

§ 2.7. Differential Distribution Function
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Definition. By differential distribution function (density) we mean a
derivative of an integral distribution function, that is

¢(x)=F'(x) (2.7.1)

A density ¢(x) satisfies the following conditions:
1. ¢(x)>0 since (p( )=F’(x) and F(x) is a non-decreasing function.

2. Pla<X <b)= jgo (2.7.2)

Since F '(x)z(p(x) then F(x) is an antiderivative of a function ¢(x). Using the
Newton-Leibnitz formula we have

Pla< X <b)= F(b)~ Fla)= [ gl(x)d

o0
Corollary 1. j(p(x)dx =1.
Really
+o0
jgo(x)dx= P(—o0< X <+o0)=1.

Corollary 2. Pla< X <b)=¢(c)-(b—a), where ce [a,b]
3. Let a density ¢(x) be given. Find F(x).
P(-oo< X <x)=F(x)- F(— o) = F(x).

P(—oo< X <x) j o(x
From this it follows

= J{¢(x)dx. (2.7.3)

§ 2.8. Numerical Characteristics of Continuous Random Variables

Let a continuous random variable X be given by distribution density ¢(x).
Take its possible values in a closed interval [a,b]
Divide the interval [a,b] into n subintervals Ax,,Ax,,..., Ax, and choose points

X; (i =1, n) between a and b.
Define ME by analogy with that of the case of DRV in such a way

1

ixigp(xi )Axi . (2.8.1)
i=1
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Passing to the limit, when mMax Ax; =0 we get
l

n b
lim > x,(x; )Ax, = Ix(p(x)dx (2.8.2)

max Ay, =05}

Definition. By the mathematical expectation of a continuous random variable
we mean the definite integral

M(X)= lfx(p(x)dx (2.8.3)

If values of a continuous random variable belong to infinite interval (— oo, +oo)
then a mathematical expectation is defined by the improper integral

M(X)= T x¢(x)dx (2.8.4)

Since by the dispersion of a random variable we mean the mean square value
M(X-M(X ))2 of the difference X — M (X ) then

D(X)=M(X -M(X ))Z:T (x = M (X))* @(x)dx (2.8.5)

—00

If values of a continuous random variable belong to the close interval [a,b]

then
b

D(X)= j (x = M(X))* @(x)dx (2.8.6)

Example 2.8.1. Given integral distribution function F(x):

(0 if x<0,

F(x)= %if 0<x<2,

I if x>2.
Find M(X), D(X) and o(X).

Solution. First of all we find the density distribution function ¢(x)= F’(x).
0 if x<0,

¢(x):<%if 0<x<2,

0 if x>2.
400 0 2 1 +oo
M(X )= |x@lx)dx = | x-0dx + | x-—dx + | x-0dx=
()= Frotaha = [0 [aSans |
2 2
:lJ.xdx:x—2=1.
20 4 1o
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1.

§ 2.9. A Uniform Distribution

The distribution of a continuous random variable whose density is constant in
some closed interval [a,b] and is equal to zero outside this interval is called a
uniform distribution:

1

o) =1b—a’ if xe [a,b],
0, if x¢[a,b]
that is @(x)=cfor xe la,b] but
—+oo

M(X)= J.cdle,

—0Q

= I, c= . Instead of a closed interval [a,b] it 1s possible to

a b—a
take (a,b), or [a,b), (a,b] since a random variable is continuous.
The graph of the density ¢(x) has the form

and hence cx

y
I
b-a | |
] |
0 a b X
Fig.2.9.1

A uniform distribution is characteristic for the phase of random oscillations. In
practice we have to consider harmonic oscillations with random amplitude and
phase. In such cases the phase is often a random variable uniformly distributed
over the period of oscillations.

Let us find the integral distribution function F(x).

Since F(x)= j(p(t)dt, then

if x < a we have
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f¢(z)dz = j 0dt =0,

2. 1if a £ x<b we obtain
X

X a X a d _
[o)di= [@l)dr + [@(t)d = Jo-dt + -[b—ta:z—;l’

3. if x >b we get

T(D(t)dt = .qu(t)dt + Iqo(t)dt + jfgo(z)dz:

a b X
= [odr + | dr +j0dt=b_a=1.
- ' b—a 3 b-a
Therefore
(0 if x<a,
F(x)= 74 as<x<b,
b—a
1 if b<ux.

The graph of this function is of the form:

T

0 a b X

Fig.2.9.2

Let us define M (X ) and D(X).

bx-dx 1 x?

D(X)=T(x—M(X))2(p(x)dx= j(x—“bj bdx =

—o0 a

- 3(b1—a)(x_ anrbT
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Example 2.9.1. Find the probability that a random variable X assumes values

on the closed interval [, 8] c [a, b]

B _ _ —
Solution. Pa<x< )= plxMdx=F()- Fla)=L2 =4 %= _F-a
o b-a b-a b-a
§ 2.10. An Exponential Distribution
An exponential distribution is determined by the density:
0, if x<0,
o(x)= ok 0 where k>0 (2.10.1)

The graph of this function is shown in Fig.2.10.1.

k\

0 X

Fig.2.10.1

The integral distribution function F(x) is of the form

0, for x <0,
Flx)=5
l1—e ™, for x>0

and is shown in Fig.2.10.2.
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Y
1 __
0 X
Fig.2.10.2.
Now we find the mathematical expectation and the dispersion
+oo b . .
Integratin
M(X)= J.xke_kxdxz lim Jxke_kxdx = 8 =
) bortoor by parts
= lim (— xe ™™ —le_kij= 0—1(0—1)=l.

b—>-+eo k 0 k k

T T 1 [integrating by
D(X)= Ixze_kxdx—Mz(X)z kJ.xze_kxdx——= . =

. 0 k% | partstwice

2
=k lim (—x—e_kx + z(—fe_kx —Le_kxj}b L
b—>+oo k k k k2 0 k2
:k[()—z(o 0—i(0—1)D—i2=l2 - iz = iz
k k” k k k
Thus
1 1 1
M(X)zz, D(X)_—z,a(x):;. (2.10.2)

Example 2.10.1. Let T be a time period of operating a radio bulb, which has an
exponential distribution. Find the probability of operating a radio bulb not less than
800 hours if an average time period is 400 hours.

Solution.

M (T) =400, k:%oo, P(T >800)=1- P(T <800) = 1 - F(800)=

_800
= 1—[1—e 400J=e‘2 ~0.135.
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§ 2.11. A Normal Distribution

A normal distribution is determined by the density:
o) =— e_(x;z) .XER, (2.11.1)
o2

in which a is the mathematical expectation and o is the mean square deviation.

[

Consider some properties of the function ¢(x) given by the formula (2.11.1)

. ¢(x)>0forallxe R.

1

. The function ¢(x) has the maximum at x=gq, equals T Really
o227
CE (1) (1)
@'(x)=— e 29 . Therefore ¢'(x)=0 if x=a, hence ¢’(x)>0for x<a,
oN2rx
and ¢’(x)<0 for x>a,. This means that x=a is the point of maximum and

1
= a)= .
Prax = Pla) oy

. Calculating the second derivative of ¢(x) we can verify that the points x=a + o

are points of inflexion.

The graph of the function @(x) is symmetric with respect to the vertical straight
line x=a.

lim ¢(x) =0, that is OX axes is a horizontal asymptote of the function ¢(x).

X—>0

Using these properties we can sketch graph of the function ¢(x).

P(x)
|
N U
G%A
— I I I
0 a-6 a a+0 X

Fig.2.11.1
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The graph of the density ¢(x) is the “bell-shaped” curve.

The integral distribution function F(x) we find by the formula:
- a)

- L @(x)dx \/_ L e 2

. X—a .
Setting ——=t; x=a+ 0t, dx=o0dt we obtain

o
1 0 _ﬁ (x—a)/a _ﬁ
e 2dt ——| |e %dt+ e 2dt|
oN2xw ., N27 _[o J(;

F(x

But
t2

_t too 17 /
je 2dt = % j e 2dt =% (Poisson integral)

and using Laplace function

d(x)= [e 2ar (2.11.2)
0
we finally have

F(x)=l(1+cl>(x_an. (2.11.3)
2 o

Now let us derive a formula for the probability of the occurrence of a normally
distributed random variable X in a given closed interval [xl Xy ]

We get

Py, <X <x,) = F(xz)—F(x1)=%[l+d>[x2;an .

el o) e

In the special case when the interval [xl , xz] is symmetrical with respect to the

expectation a, x, =a — &, x, =a + &, the formula (2.11.4) gives

Pla—e<X<a+ée)= P(X —d<¢) %(q{fj—qn(—fn

(o (o
Hence taking into account the oddness of the function ®(x) we obtain

P(x —d|<ée)= cp(f). (2.11.5)

o

Example 2.11.1. The measurement of the distance to a certain object is
accompanied by systematic and random errors. The systematic error equals 50 m.
in the direction of decreasing distance. The random errors obey the normal
distribution law with the mean square deviation ¢ =100 m. Find
(1) the probability of measuring the distance with an error not exceeding 150 m. in

absolute value,
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(2) the probability that the measured distance does not exceed the actual one.

Solution. Let X denote the total error made in measuring the distance. Its
systematic component is a = - 50 m. Consequently, the probability density of the
total errors has the form

o(x) = 1 [_ (x + 50)2 ]

ex
100V 27 P 20.000

(1) According to the formula (2.11.4), we have

P(X|<150)= P(-150< X <150)= cp(w)_cp(wj _
2 100 100

The probability integral ®(x) is an odd function and hence, ®(~1)=—®(1).From this
we get

Px]<150)= 2 (2(2)+ ®(1)

From the table list, we find &(2)=0.9545, &(1)=0.6827; and finally,
P(x|<150)=0.8186.

(2) The probability that the measured distance will not exceed the actual one is
ppm<X<m=%@ma+¢@»
Since ®(c0)= lim ®(x)=1and from the table list we find @(0.5)=0.3829, it follows
that P(—co < X—<> 0) = 0.6914.
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CHAPTER III
The Law of Large Numbers and Limit Theorem
of the Theory of Probability

§ 3.1. The Law of Large Numbers

Markov’s inequality. If a random variable X accepts only non-negative values
and has a finite mathematical expectation, then for any positive number & the
following inequality holds

P(x Za)SM(X)

(3.1.1)

Proof. Since X accepts only non-negative values, then M (X )>a and

M(X)= [xp(dc > () a | plxde = aP(X > a)

M(X)'

Therefore P(X > )<

Corollary3.1.1. P(X <a)>1- M.
(97

Really, since the events X =2a and X <a@are complementary, then
P(X za)+P(X <a)=1,
hence
M(X)
o

Chebyshev’s inequality. If a random variable X has a finite dispersion, then for
any £ > (Othe following inequality holds:

Plx -M(x)z¢)<

PX<a)=1-P(X=2a)>1-

D(X)

(3.1.2)

Proof. On applying Markov’s inequality to the random variable (X — M (X ))2
and taking =€ we get
M(X -M(X))" _D(x)

£’ e*
since the inequality (X —M(X ))2 >e? is equivalent to the inequality
X -M(X)=ze

P((X ~M (X)) 282)3

Corollary3.1.2. P(‘X — M(X)D <e>1 —if).
£

Since the events ‘X -M(X )‘ > £ and ‘X -M(X )( < £ are complementary we have
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P(x —M(Xx)2€)+P(X - M(X)<e)=1.Whence

D(X).

P(X -M(X)<e)=1-P(X -M(X)2€)=1-

Now we consider some special cases of Chebyshev’s inequality.
Let p be a probability of some event A in n repeated independent trials, m is a

m . .
frequency of the event A; — 1is relative frequency.
n

1). For a random variable X = m having a binomial law of distribution we have
M(X)=M(m)=np, D(X) = D(m)=npq:

P(m—np|<e)>1-"P1. (3.1.3)
&
2). For a random variable X = n having a binomial law of distribution we get
n
M(X) = M(T)zp, D(X) = D(T]=ﬁ1:
n n n
P(ﬁ—p <ej>1—p—q2. (3.1.4)
n ne
Chebyshev’s theorem. If X,, X,, ..., X,,... i1s a sequence of random
variables, pairwise independent with mathematical expectations ay, d,,..., a,,,...

whose dispersions are bounded by the constant D(X K )S C,k=1,2,..., then for any
constant € > 0,

X +X,+..+X + + ...+
fim p| | X1+ X2 n 478 Dlcel|=1 (3.1.5)
e || n n |

X, + Xy 4ot X,

Proof. Consider the random variable X_n =
n

Since X, (k=12,...n) are independent random variables then by the corresponding
properties of mathematical expectation and dispersion we have

M(Xn):M(XI +X, +...+an:a1 +a, +...+an;
n n

plx, )= niz (D(X,)+D(X,)+...+ D(X, )

Apply Chebyshev’s inequality to the random variable X , to obtain

X, +X,+..+X, a +a,+..+a,

P - <€ |2
| n noo |

>1_D(Xl)+D(X2)+...+D(Xn)

> ey :
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Since D(Xk )S C (k =1,2,..., n), then

2,27

p |X1+X2+...+Xn _a ta,t..+a,
n-&

SejZl— ¢

| n no

lim(l— 52]:1.
n—eo n-&

The theorem has been proved.

Bernoulli’s theorem. Let p be a probability of some event A in n repeated
independent trials, m is a frequency of the event A, then for any constant £ >0,

m
4
n

lim P(

n—soo

<8j=1 (3.1.6)

Proof. Passing in the inequality (3.1.4) to a limit as n — o we arrive at the
formula (3.1.6).

Lyapunov’s central limit theorem. If X, X,, ..., X, are independent random
variables with mathematical expectation a, (k=12,.,n) and dispersion
D(X, )(k=1,2,..,n), and also ‘Xk —a, < 5‘ (k=12,..,n), and dispersions are
bounded by one and the same number, that is D(X k)S C,(k=1,2,...,n). Then for

n
n—o the sum ZX . Infinitely approaches the normal distribution with
k=1

n n
mathematical expectation Za . and dispersion ZO'kz.
k=1 k=1
This theorem we accept without proof.

Corollary 3.1.1. If random variables X, (k =1,2,...,n) are equally distributed

then the law of distribution of their sum as n — o approaches the normal law of
distribution.

Corollary 3.1.2. If X, X,, ..., X, satisfy conditions of central limit
n
theorem, then applying the formula (2.11.4) to their sum ZX , We obtain the
k=1
approximate formula

P(aséxk sﬁ]%(@(ﬁ;“j—@(“;an. (3.1.7)
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Moivre-Laplace theorem. Let p be a probability of some event A in n repeated
independent trials, m is a frequency of the event A, then the following approximate

formula is valid
1 m, —np m, —np

el 4252

n
Proof. A random variable m can be represented in the form m = Z X, , where
k=1

X, =1 if the event A occurs in the kth trial, and X, =0 if it does not occur.
Since M(X,)=p, D(X, )= pq, then

M(m):M[ZXk):”P’ D(m)zD[Zijznpq.
1 1
On substituting these values in the formula (3.1.7) we obtain
Plomy <m<my)= cp[_mz —"Pj_q)[ml —"PJ |
2 Nnpq Nnpg
This theorem can be used for the determination of a probability of a deviation
of the frequency m from the mathematical expectation np and also for the probability

(3.1.8)

of the deviation of the relative frequency ™ from the probability p.
n

In the first case we have
PQm—np‘SE)z Plnp—e<m<np+¢)=

e )
}

Thus
€
qu—np\Sg)zq>[ (3.1.9)
\VIpYq
In the second case we get
P[ﬂ—p 38): PQm—np‘Sne)sz(e i} (3.1.10)
n Pq

Example 3.1.1. The probability that an item will fail during reliability tests 1s
p =0,05. What is the probability that during tests with 100 items, the number failing

will be
a) at least five;
b) less than five;
¢) between five and ten.
Solution.By the de Moivre-Laplace theorem,
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P(m, Smsz)zl CI)[m2 —np]_q)[ml —np] ,
20\ npg Jnpg
if n 1s sufficiently large. By assumption, n = 100, p =0.05, g = 1 — p = 0.95.
a) The probability that at least five items fails is

P(m=>=5)=P(5<m<100)= %(d)(mgﬁ} - @(%D:
1

:5(q>(43.6)— ®(0))=0.5.

b) The probability that less than five items fail is

P(m<5)=P(0<m<5)= %[q{%} - @(%Dz
1

= (®(0)— P(2.29))=0.489.

c) The probability that five to ten items fail is

P(5<m<10)~ %[q{%] - cp(%j} _
= % (®(2.29)- @(0)) = 0.489.

Example 3.1.2. How many independent trials should be performed so that at
least five occurrences of an event A will be observed with probability 0.8, if the
probability of A in one trial is P(A)=0.05.

Solution. From the Moivre-Laplace theorem, we see that
1 n—0.05 5-0.05n
Pln25)=" q{_j : cp(_j _
2[ ~0.0475n 7 0.0475n

1 laae)of 520051
_2£¢(4.36f ) q’(mj}

For n =1, we have CI>(4.36\/Z )z 1; therefore, substituting P(m >5)=0.8 we obtain
1 5-0.05n
—|1-P] ————|=0.§,
2 ( (\/0.047571 D

q)( 5-0.05n j _0e.

10.0475n

or
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From the table we find the argument x = — 0.8416 corresponding to the value of the
function ®(x)=-0.6.
Solving the equation

0 _ 8416,

v0.0475n

we find the unique root n =144. Thus, in order that A occur at least five times with
probability 0.8, 144 trials are necessary.
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